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Abstract—Face recognition made tremendous leaps in the last
five years with a myriad of systems proposing novel techniques
substantially backed by deep convolutional neural networks
(DCNN). Although face recognition performance sky-rocketed
using deep-learning in classic datasets like LFW, leading to the
belief that this technique reached human performance, it still
remains an open problem in unconstrained environments as
demonstrated by the newly released IJB datasets.

This survey aims to summarize the main advances in deep face
recognition and, more in general, in learning face representations
for verification and identification. The survey provides a clear,
structured presentation of the principal, state-of-the-art (SOTA)
face recognition techniques appearing within the past five years
in top computer vision venues.

The survey is broken down into multiple parts that follow a
standard face recognition pipeline: (a) how SOTA systems are
trained and which public data sets have they used; (b) face
preprocessing part (detection, alignment, etc.); (c) architecture
and loss functions used for transfer learning (d) face recognition
for verification and identification. The survey concludes with an
overview of the SOTA results at a glance along with some open
issues currently overlooked by the community.

I. INTRODUCTION AND MOTIVATION

Recognizing people is one of the most important topics

in computer vision and pattern recognition. Among various

biometrics used for person recognition, the face is one of

the most popular, since this ubiquitous biometric can be ac-

quired in unconstrained environments while providing strong

discriminative features for recognition. For this reason, face

recognition became an extremely important tool that is used

for augmenting the automatic capabilities of video-surveillance

and security systems, video-analytics software, and thousands

of applications in our daily lives like entertainment, smart

shopping, and automatic face tagging in photo collections.

Unlike generic object recognition, face recognition—and

more in general face analysis—is of great interest since it sup-

plies machines with an automatic way to interpret humans and

their interactions, along with their expressions and feelings.

Face recognition has been a mature discipline in computer

vision for many years; the first effort is dated back to 1966 [1],

[2]. It is interesting to revisit the words that Bledsoe used

to describe the challenges met in developing automatic facial

recognition tools:

This recognition problem is made difficult by the

great variability in head rotation and tilt, lighting in-

tensity and angle, facial expression, aging, etc. Some
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Fig. 1. Face recognition pipeline. Top: At training time, a huge labeled
face set (a) is used to constrain the weights of a DCNN (b) optimizing a loss
function (c) for the classification task. Bottom: At test time, the classification
layer is often discarded, and the DCNN is used as a feature extractor for
comparing face descriptors.

other attempts at facial recognition by machine have

allowed for little or no variability in these quantities.

Yet the method of correlation (or pattern matching)

of unprocessed optical data, which is often used by

some researchers, is certain to fail in cases where

the variability is great. In particular, the correlation

is very low between two pictures of the same person

with two different head rotations.

It is somewhat surprising that today, the main challenges for

automatic recognition remain the same with those identified 52

years ago by Bledsoe and coincide with the problem of PIE

(pose-illumination-expression) in face recognition. In order

to obtain ideal recognition, a machine vision system needs

to be able to fully correlate the identity signals given two

face images, without being “distracted” by other confounding

factors present in the media itself—such as pose variations,

illuminations changes, and non-rigid expressions.

Recently, a big leap toward solving the PIE problem for

face recognition was made with the introduction of massive

training sets useful for training very deep convolutional neural

networks (DCNN) [3]–[6]. This approach led to human-like

performance (99% accuracy) in face verification on the set of

Labeled Faces in the Wild (LFW) [7].

The powerful aspect of DCNN is the fact that, given an am-

ple training set, these large-scale pattern recognition machines

can be optimized end-to-end in order to develop features



that amplify the identity signal, while being robust to other

PIE variations. Although the generalization ability of face

recognition systems improved drastically, yet unconstrained

face recognition in video-surveillance settings is far from

being solved, and recently, a flurry of new methods have been

proposed in top-tier conferences. In particular, the main effort

was in pushing methods to perform well not only on celebrity

faces (LFW) but also on surveillance footage and still images

(IJB [8]).

