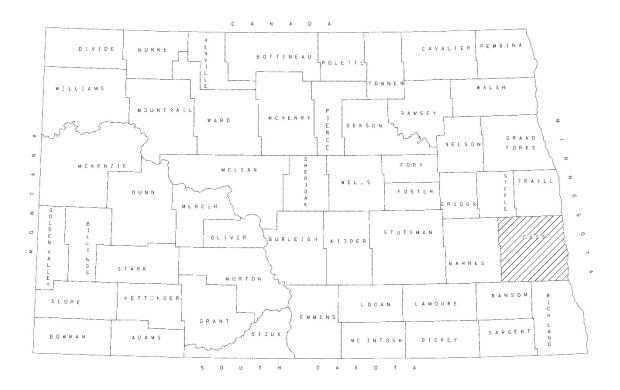
Deep Foundation Report and Analysis


PROJECT NO. IM-8-094(092)346

PCN 21570

COUNTY Cass

Bridge #:0094-346.396L 0094-346.400R

West Fargo Horace Interchange (I-94 & Sheyenne Street)

PREPARED BY: Jordan M. Nehls, PE

NORTH DAKOTA DEPARTMENT OF TRANSPORTATION MATERIALS AND RESEARCH DIVISION

DECEMBER 2017

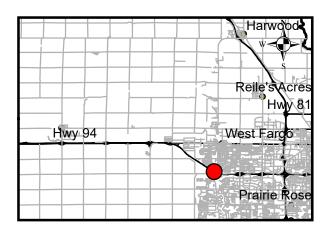
IM-8-094(092)346

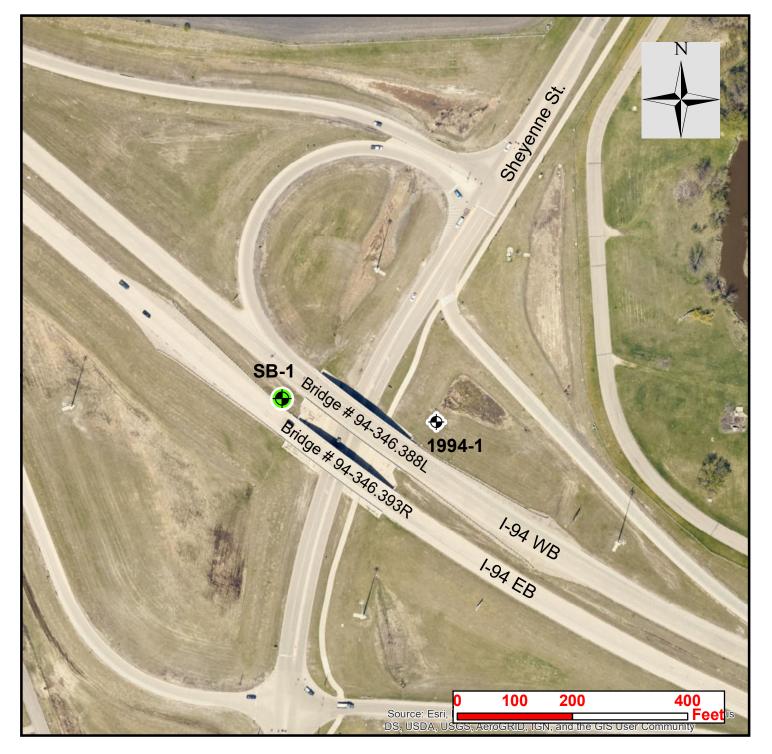
West Fargo Horace Interchange (I-94 & Sheyenne Street)

Bridge #0094-346.396L Bridge #0094-346.400R

CERTIFICATION

I hereby certify that this report was prepared by me or under my direct supervision and that I am a duly registered professional engineer under the laws of the State of North Dakota. This document was originally issued and sealed by Jordan M. Nehls, Registration number PE-8782 on 12/19/2017 and the original document is stored at the North Dakota Department of Transportation.




Jordan M. Mehls, P.E.

<u>|2/19/2017</u> Date

Bridge Replacements

Project: IM-8-094(092)346 PCN: 21570 Scope: Structure Replacements Location: West Fargo Horace Interchange (I-94 & Sheyenne St) Bridge: 0094-346.388L 0094-346.393R

Table of Contents

Introduction1	
Existing Structures Information1	
Subsurface Investigation1	
Sampling and Testing Procedures: 1	
Test Results 2)
Proposed Structure)
Foundation Recommendation	;
Steel Piling3	;
Pile Tips3	;
Downdrag3	;
Scour4	ļ
Compaction Recommendations4	ŀ
End Slope Recommendation4	Ļ
Settlement	;
Settlement Analysis5	;
Settlement Recommendations6	;
Pre-Boring	;
Design Recommendations	;

List of Tables

Table 1 – SB-1 Simplified Soil Profile (Total Stress Analysis – TSA)	3
Table 2 – Ramp Fill Locations	5

<u>Appendix</u>

Appendix A – Boring Logs Appendix B – Lab Results Appendix C – Slope Stability Analysis Foundation Report and Recommendation IM-8-094(092)346 Page 1

Introduction

This report will provide embankment and foundation recommendations for the construction of the proposed structures and ramps referred to as the West Fargo Horace Interchange - I-94 & Sheyenne Street (NDDOT Bridges 0094-346.396L & 0094-346.400R).

Existing Structures Information

Bridge # 94-346.388L

Year Constructed: 1995 Main Structure Type: Prestressed Concrete Continuous – Spread Box Beam Length: 197 feet total length (3 spans) Foundation Type: Steel H-Piles (HP 12x53, HP 14x73) End Slopes: 10:1 – Pedestrian Underpass – 3:1 w/ Concrete Slope Protection

Bridge # 94-346.393R

Year Constructed: 1996 Main Structure Type: Prestressed Concrete Continuous – Spread Box Beam Length: 208 feet total length (3 spans) Foundation Type: Steel H-Piles (HP 12x53, HP 14x73) End Slopes: 10:1 – Pedestrian Underpass – 3:1 w/ Concrete Slope Protection

Subsurface Investigation

Based on site conditions, access, and available data only one deep foundation soil boring was conducted for this project. The soil boring (SB-1) was conducted on the west side of the structures near the existing abutments. The boring was conducted in the median of Interstate 94 from 6/5/2017 to 6/8/2017. The boring log can be found in **Appendix A**.

Historical data also shows that a soil boring (1994-1) was conducted in April of 1994 on the northeast side of the structure. The boring was conducted for the original construction of the existing bridges. The soils information from this boring was used for comparison when analyzing the most recent soils investigation. The boring log has also been included in **Appendix A**.

Sampling and Testing Procedures:

Shelby tube sampling and split spoon sampling were used to extract the samples from a hollow stem auger.

Shelby tube sampling provides an "undisturbed" sample of fine grained soils for laboratory testing via a thin wall tube that is slowly pushed into the soils to be sampled. Triaxial testing equipment was used to determine shear strengths. Densities were calculated according to AASHTO test method T-296.

Foundation Report and Recommendation IM-8-094(092)346 Page 2

Split spoon samplers are utilized during advancement of the boring to perform the Standard Penetration Test (SPT). The samples are considered "disturbed", due to the driving nature in which they are obtained. The SPT results in an N-value, or number of blows required to drive the split spoon sampler 1 foot. This N-value is used to estimate the shear strength and friction angle of the soil, define the consistency of cohesive soils and also the relative density of non-cohesive soils.

The samples from the split spoon and Shelby tubes are submitted to the laboratory for determination of AASHTO classification, moisture content, dry density, sieve analysis, Atterberg limits, and strength parameters.

Test Results

A summary of the lab analysis has been included in the Appendix B.

Proposed Structure

Bridge # 94-346.396L

Main Structure Type: 4 Span Foundation Type: Steel H-Piles (HP 14x73)

Bridge # 94-346.400R

Main Structure Type: 4 Span Foundation Type: Steel H-Piles (HP 14x73)

Bridge # 94-346.396L & 94-346.400R Proposed Ramp Layouts

Foundation Recommendation

Steel Piling

Pile recommendations are given as termination elevations. The pile sizes that have been analyzed are HP10x42, HP12x53, HP14x73, and HP14x102.

The software "APile" (v2014) was used in conjunction with engineering judgment and past experience in pile driving in these types of soils to estimate the pile lengths. The output from this analysis is available upon request from the NDDOT Geotechnical Section.

Below is a simplified soil profile for boring SB-1 that was used to predict the unfactored geotechnical resistance. The unfactored geotechnical resistance is used to predict the pile termination elevations.

Layer	Elevation	Depth	Cohesion (lb/ft²)	Friction Angle	Unit Weight (lb/ft ³)
Clay Fill	910.7-890.7	0.0-20.0	1000	0	120
Clay	890.7-839.7	20.0-71.0	500	0	103
Sandy Clay	839.7-826.7	71.0-84.0	1000	0	135
Sandy Clay	826.7-804.7	84.0-106.0	4000	0	140

Table 1 – SB-1 Simplified Soil Profile (Total Stress Analysis – TSA)

Based on the soils information that was obtained from boring SB-1 the pile will not reach the required bearing at the bottom of the boring for all pile sizes. However, based on soil boring 1994-1 and historical data from the adjacent 9th St Interchange it is reasonable to assume that the pile will obtain bearing in the glacial till layer which is generally near an elevation of 800 feet.

It is recommended that pile length estimations be based on the piles terminating at an elevation of 800 feet.

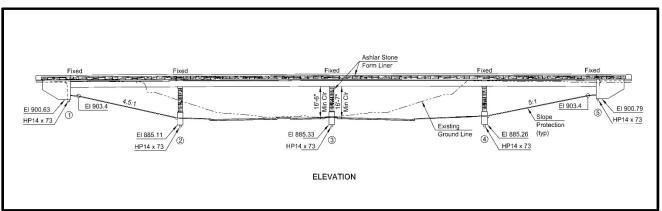
<u>Pile Tips</u>

It is not anticipated that pile tips will not be required for either of the structures.

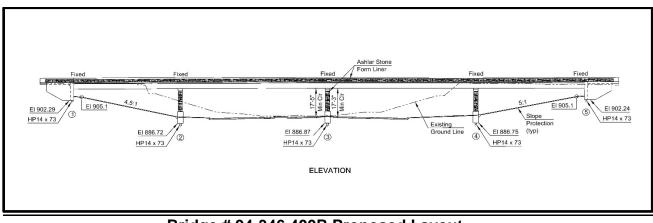
<u>Downdrag</u>

Downdrag is caused by settlement occurring in the soil in which a pile is already in place. Based on little to no fill being placed at the bridge ends downdrag is not a concern for either of the structures. Foundation Report and Recommendation IM-8-094(092)346 Page 4

<u>Scour</u>


This is not a water crossing so scour will not be an issue at these structures.

Compaction Recommendations


Compact all embankment material used for the construction of the ramps per Section 203.04.E.2 AASHTO T-99.

End Slope Recommendation

The stability analysis was conducted with Slope/W developed by Geo-Slope International. The analysis was a two-dimensional limit equilibrium method. The proposed bridge layouts were provided by the Bridge Division and were used in the analysis. Based on the structures having similar geometries the stability analysis was only conducted for one structure. The proposed structure layouts are shown in the figures below.

Bridge # 94-346.396L Proposed Layout

Bridge # 94-346.400R Proposed Layout

Foundation Report and Recommendation IM-8-094(092)346 Page 5

An effective stress (long term stability) analysis was performed. For the effective stress analysis, the soil parameters were based on the soil laboratory results. A correlation between the liquid limit and clay size fraction to the drained residual strength of cohesive soils was used. This correlation is based on a paper titled "Drained Residual Strength of Cohesive Soils" written by Timothy Stark and Hisham Eid, 1994.

Based on the slope stability analysis the proposed slopes for both of the structures are sufficient. The stability analysis outputs can be found in Appendix C.

Settlement

Settlement Analysis

Based on little to no fill being placed to construct the proposed bridges settlement is not a concern for either of the structure embankments.

Based on proposed cross sections and profiles provided by the Local Government Division, the construction of the new ramps will require fills up to approximately 7-11 feet in some locations. Those locations are summarized in the table below.

Location	Critical Station	Elevation Existing Ground	Elevation Proposed Pavement	Total Fill
Northwest Ramp 2	17+50	895	902	7'
Northwest Loop	32+00	898	907	9'
Southwest Loop	48+00	897	908	11'

*The proposed ramp locations are shown in the Proposed Structure section above

A settlement analysis was completed based on a one-dimensional consolidation test performed on soil samples that were collected from boring SB-1. Although the samples are currently under an existing fill it was conservatively assumed for this analysis that the soils are normally consolidated (present overburden pressure is equal to the preconsolidation pressure). The following parameters were used for each of the analysis.

Fill Height: 7' – 11' Unit Weight Fill, $\gamma_{\text{Fill}} = 120 \text{ lb/ft}^3 \text{ (Assumed)}$ Unit Weight of Existing Material, $\gamma = 103 \text{ lb/ft}^3 \text{ (Lab Data)}$ Effective Unit Weight of Existing Material, $\gamma' = 40.6 \text{ lb/ft}^3$ Water Table Depth = 0 (At Surface - Assumed) Bousinesq Factor, I = Varies (Values of Influence Factor I for Vertical Stress Under an Infinitely Long Embankment, NAVFAC, 1982) Compression Index, $C_c = 0.43 - 0.56$ (Lab Data) Recompression Index, $C_r = N/A$ (Assumed Normally Consolidated) Coefficient of Consolidation, $Cv = 0.02 - 0.05 \text{ ft}^2/\text{day}$ (Lab Data) The settlement calculations show that there is going to be significant consolidation of the foundation soils from placing the fill needed to construct the ramps. Based on the best available information and conservative assumptions the total settlement is estimated to be in the range of 3' - 5' in the locations evaluated above. However, it is estimated that this settlement will occur over many decades.

Settlement Recommendations

Based on the large amount of settlement and the long duration over which that settlement is expected to occur, it is believed that the settlement will have long term effects at the deeper fill locations of the proposed ramps. We do not believe that any additional measures to help minimize or speed up consolidation are feasible and/or will produce the desired results. Because this will cause long lasting effects on the ramps we recommend using an asphalt pavement surface so that any uneven pavement caused by the settlement can be maintained when needed.

We also recommend that a monitoring program be included in the plans. This is necessary so the Geotechnical Section can monitor the settlement and pore pressure at the fill locations during and after construction to get a better understanding of the effects of placing fill on the soft cohesive soils in this part of the state. The Geotechnical Section will work with the designer to incorporate the monitoring program in the plans and will work with the Fargo District and the contractor when installing and collecting the data.

Pre-Boring

No pre-boring is necessary for either of the structures.

Design Recommendations

Any proposed slopes steeper than 4:1 will need to be evaluated by the Geotechnical Section.

Compact all embankment material per Section 203.04E.2.b – Compaction Control Type A, ND T-99, of the Standard Specifications.

APPENDIX A

Boring Logs

NORTH DAKOTA DEPARTMENT OF TRANSPORATION

LOG OF BORING SB - 1

1	OF	4
	1	1 OF

Depa	rtmer	nt of Transportation BISMARCK, ND 58504									
PRO	PROJECT NUMBERIM-8-094(092)346 DATE STARTED6/7/17 COMPLETED6/7/17										
PCN	215	570				ELEVA	TION	910.7 ft			
LOC		N Cass County				RP+FE	ЕТ _	346+1959	OFFSET 7	DIR Rt	
DRIL	LED	BY Dallan LOGGED BY Jamie				DRILLI	NG N	Hollow Ste	em Auger		
ENG	NEE	R									
NOT	ES _										
ELEVATION (ft)	DEPTH (ft)	MATERIAL DESCRIPTION	GRAPHIC LOG	AASHTO	NSCS	SAMPLE TYPE & NUMBER	RECOVERY (%)	© SPT N VALUE	● MC PL LL 30 60 90 120 □ CLAY FRACTION (%) 20 40 60 80	TESTS & REMARKS	
910-	-0-	Fill Black / Gray High Plasticity Fat Clay Firm to Stiff Consistency		A-7-6	сн	SS 490	10	6 ⊚	28 80 • • • •		

NDDOT LOG - ND DOT 20171019.GDT - 12/18/17 14:17 - F.\LAB\PROJECTS\GINT\IM-8-094(092)346.GPJ

ELEVA	DEF		GRAP	AA		SAMP	& NL	RECO		20 4	10 (60	80	□ CL 20	(FRAC %) 60	TION 80	
910-	-0	Fill Black / Gray High Plasticity Fat Clay Firm to Stiff Consistency		A-7-6	в сн	A	SS . 490	10						28		80: ⊣· · · □		
-	-			A-7-6	в сн		SS 491	40	8 @					26	7	77 	· · · · · · · · · · · · · · · · · · ·	
-	5-			A-7-6	в сн	3	8TW - 492	75		· · · · · · · · · · · · · · · · · · ·				29		79: H		••
905-				A-7-6	в сн	X.	SS · 493	75	9 .@ .		· · · · · ·			26		78 -	 	
-											· · · · ·					· · · · · · · · · · · · · · · · · · ·		
- 900-	10-			A-7-5	5 МН	3	3TW 494	65						37	,	- I · · · · ·	· · · · ·	
-				A-7-6	6 СН	<u> </u>	SS · 495	75	9 .© .					27 •		79: -	· · .	
-				A-7-6	5 СН	3	3TW 496	85						23	65			
895-				A-7-6				75	11 • @•	· · · · · · · ·	· · · · ·			25	7	4	· · · · · · · ·	
-						μ	497											
890-	-20-	890.7 ft 20 Dark Gray Very High Plasticity Fat Clay Soft Consistency).0 ft	A-7-6	6 СН	3	^{3TW} 1	00						23	59	· · · · <u>(</u>		
-		Conconsistency		A-7-5	5 СН	X.	^{SS} 499 1	00	4 ⊚ · ·		· · · · · ·			36 	•	10)4 ⊡	
-	-										· · · · · ·			36	3		08	
885-	25-			A-7-5	5 СН	\overline{M}		00						+ 	•		08 + □	
-				A-7-5	5 СН	<u> </u>	ss 501 1	00	4 ⊚···					31	•	97 	•••••	
-	-					3	stw			· · · · · · ·			Page	37	,	91		

NORTH DAKOTA DEPARTMENT OF TRANSPORATION North Dakota Department of Transportation BISMARCK, ND 58504

LOG OF BORING SB - 1 PAGE 2 OF 4

	2157	·										
ELEVATION (ft)	DEPTH (ft)	MATERIAL DESCRIPTION	GRAPHIC LOG	AASHTO	NSCS	SAMPLE TYPE & NUMBER	RECOVERY (%)	© SPT N VALUE		• MC <u>60 90</u> AY FRAC (%) <u>40 91</u>	LL - I 120	TESTS & REMARKS
880-	-30	Dark Gray Very High Plasticity Fat Clay Soft Consistency (continued from previous		A-7-5	СН	502	100			• ·r		
_		page)		A-7-6	СН	SS 503	100	5 ©	29	90		
-	_					\bigwedge						
-	-											
-	35-			A-7-5	сн	3TW 504	100		30	91 •		
875-	-											
-	-			A-7-5	сн	SS 505	100	₩ ■ ■ 	31	94		
	-					/ \						
	-					OTA						
870-	40-					3TW 506	100			•		
-	1					ss	100	5	28	78		
_				A-7-6	СН	SS 507						
-												
_	45-			A-7-5	СН	3TW 508	100		31	96		
865-	_					508						
-	_			A-7-5	сн	SS 509	100	3 ©	30	82		
-	-					/\						
-	_											
-	50-			A-7-5	сн	3TW 510	100		32	93 • • • •		
860-	-					\backslash			20	07		
-	-			A-7-6	СН	SS 511	100	3 @····	29	87 ●1	••••••••	
	-					/ \	-					
	-					0714/			32	92		
855-	55-					3TW 512	100		·/····	••!··		
-	1			A 7 6		ss	100	4	28	79		
-				A-7-6	СН	SS 513						
-												
-	60-			A-7-6	СН	3TW 514	100		29	77		
850-						514		 ..		· · · · · · · · · · · · · · · · · · ·		
-	_			A-7-6	сн	SS 515	100	5 ©	26	69 —		
-						/\				: :	:	

NORTH DAKOTA DEPARTMENT OF TRANSPORATION 300 AIRPORT ROAD

PAGE 3 OF 4

LOCATION Cass County PCN 21570 SAMPLE TYPE & NUMBER RECOVERY (%) ELEVATION (ft) **GRAPHIC LOG** MC Ы ŧ LL AASHTO USCS DEPTH **TESTS &** 30 60 90 120 MATERIAL DESCRIPTION ◎ SPT N VALUE REMARKS CLAY FRACTION (%) 40 60 80 20 40 60 80 20 Dark Gray Very High Plasticity Fat Clay Soft Consistency (continued from previous 25 65 page) 3TW 516 65-100 CH ٠E ÷ · 🖬 845 5 © 24 70 SS 517 СН 100 7-6 ۰D 60 21 3TW 518 100 70-СН ٠H 71.0 ft 840-839.7 ft Dark Gray Low Plasticity Sandy Lean Clay 8 © 1732 ...**⊕⊣⊡** Gravel Mix SS 519 100 A-6 Stiff to Very Stiff Consistency 1632 3TW 520 75 A-6 sc 100 • 835 1732 7 SS 521 A-6 CL 100 . © 1731 3TW 522 80-A-6 GC 100 • NDDOT LOG - ND DOT 20171019.GDT - 12/18/17 14:17 - F:\LAB\PROJECTS\GINT\IM-8-094(092)346.GPJ 830 25 1629 SS 523 CL 100 A-6 :0 826.7 ft 84.0 ft Dark Gray Low Plasticity Sandy Lean Clay 56 © Gravel Mix SS 524 85 10 Stiff to Very Stiff Consistency 825 1529 64 SS 525 90-A-6 CL 100 ۲ ŧ⊡ 820 88 1.25 SS 526 95 A-6 SC 100 • 815

(Continued Next Page)

NORTH DAKOTA DEPARTMENT OF TRANSPORATION 300 AIRPORT ROAD BISMARCK, ND 58504

LOCATION Ca	ass County
-------------	------------

LOG OF BORING SB - 1

PAGE 4 OF 4

PCN	2157	0								
ELEVATION (ft)	DEPTH (ft)	MATERIAL DESCRIPTION	GRAPHIC LOG		USCS	SAMPLE TYPE & NUMBER	RECOVERY (%)	SPT N VALUE 20 40 60 80	● MC PL LL 30 60 90 120 □ CLAY FRACTION (%) 20 40 60 80	TESTS & REMARKS
- - 810- -	- - 100- - -	Dark Gray Low Plasticity Sandy Lean Cla Gravel Mix Stiff to Very Stiff Consistency <i>(continued</i> <i>from previous page)</i>	y	A-6	CL	SS 527	100		125.	
- - 805-	105-	_804.7 ft Bottom of borehole at 106.0 ft	106.0 ft	A-6	CL	SS 528	100	63 	1·26 ●	

SITE SOIL SURVEY Department of Transportation, Materials & Research SFN 10077 (Rev. 2-92) Part 1 of 2

PROJECT		STRUCTURE NO.	COUNTY
IM-8-094 (009) 345		Cass
LOCATION		BORING NO.	STATION OFFSET
Drain #21E	to 1.0 M; W, 45 Th	1	402+44 2+. 100'
DATE DRILLING STARTED	DATE DRILLING FINISHED	FINAL WATER LEVEL	AVERAGE SEEPAGE RATE (FT. RISE/MIN)
4-4-94	4-15-94	N/A (see Note)	N/A

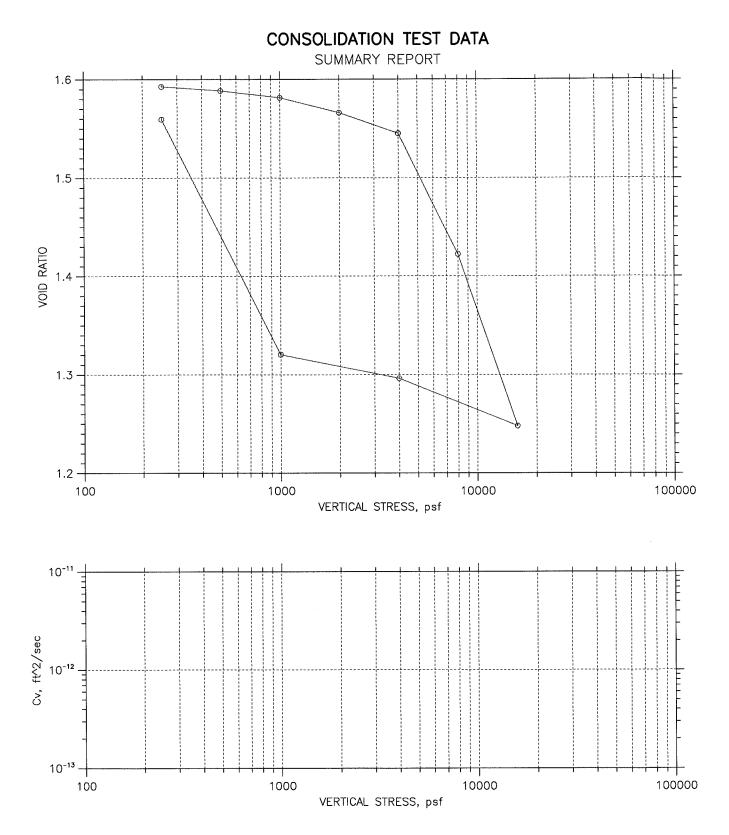
	DEPTH 1" - 5"	ELEV. 904.4	PROFILE	CORE NO.	CLASSIFICATION	COLOR OF MATERIAL	CHARACTERISTICS	SOIL GROUP	REMARKS	
Ì	1.0'	903.4			(3)	Q)	Topsoil (")	(1)		
	5-	- - - - - -		C·l gamin Shelby1 C·2 gamin Jar 1	Clay	Dk.Brn,	Stiff	A-7-5	Ø=0° c=1,638 = w=35 % Yd=85 =	1
		- 893.9		C+3 1/2 941 M. 1/2 She lby2	Clay	Gray	Amor phous - Med. Stiff - Imperv. with Perm. lenses	A-7-5		
	-	N=5 -890.9	The strength of the state	C-4 m aumina Jar 2	Clay	Gray	Amorphous - Med. stiff - Imperv, with Perm. lewses	A·7-6		
	15 -	N = 4		C-5-18 94M Shelby 3 C-6 19 94M Jar 3	Clay		Very Soft - Imperv Sand Pockets-		Ø= 0° c= 540 # W= 58% Yd= 68.#	
	20-	- N * 5		C.7.80 94 M Shelby 4 2.8.81 94 M Jar 4					Ø = 0° c = 702 [#] W = 58 % YJ = 66 [#]	
	25-	N= 4		2.9 24/05 2.10 34/05 2.10 Jac 5	Clay		Very Soft - Imper. with Perm. lenses - water bearing - PL	A-7-5	Ø = 0° C = 890 W = 55 % YJ = 68#	
	30- 	N* 4		2-11 83 94M 83 95hel. 6 2-12 Jar 6			Very Soft -		Ø=0° c=972 [#] w=537 Yd=70 [#]	
		•					Imperv Plastic			

	33-			2 Shel. 1 C·14	Clay	Gray	non-water bearing	A-7-5	
	1	N=4		C.14					
			1	Jar 1					
	-	-		C-15 85		17 1 parent 2 1 20			81 - E
	40-			gurnstel. 8 C-16					
		N= 4		Jar 8				• •	
	-	-		JAFO					8
		· .		C-17 86			Very Soft -		Ø=0° C=788 =
	45-			94 Shel. 9	Clay	Gan	Imperv. with	A-7-5	W= 53%
	4	N=4		941M- 80 945hel. 9 C-18 87 941M- 87 Jar 9	arag	Gray	Perm. lewses - water bearing-PL	1	Y∂ = 70ª
		•				^			
	50-	-		C-19.88			Very soft -		
	20			94: 5hel.10 C·20			Impervious-		
	-	N= 4		Jar 10	Clay	Gray	Plastic	A-7-5	
	-	. .					Non-water		Ø=0° C= (080*
-	55-			C·21 89 94M-89 Shel, 11			bearing		W= 52% Yd= 71#
ľ	· /·-	N= 4		C.22					
				Jar II					
]	4		C-23.99			Very soft-		
	60-			C-23.90 94 M Shel. 12		а.	Turaniauc		
		N= 4		C.24	Clay	Grau	Impervious-	A-7-5	
]	a		Jar 12			Plastic -		
	-	4		C-25			Non - water		
	65-	N= 4	0	Jar 13			bearing		
		- 836.9	2	8					
ľ	-		Contraction of the second seco	1			st:ff - imperv.		$\varphi = 10^{\circ}$
	-	-		C-26 91	ClayLm	C	with perm. Strata	A-6	c=1,013# W= 21 %
	70-	833.9	Al contractions in	945hel. 13		1	Water bearing		Y3= 110#
	-	N= 9	a de	945hel. 13 C-2792 941-14	Clay Lm.	Gray	stiff - imperv. With perm.strata Water bearing	A-4	
	-	**	an and show				Plastic		
	75	N=7		C-28					
		-	JE BE	Jar 15					
	-	-	and any days and	-			÷		
-		82.5.9	1. State	C 130 1					
	80	_N=25	and the second	C-30 93			Very stiff -		
			a total	JAF 10	Sandy Lm.	6	Imperv. with perm. strata -	A-2-4	
l	+	-	alpha the bin and				water bearing-		
		-820.9	Sector State	C.31 94			non-plastic -		
	85-	N= 42	Sect	941 Jar 17			_		
		-	an the state				11 - 1 - Tmacil		
								~	