The survey will review in detail methods in the last five

years that addressed specific issues of different parts of a

modern deep face recognition pipe. Fig. 1 depicts the structure

of a common pipeline: given a training set, the approach

usually performs some form of face preprocessing and trains

a DCNN in order to classify a pool of subjects. Then, the

network is used as a feature extractor to obtain descriptors

that are matched together to perform face recognition.

The remainder of the survey is organized as follows: Sec. II

briefly goes over face detection, since this is a necessary step

although not the focus of this work; Sec. III reviews important

topics of face preprocessing and the training collections;

Sec. IV explains how to utilize training data through super-

vised learning of deep models; Sec. V offers common practices

performed at test time to further improve face recognition

accuracy, in the particular case that a subject is described

by multiple media [8]; Sec. VI shows the progress of SOTA

performance in the new challenging IJB-A set; and finally, we

discuss possible open problems and conclude the survey in

Sec. VII.

II. FACE DETECTION

As one of the most famous problems in computer vision,

face detection has been attracting attention for more than

two decades. Yang et al. [9], and Zhao et al. [10] review

face detection work which often focuses on developing dis-

criminative hand-crafted features, and robust and efficient

learning algorithms. With the powerful DCNNs, face detection

performance has greatly improved in terms of both speed and

accuracy. Detecting faces, at least frontal faces, is no longer

a challenging task. Recent efforts have been made to improve

face detection in challenging conditions, e.g. partial/occluded

faces [11], faces in violent settings [12], and faces captured

from depth sensors [13]. For a recent survey the reader can

study [14].

III. DATA COLLECTIONS AND FACE PREPROCESSING

In this section we first review the publicly available data

collections in the face recognition community used for training

DCNNs, discussing the characteristics of each set with their

advantages and disadvantages. Since face preprocessing is also

very related to the input data, we also offer a review of the

current techniques commonly used to preprocess a face.

A. Data Collections

With the rise of deep-learning [6] in recent years, a key

aspect in developing face recognition systems is the training

TABLE I
THE TABLE PRESENTS DATA COLLECTIONS USED FOR TRAINING AND

TESTING. * DENOTES PRIVATE SETS.

Dataset Subjects (Img/Video) Img. per sub. Annotations Curated Year

Training Collections

Facebook* [15] 4,030 4.4M/– 1,000 ✗ ✗ 2014

CASIA [16] 10,575 494,414/– 46 ✗ ✓ 2014

Google* [17] 8M 200M/– 25 ✗ ✗ 2015

VGGFace [18] 2,622 2.6M/– 1,000 box, pose ✗ 2015

UMDFaces [19] 8,277 367K/22K 45 keypts, pose, gender ✓ 2016

MS-Celeb-1M [20] 100K 10M/– 100 box ✗ 2016

VGGFace2 [21] 9,131 3.31M/– 362.6 pose, age ✓ 2017

IMDb-Face [22] 1.7M 59K/– 28.8 pose, age ✓ 2018

Benchmarks

LFW [7] 5,749 13,233/– 2.3 ✗ – 2007

YTF [23] 1,595 –/3,425 – ✗ – 2011

IJB-A [8] 500 5.7K/2K 11.4 box, pose, attributes – 2015

MegaFace [24] 690,572 1.02M/– 1.5 ✗ – 2016

IJB-B [25] 1,845 11.7K/7.0K 36.2 box – 2017

IJB-C [26] 3,531 31K/11.8K 6 box – 2018

data used to learn face representations. Data collections are

usually overlooked, but they are extremely important. Al-

though some companies have internally labeled private face

sets that scale to millions of images (Facebook [15]) or

even millions of subjects (Google [17]), the situation is very

different for publicly available collections. Currently, the main

training sets available for the community are represented by

the following: (i) CASIA WebFace [16]; (ii) VGGFace [18];

(iii) UMDFaces [19]; (iv) VGGFace2 [21]; (v) MS-Celeb-1M

[20]; and (vi) IMDb-Face.

CASIA WebFace is a dataset comprising around 500K images

of 10K subjects. It was automatically collected by the CASIA

group [16] and then manually refined. As is common for

sets that are collected by looking at celebrities or famous

people, this set presents a long tail distribution [27] in terms

of the images that are associated to a subject. This means that

there are some frequent and usually more famous subjects that

comprise most of the images, while others are only described

by a few images.

VGGFace is a dataset proposed by the Oxford group [18]

for training deep models that comprises around 2.6M faces of

2,622 individuals. Unlike CASIA, the set has a flat distribution,

i.e., each subject is described by about one thousand samples,

most of which are of high-quality frontal faces since the

images are scraped from web engines. Moreover, despite the

effort of cleaning the set, the intra-class variance for a subject

is also affected by noise (outliers), while the CASIA WebFace

contains less severe errors.

UMDFaces is a face set released by [19]. Bansal et al. [19]

used a mix of human annotators via Amazon Mechanical Turk

(AMT) and already trained deep-based face analysis tools

to build medium-sized sets that are much tougher than the

already available sets—such as [16], [18]. Another UMDFaces

peculiarity is the fact that, unlike CASIA and VGGFace,

the set contains both still images (usually high quality) and

video frames (often affected by motion blur). The set provides

annotations of facial keypoints, face pose angles, gender

information. These annotations are extracted automatically

using [28]. The set consists of 367,888 face annotations in still



images for 8,277 subjects, and also 3.7 million annotated video

frames from about 22K videos of 3,100 subjects. Although

the UMDFaces numbers are smaller than the other sets, as

mentioned by [19], it presents a wider pose distribution than

CASIA and VGGFace.

MS-Celeb-1M was first released in the multimedia com-

munity, and it later spread throughout the computer vision

community [20]. It has around 10 million images of 100K

celebrities. Each celebrity has 100 images retrieved by the

Bing search engine using the celebrity’s name without any

filtering in the retrieved results. All of the previous sets pale

in comparison with the size of MS-Celeb-1M (10M images);

however, the quality of the dataset is severely biased by label

noise, duplicated images, non-face images present in the set,

all of which makes it hard to use directly. After all, MS-Celeb-

1M was released to learn from noisy labels and was never

curated.

VGGFace2 is an improved version of VGGFace created in

order to mitigate the deficiency of its predecessor. VGGFace2

[21] contains 3.31 million images of 9,131 subjects collected

among celebrities, but also famous people such as professors

or politicians. Compared to its predecessor, the average num-

ber of images decreased: on average, an individual is described

by 362.6 media. Though this number dropped, VGGFace2 is

designed to cover a large range of pose, age and ethnicity, and

to reduce label noise as much as possible. The reduction in

the label noise was achieved with the interplay of manual and

automatic processes.

IMDb-Face was very recently announced in [22] as a novel

set derived by cleaning the label noise in MS-Celeb-1M and

MegaFace [24]. This new set claims to be the largest noise-

controlled face collection; besides releasing the set, the paper

[22] proposes rigorous ablation studies of the impact of label

noise in training, both in terms of outliers or swapped labels.

In this section we reviewed only collections used for train-

ing. Nevertheless, it is worthwhile to also list benchmark

datasets. Tab. I shows an overview of the discussed training

collections along with evaluation datasets. Considering new

benchmarks—besides the novel IJB sets— [8], [25], [26]—it

is worth mentioning the recent effort called MegaFace [24]

for benchmarking the performance of face algorithms with

millions of “distractors”: briefly, distractors correspond to a

large number of individuals added to the gallery yet not present

in the probe with the scope of confusing the recognition

algorithm. Another effort worth to mention uses the same, fixed

set for training [29] in order to better isolate the performance

of the learning algorithm from the data size.