90 -	N= 38 N= 42 N= 42	C-32 Jar 18 C-33 Jar 19	Clay Lm.	Gray	Hard - Imperv. with perm. strata - water bearing - Non- plastic - Laminated - cobbles		
-	N= 96 N= 102 N= 102 N= 102 793.9	C-34 Jar 20 C-35-95 94Mm - 21 Jar 21 C-36 Jar 22			Very hard - Imperv. with Perm. strata - how - water bearing - hom - plastic - cobbles	A- 4	
115 -				08.3 ft.	after 15 hrs. - hole wall		

APPENDIX B

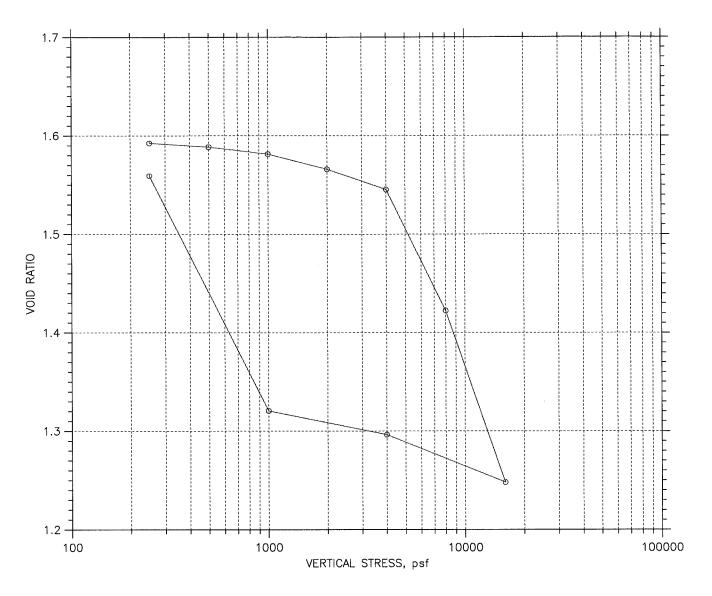
Lab Results


NORTH DAKOTA DEPARTMENT OF TRANSPORATION

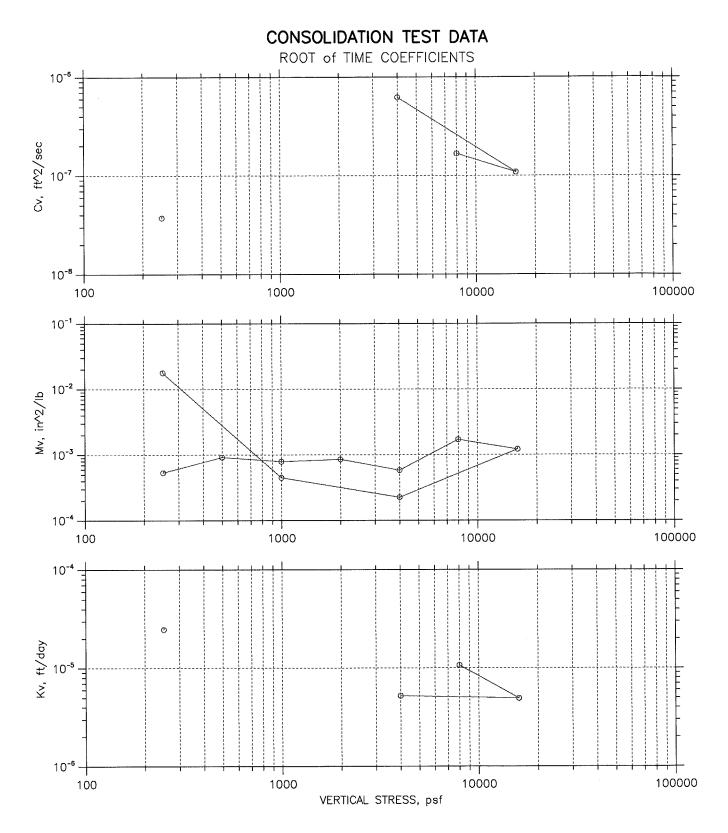
rtment of Transportation BISMARCK, ND 58504

PROJECT NUMBER ________ IM-8-094(092)346

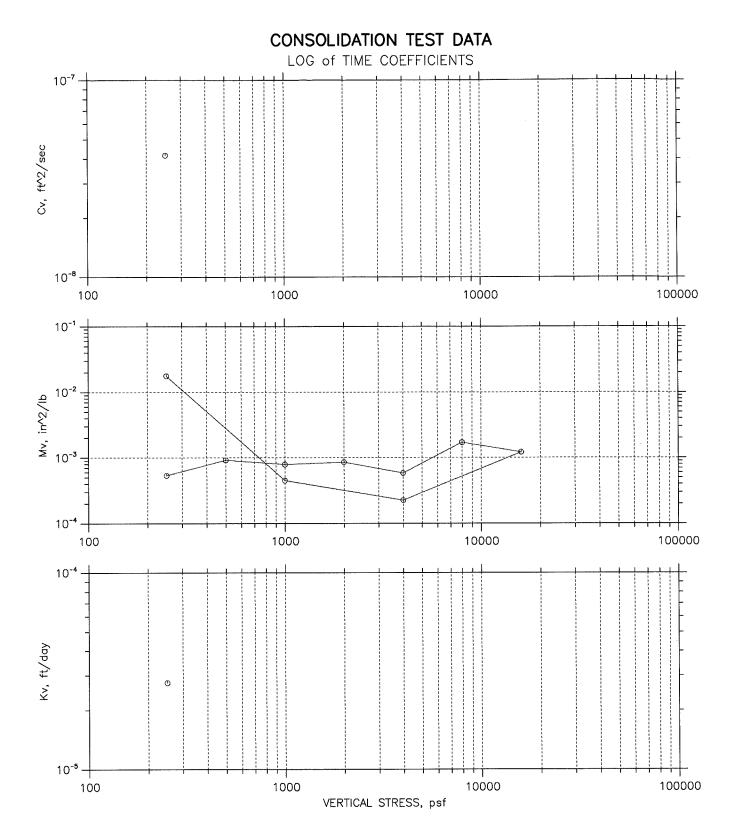
LOCATION Cass County


PCN 21570 Avg. Maximum USCS Water Drv Satur-%<#200 AASHTO Liquid Plastic Plasticity Water Void Depth Content Borehole Size Class-Density ation Limit Limit Index Sieve Classification Content Ratio (mm) ification (%) (pcf) (%) (%) SB - 1 0.0 80 28 52 4.75 96 A-7-6 (58) CH 22.3 38.2 SB - 1 2.0 77 26 51 4.75 98 A-7-6 (58) CH 34.2 38.2 2 SB - 1 4.0 79 29 50 97 A-7-6 (57) CH 37.5 38.2 SB - 1 6.0 78 9.5 97 A-7-6 (59) CH 36.1 26 52 38.2 SB - 1 9.0 79 37 42 9.5 98 A-7-5 (51) MH 38.2 36.3 SB - 1 11.0 79 27 52 4.75 97 A-7-6 (59) CH 34.5 38.2 SB - 1 14.0 65 23 42 9.5 A-7-6 (46) CH 27.2 96 38.2 25 4.75 SB - 1 16.0 74 49 99 A-7-6 (56) CH 38.2 34.0 SB - 1 19.0 59 23 36 2 99 A-7-6 (41) CH 38.5 38.2 SB - 1 21.0 104 36 68 2 100 A-7-5 (83) CH 56.8 38.2 SB - 1 24.0 108 36 72 9.5 100 A-7-5 (88) CH 59.1 38.2 26.0 97 2 CH SB - 1 31 66 99 A-7-5 (78) 58.5 38.2 54 2 SB - 1 29.0 91 37 99 A-7-5 (66) CH 58.3 38.2 A-7-6 (73) 52.3 SB - 1 31.0 90 29 61 2 100 CH 38.2 91 2 CH SB - 1 34.0 30 61 100 A-7-5 (73) 54.7 38.2 SB - 1 36.0 94 31 63 2 99 A-7-5 (75) CH 57.8 38.2 SB - 1 39.0 52.6 38.2 SB - 1 41.0 78 28 50 4.75 99 A-7-6 (59) CH 51.8 38.2 44.0 96 4.75 99 A-7-5 (77) CH SB - 1 31 65 65.4 38.2 46.0 52 4.75 A-7-5 (62) CH SB - 1 82 30 100 49.4 38.2 SB - 1 49.0 93 32 61 9.5 99 A-7-5 (73) CH 54.2 38.2 29 2 99 CH SB - 1 51.0 87 58 A-7-6 (68) 54.9 38.2 54.0 SB - 1 92 32 60 60.1 38.2 F:\LAB\PROJECTS\GINT\IM-8-094(092)346.GP, A-7-6 (58) SB - 1 56.0 28 51 4.75 CH 50.5 79 97 38.2 4.75 CH SB - 1 59.0 77 29 48 98 A-7-6 (56) 52.6 38.2 SB - 1 43 9.5 CH 61.0 69 26 96 A-7-6 (48) 46.5 38.2 SB - 1 25 40 25 A-7-6 (42) CH 64.0 65 92 45.5 38.2 SB - 1 66.0 70 24 46 4.75 94 A-7-6 (49) CH 17.9 38.2 21 25 CH SB - 1 69.0 60 39 83 A-7-6 (34) 41.8 38.2 SB - 1 71.0 32 17 15 25 56 A-6 (15) 19.9 38.2 SB - 1 74.0 32 16 16 25 50 A-6 (5) SC 19.9 38.2 A-6 (6) SB - 1 76.0 32 17 9.5 61 CL 20.1 15 38.2 LAB SUMMARY - ND DOT 20171019.GDT - 12/13/17 10:27 SB - 1 79.0 31 17 14 25 41 A-6 (2) GC 19.0 38.2 SB - 1 81.0 29 16 13 9.5 57 A-6 (4) CL 17.6 38.2 SB - 1 84.0 11.1 38.2 29 14 25 CL 11.2 SB - 1 89.0 15 52 A-6 (4) 38.2 SB - 1 94.0 25 14 11 25 48 A-6 (2) SC 9.3 38.2 SB - 1 99.0 25 14 11 25 57 A-6 (3) CL 10.2 38.2 SB - 1 104.0 26 14 12 9.5 54 A-6 (3) CL 10.6 38.2

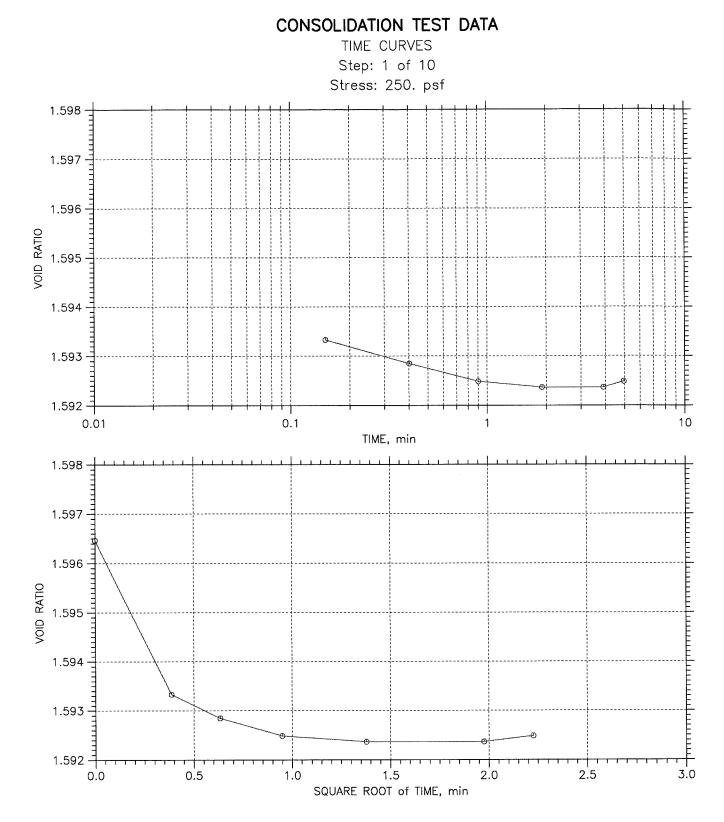
Project: IM-8-094(092)346	Location:	Project No.:
Boring No.: 1	Tested By: Traeholt	Checked By: Dietrich
Sample No.: SS-500-17	Test Date: 9/28/2016	Depth: 24.6-24.7
Test No.: CON-1-17	Sample Type: Shelby Tube	Elevation:
Description: Total length 27 1/2"	Brn Cly with White Silt Deposits	•
Remarks:		

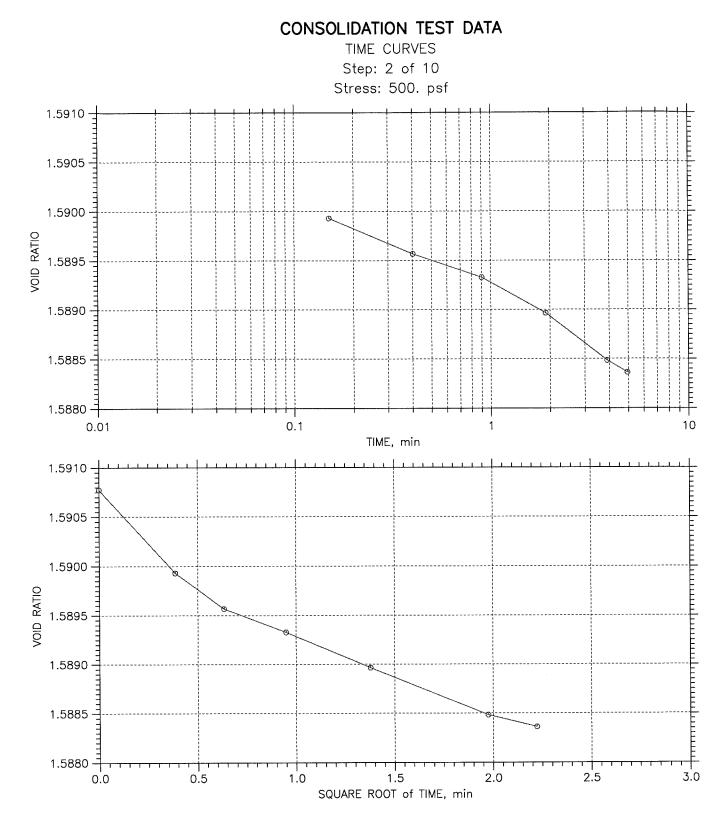

CONSOLIDATION TEST DATA

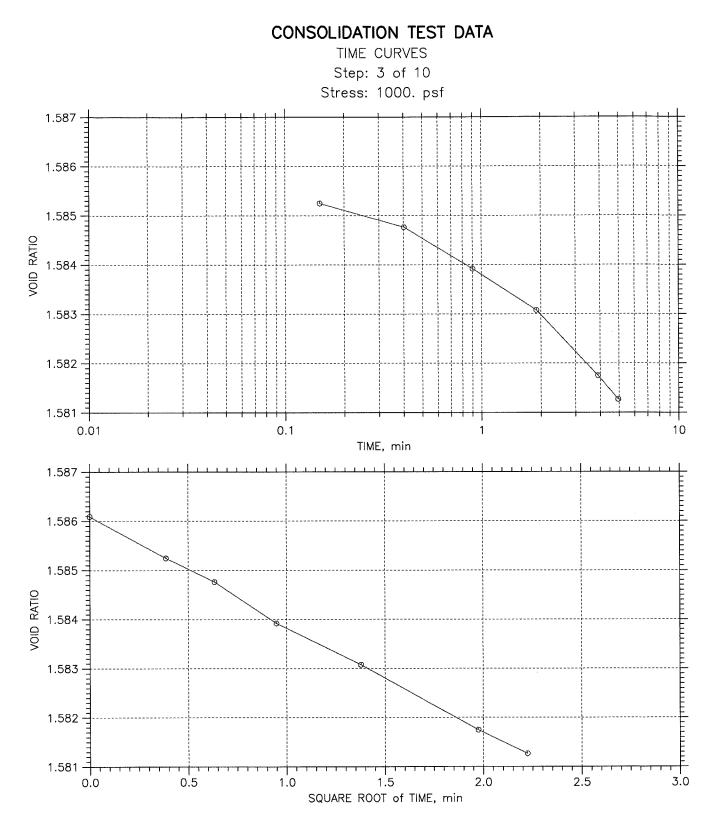
SUMMARY REPORT

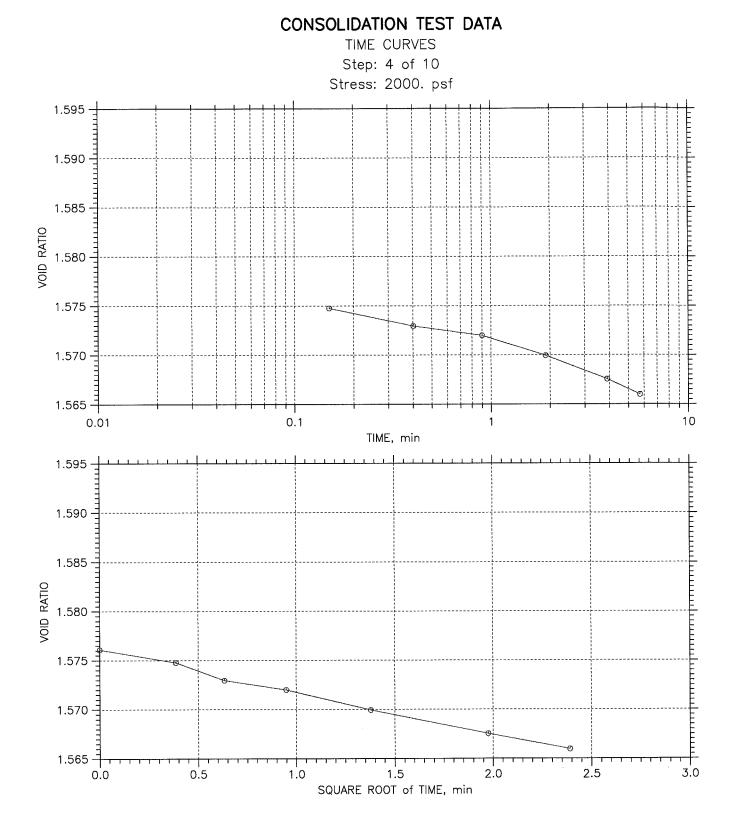


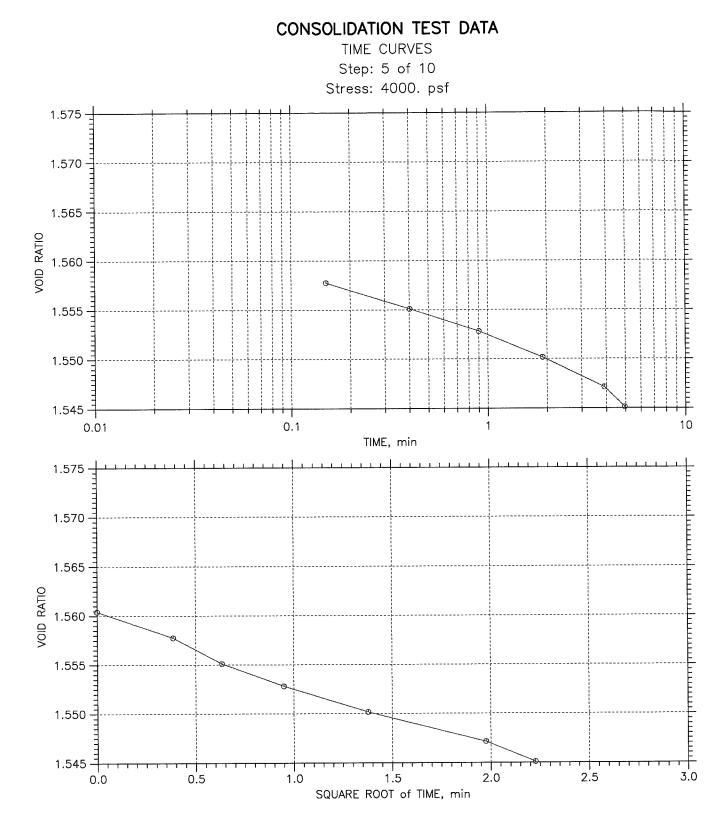
					Before Test	After Test
Overburden Pressure, psf:				Water Content, %	61.15	62.30
Preconsolidation Pressure, psf:			Dry Unit Weight, pcf	63.778	64.668	
Compression Index:			Saturation, %	101.64	105.93	
Diameter: 2	2.5 in	Height: 1 i	า	Void Ratio	1.59	1.56
LL:	PL:	PI:	GS: 2.65	Back Pressure, psf	0	0

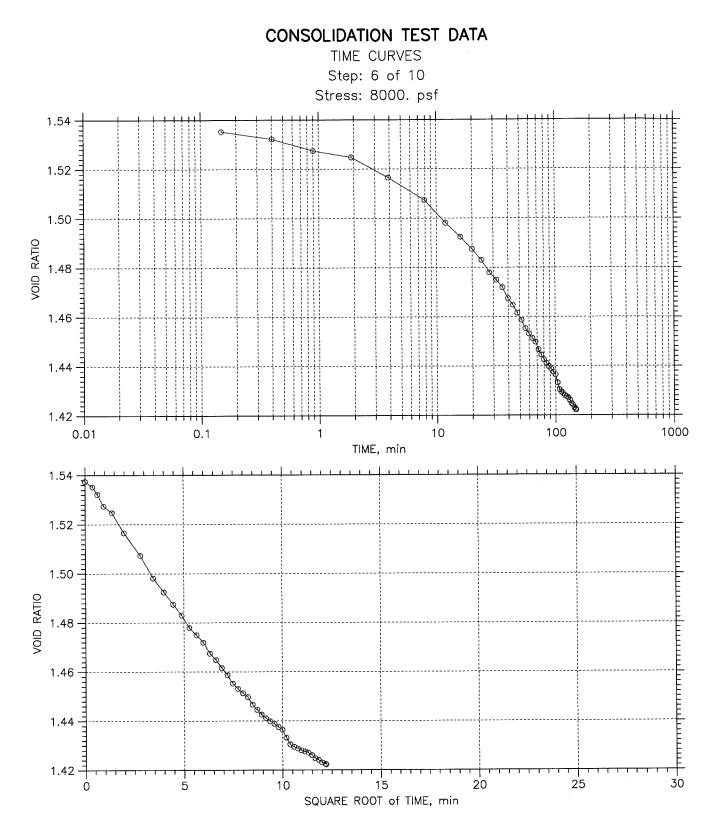

Project: IM-8-094(092)346	Location:	Project No.:
Boring No.: 1	Tested By: Traeholt	Checked By: Dietrich
Sample No.: SS-500-17	Test Date: 9/28/2016	Depth: 24.6-24.7
Test No.: CON-1-17	Sample Type: Shelby Tube	Elevation:
Description: Total length 27 1/2"	Brn Cly with White Silt Deposits	
Remarks:		
Kemarks:		

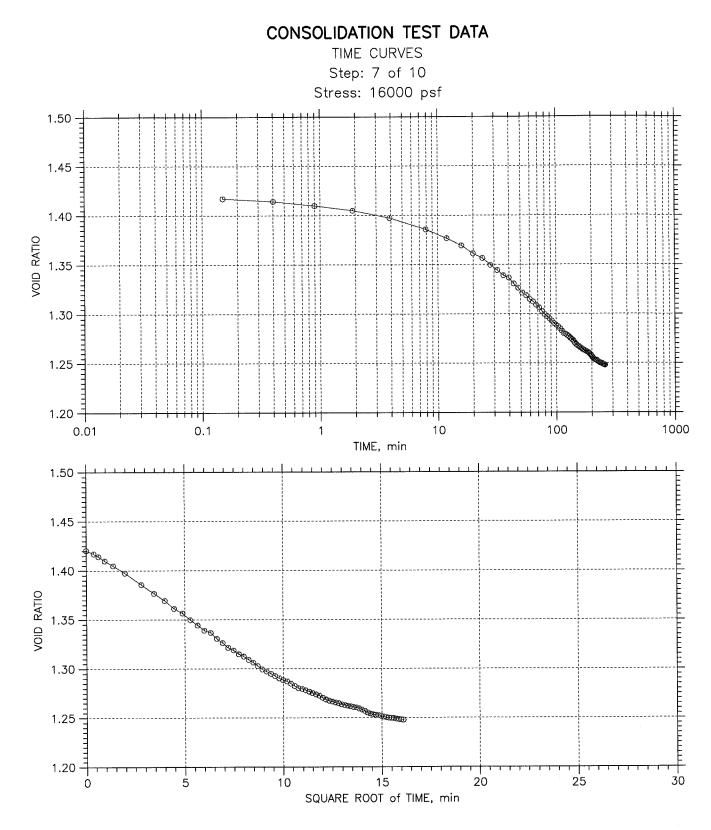

Project: IM-8-094(092)346	Location:	Project No.:
Boring No.: 1	Tested By: Traeholt	Checked By: Dietrich
Sample No.: SS-500-17	Test Date: 9/28/2016	Depth: 24.6-24.7
Test No.: CON-1-17	Sample Type: Shelby Tube	Elevation:
Description: Total length 27 1/2"	Brn Cly with White Silt Deposits	
Remarks:		

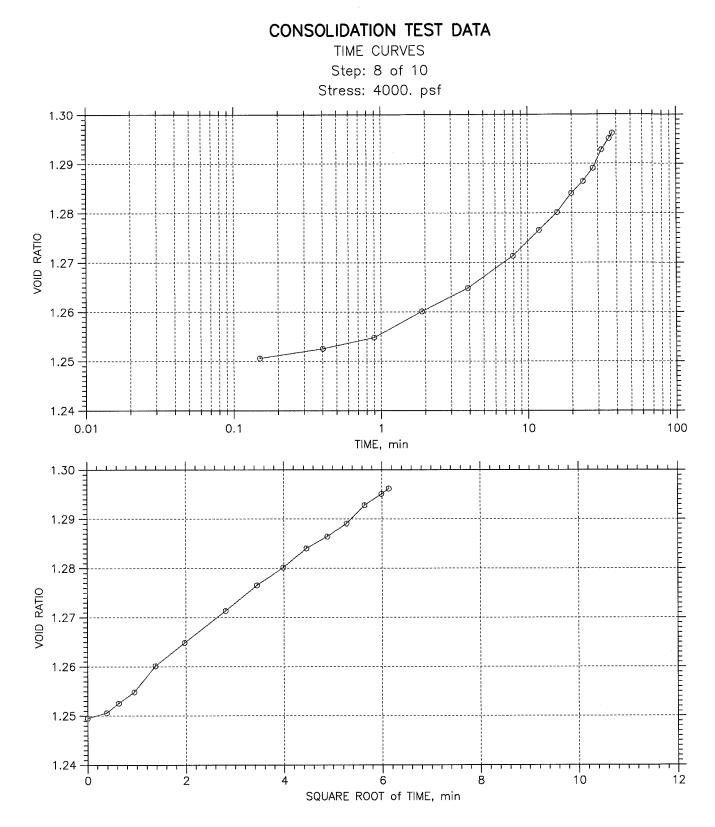

Project: IM-8-094(092)346	Location:	Project No.:
Boring No.: 1	Tested By: Traeholt	Checked By: Dietrich
Sample No.: SS-500-17	Test Date: 9/28/2016	Depth: 24.6-24.7
Test No.: CON-1-17	Sample Type: Shelby Tube	Elevation:
Description: Total length 27 1/2"	Brn Cly with White Silt Deposits	
Remarks:		

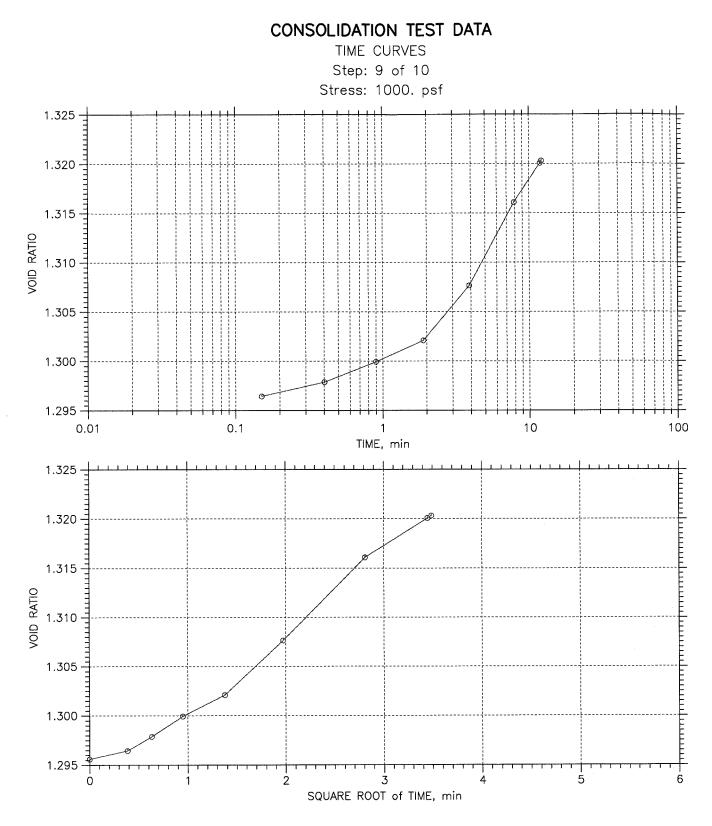

Project: IM-8-094(092)346	Location:	Project No.:
Boring No.: 1	Tested By: Traeholt	Checked By: Dietrich
Sample No.: SS-500-17	Test Date: 9/28/2016	Depth: 24.6-24.7
Test No.: CON-1-17	Sample Type: Shelby Tube	Elevation:
Description: Total length 27 1/2"	Brn Cly with White Silt Deposits	
Remarks:		

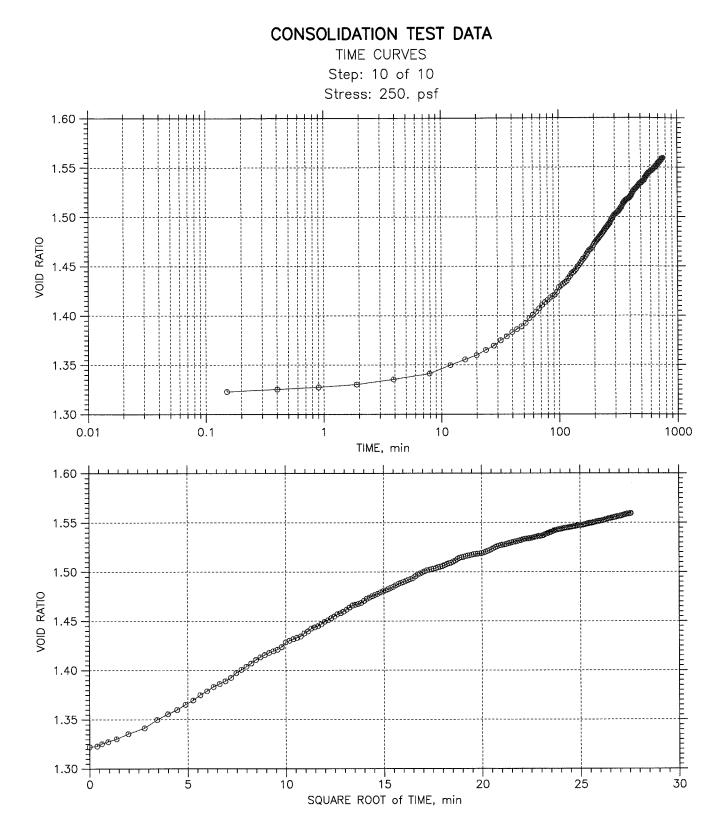

Project: IM-8-094(092)346	Location:	Project No.:
Boring No.: 1	Tested By: Traeholt	Checked By: Dietrich
Sample No.: SS-500-17	Test Date: 9/28/2016	Depth: 24.6-24.7
Test No.: CON-1-17	Sample Type: Shelby Tube	Elevation:
Description: Total length 27 1/2"	Brn Cly with White Silt Deposits	
Remarks:	****	


Project: IM-8-094(092)346	Location:	Project No.:
Boring No.: 1	Tested By: Traeholt	Checked By: Dietrich
Sample No.: SS-500-17	Test Date: 9/28/2016	Depth: 24.6-24.7
Test No.: CON-1-17	Sample Type: Shelby Tube	Elevation:
Description: Total length 27 1/2	Brn Cly with White Silt Deposits	
Remarks:		


Project: IM-8-094(092)346	Location:	Project No.:
Boring No.: 1	Tested By: Traeholt	Checked By: Dietrich
Sample No.: SS-500-17	Test Date: 9/28/2016	Depth: 24.6-24.7
Test No.: CON-1-17	Sample Type: Shelby Tube	Elevation:
Description: Total length 27 1/2"	Brn Cly with White Silt Deposits	
Remarks:		


Project: IM-8-094(092)346	Location:	Project No.:
Boring No.: 1	Tested By: Traeholt	Checked By: Dietrich
Sample No.: SS-500-17	Test Date: 9/28/2016	Depth: 24.6-24.7
Test No.: CON-1-17	Sample Type: Shelby Tube Elevation:	
Description: Total length 27 1/2"	Brn Cly with White Silt Deposits	
Remarks:		


Project: IM-8-094(092)346	Location:	Project No.:
Boring No.: 1	Tested By: Traeholt	Checked By: Dietrich
Sample No.: SS-500-17	Test Date: 9/28/2016	Depth: 24.6-24.7
Test No.: CON-1-17	Sample Type: Shelby Tube Elevation:	
Description: Total length 27 1/2"	Brn Cly with White Silt Deposits	
Remarks:		


Project: IM-8-094(092)346	Location:	Project No.:		
Boring No.: 1	Tested By: Traeholt	Checked By: Dietrich		
Sample No.: SS-500-17	Test Date: 9/28/2016	Depth: 24.6-24.7		
Test No.: CON-1-17	Sample Type: Shelby Tube Elevation:			
Description: Total length 27 1/2"	Brn Cly with White Silt Deposits			
Remarks:				

Project: IM-8-094(092)346	Location:	Project No.:		
Boring No.: 1	Tested By: Traeholt	Checked By: Dietrich		
Sample No.: SS-500-17	Test Date: 9/28/2016	Depth: 24.6-24.7		
Test No.: CON-1-17	Sample Type: Shelby Tube Elevation:			
Description: Total length 27 1/2"	Brn Cly with White Silt Deposits			
Remarks:				

Project: IM-8-094(092)346	Location:	Project No.:		
Boring No.: 1	Tested By: Traeholt	Checked By: Dietrich		
Sample No.: SS-500-17	Test Date: 9/28/2016	Depth: 24.6-24.7		
Test No.: CON-1-17	Sample Type: Shelby Tube Elevation:			
Description: Total length 27 1/2"	Brn Cly with White Silt Deposits			
Remarks:				

Project: IM-8-094(092)346	Location:	Project No.:		
Boring No.: 1	Tested By: Traeholt	Checked By: Dietrich		
Sample No.: SS-500-17	Test Date: 9/28/2016	Depth: 24.6-24.7		
Test No.: CON-1-17	Sample Type: Shelby Tube Elevation:			
Description: Total length 27 1/2'	' Brn Cly with White Silt Deposits			
Remarks:				

CONSOLIDATION TEST DATA

Project: IM-8-094(092)346 Boring No.: 1 Sample No.: SS-500-17 Test No.: CON-1-17

Location: Tested By: Traeholt Test Date: 9/28/2016 Sample Type: Shelby Tube

Project No.: Checked By: Dietrich Depth: 24.6-24.7 Elevation:

Soil Description: Total length 27 1/2" Brn Cly with White Silt Deposits Remarks:

Estimated Specific Gravity: 2.65 Initial Void Ratio: 1.59 Final Void Ratio: 1.56	Liquid Limit: Plastic Limit: Plasticity Index: Before Consolidation		Initial Height: 1.00 in Specimen Diameter: 2.50 in		
			ion After Consolidati		
	Trimmings	Specimen+Ring	Specimen+Ring	Trimmings	
Container ID	S 72	RING		s7	
Wt. Container + Wet Soil, gm	84.1	241.07	242.02	163.44	
Wt. Container + Dry Soil, gm	58.57	190.82	190.82	112.32	
Wt. Container, gm	15.4	108.64	108.64	30.27	
Wt. Dry Soil, gm	43.17	82.179	82.179	82.05	
Water Content, %	59.14	61.15	62.30	62.30	
Void Ratio		1.59	1.56		
Degree of Saturation, %	-	101.64	105.93		
Dry Unit Weight, pcf		63.778	64.668		

CONSOLIDATION TEST DATA

Project: IM-8-094(092)346 Boring No.: 1 Sample No.: SS-500-17 Test No.: CON-1-17 Location: Tested By: Traeholt Test Date: 9/28/2016 Sample Type: Shelby Tube Project No.: Checked By: Dietrich Depth: 24.6-24.7 Elevation:

Soil Description: Total length 27 $1/2"\ {\rm Brn}$ Cly with White Silt Deposits Remarks:

	Applied Stress	Final Displacement	Void Ratio	Strain at End	Sq.Rt. T90	Cv	Mv	k	
	psf	in	Natio	at bhu %	min	ft^2/sec	1/psf	ft/day	
	por					20 8/000	-, 1		
1	250	0.0009249	1.592	0.09	0.0	0.00e+000	3.70e-006	0.00e+000	
2	500	0.002513	1.588	0.25	0.0	0.00e+000	6.35e-006	0.00e+000	
3	1e+003	0.005248	1.581	0.52	0.0	0.00e+000	5.47e-006	0.00e+000	
4	2e+003	0.01115	1.566	1.11	0.0	0.00e+000	5.90e-006	0.00e+000	
5	4e+003	0.01919	1.545	1.92	0.0	0.00e+000	4.02e-006	0.00e+000	
6	8e+003	0.06655	1.422	6.65	134.6	1.67e-007	1.18e-005	1.07e-005	
7	1.6e+004	0.1338	1.248	13.38	183.1	1.09e-007	8.40e-006	4.92e-006	
8	4e+003	0.1151	1.296	11.51	30.3	6.21e-007	1.55e-006	5.20e-006	
9	1e+003	0.1058	1.320	10.58	0.0	0.00e+000	3.10e-006	0.00e+000	
10	250	0.01376	1.559	1.38	582.3	3.72e-008	1.23e-004	2.47e-005	
	Applied	Final	Void	Strain	Log.				
	Stress	Displacement	Ratio	at End	т50	Cv	Mv	k	Ca
	psf	in	Nacio	ac End	min	ft^2/sec	1/psf	ft/day	8
	psi	111		0	1((11)	10 27360	17 031	rt/day	v
1	250	0.0009249	1.592	0.09	0.0	0.00e+000	3.70e-006	0.00e+000	0.00e+000
2	500	0.002513	1.588	0.25	0.0	0.00e+000	6.35e-006	0.00e+000	0.00e+000
3	1e+003	0.005248	1.581	0.52	0.0	0.00e+000	5.47e-006	0.00e+000	0.00e+000
4	2e+003	0.01115	1.566	1.11	0.0	0.00e+000	5.90e-006	0.00e+000	0.00e+000
5	4e+003	0.01919	1.545	1,92	0.0	0.00e+000	4.02e-006	0.00e+000	0.00e+000
6	8e+003	0.06655	1.422	6.65	0.0	0.00e+000	1.18e-005	0.00e+000	0.00e+000
7	1.6e+004	0.1338	1.248	13.38	0.0	0.00e+000	8.40e-006	0.00e+000	0.00e+000
8	4e+003	0.1151	1.296	11.51	0.0	0.00e+000	1.55e-006	0.00e+000	0.00e+000
9	1e+003	0.1058	1.320	10.58	0.0	0.00e+000	3.10e-006	0.00e+000	0.00e+000
10	250	0.01376	1.559	1.38	121.4	4.15e-008	1.23e-004	2.75e-005	0.00e+000

Project: IM-8-094(092)346 Boring No.: 1 Sample No.: SS-500-17 Test No.: CON-1-17

Location: Tested By: Traeholt Test Date: 9/28/2016 Sample Type: Shelby Tube Project No.: Checked By: Dietrich Depth: 24.6-24.7 Elevation:

Soil Description: Total length 27 $1/2"\ {\rm Brn}\ {\rm Cly}\ {\rm with}\ {\rm White}\ {\rm Silt}\ {\rm Deposits}\ {\rm Remarks}$:

Load Increment: 1 of 10 Applied Stress: 250 psf

	Elapsed Time min	Sq.Rt. of Time min	Displacement in	Strain %	Void Ratio
1	0.00	0.00	-0.0006088	-0.06	1.596
2	0.15	0.39	0.0005996	0.06	1.593
3	0.40	0.63	0.0007855	0.08	1.593
4	0.90	0.95	0.0009249	0.09	1.592
5	1.90	1.38	0.0009714	0.10	1.592
6	3.90	1.98	0.0009714	0.10	1.592
7	4.96	2.23	0.0009249	0.09	1.592

Project: IM-8-094(092)346 Boring No.: 1 Sample No.: SS-500-17 Test No.: CON-1-17

Location: Tested By: Traeholt Test Date: 9/28/2016 Sample Type: Shelby Tube Project No.: Checked By: Dietrich Depth: 24.6-24.7 Elevation:

Soil Description: Total length 27 1/2" Brn Cly with White Silt Deposits Remarks:

Load Increment: 2 of 10 Applied Stress: 500 psf

	Elapsed Time min	Sq.Rt. of Time min	Displacement	Strain %	Void Ratio
1	0.00	0.00	0.001584	0.16	1.591
2	0.15	0.39	0.001909	0.19	1.590
3	0.40	0.63	0.002049	0.20	1.590
4	0.90	0.95	0.002142	0.21	1,589
5	1.90	1.38	0.002281	0.23	1.589
6	3.90	1.98	0.002467	0.25	1.588
- 7	4.94	2.22	0.002513	0.25	1.588

Project: IM-8-094(092)346 Boring No.: 1 Sample No.: SS-500-17 Test No.: CON-1-17 Location: Tested By: Traeholt Test Date: 9/28/2016 Sample Type: Shelby Tube Project No.: Checked By: Dietrich Depth: 24.6-24.7 Elevation:

Soil Description: Total length 27 $1/2"\ {\rm Brn}\ {\rm Cly}\ {\rm with}\ {\rm White}\ {\rm Silt}\ {\rm Deposits}\ {\rm Remarks:}$

Load Increment: 3 of 10 Applied Stress: 1e+003 psf

	Elapsed Time min	Sq.Rt. of Time min	Displacement in	Strain %	Void Ratio
1	0.00	0.00	0,003389	0.34	1.586
2	0.15	0.39	0.003715	0.37	1.585
3	0.40	0.63	0.0039	0.39	1.585
4	0.90	0.95	0.004226	0.42	1.584
5	1.90	1.38	0.004551	0.46	1.583
6	3.90	1.98	0.005062	0.51	1,582
7	4.95	2.22	0.005248	0.52	1,581

Project: IM-8-094(092)346 Boring No.: 1 Sample No.: SS-500-17 Test No.: CON-1-17 Location: Tested By: Traeholt Test Date: 9/28/2016 Sample Type: Shelby Tube Project No.: Checked By: Dietrich Depth: 24.6-24.7 Elevation:

Soil Description: Total length 27 1/2" Brn Cly with White Silt Deposits Remarks:

Load Increment: 4 of 10 Applied Stress: 2e+003 psf

	Elapsed Time min	Sq.Rt. of Time min	Displacement in	Strain %	Void Ratio
1	0.00	0.00	0.007246	0.72	1.576
2	0.15	0.39	0.007757	0.78	1.575
3	0.40	0.63	0.008454	0.85	1.573
4	0.90	0.95	0.008826	0.88	1.572
5	1.90	1.38	0.009616	0.96	1.570
6	3.90	1.98	0.01055	1.05	1.568
7	5.72	2.39	0.01115	1.11	1.566

Project: IM-8-094(092)346 Boring No.: 1 Sample No.: SS-500-17 Test No.: CON-1-17 Location: Tested By: Traeholt Test Date: 9/28/2016 Sample Type: Shelby Tube Project No.: Checked By: Dietrich Depth: 24.6-24.7 Elevation:

Soil Description: Total length 27 1/2" Brn Cly with White Silt Deposits Remarks:

Load Increment: 5 of 10 Applied Stress: 4e+003 psf

	Elapsed Time min	Sq.Rt. of Time min	Displacement in	Strain %	Void Ratio
1	0.00	0.00	0.01329	1.33	1.560
2	0.15	0.39	0.01431	1.43	1.558
3	0.40	0.63	0.01533	1.53	1.555
4	0.90	0.95	0.01622	1.62	1,553
5	1.90	1.38	0.01724	1.72	1.550
6	3.90	1.98	0.0184	1.84	1.547
7	4.95	2.23	0.01919	1.92	1.545

Project: IM-8-094(092)346 Boring No.: 1 Sample No.: SS-500-17 Test No.: CON-1-17 Location: Tested By: Traeholt Test Date: 9/28/2016 Sample Type: Shelby Tube Project No.: Checked By: Dietrich Depth: 24.6-24.7 Elevation:

Soil Description: Total length 27 1/2" Brn Cly with White Silt Deposits Remarks:

Load Increment: 6 of 10 Applied Stress: 8e+003 psf

	Elapsed	Sq.Rt.	Port 1 and a	01	Void
	Time	of Time	Displacement	Strain %	Ratio
	min	min	in	10	
1	0.00	0.00	0.02216	2.22	1.537
2	0.15	0.39	0.023	2.30	1.535
3	0.40	0.63	0.02416	2.42	1.532
4	0.90	0.95	0.02602	2.60	1.527
5	1.90	1.38	0.02704	2.70	1.525
6	3.90	1.98	0.0302	3.02	1.517
7	7.90	2.81	0.03374	3.37	1.507
8	11.90	3.45	0.03731	3.73	1.498
9	15.90	3.99	0.0395	3.95	1.492
10	19.90	4.46	0.0414	4.14	1.487
11	23.90	4.89	0.04312	4.31	1.483
12	27.90	5.28	0.04508	4.51	1.478
13	31.90	5.65	0.04624	4.62	1.475
14	35.90	5.99	0.0474	4.74	1.472
15	39.90	6.32	0.04912	4.91	1.467
16	43.90	6.63	0.05014	5.01	1.465
17	47.90	6.92	0.0514	5.14	1.462
18	51.90	7.20	0.05251	5.25	1,459
19	55.90	7.48	0.05381	5.38	1.455
20	59.90	7.74	0.05465	5.46	1.453
21	63.90	7.99	0.05535	5.53	1.451
22	67.90	8.24	0.05595	5.60	1.450
23	71.90	8.48	0.05711	5.71	1.447
24	75.90	8.71	0.05795	5.79	1.445
25	79.90	8.94	0.05869	5.87	1.443
26	83.90	9.16	0.05925	5.93	1.441
27	87.90	9.38	0.05976	5.98	1.440
28	91.90	9.59	0.06013	6.01	1.439
29	95.90	9.79	0.06065	6.06	1.438
30	99.90	10.00	0.06106	6.11	1.436
31	103.90	10.19	0.06232	6.23	1.433
32	107.90	10.39	0.06339	6.34	1.430
33	111.90	10.58	0.06376	6.38	1.429
34	115.90	10.77	0.06404	6.40	1.429
35	119.90	10.95	0.06432	6.43	1.428
36	123.90	11.13	0.0645	6.45	1.428
37	127.90	11.31	0.06469	6.47	1.427
38	131.90	11.48	0.06506	6.51	1.426
39	135.90	11.66	0.06557	6.56	1.425
40	139.90	11.83	0.0658	6.58	1.424
41	143.90	12.00	0.06622	6.62	1.423
42	147.90	12.16	0.06645	6.65	1.422
43	148.86	12.20	0.06655	6.65	1.422

Project: IM-8-094(092)346 Boring No.: 1 Sample No.: SS-500-17 Test No.: CON-1-17 Location: Tested By: Traeholt Test Date: 9/28/2016 Sample Type: Shelby Tube Project No.: Checked By: Dietrich Depth: 24.6-24.7 Elevation:

Soil Description: Total length 27 1/2" Brn Cly with White Silt Deposits Remarks:

Load Increment: 7 of 10 Applied Stress: 1.6e+004 psf

Project: IM-8-094(092)346 Boring No.: 1 Sample No.: SS-500-17 Test No.: CON-1-17

Location: Tested By: Traeholt Test Date: 9/28/2016 Sample Type: Shelby Tube Project No.: Checked By: Dietrich Depth: 24.6-24.7 Elevation:

1

Soil Description: Total length 27 $1/2"\ {\rm Brn}$ Cly with White Silt Deposits Remarks:

Load Increment: 8 of 10 Applied Stress: 4e+003 psf

	Elapsed Time min	Sq.Rt. of Time min	Displacement in	Strain %	Void Ratio
1 2 3 4 5 6 7 8 9 10 11	$\begin{array}{c} 0.00\\ 0.15\\ 0.40\\ 0.90\\ 1.90\\ 3.90\\ 7.90\\ 11.90\\ 15.90\\ 19.90\\ 23.90 \end{array}$	0.00 0.39 0.63 1.38 1.98 2.81 3.45 3.99 4.46 4.89	$\begin{array}{c} 0.1331 \\ 0.1327 \\ 0.1319 \\ 0.1311 \\ 0.129 \\ 0.1272 \\ 0.1247 \\ 0.1227 \\ 0.1223 \\ 0.1213 \\ 0.1198 \\ 0.1189 \end{array}$	13.31 13.27 13.19 13.11 12.90 12.72 12.47 12.27 12.13 11.98 11.89	1.249 1.251 1.253 1.255 1.260 1.265 1.271 1.277 1.280 1.284 1.286
12 13 14 15	27.90 31.90 35.90 37.71	5.28 5.65 5.99 6.14	0.1179 0.1164 0.1155 0.1151	11.79 11.64 11.55 11.51	1.289 1.293 1.295 1.296

Project: IM-8-094(092)346 Boring No.: 1 Sample No.: SS-500-17 Test No.: CON-1-17

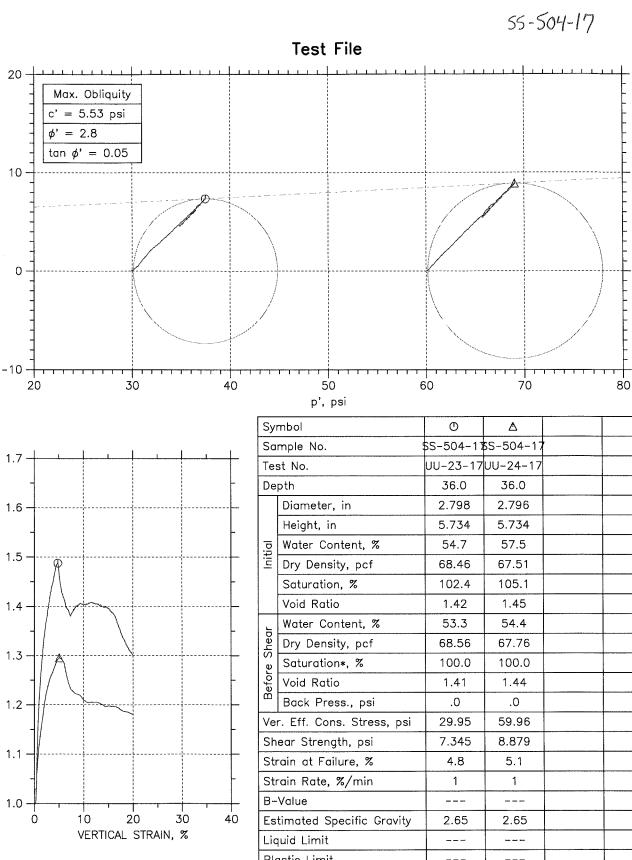
Location: Tested By: Traeholt Test Date: 9/28/2016 Sample Type: Shelby Tube Project No.: Checked By: Dietrich Depth: 24.6-24.7 Elevation:

Soil Description: Total length 27 1/2" Brn Cly with White Silt Deposits Remarks:

Load Increment: 9 of 10 Applied Stress: 1e+003 psf

	Elapsed Time min	Sq.Rt. of Time min	Displacement in	Strain %	Void Ratio
1	0.00	0.00	0.1153	11.53	1.296
2	0.15	0.39	0.115	11.50	1.296
3	0.40	0.63	0.1145	11.45	1.298
4	0.90	0.95	0.1137	11.37	1.300
5	1.90	1.38	0.1128	11.28	1.302
6	3.90	1.98	0.1107	11.07	1.308
7	7.90	2.81	0.1074	10.74	1.316
8	11.90	3.45	0.1059	10.59	1.320
9	12.18	3.49	0.1058	10.58	1.320

Project: IM-8-094(092)346 Boring No.: 1 Sample No.: SS-500-17 Test No.: CON-1-17


Location: Tested By: Traeholt Test Date: 9/28/2016 Sample Type: Shelby Tube Project No.: Checked By: Dietrich Depth: 24.6-24.7 Elevation:

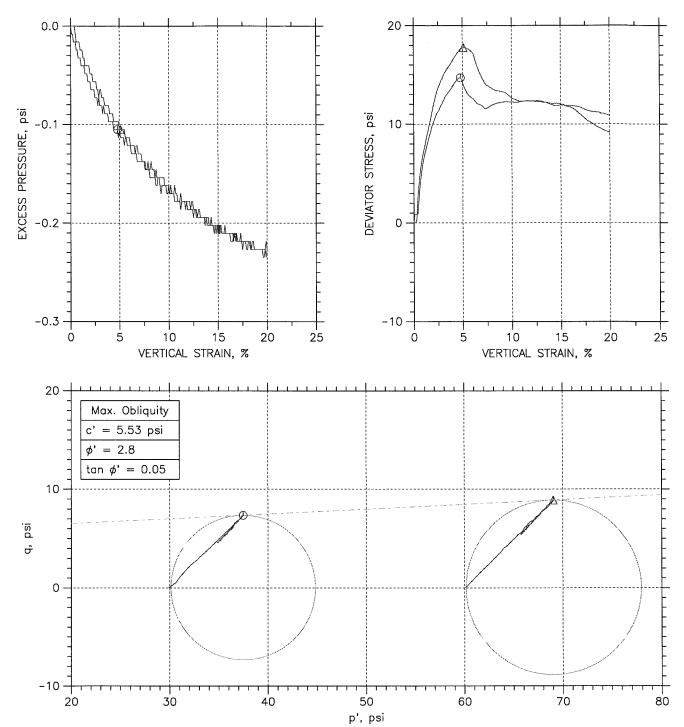
Soil Description: Total length 27 $1/2\,"$ Brn Cly with White Silt Deposits Remarks:

Load Increment: 10 of 10 Applied Stress: 250 psf

	Flanged	C a Dt			Void
	Elapsed Time min	Sq.Rt. of Time min	Displacement in	Strain %	Ratio
1	0.00	0.00	0.1051	10.51	1.322
2	0.15	0.39	0.1048	10.48	1.323
3	0.40	0.63	0.1039	10.39	1.325
4 5	$0.90 \\ 1.90$	0.95 1.38	0.1031 0.102	10.31 10.20	1.327 1.330
6 7	3.90 7.90	$1.98 \\ 2.81$	0.1 0.09774	$10.00 \\ 9.77$	1.335 1.341
8	11.90	3.45	0.09448	9.45	1.350
9	15.90	3.99	0.09225	9.23	1.356
10	$19.90 \\ 23.90$	4.46	0.09058	9.06	1.360
11		4.89	0.08858	8.86	1.365
12	27.90	5.28	0.08686	8.69	1.369
13	31.90	5.65	0.08482	8.48	1.375
14	35.90	5.99	0.08328	8.33	1.379
15	39.90	6.32	0.08161	8.16	1.383
16	43.90	6.63	0.08045	8.04	1.386
17	47.90	6.92	0.07938	7.94	1.389
$\frac{18}{19}$	51.90	7.20	0.07803	7.80	1.392
	55.90	7.48	0.07617	7.62	1.397
20	59.90	7.74	0.07492	7.49	1.400
21	63.90	7.99	0.07366	7.37	1.404
22	67.90	8.24	0.07241	7.24	1.407
23	71.90	8.48	0.07101	7.10	1.411
24	75.90	8.71	0.06999	7.00	1.413
25	79.90	8.94	0.06911	6.91	1.416
26	83.90	9.16	0.06822	6.82	1.418
27	87.90	9.38	0.06762	6.76	1.419
28	91.90	9.59	0.06702	6.70	1.421
29	95.90	9.79	0.06599	6.60	1.424
30	99.90	$10.00 \\ 10.19$	0.06413	6.41	1.428
31	103.90		0.06348	6.35	1.430
32	107.90	10.39	0.06288	6.29	1.432
33	111.90	10.58	0.06237	6.24	1.433
34	$115.90 \\ 119.90$	10.77	0.06181	6.18	1.434
35		10.95	0.06065	6.06	1.438
36	123.90	11.13	0.05986	5.99	1.440
37	127.90	11.31	0.05874	5.87	1.442
38	131.90	11.48	0.05828	5.83	$1.444 \\ 1.445$
39	135.90	11.66	0.05781	5.78	
40	139.90	11.83	0.05707	5.71	$1.447 \\ 1.449$
41	143.90	12.00	0.05609	5.61	
42	147.90	12.16	0.05554	5.55	1.451
43	151.90	12.32	0.0547		1.453
44 45	155.90 159.90	12.49	0.05405 0.05317	5.40 5.32	1.455
46 47	163.90 167.90	12.80 12.96	0.05275 0.05214	5.27	1.458
48	171.90	13.11	0.05135	5.14	1.462
49	175.90	13.26	0.05052		1.464
50	179.90	13.41	0.04973	4.97	1.466
51	183.90	13.56	0.04945	4.94	1.467
52	187.90	13.71	0.04912	4.91	1.467
53	191.90	13.85	0.04875	4.88	1.468
54	195.90	14.00	0.04791	4.79	1.471
55	199.90	14.14	0.04708	4.71	1.473
56	203.90	14.28	0.04661	4.66	$1.474 \\ 1.475$
57	207.90	14.42	0.0461	4.61	
58	211.90	14.56	0.04559	4.56	1.477
59	215.90	14.69	0.04522	4.52	1.478
60	219.90	14.83	0.04466	4.47	1.479
61	223.90	14.96	0.0442		1.480
62	227.90	15.10	0.04383	4.38	1.481
63	231.90	15.23	0.04336		1.482
64 65	235.90 239.90	15.36 15.49	0.0429 0.04243	4.29	$1.484 \\ 1.485$
66 67	243.90 247.90	15.62 15.74	0.04187 0.04136	$4.19 \\ 4.14$	$1.486 \\ 1.488$
68	251.90	15.87	0.04094	4.09	1.489
69	255.90	16.00	0.04057	4.06	1.490
70	259.90	$16.12 \\ 16.25$	0.0402	4.02	1.491
71	263.90		0.03978	3.98	1.492
72	267.90	$16.37 \\ 16.49$	0.03946	3.95	1.492
73	271.90		0.03908	3.91	1.493
74	275.90	16.61	0.03834	3.83	1.495
75		16.73	0.03764	3.76	1.497
76	283.90	16.85	0.03727	3.73	$1.498 \\ 1.499$
77	287.90	16.97	0.03685	3.69	
78	291.90	17.09	0.03639	3.64	1.500
79	295.90	17.20	0.03597	3.60	1.502
80	299.90	17.32	0.03579	3.58	1.502
81	303.90	17.43	0.03555	3.56	1.503
_					

82	307.90	17.55	0.03537	3.54	1.503
83	311.90 315.90	17.66	0.03513	3.51	1.504
84 85	315.90	17.77 17.89	0.03481 0.03458	3.48 3.46	1.505 1.505
86	323.90	18.00	0.03434	3.43	1.506
87	327.90	18.11	0.03393	3.39	1.507
88	331.90	18.22	0.03355	3.36	1.508
89	335.90	18.33	0.03323	3.32	1.509
90	339.90	18.44	0.03304	3.30	1.509
91 92	343.90 347.90	18.54 18.65	0.03258 0.03216	3.26 3.22	$1.510 \\ 1.511$
93	351.90	18.76	0.03165	3.16	1.513
94	355.90	18.87	0.03114	3.11	1.514
95	359.90	18.97	0.03091	3.09	1.515
96 97	363.90 367.90	19.08 19.18	0.03077 0.03044	3.08 3.04	$1.515 \\ 1.516$
97	371.90	19.28	0.03025	3.04	1.516
99	375.90	19.39	0.03012	3.01	1.517
100	379.90	19.49	0.02993	2.99	1.517
101	383.90	19.59	0.0297	2.97	1.518
102 103	387.90 391.90	19.70 19.80	0.0296 0.02951	2.96 2.95	1.518 1.518
103	395.90	19.90	0.02942	2.93	1.519
105	399.90	20.00	0.02928	2.93	1.519
106	403.90	20.10	0.02909	2.91	1.519
107	407.90	20.20	0.02877	2.88	1.520 1.521
108 109	411.90 415.90	20.30 20.39	0.02844 0.02816	2.84 2.82	1.521
110	419.90	20.49	0.02779	2.78	1.523
111	423.90	20.59	0.02742	2.74	1.524
112	427.90	20.69	0.027	2.70	1.525
113 114	431.90 435.90	20.78 20.88	0.02663 0.0264	2.66 2.64	1.526 1.526
115	439.90	20.00	0.02617	2.62	1.527
116	443.90	21.07	0.02598	2.60	1.527
117	447.90	21.16	0.02593	2.59	1.528
118 119	451.90 455.90	21.26 21.35	0.0257 0.02542	2.57 2.54	1.528 1.529
120	455.90	21.35	0.02528	2.53	1.529
121	463.90	21.54	0.0251	2.51	1.530
122	467.90	21.63	0.02486	2.49	1.530
123	471.90	21.72	0.02472	2.47	1.531
124 125	475.90 479.90	21.82 21.91	0.02458 0.0244	2.46 2.44	1.531 1.532
125	483.90	22.00	0.02417	2.42	1.532
127	487.90	22.09	0.02389	2.39	1.533
128	491.90	22.18	0.0237	2.37	1.533
129 130	495.90 499.90	22.27 22.36	0.02361 0.02356	2.36 2.36	1.534 1.534
130	503.90	22.45	0.02342	2.34	1.534
132	507.90	22.54	0.02333	2.33	1.534
133	511.90	22.63	0.02314	2.31	1.535
134	515.90 519.90	22.71 22.80	0.02296 0.02282	2.30 2.28	1.535 1.536
135 136	523.90	22.80	0.02259	2.26	1.536
137	527.90	22.98	0.02259	2.26	1.536
138	531,90	23.06	0.02245	2.24	1.537
139	535.90	23.15	0.02221 0.02184	2.22	1.537
140 141	539.90 543.90	23.24 23.32	0.02161	2.18 2.16	1.538 1.539
142	547.90	23.41	0.02133	2.13	1.540
143	551.90	23.49	0.0211	2.11	1.540
144	555.90	23.58 23.66	0.02087	2.09 2.05	1.541
145 146	559.90 563.90	23.75	0.0205 0.02031	2.03	1.542 1.542
147	567.90	23,83	0.02012	2.01	1.543
148	571.90	23.91	0.01989	1.99	1.543
149 150	575.90 579.90	24.00 24.08	0.0198 0.01966	1.98 1.97	1.544 1.544
151	583.90	24.16	0.01952	1.95	1.544
152	587.90	24.25	0.01938	1.94	1,545
153	591.90	24.33	0.01929	1.93	1.545
154 155	595.90 599.90	24.41 24.49	0.01919 0.01905	1.92 1.91	1.545 1.545
155	603.90	24.57	0.01896	1.90	1.546
157	607.90	24.66	0.01882	1.88	1.546
158	611.90	24.74	0.01873	1.87	1.546
159	615.90 619.90	24.82 24.90	0.01859 0.0184	1.86 1.84	1.547 1.547
160 161	623.90	24.98	0.01836	1.84	1.547
162	627.90	25.06	0.01831	1.83	1.547
163	631.90	25.14	0.01822	1.82	1.548
164	635.90	25.22	0.01808	1.81	1.548 1.548
$165 \\ 166$	639.90 643.90	25.30 25.38	0.01789 0.01771	1.79 1.77	1.548
167	647.90	25.45	0.01757	1.76	1.549
168	651.90	25.53	0.01743	1.74	1.550
169	655.90	25.61	0.01738	1.74	1.550
170 171	659.90 663.90	25.69 25.77	0.0172 0.01706	1.72 1.71	1.550 1.551
172	667.90	25.84	0.01687	1.69	1.551
173	671.90	25.92	0.01678	1.68	1.551
174	675.90	26.00	0.01668	1.67	1.552
175 176	679.90 683.90	26.07 26.15	0.01659 0.01645	1.66 1.65	1.552 1.552
177	687.90	26.23	0.01631	1.63	1.553
178	691.90	26.30	0.01613	1.61	1.553
179	695.90	26.38	0.01599	1.60	1.553

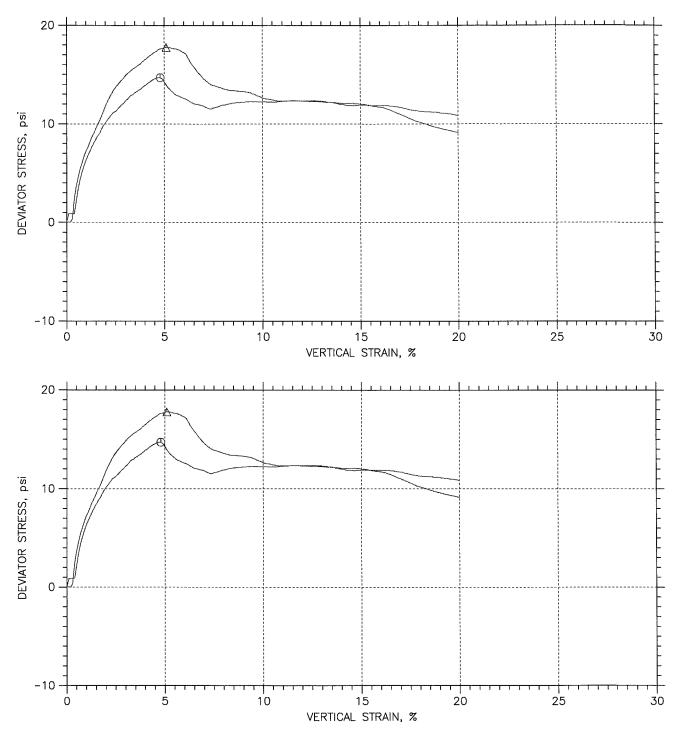
	VERTICAL STRAIN, %	Liquid Limit				
		Plastic Limit				
	Project: IM-8-094(092)346					
	Location:					
	Project No.:					
North Dakota Department of Transportation	Boring No.: 1					
Department of Transportation	Sample Type:			L		
	Description: T.L. 28" Gry Cly, Slicken Sided					
	Remarks: 34.4-34.9					
	Phase calculations based o	n start and end of test.				


Tue, 17-0CT-2017 08:14:26

STRESS RATIO

q, psi

* Saturation is set to 100% for phase calculations.


55-504-17

	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
Ο	SS-504-17	UU-23-17	36.0	DT	10/4/2017	MD		UU-23-2017.dat
Δ	SS-504-17	UU-24-17	36.0	DT	10/4/2017	MD		UU-24-2017.dat
		Project:	IM-8-094(092)346	Location:		Proje	ect No.:

NDDD95 North Daleota Department of Transportation	Froject. IM-0-034(032)340	Locution.				
	Boring No.: 1	Sample Type:				
	Description: T.L. 28" Gry Cly, S	Description: T.L. 28" Gry Cly, Slicken Sided				
	Remarks: 34.4–34.9					

Test File

	Sample No.	Tes	t No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
٢	SS-504-17	UU-	-23-17	36.0	DT	10/4/2017	MD		UU-23-2017.dat
Δ	SS-504-17	UU-	-24-17	36.0	DT	10/4/2017	MD		UU-24-2017.dat
			Project	: IM-8-094	4(092)346	Location:		Proj	ect No.:
		5	Boring	No.: 1		Sample Type	9:		
North Dakota Department of Transportation		Descrip	tion: T.L. 2	28" Gry Cly, Slid	cken Sided				
			Remark	s: 34.4-34	4.9				

	TRIAXIAL TEST			
Project: IM-8-094(092)346 Boring No.: 1 Sample No.: SS-504-17 Test No.: UU-23-17	Location: Tested By: DT Test Date: 10/4/2017 Sample Type:	Cl De	oject No.: uecked By: MD upth: 36.0 evation:	
Soil Description: T.L. 28" Gry Cly, Slick Remarks: 34.4-34.9	en Sided			
Specimen Height: 5.73 in Specimen Area: 6.15 in^2 Specimen Volume: 577.76 cc	Piston Area: 0.21 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb	Mo	lter Strip Correction: 0.00 ps mbrane Correction: 4.20 lb/in prrection Type: Uniform	i.
Liquid Limit:	Plastic Limit:	E	stimated Specific Gravity: 2.65	
	Before Test Trimmings	Before Test Specimen	After Test Specimen	After Test Trimmings
Container ID	S 2			
<pre>Wt. Container + Wet Soil, gm Wt. Container + Dry Soil, gm Wt. Container, gm Wt. Wet Soil, gm Wt. Dry Soil, gm Wt. Water, gm Water Content, % Void Ratio Degree of Saturation, % Dry Unit Weight, pcf</pre>	73.52 53.62 17.27 56.25 36.35 19.9 54.75 	980.47 633.6 346.87 54.75 1.42 102.42 68.462	 633.6 633.6 0 0.00 1.41 0.00 68.559	
Initial		Height: 5.734 i Area: 6.1487 in Volume: 577.76	Void Ratio: 1.42	
End of Initialization Time: 11.063 min Total Vertical Stress: 29.946 psi Total Horizontal Stress: 29.979 psi Pore Pressure: 0 psi Effective Vertical Stress: 29.946 psi Effective Horizontal Stress: 29.979 psi	Height Change: 0.0026955 in Area Change: 0 in^2 Volume Change: 0.81479 cc Water Change: -0.29604 cc Correction: 9.3187 cc	Area: 6.1487 in	2 Void Ratio: 1.41	
End of Consolidation/A Time: 11.063 min Total Vertical Stress: 29.946 psi Total Horizontal Stress: 29.979 psi Pore Pressure: 0 psi Effective Vertical Stress: 29.946 psi Effective Horizontal Stress: 29.979 psi	Height Change: 0.0026955 in Area Change: 0 in^2 Volume Change: 0.81479 cc Water Change: -0.29604 cc Correction: 9.3187 cc	Height: 5.7313 Area: 6.1487 in Volume: 576.94	^2 Void Ratio: 1.41	
End of Saturation Time: 11.063 min Total Vertical Stress: 29.946 psi Total Horizontal Stress: 29.979 psi Pore Pressure: 0 psi Effective Vertical Stress: 29.946 psi Effective Horizontal Stress: 29.979 psi	Height Change: 0.0026955 in Area Change: 0 in^2 Volume Change: 0.81479 cc Water Change: -0.29604 cc Correction: 9.3187 cc	Height: 5.7313 Area: 6.1487 in Volume: 576.94	^2 Void Ratio: 1.41	
End of Consolidation/B Time: 11.063 min Total Vertical Stress: 29.946 psi Total Horizontal Stress: 29.979 psi Pore Pressure: 0 psi Effective Vertical Stress: 29.946 psi Effective Horizontal Stress: 29.979 psi	Height Change: 0.0026955 in Area Change: 0 in^2 Volume Change: 0.81479 cc Water Change: -0.29604 cc Correction: 9.3187 cc	Height: 5.7313 Area: 6.1487 in Volume: 576.94	^2 Void Ratio: 1.41	
End of Shear Time: 31.298 min Total Vertical Stress: 39.236 psi Total Horizontal Stress: 30.092 psi Pore Pressure: -0.22671 psi Effective Vertical Stress: 39.462 psi Effective Horizontal Stress: 30.319 psi	Height Change: 1.1491 in Area Change: -1.5302 in^2 Volume Change: 0.81479 cc Water Change: -0.29604 cc Correction: 347.16 cc	Height: 4.5849 Area: 7.6789 in Volume: 576.94	^2 Void Ratio: 1.41	
At Failure Time: 15.952 min Total Vertical Stress: 44.726 psi Total Horizontal Stress: 30.036 psi Pore Pressure: -0.10526 psi Effective Vertical Stress: 44.831 psi Effective Horizontal Stress: 30.141 psi	Height Change: 0.27796 in Area Change: -0.31656 in^2 Volume Change: 0.81479 cc Water Change: -0.29604 cc Correction: 0 cc	Height: 5.456 i Area: 6.4653 ir Volume: 576.94	^2 Void Ratio: 1.41	

55-504-1>

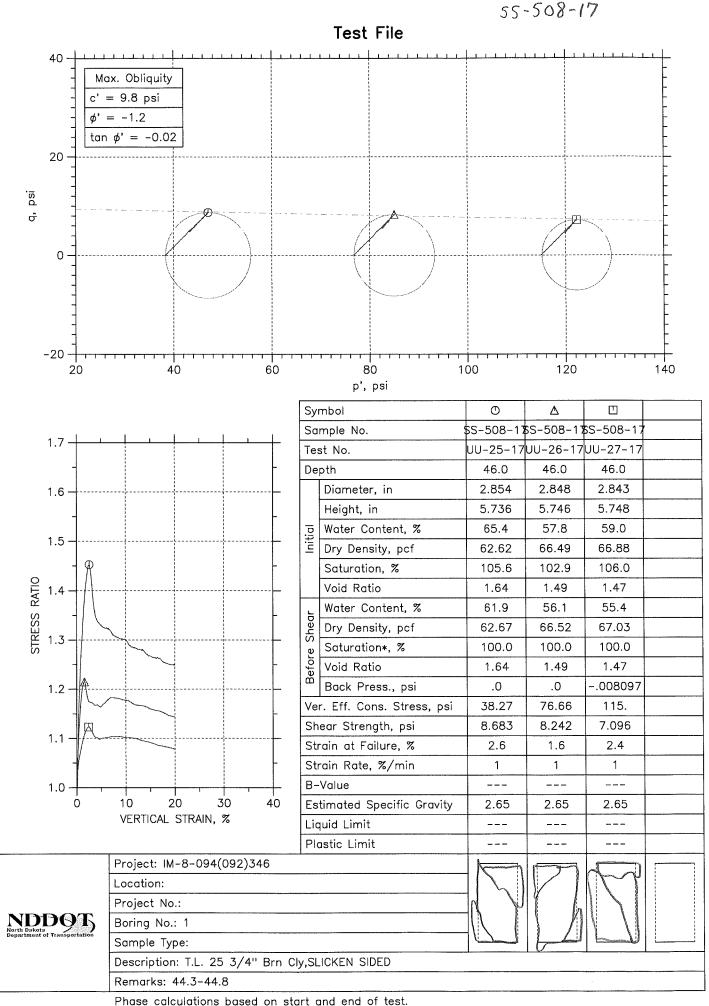
TRIAXIAL TEST

	TRIAXIAL TEST			
Project: IM-8-094(092)346 Boring No.: 1 Sample No.: SS-504-17 Test No.: UU-24-17	Location: Tested By: DT Test Date: 10/4/2017 Sample Type:	Chec Dept	ect No.: ked By: MD h: 36.0 ation:	
Soil Description: T.L. 28" Gry Cly, Slick Remarks: 34.9-35.4	en Sided			
Specimen Height: 5.73 in Specimen Area: 6.14 in^2 Specimen Volume: 576.93 cc	Piston Area: 0.21 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb	Memb	er Strip Correction: 0.00 psi orane Correction: 4.20 lb/in ection Type: Uniform	
Liquid Limit:	Plastic Limit:	Esti	mated Specific Gravity: 2.65	
	Before Test Trimmings	Before Test Specimen		er Test mmings
Container ID	S 24			
<pre>Wt. Container + Wet Soil, gm Wt. Container + Dry Soil, gm Wt. Container, gm Wt. Wet Soil, gm Wt. Dry Soil, gm Wt. Water, gm Water Content, % Void Ratio Degree of Saturation, % Dry Unit Weight, pcf</pre>	75.61 54.15 16.84 58.77 37.31 21.46 57.52	982.71 623.87 358.84 57.52 1.45 105.08 67.507	 623.87 623.87 0 0.00 1.44 0.00 67.763	0 0 0 0 0 0 0 0 0 0
Initial		Height: 5.734 in Area: 6.1399 in^2 Volume: 576.93 cc	Moisture: 57.52 % Void Ratio: 1.45 Dry Unit Weight: 67.5(Saturation: 105.08 %)7 pcf
End of Initialization Time: 11.085 min Total Vertical Stress: 59.961 psi Total Horizontal Stress: 59.966 psi Pore Pressure: 0 psi Effective Vertical Stress: 59.961 psi Effective Horizontal Stress: 59.966 psi	Height Change: 0.0072035 in Area Change: 0 in^2 Volume Change: 2.1744 cc Water Change: -0.31803 cc Correction: 19.824 cc	Height: 5.7268 in Area: 6.1399 in^2 Volume: 574.76 cc	Moisture: 54.39 % Void Ratio: 1.44 Dry Unit Weight: 67.76 Saturation: 100.00 %	63 pcf
End of Consolidation/A Time: 11.085 min Total Vertical Stress: 59.961 psi Total Horizontal Stress: 59.966 psi Pore Pressure: 0 psi Effective Vertical Stress: 59.961 psi Effective Horizontal Stress: 59.966 psi	Height Change: 0.0072035 in Area Change: 0 in^2 Volume Change: 2.1744 cc Water Change: -0.31803 cc Correction: 19.824 cc	Height: 5.7268 in Area: 6.1399 in^2 Volume: 574.76 cc	Moisture: 54.39 % Void Ratio: 1.44 Dry Unit Weight: 67.74 Saturation: 100.00 %	63 pcf
End of Saturation Time: 11.085 min Total Vertical Stress: 59.961 psi Total Horizontal Stress: 59.966 psi Pore Pressure: 0 psi Effective Vertical Stress: 59.961 psi Effective Horizontal Stress: 59.966 psi	Height Change: 0.0072035 in Area Change: 0 in^2 Volume Change: 2.1744 cc Water Change: -0.31803 cc Correction: 19.824 cc	Height: 5.7268 in Area: 6.1399 in^2 Volume: 574.76 cc	Moisture: 54.39 % Void Ratio: 1.44 Dry Unit Weight: 67.7 Saturation: 100.00 %	63 pcf
End of Consolidation/B Time: 11.085 min Total Vertical Stress: 59.961 psi Total Horizontal Stress: 59.966 psi Pore Pressure: 0 psi Effective Vertical Stress: 59.961 psi Effective Horizontal Stress: 59.966 psi	Height Change: 0.0072035 in Area Change: 0 in^2 Volume Change: 2.1744 cc Water Change: -0.31803 cc Correction: 19.824 cc	Height: 5.7268 in Area: 6.1399 in^2 Volume: 574.76 cc	Void Ratio: 1.44	63 pcf
End of Shear Time: 31.299 min Total Vertical Stress: 70.971 psi Total Horizontal Stress: 60.072 psi Pore Pressure: -0.2348 psi Effective Vertical Stress: 71.205 psi Effective Horizontal Stress: 60.306 psi	Height Change: 1.1526 in Area Change: -1.5158 in^2 Volume Change: 2.1744 cc Water Change: -0.31803 cc Correction: 359.16 cc	Height: 4.5814 in Area: 7.6557 in^2 Volume: 574.76 cc	Void Ratio: 1.44	63 pcf
At Failure Time: 16.267 min Total Vertical Stress: 77.813 psi Total Horizontal Stress: 60.055 psi Pore Pressure: -0.11335 psi Effective Vertical Stress: 77.926 psi Effective Horizontal Stress: 60.169 psi	Height Change: 0.29953 in Area Change: -0.34198 in^2 Volume Change: 2.1744 cc Water Change: -0.31803 cc Correction: 0 cc	Height: 5.4345 ir Area: 6.4819 in^2 Volume: 574.76 cc	Void Ratio: 1.44	63 pcf

TRIAXIA

TRIAXIAL U North Dakota SFN 50459 (10	Depart			n, Material	s & Research	Project Number <u> IM-8-094(093)346</u> Boring Number 1			
Field Sample N	lumber			Lab Numb	er	Depth			
•	504-	17		110	1-23-17		34.4+034.9		
Weight of Sam	ple		est Weight			Test Number	of 2		
Diameter		7/5	2010	Height		Moisture Can Number	r After Moisture Can Number		
1	,'	168	2.818		5.735	<u>5 </u>	Wet Wt + Can		
X-1	2.1	181	2.821		5.730	73.52			
	2.5	•	2.809	_	5.736	Dry Wt + Can 53.62	Dry Wt + Can		
		Average 2.798			5.734	Wt of Can	Wt of Can		
Total Length:	28" (· · · · · ·	ly, Slicker	~ Sided		. I I I I I I I I I I I I I I I I I I I			
34.0	AC	> < 34,:	1	1	34.9 35.0	<u>814 6</u>	36.0		
	lunahan		8	Lab Numb		Dauth	0.00		
Field Sample N 55-50				Lab Numb	aer 24-17	Depth 34.9	to 35.4		
Weight of Sam		After Te	est Weight	Confining		Test Number	of m		
982.7	1		-		60.0	d	X		
Diameter	1	n	0.0.05	Height		Moisture Can Number	r After Moisture Can Number		
	<u> </u> √.	774	2.827		5.7 34	524			
	1		1		1	Wet Wt + Can	Wet Wt + Can		

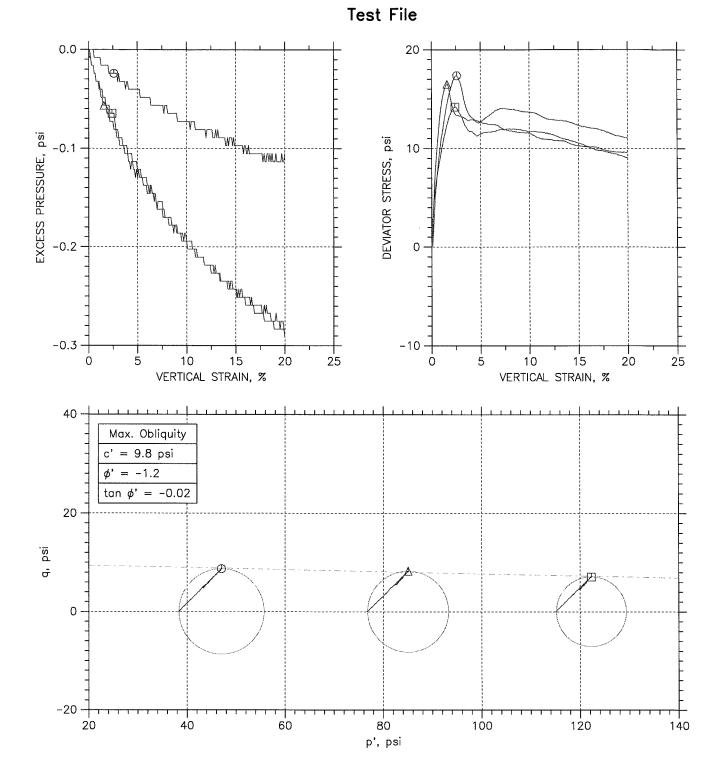
2.774 5.734 2.826 75.61 Dry Wt + Can Dry Wt + Can 2.761 2.813 5.735 54.1 Average Wt of Can Wt of Can Average 2.796 16.84 5,734


Total Length:

É

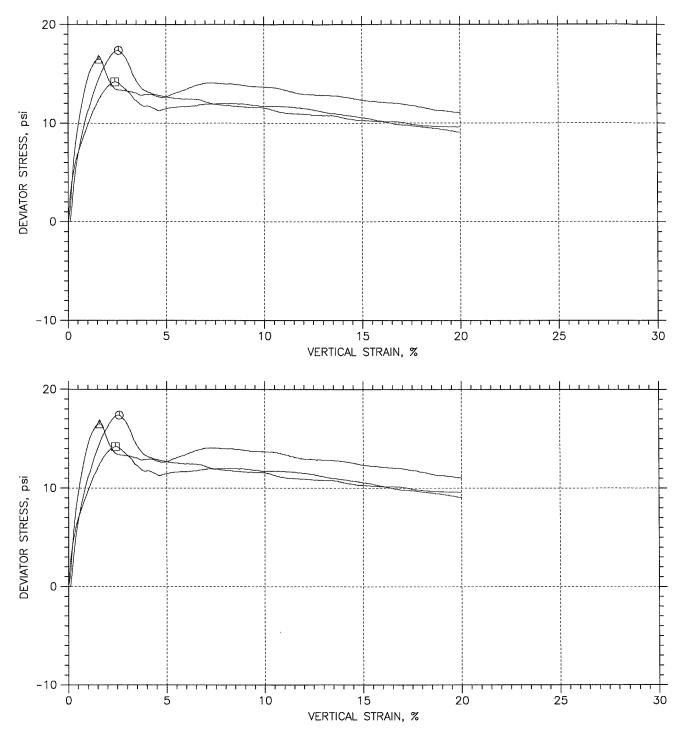
!	1	!
 		i

Field Sample Numb	ber	Lab Number	Depth		
Weight of Sample After Test Weigh		Confining Pressure	Test Number of		
Diameter		Height	Moisture Can Number	After Moisture Can Number	
[]			Wet Wt + Can	Wet Wt + Can	
			Dry Wt + Can	Dry Wt + Can	
Ave	erage	Average	Wt of Can	Wt of Can	


Total Length:

Tue, 17-OCT-2017 08:20:30

* Saturation is set to 100% for phase calculations.