B. Face Preprocessing and Alignment

Although face recognition shares similarities with generic

object recognition, there is a particular aspect which is proper

of a face: faces have a well-structured shape that can be

modeled very well. On the other hand, this is hard to do for

generic objects since diverse classes could present very differ-

ent shapes. Face preprocessing uses strong domain knowledge

in order to properly modify the input face to ease the learning

of face representations. Domain knowledge is represented by

facial landmark detection, pose estimation, rendering and data

augmentation. For a survey on this topic please refer to [30].

Generally speaking, face preprocessing corresponds to face

alignment. Also, the word “face alignment” is often used

interchangeably in the community to point to face landmark

detectors [31]–[33]. In this survey we do not review landmark

detection systems since these are used to constrain the align-

ment through their output; we instead are more interested in

the types of transformations applied for face alignment.

More broadly, we will review common methods to achieve

face alignment or to compensate for spatial changes of the

face. After face detection, a face is always localized in an

image with a bounding box, but there is no guarantee that faces

will be aligned; moreover, it is often the case that the box is

subject to jitter. A common approach to making the DCNN

robust to spatial changes is data augmentation [34]: [17],

[18], [35] employed strong in-plane data augmentation when

training the network in order to make it robust to possible

misalignments that the system encounters at test time. An

advantage of this approach is that the method is kept very

simple with no extra preprocessing tools. In order to improve

performance at test-time, these methods often perform 2D

data augmentation (perturbing the sample to create multiple,

different copies of it) and average pooling in the feature

space. It is interesting that, although they used strong in-

plane augmentation at training time, some of them report [17],

[18] improved recognition at test-time if face imagery is

aligned with a 2D similarity transformation using detected

face landmarks. This leads to an easy alternative way for

alignment: the use of a simple 2D similarity transformation

that compensates for scale, in-plane rotation and translation,

and makes roughly all the salient parts of faces overlapping

each other. This approach is used by [28], [36]–[39] with

moderate augmentation to train the network. Ablation studies

performed in [40] brought us to the conclusion that this form of

alignment1 constantly improves face recognition performance

if applied in the same manner for both training and testing.

Note that both [41] and [38] pointed out that in order to

get a performance boost the 2D similarity needs to be tuned

differently for frontal faces and for profile faces. Frontal faces

are usually aligned with a few fiducial points (eye corners, tip

of the nose, mouth corners, etc.); since out-of-plane rotation

of the head causes a drastic change of the face image, in this

case, faces are aligned using only fiducial visible on the profile

contour.

With the intent of unifying the preprocessing step, Ranjan et

al. [28] created an all-in-one neural network for face detection

and face preprocessing trained with multi-task learning for

different face analysis tasks, while other researchers developed

more advanced face alignment methods [15], [42]–[44].

A 2D similarity is a transformation that is defined up

to 4 four DoF (scale, rotation angle, and 2D translation).

1The authors of [40] refer to this step as “face thumbnail creation.”



Fig. 2. Different face alignment methods. An input face (left) can be aligned with: (a) 2D alignment with a similarity transformation (b) data augmentation
for scale, rotation and translation (c) multi-crops (d) 3D face-specific augmentation to synthesize novel poses (e) STN does not use any other external tools
for alignment yet a subnetwork learns transformation parameters that are then applied to the RGB input tensor (or further, even to feature maps).

Therefore, the deformation power can be limited—e.g., a

2D similarity cannot compensate for out-of-plane variations.

To overcome this limitation, the community developed more

complex face alignment taking advantage of 3D face shapes

either using a 3D generic model [42], [43] or a subject-specific

3D model [15]. The process of warping an image using a 3D

model to make it artificially face a frontal view is referred to as

“face frontalization”2 [42], [45], [46]. Notably, frontalization

improved the LFW accuracy of both hand-crafted features [42]

and deeply learned [15], with the LFW benchmark quickly

reaching saturation with DCNNs [47], [48].