55-508-17

	Sample No.	Tes	t No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
O	SS-508-17	UU-	-25-17	46.0	DT	10/12/201	мD		UU-25-2017.dat
Δ	SS-508-17	UU-	-26-17	46.0	DT	10/12/201	7 MD		UU-26-2017.dat
	SS-508-17	UU-	-27-17	46.0	DT	10/12/201	7 MD		UU-27-2017.dat
		<u> </u>	Project:	I IM-8-094(092)346	Location:	I	Proje	ct No.:
i No	NDD97					Sample Type:			
De	Department of Transportation		Descrip	tion: T.L. 25	5 3/4" Brn Cl	y,SLICKEN SID	ED		
			Remarks: 44.3-44.8						

55-508-17

Test File

	Sample No.	Tes	t No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
Ο	SS-508-17	UU	-25-17	46.0	DT	10/12/201	7 MD		UU-25-2017.dat
Δ	SS-508-17	UU	-26-17	46.0	DT	10/12/201	7 MD		UU-26-2017.dat
	SS-508-17	UU	-27-17	46.0	DT	10/12/201	7 MD		UU-27-2017.dat
				I			I		
			Project: IM-8-094(092)346		4(092)346	Location:		Proje	ct No.:
		5	Boring	No.: 1		Sample Type:			
De	rth Dakota partment of Transportat	ion	Descrip	tion: T.L. 2	25 3/4" Brn Cl	y,SLICKEN SID	ED		
			Remark	s: 44.3-44	4.8				

TRIAXIAL TEST									
Project: IM-8-094(092)346 Boring No.: 1 Sample No.: SS-508-17 Test No.: UU-25-17	Location: Tested By: DT Test Date: 10/12/2017 Sample Type:	Project Checked Depth: 4 Elevatio	By: MD 6.0						
Soil Description: T.L. 25 3/4" Brn Cly,SL Remarks: 44.3-44.8	JICKEN SIDED								
Specimen Height: 5.74 in Specimen Area: 6.40 in^2 Specimen Volume: 601.32 cc	Piston Area: 0.21 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb	Membrane	Strip Correction: 0.00 Correction: 4.20 lb, on Type: Uniform						
Liquid Limit:	Plastic Limit:	Estimate	ed Specific Gravity: 3	2.65					
	Before Test Trimmings	Before Test Specimen	After Test Specimen	After Test Trimmings					
Container ID	S 23								
<pre>Wt. Container + Wet Soil, gm Wt. Container + Dry Soil, gm Wt. Container, gm Wt. Wet Soil, gm Wt. Dry Soil, gm Wt. Water, gm Water Content, % Void Ratio Degree of Saturation, % Dry Unit Weight, pcf</pre>	84.26 57.68 17.05 67.21 40.63 26.58 65.42 	 997.77 603.18 394.59 65.42 1.64 105.59 62.62	 603.18 603.18 0 0.00 1.64 0.00 62.669						
Initial		Height: 5.736 in Area: 6.3973 in^2 Volume: 601.32 cc	Moisture: 65.4 Void Ratio: 1. Dry Unit Weigh Saturation: 10	64 t: 62.62 pcf					
End of Initialization Time: 11.099 min Total Vertical Stress: 38.27 psi Total Horizontal Stress: 38.267 psi Pore Pressure: 0 psi Effective Vertical Stress: 38.27 psi Effective Horizontal Stress: 38.267 psi	Height Change: 0.0014872 in Area Change: 0 in^2 Volume Change: 0.46772 cc Water Change: -0.192 cc Correction: 21.544 cc	Area: 6.3973 in^2	Moisture: 61.8 Void Ratio: 1. Dry Unit Weigh Saturation: 10	64 t: 62.669 pcf					
End of Consolidation/A Time: 11.099 min Total Vertical Stress: 38.27 psi Total Horizontal Stress: 38.267 psi Pore Pressure: 0 psi Effective Vertical Stress: 38.27 psi Effective Horizontal Stress: 38.267 psi	Height Change: 0.0014872 in Area Change: 0 in^2 Volume Change: 0.46772 cc Water Change: -0.192 cc Correction: 21.544 cc	Area: 6.3973 in^2	Moisture: 61.8 Void Ratio: 1. Dry Unit Weigh Saturation: 10	64 it: 62.669 pcf					
End of Saturation Time: 11.099 min Total Vertical Stress: 38.27 psi Total Horizontal Stress: 38.267 psi Pore Pressure: 0 psi Effective Vertical Stress: 38.27 psi Effective Horizontal Stress: 38.267 psi	Height Change: 0.0014872 in Area Change: 0 in^2 Volume Change: 0.46772 cc Water Change: -0.192 cc Correction: 21.544 cc	Height: 5.7345 in Area: 6.3973 in^2 Volume: 600.86 cc	Moisture: 61.8 Void Ratio: 1. Dry Unit Weigh Saturation: 10	.64 ht: 62.669 pcf					
End of Consolidation/B Time: 11.099 min Total Vertical Stress: 38.27 psi Total Horizontal Stress: 38.267 psi Pore Pressure: 0 psi Effective Vertical Stress: 38.27 psi Effective Horizontal Stress: 38.267 psi	Height Change: 0.0014872 in Area Change: 0 in^2 Volume Change: 0.46772 cc Water Change: -0.192 cc Correction: 21.544 cc	Height: 5.7345 in Area: 6.3973 in^2 Volume: 600.86 cc	Moisture: 61.8 Void Ratio: 1. Dry Unit Weigh Saturation: 10	.64 nt: 62.669 pcf					
End of Shear Time: 31.278 min Total Vertical Stress: 47.901 psi Total Horizontal Stress: 38.275 psi Pore Pressure: -0.10526 psi Effective Vertical Stress: 48.006 psi Effective Horizontal Stress: 38.38 psi	Height Change: 1.1488 in Area Change: -1.5958 in^2 Volume Change: 0.46772 cc Water Change: -0.192 cc Correction: 394.79 cc	Height: 4.5872 in Area: 7.9931 in^2 Volume: 600.86 cc	Moisture: 0.00 Void Ratio: 1 Dry Unit Weigi Saturation: 0.	.64 nt: 62.669 pcf					
At Failure Time: 13.712 min Total Vertical Stress: 55.714 psi Total Horizontal Stress: 38.348 psi Pore Pressure: -0.02429 psi Effective Vertical Stress: 55.738 psi Effective Horizontal Stress: 38.372 psi	Height Change: 0.15062 in Area Change: -0.17462 in^2 Volume Change: 0.46772 cc Water Change: -0.192 cc Correction: 0 cc	Height: 5.5854 in Area: 6.5719 in^2 Volume: 600.86 cc	Moisture: 61.4 Void Ratio: 1 Dry Unit Weig Saturation: 10	.64 ht: 62.669 pcf					

	TRIAXIAL TEST			
Project: IM-8-094(092)346 Boring No.: 1 Sample No.: SS-508-17 Test No.: UU-26-17	Location: Tested By: DT Test Date: 10/12/2017 Sample Type:	Chec Dept	ect No.: ked By: MD n: 46.0 ation:	
Soil Description: T.L. 25 3/4" Brn Cly,SL Remarks: 44.8-45.3	ICKEN SIDED			
Specimen Height: 5.75 in Specimen Area: 6.37 in^2 Specimen Volume: 599.84 cc	Piston Area: 0.21 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb	Memb	er Strip Correction: 0.00 psi rane Correction: 4.20 lb/in ection Type: Uniform	
Liquid Limit:	Plastic Limit:	Esti	mated Specific Gravity: 2.65	
	Before Test Trimmings	Before Test Specimen		er Test immings
Container ID	S 32			
<pre>Wt. Container + Wet Soil, gm Wt. Container + Dry Soil, gm Wt. Container, gm Wt. Wet Soil, gm Wt. Dry Soil, gm Wt. Water, gm Water Content, % Void Ratio Degree of Saturation, % Dry Unit Weight, pcf</pre>	65.08 47.38 16.76 48.32 30.62 17.7 57.81 	 1008.1 638.84 369.29 57.81 1.49 102.93 66.487	 638.84 638.84 0 0.00 1.49 0.00 66.523	0 0 0 0 0 0 0 0 0 0 0
Initial		Height: 5.746 in Area: 6.3704 in^2 Volume: 599.84 cc	Moisture: 57.81 % Void Ratio: 1.49 Dry Unit Weight: 66.4 Saturation: 102.93 %	87 pcf
End of Initialization Time: 11.063 min Total Vertical Stress: 76.659 psi Total Horizontal Stress: 76.68 psi Pore Pressure: 0 psi Effective Vertical Stress: 76.659 psi Effective Horizontal Stress: 76.68 psi	Height Change: 0.0010224 in Area Change: 0 in^2 Volume Change: 0.3202 cc Water Change: -0.27083 cc Correction: 11.109 cc	Height: 5.745 in Area: 6.3704 in^2 Volume: 599,52 cc	Moisture: 56.11 % Void Ratio: 1.49 Dry Unit Weight: 66.5 Saturation: 100.00 %	23 pcf
End of Consolidation/A Time: 11.063 min Total Vertical Stress: 76.659 psi Total Horizontal Stress: 76.68 psi Pore Pressure: 0 psi Effective Vertical Stress: 76.659 psi Effective Horizontal Stress: 76.68 psi	Height Change: 0.0010224 in Area Change: 0 in^2 Volume Change: 0.3202 cc Water Change: -0.27083 cc Correction: 11.109 cc	Height: 5.745 in Area: 6.3704 in^2 Volume: 599.52 cc	Moisture: 56.11 % Void Ratio: 1.49 Dry Unit Weight: 66.5 Saturation: 100.00 %	23 pcf
End of Saturation Time: 11.063 min Total Vertical Stress: 76.659 psi Total Horizontal Stress: 76.68 psi Pore Pressure: 0 psi Effective Vertical Stress: 76.659 psi Effective Horizontal Stress: 76.68 psi	Height Change: 0.0010224 in Area Change: 0 in^2 Volume Change: 0.3202 cc Water Change: -0.27083 cc Correction: 11.109 cc	Height: 5.745 in Area: 6.3704 in^2 Volume: 599.52 cc	Moisture: 56.11 % Void Ratio: 1.49 Dry Unit Weight: 66.5 Saturation: 100.00 %	23 pcf
End of Consolidation/B Time: 11.063 min Total Vertical Stress: 76.659 psi Total Horizontal Stress: 76.68 psi Pore Pressure: 0 psi Effective Vertical Stress: 76.659 psi Effective Horizontal Stress: 76.68 psi	Height Change: 0.0010224 in Area Change: 0 in^2 Volume Change: 0.3202 cc Water Change: -0.27083 cc Correction: 11.109 cc	Height: 5.745 in Area: 6.3704 in^2 Volume: 599.52 cc	Moisture: 56.11 % Void Ratio: 1.49 Dry Unit Weight: 66.5 Saturation: 100.00 %	23 pcf
End of Shear Time: 31.246 min Total Vertical Stress: 87.884 psi Total Horizontal Stress: 76.834 psi Pore Pressure: -0.28339 psi Effective Vertical Stress: 88.168 psi Effective Horizontal Stress: 77.117 psi	Height Change: 1.1502 in Area Change: -1.5901 in^2 Volume Change: 0.3202 cc Water Change: -0.27083 cc Correction: 369.56 cc	Height: 4.5958 in Area: 7.9605 in^2 Volume: 599.52 cc	Void Ratio: 1.49	523 pcf
At Failure Time: 12.704 min Total Vertical Stress: 93.237 psi Total Horizontal Stress: 76.753 psi Pore Pressure: -0.056677 psi Effective Vertical Stress: 93.294 psi Effective Horizontal Stress: 76.809 psi	Height Change: 0.092949 in Area Change: -0.10767 in^2 Volume Change: 0.3202 cc Water Change: -0.27083 cc Correction: 0 cc	Height: 5.6531 in Area: 6.4781 in^2 Volume: 599.52 cc	Void Ratio: 1.49	523 pcf

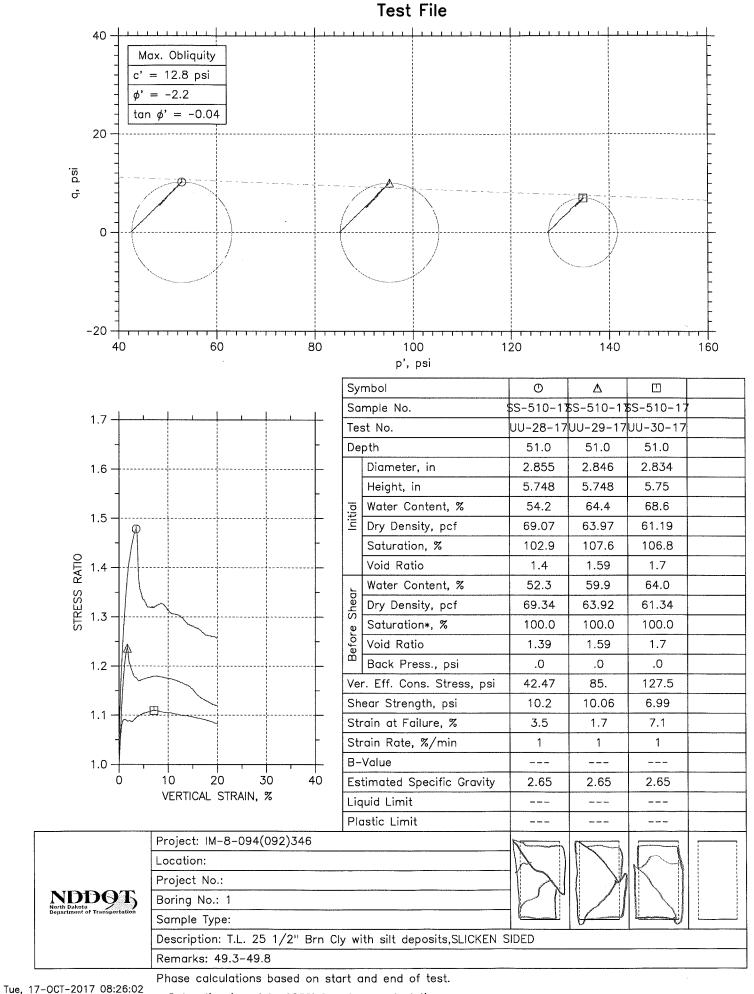
55-508-17

TRIAXIAL TEST Project: IM-8-094(092)346 Location: Project No.: Boring No.: 1 Tested By: DT Checked By: MD Sample No.: SS-508-17 Test Date: 10/12/2017 Depth: 46.0 Test No.: UU-27-17 Sample Type: Elevation: Soil Description: T.L. 25 3/4" Brn Cly, SLICKEN SIDED Remarks: 45.4-45.9 Specimen Height: 5.75 in Specimen Area: 6.35 in^2 Piston Area: 0.21 in^2 Filter Strip Correction: 0.00 psi Piston Friction: 0.00 lb Piston Weight: 0.00 lb Membrane Correction: 4.20 lb/in Specimen Volume: 597.95 cc Correction Type: Uniform Liquid Limit: ---Plastic Limit: ---Estimated Specific Gravity: 2.65 Before Test Before Test After Test After Test Trimmings Specimen Specimen Trimmings Container ID S 33 Wt. Container + Wet Soil, gm Wt. Container + Dry Soil, gm 68.41 ----____ 0 49.43 ____ 0 Wt. Container, gm 17.24 -----_ _ ~ 0 Wt. Wet Soil, gm Wt. Dry Soil, gm 1018.2 640.54 51.17 0 32.19 640.54 640.54 0 Wt. Water, gm 18.98 377.68 0 0 Water Content, % 58.96 58.96 0.00 0.00 Void Ratio 1.47 1.47 ---------Degree of Saturation, % -----_ _ _ 106.02 0.00 Dry Unit Weight, pcf 66.875 67.028 -----Initial Height: 5.748 in Moisture: 58.96 % Area: 6.3481 in^2 Void Ratio: 1.47 Dry Unit Weight: 66.875 pcf Saturation: 106.02 % Volume: 597.95 cc End of Initialization Time: 11.072 min Total Vertical Stress: 115.01 psi Height Change: 0.0043686 in Height: 5.7436 in Area Change: 0 in² Area: 6.3481 in² Moisture: 55.40 % Total Horizontal Stress: 114.98 psi Void Ratio: 1.47 Pore Pressure: -0.0080967 psi Volume Change: 1.3633 cc Volume: 596.58 cc Dry Unit Weight: 67.028 pcf Effective Vertical Stress: 115.02 psi Water Change: -0.29979 cc Saturation: 100.00 % Effective Horizontal Stress: 114.99 psi Correction: 23.11 cc End of Consolidation/A Time: 11.072 min Total Vertical Stress: 115.01 psi Height Change: 0.0043686 in Height: 5.7436 in Moisture: 55.40 % Total Horizontal Stress: 114.98 psi Pore Pressure: -0.0080967 psi Effective Vertical Stress: 115.02 psi Area Change: 0 in^2 Volume Change: 1.3633 cc Void Ratio: 1.47 Dry Unit Weight: 67.028 pcf Area: 6.3481 in^2 Volume: 596.58 cc Water Change: -0.29979 cc Correction: 23.11 cc Saturation: 100.00 % Effective Horizontal Stress: 114.99 psi End of Saturation Time: 11.072 min Total Vertical Stress: 115.01 psi Total Horizontal Stress: 114.98 psi Pore Pressure: -0.0080967 psi Height Change: 0.0043686 in Height: 5.7436 in Area Change: 0.0043686 in Height: 5.7436 in Area Change: 0 in² Area: 6.3481 in² Volume Change: 1.3633 cc Volume: 596.58 cc Water Change: -0.29979 cc Correction: 23.11 cc Moisture: 55.40 % Void Ratio: 1.47 Dry Unit Weight: 67.028 pcf Effective Vertical Stress: 115.02 psi Saturation: 100.00 % Effective Horizontal Stress: 114.99 psi End of Consolidation/B Time: 11.072 min Total Vertical Stress: 115.01 psi Height Change: 0.0043686 in Height: 5.7436 in Moisture: 55.40 % Total Horizontal Stress: 114.98 psi Pore Pressure: -0.0080967 psi Effective Vertical Stress: 115.02 psi Effective Horizontal Stress: 114.99 psi Area Change: 0 in^2 Area: 6.3481 in^2 Void Ratio: 1.47 Volume Change: 0 11 2 Volume Change: 1.3633 cc Water Change: -0.29979 cc Correction: 23.11 cc Dry Unit Weight: 67.028 pcf Saturation: 100.00 % Volume: 596.58 cc End of Shear Time: 31.277 min Total Vertical Stress: 124.15 psi Total Horizontal Stress: 115.08 psi Pore Pressure: -0.29148 psi Effective Vertical Stress: 124.44 psi Height: 4.5946 in Height Change: 1.1534 in Moisture: 0.00 % Area Change: -1.5754 in^2 Area: 7.9235 in^2 Void Ratio: 1.47 Volume Change: 1.3633 cc Water Change: -0.29979 cc Dry Unit Weight: 67.028 pcf Volume: 596.58 cc Saturation: 0.00 % Effective Horizontal Stress: 115.37 psi Correction: 377.98 cc At Failure Time: 13.499 min Total Vertical Stress: 129.31 psi Height Change: 0.14244 in Height: 5.6056 in Moisture: 55.40 % Void Ratio: 1.47 Dry Unit Weight: 67.028 pcf Total Horizontal Stress: 115.12 psi Area Change: -0.16458 in^2 Area: 6.5127 in^2 Volume Change: 1.3633 cc Water Change: -0.29979 cc Correction: 0 cc Pore Pressure: -0.064774 psi Volume: 596.58 cc Effective Vertical Stress: 129.37 psi Effective Horizontal Stress: 115.18 psi Saturation: 100.00 %

TRIAX

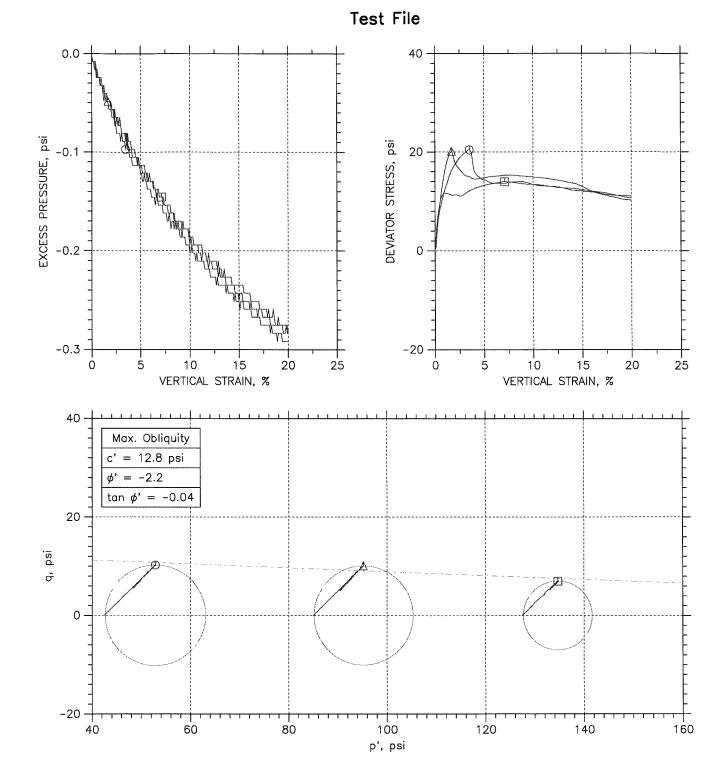
					Project Number			
North Dakota				Materials	& Research	IM-8-094(092)346		
SFN 50459 (10-			ransportation	i, materiale	ancocaron	Boring Number		
Ϋ́Υ,				•				
Field Sample N	umber		·····	Lab Numbe	Depth			
•	5-508	17			25-17	4/41.3 +0 4	14.8	
Weight of Samp			st Weight	Confining I		Test Number of	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
997.7			Striveight		38.3			
Diameter				Height		Moisture Can Number	After Moisture Can Number	
	2.86	6	2.856		5.7 35	523	٠ <i>٤</i>	
free free		,				Wet Wt + Can	Wet Wt + Can	
	2.86	6	2.843		5.736	84.26		
\sum						Dry Wt + Can	Dry Wt + Can	
	2.85	SI	2.836		5.736	57.68		
	Average			Average		Wt of Can	Wt of Can	
		2.2	354		5.736	17.05		
Total Length: 2	5 3/4 "	BRN	Cly, Slich	Lew Side	e d		8	
							and	
	ø		- Provensional American Ameri American American	• • • • • •				
44.0	44.3		ł	6	148 45.0	45.3 45,4	45.9 46.0	
Field Sample N	lumber			Lab Numb	er	Depth		
55-5	508-17	1		44-2	6-17	44.8 +0 49		
Weight of Sample After Test Weight				Confining I		Test Number 2 of)	
1008.13			7	6.7	d o	Κ		
Diameter		Height		Moisture Can Number	After Moisture Can Number			
2.846 2.862				5.745	532			
						Wet Wt + Can	Wet Wt + Can	
	100	18	0000	1	r ~ 110	1 mere on O	1	

65.08 2.838 2.859 5.747 Dry Wt + Can Dry Wt + Can 5.745 2.842 47.38 2.838 Average Wt of Can Wt of Can Average 2.848 5.746 16.76


Stal Length:

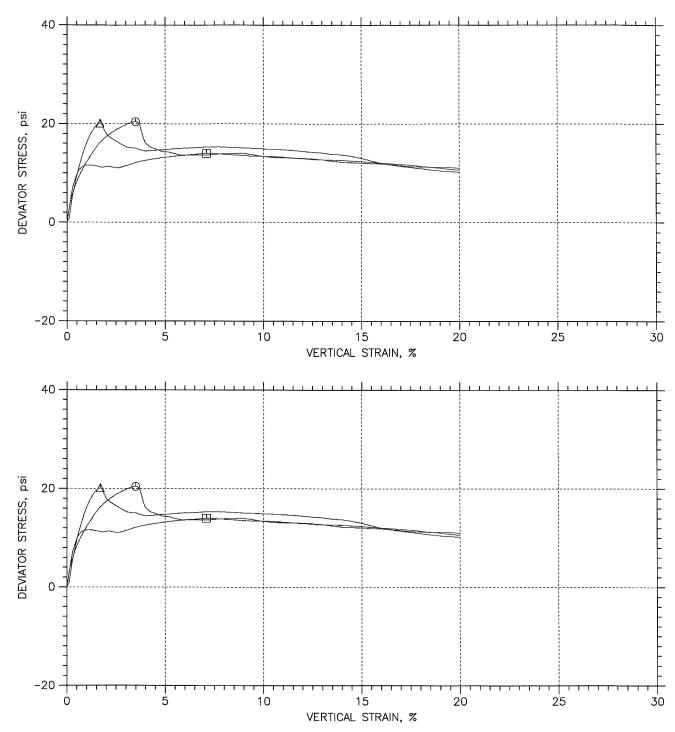
1	1	
	1	

Field Sample N	umber		Lab Numbe	er	Depth		
55-508-17			uu - 27 - 17		44.5+045.9		
Weight of Sample After Test Weight				Test Number 🛛 🚕	of 🍃		
1018.	22		115.1	0	5	C	
Diameter			Height		Moisture Can Number	Aft	er Moisture Can Number
	2.850	2.851		5.748	533		
					Wet Wt + Can	We	et Wt + Can
E D	2.836	2.850		5,746	68.41		1
					Dry Wt + Can	Dry	y Wt + Can
	2.826	2.845		5.749	49.43		
	Average		Average		Wt of Can	Wt	of Can
	2.8	843		5.748	17.24		


Total Length:

55-510-17

* Saturation is set to 100% for phase calculations.