With the introduction of more general evaluation bench-

marks such as IJB-A [8] (IARPA JANUS Benchmark A) and

IJB-B [25] that offer a wider pose distribution, the frontal-

ization effort has been cast as a new way of performing data

augmentation introducing novel, unseen poses in the training

set [49]. Instead of warping the face to a frontal view, Masi et

al. [44] precompute off-line multiple rendered views so that

a face can be seen from any arbitrary frontal, half-profile and

profile view. Face-specific augmentation has been shown [49]

to greatly improve performance on IJB sets; furthermore, it

was later on extended to augment for illumination variations

in [50]. Efficient 3D face rendering [44] was also recently

coupled with a dedicated network (FacePoseNet [51]), di-

rectly regressing 3D head pose and thereby bypassing fragile

landmark detectors. Notably, all the above methods used a

generic shape or a bank of generic models, nevertheless, the

community is beginning to develop robust deep-based 3D

face estimation methods [52], [53]. The advantages of face-

specific augmentation are that it can be used to greatly enlarge

the intra-class variations of pose-deficient training sets—yet

hard alignment could cause artifacts, if not robust enough; to

overcome this problem, recently the idea of “recognition by

synthesis” has been augmented with an auxiliary step using

a GAN-based network [54], in which synthetically generated

images are refined by a dual-agent GAN [55].

All of the methods described above design the alignment

beforehand using some prior knowledge; contrarily, there is a

method proposed in [56], dubbed Spatial Transformer Network

(STN), that performs alignment end-to-end inside the network

2In some cases, given that this method performs dense alignment guided
by the manifold of the 3D face, it is also called hard alignment since the face
is aligned on a 3D shape; other papers mention it as 3D rectification.

while training. A specialized sub-net regresses the alignment

parameters given an input sample, and a differentiable grid

is used to deform the face; thereafter the training proceeds

in the usual way. Note that, the transformation inside the

STN can be arbitrarily defined (common choices are similarity

or affine transformations), but, unlike previous methods, the

parameters of the STN are learned online with the objective

of easing the classification task without any other loss on

the alignment. Although this method is very versatile, since

it removes the need for other face preprocessing tools that

can bog a pipeline down, currently it is not often used in the

face recognition community which instead prefers to fall back

to landmark detectors or pose estimation methods [51], [53].

Fig. 2 provides a summary of all the preprocessing methods

described above. For more details on face preprocessing and

its interactions with DCNN, one can read [57].

IV. NETWORK ARCHITECTURES, LOSS FUNCTIONS AND

DISENTANGLEMENT

After the training data is preprocessed using methodologies

presented in Sec. III-B, a standard pipeline proceeds in learn-

ing face representations by defining a DCNN architecture and

a loss function for classification. Most of the work reviewed

performs transfer learning: this means training the DCNN on

a closed pool of subjects to then use the DCNN as a descriptor

extractor on unseen faces.

A. Architectures and Loss Functions

We briefly summarize the different network architectures

that are optimized for face recognition. The first recent paper

that resumed the use of DCNNs for face recognition is Deep-

Face [15], in which convolutions and locally connected layers

are used to learn representations from input images all regis-

tered together via 3D frontalization [42]. Although locally con-

nected layers are in theory the preferable solution for the face

domain since we can register the data very well, yet standard

pipelines substantially use network building blocks developed

for generic object recognition with convolutional layers, batch

normalization (BN), non-linear activation (ReLu), and pooling

layers. Examples of these architectures are VGG16 [18] and

networks with residual connections, such as ResNet-50 [58].

Also, very often these DCNNs are pretrained for generic object



recognition on the ImageNet Large Scale Visual Recognition

Competition (ILSVRC) dataset [59].

Researchers made attempts to modify DCNN architectures

for better handling pose variations: Cao et al. [60] used the

property of equivariant mapping to propose a novel block in

the final stage of the encoder. The proposed DREAM block

adds residuals to the feature representation to map back a

profile face to a canonical pose to simplify the classification.

Besides developing novel architectures, the major part of

the community made an effort to develop new loss functions

on top of the SoftMax layer based on cross-entropy (Eq. (1)):

ℓcross−entropy = − log

(

eWix
T
+bi

∑

j e
Wjx

T+bj

)

(1)

where {W , b} indicates the final classification layer in the

network and x the feature embedding; i indicates the ground-

truth subject and j runs over all the subjects.

The main disadvantage of this loss for transfer learning is

that it separates training classes well, it but does not explicitly

minimize the intra-class variation of each subject. In [61],

Eq. (1) was augmented with a CenterLoss, such as λ
2
||x−ci||

2
2,

to also reduce intra-class variance. The new loss minimizes the

intra-class distance between the sample x and the centroid ci

of the class i; the centroid is updated online in the learning.

Other efforts to improve cross-entropy to reduce the within-

class variability are the L2-constrained SoftMax [62], in which

features x are first normalized by their L2 norm to lie on a

hyper-sphere and then scaled by a constant factor α. Though

this approach reports remarkable performance on IJB-A, it is

unclear how to select the α parameters effectively. Following

the observation by [62] that the L2 norm of a deeply learned

feature carries information about face image quality —the

network tends to place ambiguous images close to the origin—

Zheng et al. [63] proposed ring loss that adds regularization

terms to Eq. (1) to require the network to produce feature

embedding on a hypersphere. Unlike [62] they did not use

a projection method such as x

||x||2
to achieve this, but rather

added λ
2

(

||x||2 − r
)2

as a second term in Eq. (1), showing

improved results. This term punishes the network in case

features do not lie on a hypersphere of radius r. Unlike [62],

this approach jointly learns the weights of the DCNN and the

parameter of the radius of the hypersphere.

While the above cited approaches aim to reduce intra-class

variance, there is another trend in the community that achieves

similar results by increasing the margin between classes while

training: methods such as [64] and [65] proposed to increase

the angular margin in the cross-entropy loss with SoftMax

activations, offering a new way for optimizing such loss.

The above losses solve most of the problems for dis-

criminative representation learning, the drawback is that they

parameterize the training subjects inside the network. This can

work for a training pool of subjects that range from a few to

60K, but it is hard to scale beyond this value, ending up to

sacrifice the batch size. In order to train with a huge number of

subjects, one possibility is to use Hierarchical SoftMax [66] or,

alternatively, what can be done is to unroll all the comparisons

made at once with the last inner product, outside of the loss.

Deep metric learning such as contrastive loss [67], double

margin contrastive loss [68] or triplet loss [17] allow the

training to scale with a very large pool of subjects. Double-

margin contrastive loss aims to change the feature space to

pull all the positive pairs close together up to some margin,

while repelling the negative up to some other margin. Formally

it optimizes:

ℓdouble−margin = y [d−mp]
2

+
+ (1− y) [mn − d]

2

+
, (2)

where y = {0, 1} corresponds to same and not-same identity,

d is the Euclidean distance, and [·]+
.
= max(0, ·). Note that

mn defines the margin for negative pairs. In the formulation

of double-margin contrastive loss, since the mn − mp ≥ 0
and that mp ≥ 0, then 0 ≤ mp ≤ mn has to hold.

Although a margin-based contrastive loss has been reported

to be successful enough for learning deep embeddings [69],

recently the community has preferred triplet loss [17] that

instead optimizes:

ℓtriplet =
[

d2ap − d2an +m
]

+
, (3)

requiring only that the distance of a positive pair (anchor,

positive) dap is lower than the distance of anchor and a

negative dan, up to a margin m. A final remark on deep

metric learning losses is that one can avoid parameterizing

the subjects in the network, but doing so can increase the

complexity in sampling the pairs. For contrastive loss, the

sampling scales quadratically; for triplet it scales cubically

with respect to the training images; this is why it is important

to select highly informative negative pairs [69], [70].

B. Disentanglement for Face Recognition

Another aspect to consider when training a face recognition

system is that there is an alternative way to data augmentation.