55-510-17

	Sample No.	Tes	t No.	Depth	Tested By	Test Date	Checked By	Check Da	te Test File
Ο	SS-510-17	UU	-28-17	51.0	DT	10/12/201	7 MD		UU-28-2017.dat
Δ	SS-510-17	UU	-29-17	51.0	DT	10/12/201	7 MD		UU-29-2017.dat
	SS-510-17	υu	-30-17	51.0	DT	10/12/201	7 MD		UU-30-2017.dat
			T			,			
Noth Dakota Department of Transportation			Project: IM-8-094(092)346			Location:			oject No.:
		5	Boring	No.: 1		Sample Type:			
		ion	Descrip	tion: T.L. 25	5 1/2" Brn Cl	y with silt dep	osits,SLICKEN	SIDED	
			Remarks: 49.3-49.8						

55-510-17

Test File

	Sample No.	Tes	t No.	Depth	Tested By	Test Date	Checked By	Check Do	ate Test File
Ο	SS-510-17	UU-	-28-17	51.0	DT	10/12/201	MD		UU-28-2017.dat
Δ	SS-510-17	UU-	-29-17	51.0	DT	10/12/201	7 MD		UU-29-2017.dat
	SS-510-17	UU-	-30-17	51.0	DT	10/12/201	7 MD		UU-30-2017.dat
							[
_		-	Project: IM-8-094(092)346		1(092)346	Location:			roject No.:
No		22. 7	Boring	No.: 1		Sample Type:			
Department of Transportation		ion	Description: T.L. 25 1/2" Brn Cly with silt deposits,SLICKEN SIDED						
			Remark	s: 49.3-49	9.8				

	TRIAXIAL TEST			
Project: IM-8-094(092)346 Boring No.: 1 Sample No.: SS-510-17 Test No.: UU-28-17	Location: Tested By: DT Test Date: 10/12/2017 Sample Type:	C	Project No.: hecked By: MD Depth: 51.0 Nevation:	
Soil Description: T.L. 25 1/2" Brn Cly wir Remarks: 49.3-49.8	th silt deposits,SLICKEN SIDE	D		
Specimen Height: 5.75 in Specimen Area: 6.40 in^2 Specimen Volume: 603.00 cc	Piston Area: 0.21 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb	Ν	Pilter Strip Correction: Membrane Correction: 4.24 Correction Type: Uniform	0 lb/in
Liquid Limit:	Plastic Limit:	E	Stimated Specific Gravi	ty: 2.65
	Before Test Trimmings	Before Test Specimen	After Test Specimen	After Test Trimmings
Container ID	S 8			
<pre>Wt. Container + Wet Soil, gm Wt. Container + Dry Soil, gm Wt. Container, gm Wt. Wet Soil, gm Wt. Dry Soil, gm Wt. Water, gm Water Content, % Void Ratio Degree of Saturation, % Dry Unit Weight, pcf</pre>	54.4 41.22 16.89 37.51 24.33 13.18 54.17 	 1028.5 667.12 361.39 54.17 1.40 102.88 69.066	 667.12 667.12 0 0.00 1.39 0.00 69.34	
Initial		Height: 5.748 : Area: 6.4018 in Volume: 603 cc	n^2 Void Ratio Dry Unit W	
End of Initialization Time: 11.081 min Total Vertical Stress: 42.465 psi Total Horizontal Stress: 42.484 psi Pore Pressure: 0 psi Effective Vertical Stress: 42.465 psi Effective Horizontal Stress: 42.484 psi	Height Change: 0.0075753 in Area Change: 0 in^2 Volume Change: 2.3841 cc Water Change: -0.30515 cc Correction: 12.819 cc	Height: 5.7404 Area: 6.4018 in Volume: 600.62	n^2 Void Ratio cc Dry Unit W	
End of Consolidation/A Time: 11.081 min Total Vertical Stress: 42.465 psi Total Horizontal Stress: 42.484 psi Pore Pressure: 0 psi Effective Vertical Stress: 42.465 psi Effective Horizontal Stress: 42.484 psi	Height Change: 0.0075753 in Area Change: 0 in^2 Volume Change: 2.3841 cc Water Change: -0.30515 cc Correction: 12.819 cc	Height: 5.7404 Area: 6.4018 i Volume: 600.62	h^2 Void Ratio cc Dry Unit W	
End of Saturation Time: 11.081 min Total Vertical Stress: 42.465 psi Total Horizontal Stress: 42.484 psi Pore Pressure: 0 psi Effective Vertical Stress: 42.465 psi Effective Horizontal Stress: 42.484 psi	Height Change: 0.0075753 in Area Change: 0 in^2 Volume Change: 2.3841 cc Water Change: -0.30515 cc Correction: 12.819 cc	Height: 5.7404 Area: 6.4018 i Volume: 600.62	n^2 Void Ratic cc Dry Unit W	
End of Consolidation/B Time: 11.081 min Total Vertical Stress: 42.465 psi Total Horizontal Stress: 42.484 psi Pore Pressure: 0 psi Effective Vertical Stress: 42.465 psi Effective Horizontal Stress: 42.484 psi	Height Change: 0.0075753 in Area Change: 0 in^2 Volume Change: 2.3841 cc Water Change: -0.30515 cc Correction: 12.819 cc	Height: 5.7404 Area: 6.4018 i Volume: 600.62	n^2 Void Ratic cc Dry Unit W	
End of Shear Time: 31.251 min Total Vertical Stress: 53.599 psi Total Horizontal Stress: 42.557 psi Pore Pressure: -0.29148 psi Effective Vertical Stress: 53.89 psi Effective Horizontal Stress: 42.848 psi	Height Change: 1.1563 in Area Change: -1.5804 in^2 Volume Change: 2.3841 cc Water Change: -0.30515 cc Correction: 361.7 cc	Height: 4.5917 Area: 7.9822 i Volume: 600.62	n^2 Void Ratio	o: 1.39 Weight: 69.34 pcf
At Failure Time: 14.614 min Total Vertical Stress: 63.006 psi Total Horizontal Stress: 42.597 psi Pore Pressure: -0.097161 psi Effective Vertical Stress: 63.103 psi Effective Horizontal Stress: 42.694 psi	Height Change: 0.20862 in Area Change: -0.24447 in^2 Volume Change: 2.3841 cc Water Change: -0.30515 cc Correction: 0 cc	Height: 5.5394 Area: 6.6463 i Volume: 600.62	n^2 Void Ratio	

	TRIAXIAL TEST			
Project: IM-8-094(092)346 Boring No.: 1 Sample No.: SS-510-17 Test No.: UU-29-17	Location: Tested By: DT Test Date: 10/12/2017 Sample Type:	Project Checked Depth: Elevati	l By: MD 51.0	
Soil Description: T.L. 25 1/2" Brn Cly w. Remarks: 49.8-50.3	ith silt deposits,SLICKEN SI	DED		
Specimen Height: 5.75 in Specimen Area: 6.36 in^2 Specimen Volume: 599.21 cc	Piston Area: 0.21 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb	Membran	Strip Correction: 0.00 Ne Correction: 4.20 lb/ Sion Type: Uniform	
Liquid Limit:	Plastic Limit:	Estimat	ed Specific Gravity: 2	2.65
	Before Test Trimmings	Before Test Specimen	After Test Specimen	After Test Trimmings
Container ID	S 48			
<pre>Wt. Container + Wet Soil, gm Wt. Container + Dry Soil, gm Wt. Container, gm Wt. Wet Soil, gm Wt. Dry Soil, gm Wt. Water, gm Water Content, % Void Ratio Degree of Saturation, % Dry Unit Weight, pcf</pre>	66.59 47.17 17.01 49.58 30.16 19.42 64.39	1009.4 614 395.36 64.39 1.59 107.58 63.969	 614 614 1.1642e-013 0.00 1.59 0.00 63.924	
Initial		Height: 5.748 in Area: 6.3615 in^2 Volume: 599.21 cc	Moisture: 64.37 Void Ratio: 1.3 Dry Unit Weigh Saturation: 10	59 t: 63.969 pcf
End of Initialization Time: 11.152 min Total Vertical Stress: 84.998 psi Total Horizontal Stress: 85.033 psi Pore Pressure: 0 psi Effective Vertical Stress: 84.998 psi Effective Horizontal Stress: 85.033 psi	Height Change: -0.0013478 Area Change: 0 in^2 Volume Change: -0.4215 cc Water Change: -0.32393 cc Correction: 27.75 cc	Area: 6.3615 in^2	Moisture: 59.9 Void Ratio: 1. Dry Unit Weigh Saturation: 10	59 t: 63.924 pcf
End of Consolidation/A Time: 11.152 min Total Vertical Stress: 84.998 psi Total Horizontal Stress: 85.033 psi Pore Pressure: 0 psi Effective Vertical Stress: 84.998 psi Effective Horizontal Stress: 85.033 psi	Height Change: -0.0013478 Area Change: 0 in^2 Volume Change: -0.4215 cc Water Change: -0.32393 cc Correction: 27.75 cc	Area: 6.3615 in^2	Moisture: 59.9 Void Ratio: 1. Dry Unit Weigh Saturation: 10	59 t: 63.924 pcf
End of Saturation Time: 11.152 min Total Vertical Stress: 84.998 psi Total Horizontal Stress: 85.033 psi Pore Pressure: 0 psi Effective Vertical Stress: 84.998 psi Effective Horizontal Stress: 85.033 psi	Height Change: -0.0013478 Area Change: 0 in^2 Volume Change: -0.4215 cc Water Change: -0.32393 cc Correction: 27.75 cc	Area: 6.3615 in^2 Volume: 599.63 cc	Moisture: 59.9 Void Ratio: 1. Dry Unit Weigh Saturation: 10	59 t: 63.924 pcf
End of Consolidation/B Time: 11.152 min Total Vertical Stress: 84.998 psi Total Horizontal Stress: 85.033 psi Pore Pressure: 0 psi Effective Vertical Stress: 84.998 psi Effective Horizontal Stress: 85.033 psi	Height Change: -0.0013478 Area Change: 0 in^2 Volume Change: -0.4215 cc Water Change: -0.32393 cc Correction: 27.75 cc	Area: 6.3615 in^2 Volume: 599.63 cc	Moisture: 59.9 Void Ratio: 1. Dry Unit Weigh Saturation: 10	59 t: 63.924 pcf
End of Shear Time: 31.357 min Total Vertical Stress: 95.221 psi Total Horizontal Stress: 85.065 psi Pore Pressure: -0.28339 psi Effective Vertical Stress: 95.504 psi Effective Horizontal Stress: 85.348 psi	Height Change: 1.1488 in Area Change: -1.5946 in^2 Volume Change: -0.4215 cc Water Change: -0.32393 cc Correction: 395.68 cc	Volume: 599.63 cc	Moisture: 0.00 Void Ratio: 1. Dry Unit Weigh Saturation: 0.	59 t: 63.924 pcf
At Failure Time: 12.899 min Total Vertical Stress: 105.24 psi Total Horizontal Stress: 85.13 psi Pore Pressure: -0.04858 psi Effective Vertical Stress: 105.29 psi Effective Horizontal Stress: 85.178 psi	Height Change: 0.096481 in Area Change: -0.1121 in^2 Volume Change: -0.4215 cc Water Change: -0.32393 cc Correction: 0 cc	Area: 6.4736 in^2 Volume: 599.63 cc	Moisture: 59.9 Void Ratio: 1. Dry Unit Weigh Saturation: 10	59 ht: 63.924 pcf

55-510-17

	TRIAXIAL TEST			
Project: IM-8-094(092)346 Boring No.: 1 Sample No.: SS-510-17 Test No.: UU-30-17	Location: Tested By: DT Test Date: 10/12/2017 Sample Type:	Project Checked Depth: Elevati	By: MD 51.0	
Soil Description: T.L. 25 1/2" Brn Cly w. Remarks: 50.3-50.8	ith silt deposits,SLICKEN SIE	DED		
Specimen Height: 5.75 in Specimen Area: 6.31 in^2 Specimen Volume: 594.37 cc	Piston Area: 0.21 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb	Membran	Strip Correction: 0. e Correction: 4.20 ll ion Type: Uniform	
Liquid Limit:	Plastic Limit:	Estimat	ed Specific Gravity:	2.65
	Before Test Trimmings	Before Test Specimen	After Test Specimen	After Test Trimmings
Container ID	S 68			
<pre>Wt. Container + Wet Soil, gm Wt. Container + Dry Soil, gm Wt. Container, gm Wt. Wet Soil, gm Wt. Dry Soil, gm Wt. Water, gm Water Content, % Void Ratio Degree of Saturation, % Dry Unit Weight, pcf</pre>	76.39 51.59 15.46 60.93 36.13 24.8 68.64	982.52 582.61 399.91 68.64 1.70 106.78 61.193	582.61 582.61 0 0.00 1.70 0.00 61.341	
Initial		Height: 5.75 in Area: 6.308 in^2 Volume: 594.37 cc	Moisture: 68. Void Ratio: 1 Dry Unit Weig Saturation: 1	.70 ht: 61.193 pcf
End of Initialization Time: 11.112 min Total Vertical Stress: 127.47 psi Total Horizontal Stress: 127.47 psi Pore Pressure: 0 psi Effective Vertical Stress: 127.47 psi Effective Horizontal Stress: 127.47 psi	Height Change: 0.0046474 ir Area Change: 0 in^2 Volume Change: 1.4412 cc Water Change: -0.30891 cc Correction: 27.14 cc	h Height: 5.7454 in Area: 6.308 in^2 Volume: 592.93 cc	Moisture: 64. Void Ratio: 1 Dry Unit Weig Saturation: 1	.70 ht: 61.341 pcf
End of Consolidation/A Time: 11.112 min Total Vertical Stress: 127.47 psi Total Horizontal Stress: 127.47 psi Pore Pressure: 0 psi Effective Vertical Stress: 127.47 psi Effective Horizontal Stress: 127.47 psi	Height Change: 0.0046474 ir Area Change: 0 in^2 Volume Change: 1.4412 cc Water Change: -0.30891 cc Correction: 27.14 cc	h Height: 5.7454 in Area: 6.308 in^2 Volume: 592.93 cc	Moisture: 64. Void Ratio: 1 Dry Unit Weig Saturation: 1	.70 ht: 61.341 pcf
End of Saturation Time: 11.112 min Total Vertical Stress: 127.47 psi Total Horizontal Stress: 127.47 psi Pore Pressure: 0 psi Effective Vertical Stress: 127.47 psi Effective Horizontal Stress: 127.47 psi	Height Change: 0.0046474 ir Area Change: 0 in^2 Volume Change: 1.4412 cc Water Change: -0.30891 cc Correction: 27.14 cc	h Height: 5.7454 in Area: 6.308 in^2 Volume: 592.93 cc	Moisture: 64. Void Ratio: 1 Dry Unit Weig Saturation: 1	.70 ht: 61.341 pcf
End of Consolidation/B Time: 11.112 min Total Vertical Stress: 127.47 psi Total Horizontal Stress: 127.47 psi Pore Pressure: 0 psi Effective Vertical Stress: 127.47 psi Effective Horizontal Stress: 127.47 psi	Height Change: 0.0046474 ir Area Change: 0 in^2 Volume Change: 1.4412 cc Water Change: -0.30891 cc Correction: 27.14 cc	h Height: 5.7454 in Area: 6.308 in^2 Volume: 592.93 cc	Moisture: 64. Void Ratio: 1 Dry Unit Weig Saturation: 1	.70 ht: 61.341 pcf
End of Shear Time: 31.304 min Total Vertical Stress: 138.19 psi Total Horizontal Stress: 127.54 psi Pore Pressure: -0.28339 psi Effective Vertical Stress: 138.47 psi Effective Horizontal Stress: 127.82 psi	Height Change: 1.1537 in Area Change: -1.5642 in^2 Volume Change: 1.4412 cc Water Change: -0.30891 cc Correction: 400.22 cc	Height: 4.5963 in Area: 7.8722 in^2 Volume: 592.93 cc	Moisture: 0.0 Void Ratio: 1 Dry Unit Weig Saturation: 0	70 ht: 61.341 pcf
At Failure Time: 18.282 min Total Vertical Stress: 141.54 psi Total Horizontal Stress: 127.56 psi Pore Pressure: -0.14574 psi Effective Vertical Stress: 141.68 psi Effective Horizontal Stress: 127.7 psi	Height Change: 0.4126 in Area Change: -0.49116 in^2 Volume Change: 1.4412 cc Water Change: -0.30891 cc Correction: 0 cc	Height: 5.3374 in Area: 6.7991 in^2 Volume: 592.93 cc	Moisture: 64. Void Ratio: 1 Dry Unit Weig Saturation: 1	70 ht: 61.341 pcf

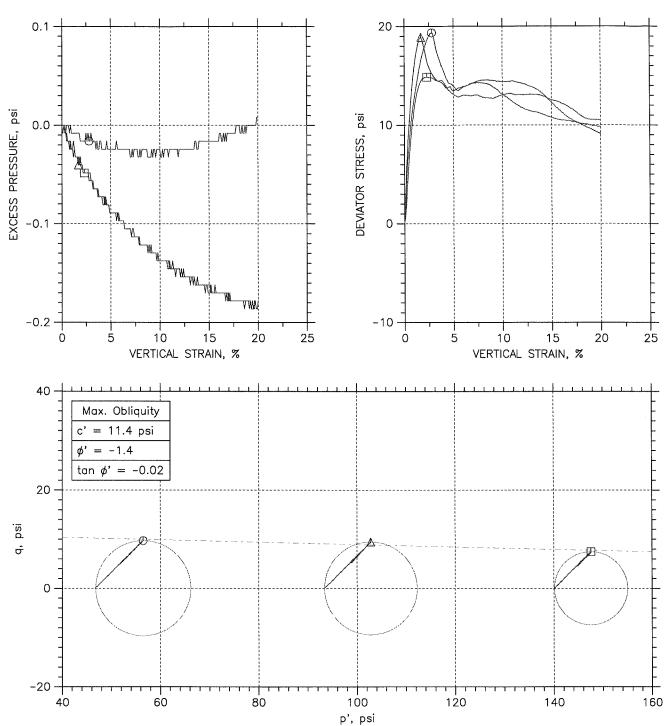
TRIA

TRIAXIAL U	JU(Q) CCL	J(R) CD(S)		Project Number			
		of Transportatio	n, Materials	& Research	IM-8-094(092)346		
SFN 50459 (10-	2016)				Boring Number		
					and an and the second		
Field Sample N	umber		Lab Numbe	er	Depth	~~~	
55-51	0-17		44-28	-17	49.3 -49.	X I	
Weight of Samp	ole After	Fest Weight	Confining I	Pressure	Test Number of	zų	
1028.5	7		4	2.5		5	
Diameter			Height		Moisture Can Number After Moisture Can Number		
	2.866	2.847		5.748	58		
				-	Wet Wt + Can	Wet Wt + Can	
	2.8 66	2.849		5.750	54.40		
					Dry Wt + Can	Dry Wt + Can	
	2.866	2.836		5.746	41.22		
	Average	•	Average		Wt of Can	Wt of Can	
Concernance	2.	855		5.748	16.89		
Total Length: 2	54" BRI	J Cly with	silt D	eposits			
		4 1		к I 5		<i>.</i>	
e-Slutt	<u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u>	Sample.	and the second s	SAmple	SAmple		
	102	1	49		<i>c.</i> 2	50.8	
49.0	49.3			÷	50.3	51.0	
Field Sample N			Lab Numb		Depth UC & La Ca	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
55-51			<u>uu-2</u>		49.8 to 50	, 5	
Weight of Samp		Test Weight	Confining I		Test Number of	2	
1009.3	36	-		85.0	Å	<u>)</u>	
Diameter			Height		Moisture Can Number	After Moisture Can Number	
	2.843	2.856		5.748	548		
- Harden and the second					Wet Wt + Can	Wet Wt + Can	
	2.840	2.852		5.748	66.59		
				Dry Wt + Can	Dry Wt + Can		
2.839 2.848				5.747	47.17		
	Average	0.17	Average	- m110	Wt of Can	Wt of Can	
	2.	846		5.748	17.01		

Total Length:

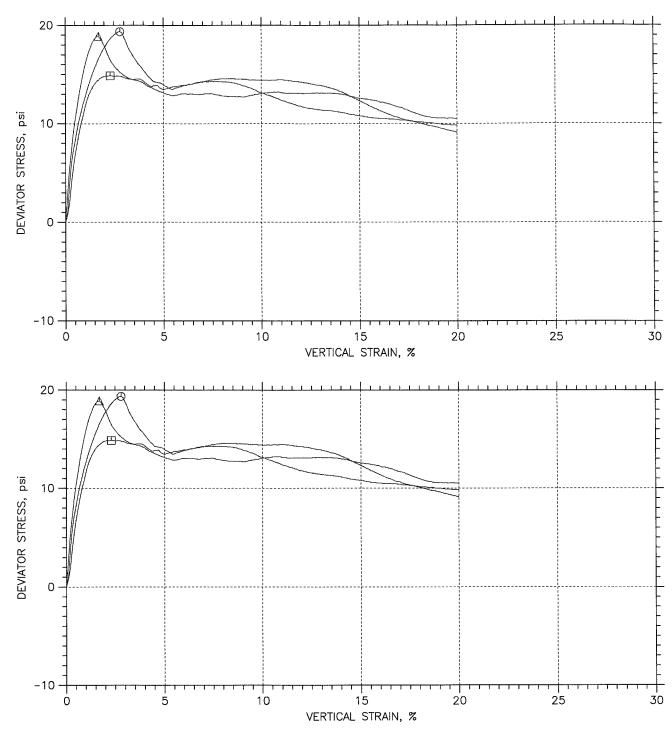
Field Sample Number			Lab Numbe	ab Number UU-30-17 Depth 50.3 +• 50.8				
Weight of Sample After Test Weight		Confining F	Confining Pressure Test Number of		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
982.52	<u> </u>	1		27.5		After Moisture Can Number		
Diameter			Height		Moisture Can Number	After Moisture Can Number		
	2.850	<u>8,833</u>		5.749	568			
Γ	maza	8.8 32		~ ~10	Wet Wt + Can	Wet Wt + Can		
	<u>a.839</u>	<u> </u>	-	5.749	76.39			
	2,830	3,822		5.7 52	Dry Wt + Can 51, 59	Dry Wt + Can		
	Average	834	Average	5.750	Wt of Can 15.46	Wt of Can		
Tatallanatta	Gr.		1	J.1.JU	1	1		

Total Length:


55-512-17

 $[\]ast$ Saturation is set to 100% for phase calculations.

55-512-17



	Sample No.	Tes	t No.	Depth	Tested By	Test Date	Checked By	Check Date	e Test File	
O	SS-512-17	UU-31-17		56.0	DT	10/16/201	MD		UU-31-2017.dat	
Δ	SS-512-17	UU-32-17		56.0	DT	10/16/201	MD		UU-32-2017.dat	
	SS-512-17	UU	-33-17	56.0	DT	10/16/201	7 MD		UU-33-2017.dat	
NDDD95 North Dakota Department of Transportation			Project: IM-8-094(092)346			Location:			Project No.:	
			Boring No.: 1			Sample Type:				
			Description: T.L. 27 1/2" Brn Cly,SLICKEN SIDED							
			Remarks: 54.3-54.8							

55-512-17

Test File

	Sample No.	Tes	st No.	Depth	Tested By	Test Date	Checked By	Check Da	te Test File	
Φ	SS-512-17	UU-31-17		56.0	DT	10/16/201	7 MD		UU-31-2017.dat	
Δ	SS-512-17	UU-32-17		56.0	DT	10/16/201	7 MD		UU-32-2017.dat	
	SS-512-17	UU	-33-17	56.0	DT	10/16/201	MD		UU-33-2017.dat	
			Т							
NDDD95 North Dakofa Department of Transportation			Project: IM-8-094(092)346			Location:			Project No.:	
			Boring No.: 1			Sample Type:				
			Descrip	Description: T.L. 27 1/2" Brn Cly,SLICKEN SIDED						
			Remarks: 54.3-54.8							

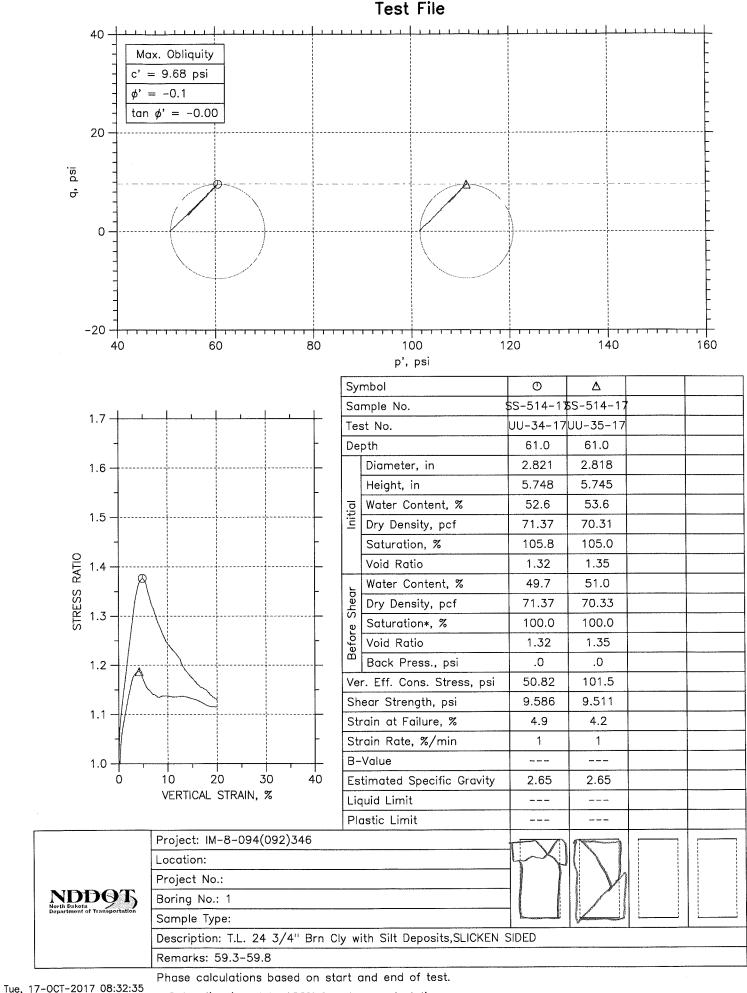
	TRIAXIAL TEST					
Project: IM-8-094(092)346 Boring No.: 1 Sample No.: SS-512-17 Test No.: UU-31-17	Location: Tested By: DT Test Date: 10/16/2017 Sample Type:	Project Checked Depth: Elevati	By: MD 56.0			
Soil Description: T.L. 27 1/2" Brn Cly,SL Remarks: 54.3-54.8	ICKEN SIDED					
Specimen Height: 5.75 in Specimen Area: 6.37 in^2 Specimen Volume: 600.89 cc	Piston Area: 0.21 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb	Filter Strip Correction: 0.00 psi Membrane Correction: 4.20 lb/in Correction Type: Uniform				
Liquid Limit:	Plastic Limit:	Estimated Specific Gravity: 2.65				
	Before Test Trimmings	Before Test Specimen	After Test After Specimen Trimm			
Container ID	S 15					
<pre>Wt. Container + Wet Soil, gm Wt. Container + Dry Soil, gm Wt. Container, gm Wt. Wet Soil, gm Wt. Dry Soil, gm Wt. Water, gm Water Content, % Void Ratio Degree of Saturation, % Dry Unit Weight, pcf</pre>	74.63 53.03 17.09 57.54 35.94 21.6 60.10	1002.2 626.01 376.23 60.10 1.54 103.17 65.038	$\begin{array}{c} \\ \\ 626.01 \\ 626.01 \\ 0 \\ 0 \\ 0.00 \\ 1.54 \\ 0.00 \\ 65.166 \end{array}$	0 0 0 0 0 0 0 0 0		
Initial		Height: 5.752 in Area: 6.3749 in^2 Volume: 600.89 cc	Moisture: 60.10 % Void Ratio: 1.54 Dry Unit Weight: 65.038 Saturation: 103.17 %	pcf		
End of Initialization Time: 11.138 min Total Vertical Stress: 46.646 psi Total Horizontal Stress: 46.677 psi Pore Pressure: 0 psi Effective Vertical Stress: 46.646 psi Effective Horizontal Stress: 46.677 psi	Height Change: 0.0037644 in Area Change: 0 in^2 Volume Change: 1.1798 cc Water Change: -0.1743 cc Correction: 12.926 cc	Height: 5.7482 in Area: 6.3749 in^2 Volume: 599.71 cc	Moisture: 58.06 % Void Ratio: 1.54 Dry Unit Weight: 65.166 Saturation: 100.00 %	pcf		
End of Consolidation/A Time: 11.138 min Total Vertical Stress: 46.646 psi Total Horizontal Stress: 46.677 psi Pore Pressure: 0 psi Effective Vertical Stress: 46.646 psi Effective Horizontal Stress: 46.677 psi	Height Change: 0.0037644 in Area Change: 0 in^2 Volume Change: 1.1798 cc Water Change: -0.1743 cc Correction: 12.926 cc	Height: 5.7482 in Area: 6.3749 in^2 Volume: 599.71 cc	Moisture: 58.06 % Void Ratio: 1.54 Dry Unit Weight: 65.166 Saturation: 100.00 %	pcf		
End of Saturation Time: 11.138 min Total Vertical Stress: 46.646 psi Total Horizontal Stress: 46.677 psi Pore Pressure: 0 psi Effective Vertical Stress: 46.646 psi Effective Horizontal Stress: 46.677 psi	Height Change: 0.0037644 in Area Change: 0 in^2 Volume Change: 1.1798 cc Water Change: -0.1743 cc Correction: 12.926 cc	Height: 5.7482 in Area: 6.3749 in^2 Volume: 599.71 cc	Moisture: 58.06 % Void Ratio: 1.54 Dry Unit Weight: 65.166 Saturation: 100.00 %	pcf		
End of Consolidation/B Time: 11.138 min Total Vertical Stress: 46.646 psi Total Horizontal Stress: 46.677 psi Pore Pressure: 0 psi Effective Vertical Stress: 46.646 psi Effective Horizontal Stress: 46.677 psi	Height Change: 0.0037644 in Area Change: 0 in^2 Volume Change: 1.1798 cc Water Change: -0.1743 cc Correction: 12.926 cc	Height: 5.7482 in Area: 6.3749 in^2 Volume: 599.71 cc	Moisture: 58.06 % Void Ratio: 1.54 Dry Unit Weight: 65.166 Saturation: 100.00 %	pcf		
End of Shear Time: 31.362 min Total Vertical Stress: 56.606 psi Total Horizontal Stress: 46.741 psi Pore Pressure: 0.0080967 psi Effective Vertical Stress: 56.598 psi Effective Horizontal Stress: 46.733 psi	Height Change: 1.1536 in Area Change: -1.5836 in^2 Volume Change: 1.1798 cc Water Change: -0.1743 cc Correction: 376.41 cc	Height: 4.5984 in Area: 7.9585 in^2 Volume: 599.71 cc	Moisture: 0.00 % Void Ratio: 1.54 Dry Unit Weight: 65.166 Saturation: 0.00 %	5 pcf		
At Failure Time: 13.973 min Total Vertical Stress: 66.171 psi Total Horizontal Stress: 46.822 psi Pore Pressure: -0.016193 psi Effective Vertical Stress: 66.187 psi Effective Horizontal Stress: 46.838 psi	Height Change: 0.16498 in Area Change: -0.19015 in^2 Volume Change: 1.1798 cc Water Change: -0.1743 cc Correction: 0 cc	Height: 5.587 in Area: 6.5651 in^2 Volume: 599.71 cc	Moisture: 58.06 % Void Ratio: 1.54 Dry Unit Weight: 65.166 Saturation: 100.00 %) pcf		