This alternative is disentanglement of signals in the learned

feature space. While data augmentation injects on purpose

other factors in the pixel space, disentanglement aims to de-

couple the factors in the feature space; this means that the only

factor present in the learned representation regards identity

with no other contaminations from confounding factors (pose,

expressions, illumination).

Peng et al. [71] proposed a method for disentangling the

identity signal, present in a face image, from all the other

factors, such as pose and keypoint locations. Disentangling

the identity from other signals means making sure that the

learned representation x contains only factors that character-

ize the identity of an individual. Doing so, in principle, it

should be impossible to predict pose or other factors from the

learned embedding. Their method reaches disentanglement by

branching the encoder into two parts: one develops identity

features and the other is supervised with non-identity labels.

The encoder is thus trained with multi-task learning. While

multi-task learning can help decouple the signals, it does not

ensure disentanglement, which is instead achieved with self-

reconstruction and cross-reconstruction tasks. Following the



same objective, Liu et al. [72] used an autoencoder to distill

the identity signal and dispel other factors via adversarial

training. Unlike [71], this method does not need any other su-

pervising signals but the identity. This approach shows nearly

perfect accuracy on LFW and enables semantic face editing

of input images, though the improvement over the baseline

is marginal. Similar to [73], disentanglement is also achieved

in [74] and paired with a GAN supervised with identity and

pose labels; besides disentanglement, this approach is able

to generate synthetic images given as input continuous pose

codes.

V. FACE RECOGNITION

After the DCNN is trained following methods in Sec. IV,

it can be used to extract face descriptors. A standard testing

pipeline boils down to using the activations in the layer prior

the classification layer as a descriptor to encode the input;

these descriptors are then either L2 normalized and compared

with Euclidean distance or cosine similarity (see Fig. 1).

While all the current SOTA systems loosely follow this

procedure, each of them contains some unique aspects that

differ from the others. We will focus on cases in which a

probe sample is described by multiple, different heterogeneous

media — [8], [25], [26]. This is a likely case when multiple

shots of the same person can be obtained with a face tracker,

a mining method or with human supervision in the loop.

Masi et al. [75] performed average score pooling across

multiple Pose-Aware DCNNs to improve pose-invariance. The

same method was improved in [41] with the early fusion

of feature descriptors using the average for the different

Pose-Aware DCNNs. In fact, other researchers also obtained

improved performance by using some form of data aggregation

technique to compress multiple information into a compact

representation (called template) via media-averaging [35],

[39], [44]; others, instead, proposed to employ an aggregation

mechanism (NAN) directly inside the network [76]. Deep face

descriptors can be refined with a post-processing step based

on unsupervised PCA and non-linear square rooting [41] or

on linear supervised embedding learning (TPE [38]).

Inspired by the one-shot similarity kernel [77], Cross-

white et al. [35] proposed template adaptation. Given an

averaged feature of a template, a linear SVM is trained with

lazy learning at test time against a collection of reference

subjects (that act as a cohort of negative). This [35] showed

huge improvement on top of deep features from the VGGFace

network [18] on IJB-A, although it has the disadvantage that an

SVM needs to be trained for every probe. Template adaptation

can also be applied directly to identification. In this case, the

reference cohort corresponds to the gallery set.

The community made an effort in improving preprocess-

ing, training and verification steps in face recognition, while

putting less emphasis on adapting the model for identification,

either in case of a non-curated gallery ( [24]) or when a gallery

subject is described by a single image (one-shot learning).

VI. OVERVIEW OF STATE-OF-THE-ART RESULTS

Reviewing SOTA face recognition performance is a hard

task, since multiple factors can affect a system and methods

behave differently on diverse sets. Starting from 2014, face

recognition made a big leap in performance through DC-

NNs [15] reaching saturation on LFW.

More interesting is to observe the impact of deep face

recognition in the recent IJB-A set. IJB-A offers tests for 1:1

face recognition (verify) and 1:N face identification (search).