	TRIAXIAL TEST			
Project: IM-8-094(092)346 Boring No.: 1 Sample No.: SS-512-17 Test No.: UU-32-17	Location: Tested By: DT Test Date: 10/16/2017 Sample Type:	Che Dej	oject No.: ecked By: MD oth: 56.0 evation:	
Soil Description: T.L. 27 1/2" Brn Cly,SL. Remarks: 54.8-55.3	ICKEN SIDED			
Specimen Height: 5.75 in Specimen Area: 6.36 in^2 Specimen Volume: 599.41 cc	Piston Area: 0.21 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb	Mer	lter Strip Correction: 0.00 mbrane Correction: 4.20 lb/ rrection Type: Uniform	
Liquid Limit:	Plastic Limit:	Es	timated Specific Gravity: 2	2.65
	Before Test Trimmings	Before Test Specimen	After Test Specimen	After Test Trimmings
Container ID	S 58			
<pre>Wt. Container + Wet Soil, gm Wt. Container + Dry Soil, gm Wt. Container, gm Wt. Wet Soil, gm Wt. Dry Soil, gm Wt. Water, gm Water Content, % Void Ratio Degree of Saturation, % Dry Unit Weight, pcf</pre>	85.98 60.59 16.93 69.05 43.66 25.39 58.15 	1007.6 637.11 370.51 58.15 1.49 103.21 66.355	$\begin{array}{c} \\ \\ 637.11 \\ 637.11 \\ -1.1642e-013 \\ -0.00 \\ 1.48 \\ -0.00 \\ 66.592 \end{array}$	
Initial		Height: 5.754 in Area: 6.357 in^2 Volume: 599.41 c	Void Ratio: 1.	49 t: 66.355 pcf
End of Initialization Time: 11.107 min Total Vertical Stress: 93.284 psi Total Horizontal Stress: 93.28 psi Pore Pressure: 0 psi Effective Vertical Stress: 93.284 psi Effective Horizontal Stress: 93.28 psi	Height Change: 0.0068317 in Area Change: 0 in^2 Volume Change: 2.135 cc Water Change: -0.27405 cc Correction: 13.924 cc	Height: 5.7472 i Area: 6.357 in^2 Volume: 597.28 c	Void Ratio: 1.	48 t: 66.592 pcf
End of Consolidation/A Time: 11.107 min Total Vertical Stress: 93.284 psi Total Horizontal Stress: 93.28 psi Pore Pressure: 0 psi Effective Vertical Stress: 93.284 psi Effective Horizontal Stress: 93.28 psi	Height Change: 0.0068317 in Area Change: 0 in^2 Volume Change: 2.135 cc Water Change: -0.27405 cc Correction: 13.924 cc	Height: 5.7472 i Area: 6.357 in^2 Volume: 597.28 c	Void Ratio: 1.	48 t: 66.592 pcf
End of Saturation Time: 11.107 min Total Vertical Stress: 93.284 psi Total Horizontal Stress: 93.28 psi Pore Pressure: 0 psi Effective Vertical Stress: 93.284 psi Effective Horizontal Stress: 93.28 psi	Height Change: 0.0068317 in Area Change: 0 in^2 Volume Change: 2.135 cc Water Change: -0.27405 cc Correction: 13.924 cc	Height: 5.7472 i Area: 6.357 in^2 Volume: 597.28 c	Void Ratio: 1.	48 t: 66.592 pcf
End of Consolidation/B Time: 11.107 min Total Vertical Stress: 93.284 psi Total Horizontal Stress: 93.28 psi Pore Pressure: 0 psi Effective Vertical Stress: 93.284 psi Effective Horizontal Stress: 93.28 psi	Height Change: 0.0068317 in Area Change: 0 in^2 Volume Change: 2.135 cc Water Change: -0.27405 cc Correction: 13.924 cc	Height: 5,7472 i Area: 6.357 in^2 Volume: 597.28 c	Void Ratio: 1.	48 t: 66.592 pcf
End of Shear Time: 31.291 min Total Vertical Stress: 103.91 psi Total Horizontal Stress: 93.385 psi Pore Pressure: -0.17813 psi Effective Vertical Stress: 104.09 psi Effective Horizontal Stress: 93.564 psi	Height Change: 1.1563 in Area Change: -1.5705 in^2 Volume Change: 2.135 cc Water Change: -0.27405 cc Correction: 370.78 cc	Height: 4.5977 i Area: 7.9275 in Volume: 597.28 c	Void Ratio: 1.	48 t: 66.592 pcf
At Failure Time: 12.846 min Total Vertical Stress: 112.23 psi Total Horizontal Stress: 93.345 psi Pore Pressure: -0.040484 psi Effective Vertical Stress: 112.27 psi Effective Horizontal Stress: 93.385 psi	Height Change: 0.10471 in Area Change: -0.12078 in^2 Volume Change: 2.135 cc Water Change: -0.27405 cc Correction: 0 cc	Height: 5.6493 3 Area: 6.4778 in Volume: 597.28 d	Void Ratio: 1.	48 at: 66.592 pcf

55-512-17

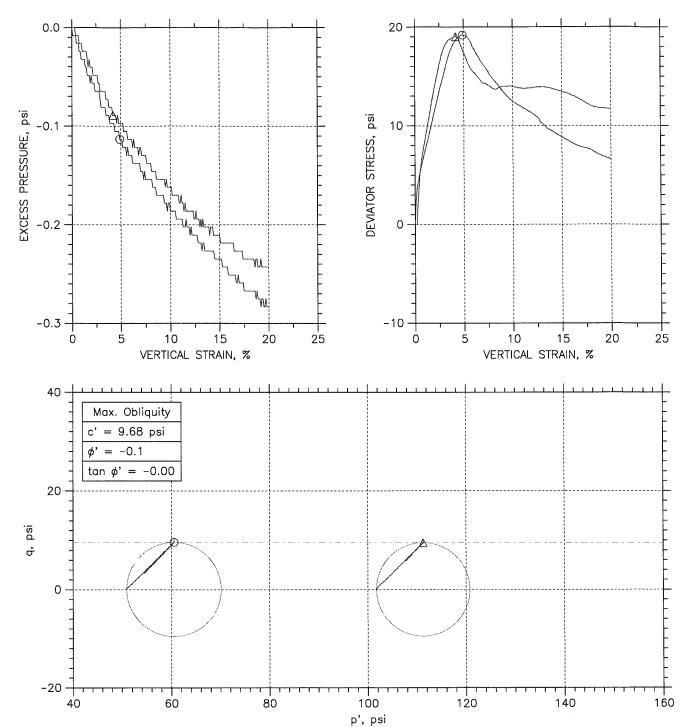
	TRIAXIAL TEST			
Project: IM-8-094(092)346 Boring No.: 1 Sample No.: SS-512-17 Test No.: UU-33-17	Location: Tested By: DT Test Date: 10/16/2017 Sample Type:	Project Checked Depth: Elevati	By: MD 56.0	
Soil Description: T.L. 27 1/2" Brn Cly,S: Remarks: 55.3-55.8	LICKEN SIDED			
Specimen Height: 5.75 in Specimen Area: 6.37 in^2 Specimen Volume: 600.47 cc	Piston Area: 0.21 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb	Membran	Strip Correction: 0. e Correction: 4.20 l ion Type: Uniform	
Liquid Limit:	Plastic Limit:	Estimat	ed Specific Gravity:	2.65
	Before Test Trimmings	Before Test Specimen	After Test Specimen	After Test Trimmings
Container ID	S 17			
<pre>Wt. Container + Wet Soil, gm Wt. Container + Dry Soil, gm Wt. Container, gm Wt. Wet Soil, gm Wt. Dry Soil, gm Wt. Dry Soil, gm Water Content, % Void Ratio Degree of Saturation, % Dry Unit Weight, pcf</pre>	82.38 58.91 17.04 65.34 41.87 23.47 56.05 	$\begin{array}{c}\\\\ 1013.5\\ 649.43\\ 364.04\\ 56.05\\ 1.45\\ 102.43\\ 67.519\end{array}$	$\begin{array}{c} \\ \\ 649.43 \\ 649.43 \\ 0 \\ 0.00 \\ 1.45 \\ 0.00 \\ 67.471 \end{array}$	
Initial		Height: 5.752 in Area: 6.3704 in^2 Volume: 600.47 cc	Moisture: 56. Void Ratio: 1 Dry Unit Weig Saturation: 1	45 ht: 67.519 pcf
End of Initialization Time: 11.116 min Total Vertical Stress: 139.97 psi Total Horizontal Stress: 139.97 psi Pore Pressure: -0.0080967 psi Effective Vertical Stress: 139.98 psi Effective Horizontal Stress: 139.98 psi	Height Change: -0.0013478 Area Change: 0 in^2 Volume Change: -0.42209 cc Water Change: -0.27405 cc Correction: 8.4897 cc	Area: 6.3704 in^2	Moisture: 54. Void Ratio: 1 Dry Unit Weig Saturation: 1	.45 ht: 67.471 pcf
End of Consolidation/A Time: 11.116 min Total Vertical Stress: 139.97 psi Total Horizontal Stress: 139.97 psi Pore Pressure: -0.0080967 psi Effective Vertical Stress: 139.98 psi Effective Horizontal Stress: 139.98 psi	Height Change: -0.0013478 Area Change: 0 in^2 Volume Change: -0.42209 cc Water Change: -0.27405 cc Correction: 8.4897 cc	Area: 6.3704 in^2	Moisture: 54. Void Ratio: 1 Dry Unit Weig Saturation: 1	1.45 Jht: 67.471 pcf
End of Saturation Time: 11.116 min Total Vertical Stress: 139.97 psi Total Horizontal Stress: 139.97 psi Pore Pressure: -0.0080967 psi Effective Vertical Stress: 139.98 psi Effective Horizontal Stress: 139.98 psi	Height Change: -0.0013478 Area Change: 0 in^2 Volume Change: -0.42209 cc Water Change: -0.27405 cc Correction: 8.4897 cc	Area: 6.3704 in^2	Moisture: 54. Void Ratio: 1 Dry Unit Weig Saturation: 1	l.45 ght: 67.471 pcf
End of Consolidation/B Time: 11.116 min Total Vertical Stress: 139.97 psi Total Horizontal Stress: 139.97 psi Pore Pressure: -0.0080967 psi Effective Vertical Stress: 139.98 psi Effective Horizontal Stress: 139.98 psi	Height Change: -0.0013478 Area Change: 0 in^2 Volume Change: -0.42209 cc Water Change: -0.27405 cc Correction: 8.4897 cc	Area: 6.3704 in^2	Moisture: 54 Void Ratio: 1 Dry Unit Weig Saturation: 1	l.45 ght: 67.471 pcf
End of Shear Time: 31.322 min Total Vertical Stress: 149.21 psi Total Horizontal Stress: 140.09 psi Pore Pressure: -0.18622 psi Effective Vertical Stress: 149.4 psi Effective Horizontal Stress: 140.28 psi	Height Change: 1.1495 in Area Change: -1.5966 in^2 Volume Change: -0.42209 cc Water Change: -0.27405 cc Correction: 364.31 cc	Height: 4.6025 in Area: 7.9671 in^2 Volume: 600.89 cc	Moisture: 0.(Void Ratio: 1 Dry Unit Weid Saturation: (1.45 ght: 67.471 pcf
At Failure Time: 13.47 min Total Vertical Stress: 154.94 psi Total Horizontal Stress: 140.09 psi Pore Pressure: -0.04858 psi Effective Vertical Stress: 154.99 psi Effective Horizontal Stress: 140.13 psi	Height Change: 0.1311 in Area Change: -0.15156 in^2 Volume Change: -0.42209 cc Water Change: -0.27405 cc Correction: 0 cc		Moisture: 54 Void Ratio: 1 Dry Unit Weid Saturation:	1.45 ght: 67.471 pcf

TRIAXIAL UU(Q) CCU(R) CD(S)


TRIAXIAL U	JU(Q) CCU(R) CD(S)			Project Number		
North Dakota		Transportation	n, Materials	s & Research	Im-8-094 (092)	346	
SFN 50459 (10-	-2016)				Boring Number	ę	
Field Sample N			Lab Numbe	er	Depth		
55-55	512-17		uu-3	31-17	54,3 + 54.8		
Weight of Samp	ole After Te	est Weight	Confining I	Pressure	Test Number of)	
1002.24			ι	-16.7)	
Diameter			Height		Moisture Can Number	After Moisture Can Number	
	2.8.59	2.854		5.7 54	5/5		
	a.			-	Wet Wt + Can	Wet Wt + Can	
$\leq \Lambda$	2.858	2.839		5.7 54	74.63		
					Drv Wt + Can	Dry Wt + Can	
	2.857	2.829		5.749	53.03		
	Average		Average		Wt of Can	Wt of Can	
and the second second	2.	849		5.752	17.09		
Total Length:	27%" RenC	1. Slicken	Sided				
1 10	· · · ·	1	•••••		1		
	≯	<u>Sample</u>	energy and the second	SAMPLE-	JAMP	C	
	54.3	6	5	54.8	53	55.8	
54.0					ي من من المن المن المن المن المن المن الم	56.0	
Field Sample N			Lab Numb	er	Depth		
	512-17		44-3		54.8+055		
Weight of Sam		est Weight	Confining I		Test Number of	New P	
1007.62	2	1		93.3	X)	
Diameter			Height		Moisture Can Number	After Moisture Can Number	
	2.862	2.841		5.756	558		
					Wet Wt + Can	Wet Wt + Can	
	2.858	2.836		5,754	85.98		
Y I					Dry Wt + Can	Dry Wt + Can	
	2.848	J.825		<u>5.75a</u>	60.59		
	Average	0.100	Average	Faired	Wt of Can	Wt of Can	
	Э.	845		5.754	16.93		

Total Length:

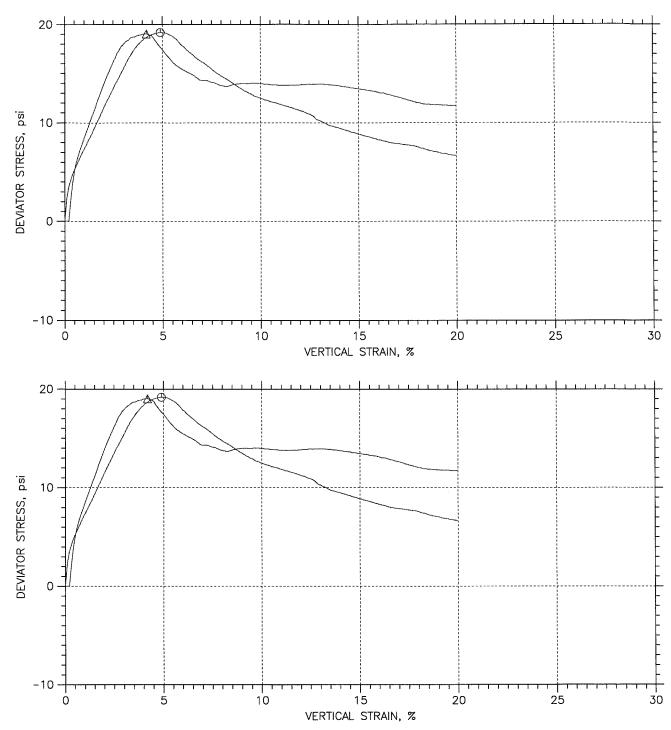
Field Sample N	lumber	~~~~~		Lab Numb		Depth	
SS-512-17 Weight of Sample After Test Weight		UU-3	33-17	55.3 + 55.8			
		Confining Pressure Test Number 🚽 of 🌏					
				14	0.0))
Diameter				Height		Moisture Can Number	After Moisture Can Number
	2.5	854	2.862		5.7 52	517	
		Olim	0000		- And	Wet Wt + Can	Wet Wt + Can
	<u>d.</u>	841	J.8 5d		5.753	Bd. 50	
		~ ^	0.0.0.		, in the second s	Dry Wt + Can	Dry Wt + Can
	2.	<u>838</u>	1.836		5.750	78.41	
	Averag	je	0	Average		Wt of Can	Wt of Can
		2.7	848		5.752	17.04	
	2. 2.	854 847 838 9°2.1	2.862 2.852 2.836 848		6762	517 Wet Wt + Can 82.38 Dry Wt + Can 58.91 Wt of Can	Wet Wt + Can Dry Wt + Can


Total Length:

55-514-17

* Saturation is set to 100% for phase calculations.

55-514-17



	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
Φ	SS-514-17	UU-34-17	61.0	DT	10/16/201	MD		UU-34-2017.dat
Δ	SS-514-17	UU-35-17	61.0	DT	10/16/201	7 MD		UU-35-2017.dat

	•							

	Project: IM-8-094(092)346	Location:	Project No.:			
NDD95	Boring No.: 1	Sample Type:				
Department of Transportation	Description: T.L. 24 3/4" Brn Cly with Silt Deposits, SLICKEN SIDED					
	Remarks: 59.3–59.8					

55-514-17

Test File

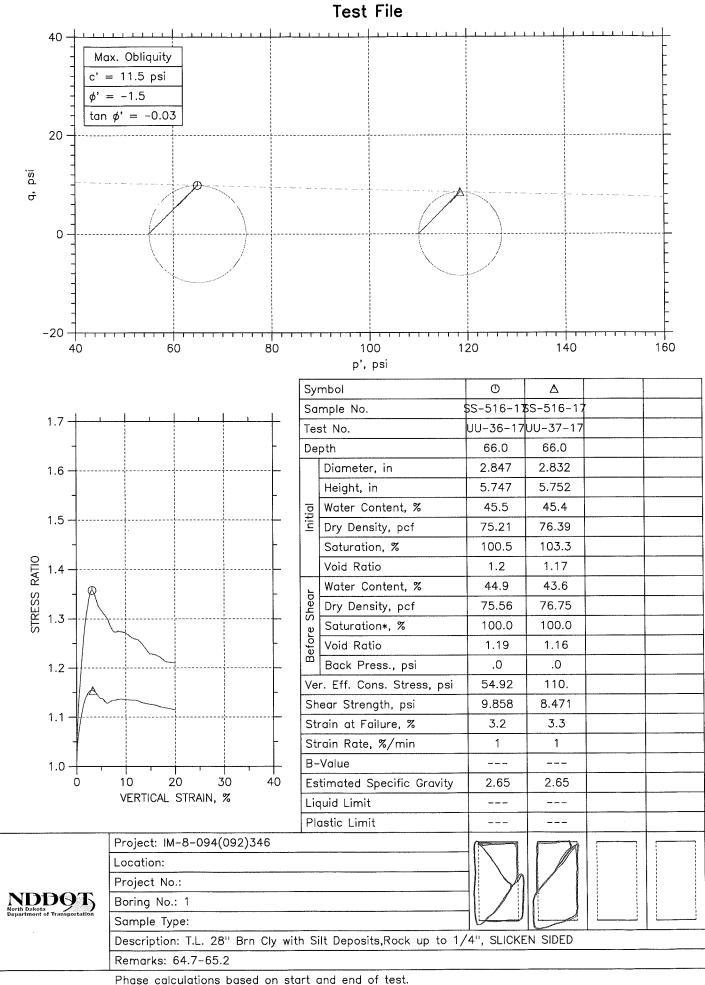
	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
Φ	SS-514-17	UU-34-17	7 61.0	DT	10/16/201	7 MD		UU-34-2017.dat
△ SS-514-17 UL		UU-35-17			10/16/201	10/16/2017MD		UU-35-2017.dat
		Project	: IM-8-094	4(092)346	Location:		Projec	et No.:
North Dakota Department of Transportation		5 Boring	No.: 1		Sample Typ	e:		
		Descrip	tion: T.L. 2	24 3/4" Brn Cl	y with Silt De	posits,SLICKEN	SIDED	

Remarks: 59.3-59.8

	TRIAXIAL TEST			
Project: IM-8-094(092)346 Boring No.: 1 Sample No.: SS-514-17 Test No.: UU-34-17	Location: Tested By: DT Test Date: 10/16/2017 Sample Type:	Projec Checke Depth: Elevat	d By: MD 61.0	
Soil Description: T.L. 24 3/4" Brn Cly w: Remarks: 59.3-59.8	ith Silt Deposits,SLICKEN SI	DED		
Specimen Height: 5.75 in Specimen Area: 6.25 in^2 Specimen Volume: 588.73 cc	Piston Area: 0.21 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb	Membra	Strip Correction: 0.0 ne Correction: 4.20 lb tion Type: Uniform	
Liquid Limit:	Plastic Limit:	Estima	ted Specific Gravity:	2.65
	Before Test Trimmings	Before Test Specimen	After Test Specimen	After Test Trimmings
Container ID	S 44			
Wt. Container + Wet Soil, gm Wt. Container + Dry Soil, gm Wt. Container, gm Wt. Wet Soil, gm Wt. Dry Soil, gm Wt. Water, gm Water Content, % Void Ratio Degree of Saturation, % Dry Unit Weight, pcf	87.69 63.34 17.04 70.65 46.3 24.35 52.59 	1027.1 673.08 353.98 52.59 1.32 105.75 71.372	 673.08 673.08 0 0.00 1.32 0.00 71.374	
Initial		Height: 5.748 in Area: 6.2502 in^2 Volume: 588.73 cc	Moisture: 52.5 Void Ratio: 1. Dry Unit Weig Saturation: 16	.32 nt: 71.372 pcf
End of Initialization Time: 11.103 min Total Vertical Stress: 50.823 psi Total Horizontal Stress: 50.788 psi Pore Pressure: 0 psi Effective Vertical Stress: 50.823 psi Effective Horizontal Stress: 50.788 psi	Height Change: 4.6474e-005 Area Change: 0 in^2 Volume Change: 0.01428 cc Water Change: -0.27566 cc Correction: 19.537 cc	inHeight: 5.748 in Area: 6.2502 in^2 Volume: 588.71 cc	Moisture: 49 Void Ratio: 1 Dry Unit Weig Saturation: 10	.32 nt: 71.374 pcf
End of Consolidation/A Time: 11.103 min Total Vertical Stress: 50.823 psi Total Horizontal Stress: 50.788 psi Pore Pressure: 0 psi Effective Vertical Stress: 50.823 psi Effective Horizontal Stress: 50.788 psi	Height Change: 4.6474e-005 Area Change: 0 in^2 Volume Change: 0.01428 cc Water Change: -0.27566 cc Correction: 19.537 cc	inHeight: 5.748 in Area: 6.2502 in^2 Volume: 588.71 cc	Moisture: 49 Void Ratio: 1 Dry Unit Weig Saturation: 10	.32 ht: 71.374 pcf
End of Saturation Time: 11.103 min Total Vertical Stress: 50.823 psi Total Horizontal Stress: 50.788 psi Pore Pressure: 0 psi Effective Vertical Stress: 50.823 psi Effective Horizontal Stress: 50.788 psi	Height Change: 4.6474e-005 Area Change: 0 in^2 Volume Change: 0.01428 cc Water Change: -0.27566 cc Correction: 19.537 cc) inHeight: 5.748 in Area: 6.2502 in^2 Volume: 588.71 cc	Moisture: 49 Void Ratio: 1 Dry Unit Weig Saturation: 1	.32 ht: 71.374 pcf
End of Consolidation/B Time: 11.103 min Total Vertical Stress: 50.823 psi Total Horizontal Stress: 50.788 psi Pore Pressure: 0 psi Effective Vertical Stress: 50.823 psi Effective Horizontal Stress: 50.788 psi	Height Change: 4.6474e-005 Area Change: 0 in^2 Volume Change: 0.01428 cc Water Change: -0.27566 cc Correction: 19.537 cc	5 inHeight: 5.748 in Area: 6.2502 in^2 Volume: 588.71 cc	Moisture: 49 Void Ratio: 1 Dry Unit Weig Saturation: 1	.32 ht: 71.374 pcf
End of Shear Time: 31.308 min Total Vertical Stress: 57.563 psi Total Horizontal Stress: 50.934 psi Pore Pressure: -0.28339 psi Effective Vertical Stress: 57.846 psi Effective Horizontal Stress: 51.217 psi	Height Change: 1.1501 in Area Change: -1.5631 in^2 Volume Change: 0.01428 cc Water Change: -0.27566 cc Correction: 354.26 cc	Height: 4.5979 in Area: 7.8134 in^2 Volume: 588.71 cc	Moisture: 0.0 Void Ratio: 1 Dry Unit Weig Saturation: 0	.32 ht: 71.374 pcf
At Failure Time: 16.067 min Total Vertical Stress: 70.009 psi Total Horizontal Stress: 50.837 psi Pore Pressure: -0.11335 psi Effective Vertical Stress: 70.122 psi Effective Horizontal Stress: 50.95 psi	Height Change: 0.28173 in Area Change: -0.32521 in^3 Volume Change: 0.01428 cc Water Change: -0.27566 cc Correction: 0 cc		Moisture: 49. Void Ratio: 1 Dry Unit Weig Saturation: 1	.32 ht: 71.374 pcf