It introduces probe samples that could not have a mate in

the gallery, highlighting the problem of open set recognition.

Evaluation metrics considered in IJB-A are a ROC (receiver

operating characteristic) curve for verification, reporting the

recall (True Acceptance Rate - TAR) at multiple cutoff points

of the precision (False Alarm Rate - FAR). For identification,

performers report the recognition rate at multiple ranks using

a cumulative match characteristic (CMC) curve, counting only

the probe samples that have a mate in the gallery; additionally,

one can report the DET curve (detection error tradeoff), that,

similar to the ROC, measures the quality of the identification—

but up to a certain amount of k retrieved subjects. For a further

in-depth understanding of the evaluation metrics, the reader

can consult [78].

Following the above evaluation, Fig. 3 shows at a glance

the progress in the IJB-A set in terms of verification (Fig. 3a)

and identification (Fig. 3b) during the last four years. As

can be seen from the figure, hand-crafted features used in

OpenBR [79] and GOTS (government-off-the-shelf) [8], strug-

gled to handle the tough variability present in the IJB data.

The use of deep learning, starting from LSFS [80] and VG-

GFace [18], along with medium-sized dataset available for the

community, reduced the gap in verification and identification;

nevertheless it took a couple of years to reach saturation also

in IJB-A. The contribution to this progress can be explained

by the introduction of very deep models such as ResNet-

101 along with large-sized sets [20]. Face preprocessing

contributed to the progress with better methods for alignment

and for data augmentation [49], [55]. The last source of

improvement is provided by the use of more advanced loss

functions for better transfer learning [62], [63].

VII. CONCLUSIONS AND OPEN ISSUES

While performance figures on IJB-A seem reassuring—in

four years, they jumped from 20% to 90% TAR at 1% FAR—

there are still problems to solve. Currently, IJB-A is using

templates (a mix of media defined a priori) to describe an

unknown individual, but it is not clear how this “template”

can be automatically generated in an accurate way: along

this line, overlooked problems are video-based face recogni-

tion [81], in which a system is not given still images but it

has to track a person throughout the entire video. Automatic

video-processing can be an effective way to create templates

automatically, yet a better synergy between multi-target track-

ing and recognition is needed. Furthermore, another related

problem in face recognition is the automatic self-organization

of a large corpus of unlabeled faces. This problem is related
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Fig. 3. Progress on IJB-A in the last four years. While deep face recognition methods can get near perfect result on the LFW benchmark, deep-learning
along is not enough for IJB-A. This figure summarizes the methods developed during the last four years to obtain improvement on the IJB-A set. The figure
shows two metrics along with their standard deviations (a) reports TAR at FAR=1% (b) presents the recognition rate at rank-1.

to clustering, and an open question is: “If we are given an

unlabeled corpus of data, such as videos and images, with the

scope of clustering same identities, what is the best way to

proceed? Simply train a DCNN offline and then use standard

clustering methods to discover novel subjects? Or explore the

myriad of unlabeled data we have?” The two issues mentioned

above (video-processing and clustering) are currently the next

frontiers for face recognition and, not surprisingly, they have

been recently introduced in benchmarks. IJB-B [25] and IJB-

C [26] have specific novel protocols to measure the progress

on these two. Other underdeveloped aspects are the adaptation

of the model to a watch-list and how to tune the model in case

new subjects are enrolled in the watch-list.

Nonetheless, if the modern way of automatic machine-based

recognition is heavily based on large training sets, it is natural

that systems trained on those will contain biases that are

inherent in the data. Therefore, it is still an open problem—

how to design machines to make predictions without being

biased by the ethnicity, gender, age or other factors that are

inherently present in the training data. Is the answer to this

question just “we need to collect more uniform and better

distributed data samples of the entire world population, or

maybe there is something we can do from the side of the

learning algorithm?” These kinds of questions will keep face

recognition researchers busy in the following years.
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