TRIAXIAL TEST

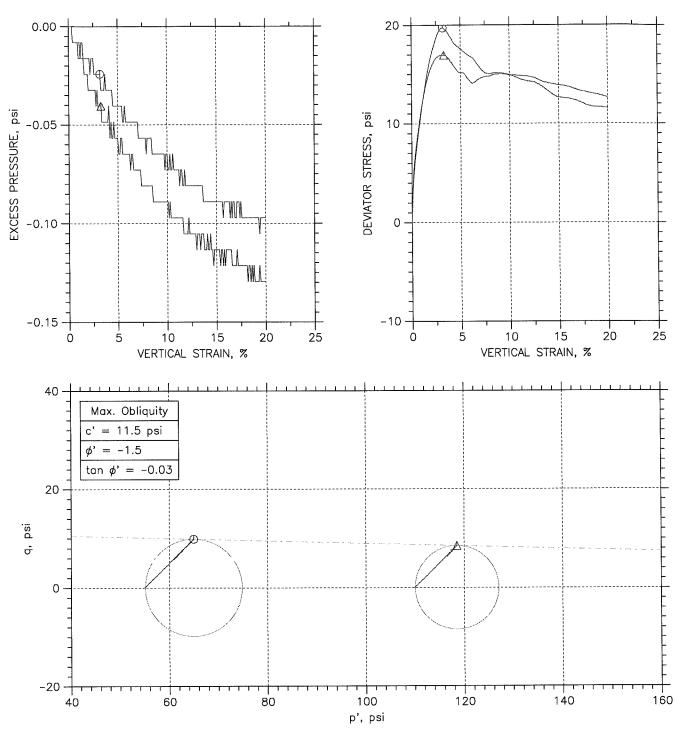
Project: IM-8-094(092)346 Boring No.: 1 Sample No.: SS-514-17 Test No.: UU-35-17	Location: Tested By: DT Test Date: 10/16/2017 Sample Type:	Project Checked Depth: Elevati	Ву: MD 61.0	
Soil Description: T.L. 24 3/4" Brn Cly wi Remarks: 59.8-60.3	th Silt Deposits, SLICKEN SID	ED		
Specimen Height: 5.75 in Specimen Area: 6.24 in^2 Specimen Volume: 587.17 cc	Piston Area: 0.21 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb	Membran	Strip Correction: 0.00 e Correction: 4.20 lb/ ion Type: Uniform	
Liquid Limit:	Plastic Limit:	Estimat	ed Specific Gravity: 2	.65
	Before Test Trimmings	Before Test Specimen	After Test Specimen	After Test Trimmings
Container ID	S 43			
<pre>Wt. Container + Wet Soil, gm Wt. Container + Dry Soil, gm Wt. Container, gm Wt. Wet Soil, gm Wt. Dry Soil, gm Wt. Water, gm Water Content, % Void Ratio Degree of Saturation, % Dry Unit Weight, pcf</pre>	81.13 58.74 16.98 64.15 41.76 22.39 53.62	1015.9 661.35 354.59 53.62 1.35 105.03 70.315	$\begin{array}{c} \\ \\ 661.35 \\ 661.35 \\ 0 \\ 0.00 \\ 1.35 \\ 0.00 \\ 70.325 \end{array}$	0 0 0 0.00
Initial		Height: 5.745 in Area: 6.2369 in^2 Volume: 587.17 cc	Moisture: 53.62 Void Ratio: 1.3 Dry Unit Weight Saturation: 105	5 : 70.315 pcf
End of Initialization Time: 11.121 min Total Vertical Stress: 101.53 psi Total Horizontal Stress: 101.56 psi Pore Pressure: 0 psi Effective Vertical Stress: 101.53 psi Effective Horizontal Stress: 101.56 psi	Height Change: 0.00027885 i Area Change: 0 in^2 Volume Change: 0.085498 cc Water Change: -0.29121 cc Correction: 17.363 cc	Area: 6.2369 in^2	Moisture: 51.00 Void Ratio: 1.3 Dry Unit Weight Saturation: 100	35 : 70.325 pcf
End of Consolidation/A Time: 11.121 min Total Vertical Stress: 101.53 psi Total Horizontal Stress: 101.56 psi Pore Pressure: 0 psi Effective Vertical Stress: 101.53 psi Effective Horizontal Stress: 101.56 psi	Height Change: 0.00027885 i Area Change: 0 in^2 Volume Change: 0.085498 cc Water Change: -0.29121 cc Correction: 17.363 cc	Area: 6.2369 in^2	Moisture: 51.03 Void Ratio: 1.3 Dry Unit Weigh Saturation: 100	35 2: 70.325 pcf
End of Saturation Time: 11.121 min Total Vertical Stress: 101.53 psi Total Horizontal Stress: 101.56 psi Pore Pressure: 0 psi Effective Vertical Stress: 101.53 psi Effective Horizontal Stress: 101.56 psi	Height Change: 0.00027885 i Area Change: 0 in^2 Volume Change: 0.085498 cc Water Change: -0.29121 cc Correction: 17.363 cc	Area: 6.2369 in^2	Moisture: 51.0 Void Ratio: 1. Dry Unit Weigh Saturation: 10	35 :: 70.325 pcf
End of Consolidation/B Time: 11.121 min Total Vertical Stress: 101.53 psi Total Horizontal Stress: 101.56 psi Pore Pressure: 0 psi Effective Vertical Stress: 101.53 psi Effective Horizontal Stress: 101.56 psi	Height Change: 0.00027885 i Area Change: 0 in^2 Volume Change: 0.085498 cc Water Change: -0.29121 cc Correction: 17.363 cc	Area: 6.2369 in^2	Moisture: 51.0 Void Ratio: 1. Dry Unit Weigh Saturation: 10	35 t: 70.325 pcf
End of Shear Time: 31.304 min Total Vertical Stress: 113.27 psi Total Horizontal Stress: 101.58 psi Pore Pressure: -0.251 psi Effective Vertical Stress: 113.53 psi Effective Horizontal Stress: 101.83 psi	Height Change: 1.1493 in Area Change: -1.5586 in^2 Volume Change: 0.085498 cc Water Change: -0.29121 cc Correction: 354.88 cc	Height: 4.5957 in Area: 7.7956 in^2 Volume: 587.08 cc	Moisture: 0.00 Void Ratio: 1. Dry Unit Weigh Saturation: 0.	35 t: 70.325 pcf
At Failure Time: 15.365 min Total Vertical Stress: 120.69 psi Total Horizontal Stress: 101.67 psi Pore Pressure: -0.097161 psi Effective Vertical Stress: 120.79 psi Effective Horizontal Stress: 101.77 psi	Height Change: 0.24176 in Area Change: -0.27722 in^2 Volume Change: 0.085498 cc Water Change: -0.29121 cc Correction: 0 cc	Height: 5.5032 in Area: 6.5142 in^2 Volume: 587.08 cc	Moisture: 51.0 Void Ratio: 1. Dry Unit Weigh Saturation: 10	35 t: 70.325 pcf


TRIAXIA

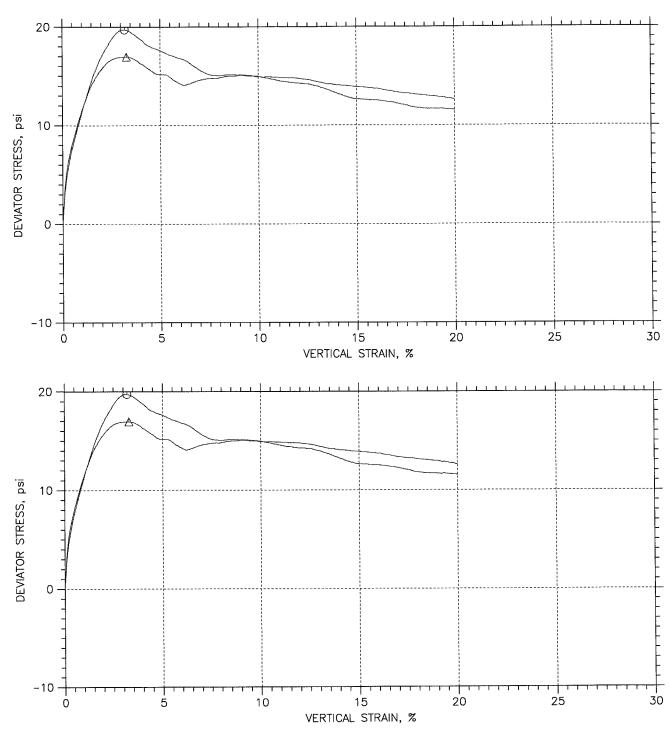
₽*5 • .

		CU(F	R CD(S)				Project Number	0	
North Dakota				, Materials	s & Resear	ch	IM-8-094(09	a)346	
SFN 50459 (10			·				Boring Number		
Field Sample N				Lab Numb			Depth)	
	<u>514-1'</u>	7			<u>34-17</u>		59.3+059.8		
Weight of Sample After Test Weight				Confining I			Test Number of	<	
1027.06	7				<u>50.8</u>				
Diameter	201	1.49	n0 -	Height		attribute a countri	Moisture Can Number	After Moisture Can Number	
	2.84	5	2.808		5	.747	544		
	2.84	12	2.8 62		5 ⁰⁰	6) 5 A	Wet Wt + Can 87.69	Wet Wt + Can	
\sim	0.0	\wp_{+}	d.0 Ud		5,7 50		Dry Wt + Can	Dry Wt + Can	
T T	2.86)77	2.802		6	747	63.34	Dry WC, Can	
	Average			Average		, <u>, , , ,</u>	Wt of Can	Wt of Can	
		2.82	27		5.74	8	17.04		
Total Length: 🔗	43/4"	RRN C	ly with s	ilt Dea	osite , S	lickan	Sila .		
1.10	\sim		! }		لیہ او عبرہ یہی۔ ا)	a tarra	1	
<sluh< td=""><td></td><td>¥</td><td>SAmple</td><td></td><td>~ [4</td><td>-5ample</td><td>SAMP</td><td>C management</td></sluh<>		¥	SAmple		~ [4	-5ample	SAMP	C management	
	ginty.	ይ እምን	8	ĥ	19.8 J	8	60.3	60.8 640	
59.0		1.3		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	60	O.((U))	60.8 61.0	
Field Sample N		1 5		Lab Numb		$rac{Depth}{SQ}$			
	-514-				35-17		59.8+060.3		
Weight of Sam		fter Tes	t Weight	Confining			Test Number of	>	
1015.94			Brut		21,6		<u> </u>		
Diameter	20		2 0.0	Height	, <i></i> ,	****	Noisture Can Number S 43	After Moisture Can Number	
	2.80	Dd	2.841			746	Wet Wt + Can	Wet Wt + Can	
	2.70	29	2.826		5 "	147	81.13	vvet vvt + Call	
λ	- V. I		din dh		20	1/	Dry Wt + Can	Dry Wt + Can	
	2.80	>2	2.837		5,1	743	58.74	bry we can	
	Average	*1		Average	s.d' 8	ţ	Wt of Can	Wt of Can	
L		2.812	3	-	5.74	5	16.98		
Total Length:	h					<u> </u>			
I			I				1	I	
	<u> </u>								
Field Sample N	8		and a second second	Lab Numb	and a second		Depth 60,3+.6($\sim S / X$	
	4-17	4			36-17			J.0 /	
Weight of Sam	· ¥	ner res	t Weight	Confining			Test Number of -	3	
Dameter				Height	7.1		Moisture Can Number	After Moisture Can Number	
Diameter	2.8	41	1012	Heigini	5 5 1	7 53	Noisture Can Number	Alter Moisture Can Number	
	1-0.0	10	7.813				Wet Wt + Can	Wet Wt + Can	
	2.8	28	2.811		58	50	12.78		
		~ V			Jour Jol	J 52	Dry Wt + Can	Dry Wt + Cah	
	2.8	21	2299		5.7	51	54.06		
	Average	NAMES OF STREET, STREET	extraction of the second se	Average	р		Wt of Can	Wtof Can	
	and the second se	2.81] /		5.75	1 /	15.36	- and an and a second and a sec	
Total Length:			/			/			

AASHTO T-234 Tested By:


55-516-17

Saturation is set to 100% for phase calculations.


55-516-17

Test File

Sample No. Tes			lo.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
① SS-516-17 UU △ SS-516-17 UU △ SS-516-17 UU ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■		UU-36			DT	10/17/201	7 MD		UU-36-2017.dat
		UU-37			DT	10/17/201	7 MD		UU-37-2017.dat
		P	roject:	IM-8-094	4(092)346	6 Location: Project No.: Sample Type:			
		Бв	oring l	No.: 1					
		D	escrip	tion: T.L. 2	8" Brn Cly wit	n Silt Deposits	,Rock up to 1	/4", SLICKEN	SIDED
			emark	s: 64.7-65	5.2				

Test File

	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
Ο	SS-516-17	UU-36-17	66.0	DT	10/17/201	7 MD		UU-36-2017.dat
Δ	SS-516-17	UU-37-17	66.0	DT	10/17/201	7 MD		UU-37-2017.dat
		Proje	ot: IM-8-094	4(092)346	Location:		Proje	ct No.:
North Dakota Department of Transportation		5 Borin	g No.: 1		Sample Type:			
		Descr	iption: T.L. :	28'' Brn Cly wit	h Silt Deposit	s,Rock up to 1	/4", SLICKEN	SIDED
		Remo	rks: 64.7-6	5.2				

	TRIAXIAL TEST			
Project: IM-8-094(092)346 Boring No.: 1 Sample No.: SS-516-17 Test No.: UU-36-17	Location: Tested By: DT Test Date: 10/17/2017 Sample Type:	Check	ct No.: ed By: MD : 66.0 tion:	
Soil Description: T.L. 28" Brn Cly with S. Remarks: 64.7-65.2	ilt Deposits,Rock up to 1/4",	, SLICKEN SIDED		
Specimen Height: 5.75 in Specimen Area: 6.37 in^2 Specimen Volume: 599.52 cc	Piston Area: 0.21 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb	Membr	r Strip Correction: 0.00 ane Correction: 4.20 lb ction Type: Uniform	
Liquid Limit:	Plastic Limit:	Estim	ated Specific Gravity:	2.65
	Before Test Trimmings	Before Test Specimen	After Test Specimen	After Test Trimmings
Container ID	S 41			
<pre>Wt. Container + Wet Soil, gm Wt. Container + Dry Soil, gm Wt. Container, gm Wt. Wet Soil, gm Wt. Dry Soil, gm Wt. Water, gm Water Content, % Void Ratio Degree of Saturation, % Dry Unit Weight, pcf</pre>	84.54 63.44 17.06 67.48 46.38 21.1 45.49 	1050.8 722.26 328.58 45.49 1.20 100.49 75.208	 722.26 722.26 -1.1642e-013 -0.00 1.19 -0.00 75.56	
Initial		Height: 5.747 in Area: 6.366 in^2 Volume: 599.52 cc	Moisture: 45.4 Void Ratio: 1. Dry Unit Weigh Saturation: 10	20 t: 75.208 pcf
End of Initialization Time: 11.032 min Total Vertical Stress: 54.915 psi Total Horizontal Stress: 54.94 psi Pore Pressure: 0 psi Effective Vertical Stress: 54.915 psi Effective Horizontal Stress: 54.94 psi	Height Change: 0.0089231 in Area Change: 0 in^2 Volume Change: 2.7925 cc Water Change: -0.19897 cc Correction: 4.599 cc	Height: 5.7381 in Area: 6.366 in^2 Volume: 596.73 cc	Moisture: 44.8 Void Ratio: 1. Dry Unit Weigh Saturation: 10	19 t: 75.56 pcf
End of Consolidation/A Time: 11.032 min Total Vertical Stress: 54.915 psi Total Horizontal Stress: 54.94 psi Pore Pressure: 0 psi Effective Vertical Stress: 54.915 psi Effective Horizontal Stress: 54.94 psi	Height Change: 0.0089231 in Area Change: 0 in^2 Volume Change: 2.7925 cc Water Change: -0.19897 cc Correction: 4.599 cc	Height: 5.7381 in Area: 6.366 in^2 Volume: 596.73 cc	Moisture: 44.8 Void Ratio: 1. Dry Unit Weigh Saturation: 10	19 t: 75.56 pcf
End of Saturation Time: 11.032 min Total Vertical Stress: 54.915 psi Total Horizontal Stress: 54.94 psi Pore Pressure: 0 psi Effective Vertical Stress: 54.915 psi Effective Horizontal Stress: 54.94 psi	Height Change: 0.0089231 in Area Change: 0 in^2 Volume Change: 2.7925 cc Water Change: -0.19897 cc Correction: 4.599 cc	Height: 5.7381 in Area: 6.366 in^2 Volume: 596.73 cc	Moisture: 44.8 Void Ratio: 1. Dry Unit Weigh Saturation: 10	19 t: 75.56 pcf
End of Consolidation/B Time: 11.032 min Total Vertical Stress: 54.915 psi Total Horizontal Stress: 54.94 psi Pore Pressure: 0 psi Effective Vertical Stress: 54.915 psi Effective Horizontal Stress: 54.94 psi	Height Change: 0.0089231 in Area Change: 0 in^2 Volume Change: 2.7925 cc Water Change: -0.19897 cc Correction: 4.599 cc	Height: 5.7381 in Area: 6.366 in^2 Volume: 596.73 cc	Moisture: 44.8 Void Ratio: 1. Dry Unit Weigh Saturation: 10	19 ht: 75.56 pcf
End of Shear Time: 31.215 min Total Vertical Stress: 66.638 psi Total Horizontal Stress: 55.054 psi Pore Pressure: -0.097161 psi Effective Vertical Stress: 66.735 psi Effective Horizontal Stress: 55.151 psi	Height Change: 1.1568 in Area Change: -1.5672 in^2 Volume Change: 2.7925 cc Water Change: -0.19897 cc Correction: 328.78 cc	Height: 4.5902 in Area: 7.9332 in^2 Volume: 596.73 cc	Moisture: -0.(Void Ratio: 1 Dry Unit Weig Saturation: -(.19 nt: 75.56 pcf
At Failure Time: 14.255 min Total Vertical Stress: 74.874 psi Total Horizontal Stress: 55.159 psi Pore Pressure: -0.02429 psi Effective Vertical Stress: 74.898 psi Effective Horizontal Stress: 55.183 psi	Height Change: 0.19273 in Area Change: -0.22308 in^2 Volume Change: 2.7925 cc Water Change: -0.19897 cc Correction: 0 cc	Height: 5.5543 in Area: 6.5891 in^2 Volume: 596.73 cc	Moisture: 44. Void Ratio: 1 Dry Unit Weig Saturation: 10	.19 nt: 75.56 pcf

TRIAXIAL TEST

55-516-17

TRIAXIAL TEST

Project No.: Checked By: MD Depth: 66.0 Elevation:

Soil Description: T.L. 28" Brn Cly with Silt Deposits, Rock up to 1/4", SLICKEN SIDED Remarks: 65.2-65.7

Location:

Sample Type:

Specimen Height: 5.75 in Specimen Area: 6.30 in^2 Specimen Volume: 593.74 cc Liquid Limit: ---

Project: IM-8-094(092)346

Boring No.: 1 Sample No.: SS-516-17 Test No.: UU-37-17

> Piston Area: 0.20 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb

Plastic Limit: ---

Tested By: DT Test Date: 10/17/2017

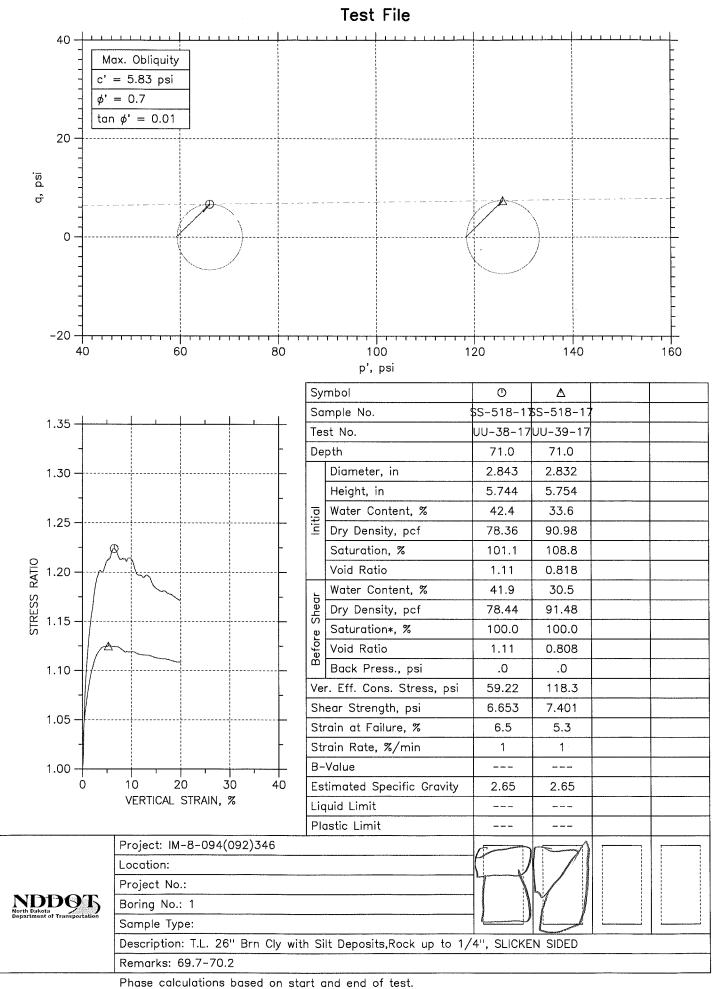
> Filter Strip Correction: 0.00 psi Membrane Correction: 4.20 lb/in Correction Type: Uniform

Estimated Specific Gravity: 2.65

	Before Test Trimmings	Before Test Specimen	After Test Specimen	After Test Trimmings
Container ID	S 11			
Wt. Container + Wet Soil, gm Wt. Container + Dry Soil, gm Wt. Container, gm Wt. Wet Soil, gm Wt. Dry Soil, gm Wt. Water, gm Water Content, % Void Ratio Degree of Saturation, % Dry Unit Weight, pcf	68.98 52.71 16.89 52.09 35.82 16.27 45.42 	 1056.6 726.57 330.02 45.42 1.17 103.27 76.394	 726.57 726.57 1.1642e-013 0.00 1.16 0.00 76.753	
Initial		Height: 5.752 in Area: 6.2991 in^2 Volume: 593.74 cc	Moisture: 45 Void Ratio: Dry Unit Wei Saturation:	1.17 ght: 76.394 pcf
End of Initialization Time: 11.032 min Total Vertical Stress: 109.96 psi Total Horizontal Stress: 109.98 psi Pore Pressure: 0 psi Effective Vertical Stress: 109.96 psi Effective Horizontal Stress: 109.98 ps	Height Change: 0.0089695 i Area Change: 0 in^2 Volume Change: 2.7776 cc Water Change: -0.2113 cc i Correction: 13.446 cc	n Height: 5.743 in Area: 6.2991 in^2 Volume: 590.96 cc	Moisture: 43 Void Ratio: Dry Unit Wei Saturation:	1.16 ght: 76.753 pcf
End of Consolidation/A Time: 11.032 min Total Vertical Stress: 109.96 psi Total Horizontal Stress: 109.98 psi Pore Pressure: 0 psi Effective Vertical Stress: 109.96 psi Effective Horizontal Stress: 109.98 ps	Height Change: 0.0089695 i Area Change: 0 in^2 Volume Change: 2.7776 cc Water Change: -0.2113 cc i Correction: 13.446 cc	n Height: 5.743 in Area: 6.2991 in^2 Volume: 590.96 cc	Moisture: 43 Void Ratio: Dry Unit Wei Saturation:	1.16 ght: 76.753 pcf
End of Saturation Time: 11.032 min Total Vertical Stress: 109.96 psi Total Horizontal Stress: 109.98 psi Pore Pressure: 0 psi Effective Vertical Stress: 109.96 psi Effective Horizontal Stress: 109.98 ps	Height Change: 0.0089695 i Area Change: 0 in^2 Volume Change: 2.7776 cc Water Change: -0.2113 cc Si Correction: 13.446 cc	n Height: 5.743 in Area: 6.2991 in^2 Volume: 590.96 cc	Moisture: 43 Void Ratio: Dry Unit Wei Saturation:	1.16 .ght: 76.753 pcf
End of Consolidation/B Time: 11.032 min Total Vertical Stress: 109.96 psi Total Horizontal Stress: 109.98 psi Pore Pressure: 0 psi Effective Vertical Stress: 109.96 psi Effective Horizontal Stress: 109.98 ps	Height Change: 0.0089695 i Area Change: 0 in^2 Volume Change: 2.7776 cc Water Change: -0.2113 cc Si Correction: 13.446 cc	in Height: 5.743 in Area: 6.2991 in^2 Volume: 590.96 cc	Moisture: 41 Void Ratio: Dry Unit We Saturation:	1.16 ight: 76.753 pcf
End of Shear Time: 31.241 min Total Vertical Stress: 122.77 psi Total Horizontal Stress: 110.12 psi Pore Pressure: -0.12955 psi Effective Vertical Stress: 122.9 psi Effective Horizontal Stress: 110.24 ps	Height Change: 1.1577 in Area Change: -1.5503 in^2 Volume Change: 2.7771 cc Water Change: -0.21184 cc Si Correction: 330.23 cc	Height: 4.5943 in Area: 7.8494 in^2 Volume: 590.96 cc	Moisture: O Void Ratio: Dry Unit We Saturation:	1.16 ight: 76.753 pcf
At Failure Time: 14.392 min Total Vertical Stress: 126.99 psi Total Horizontal Stress: 110.05 psi Pore Pressure: -0.040484 psi Effective Vertical Stress: 127.03 psi Effective Horizontal Stress: 110.09 ps	Height Change: 0.19849 in Area Change: -0.22747 in^; Volume Change: 2.7781 cc Water Change: -0.21184 cc si Correction: 0 cc	2 Area: 6.5265 in^2 Volume: 590.96 cc	Moisture: 4 Void Ratio: Dry Unit We Saturation:	1.16 ight: 76.753 pcf

TRIAXIAL UU(Q) CCU(R) CD(S) North Dakota Department of Transportation, Materials & Research SFN 50459 (10-2016)

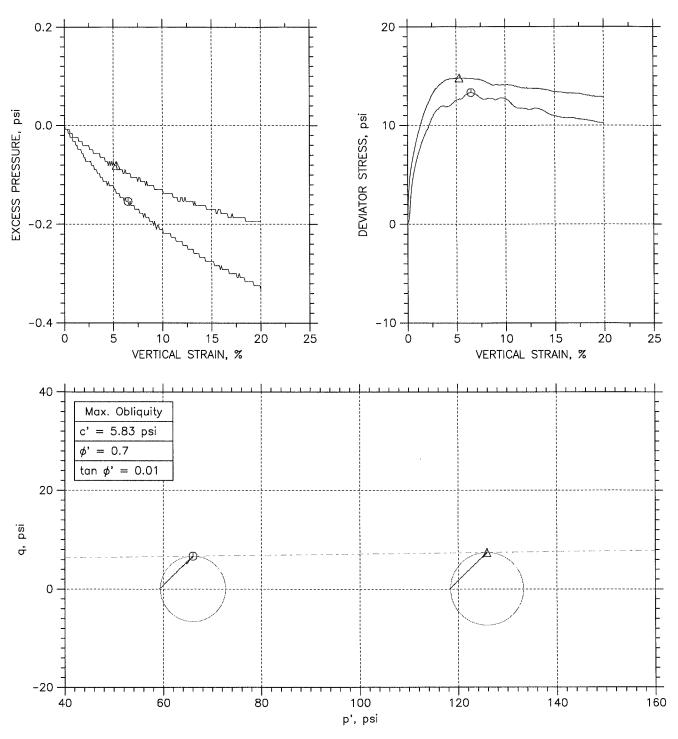
Project Number
IM-8-094(092)346
Boring Number
1
Denth


	umbor		Lab Numbe	r	Depth	
Field Sample N					64.7+065.2	
	16-17	- + 1 A / - ' - 1- +	UU-36-17 Confining Pressure			
Weight of Samp		st Weight	Contining F	-	Test Number of	
1050.84			· · · · ·	55.0	e	*
Diameter	6 <i>4</i> 4	0 C 1	Height	inter seas a a a	Moisture Can Number	After Moisture Can Number
	2.8 52	2.8 48		5.746	541	
					Wet Wt + Can	Wet Wt + Can
	2.856	2.8 56		5,747	84.54	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ale t m t t				Dry Wt + Can
	2.832	2.838		5.748	Dry Wt + Can 63.44	-
	Average		Average		Wt of Can	Wt of Can
	2	847		5.747 , Rock up to 1/4"	17.06	
Total Length:	28" Ben (1.	with silt	Pencite	Rock un ta/u"	11 - 2	
	ad Drivel	FRActure	Copustion	,		
k-sluff.	anne an	4	A descence of the second	SAMDIE	DIA- 5400 10	
	(	1	666			
64.0		64.6	64.7	65.0	65.2	65.7 66.0
Field Sample N	lumbor		Lab Numb	or	Depth	
Trielu Sample N	lumber		1			1 - 17
1 600	1/. 1007				1 1 1 1 1 1 1 1	- Con I
	16-17			17-17	65.2+0 (	5./
Weight of Sam	ple After Te	est Weight	Confining I	Pressure	Test Number of	) )
Weight of Sam	ple After Te	est Weight	Confining I		Test Number of 2	2
Weight of Sam	ple After Te		Confining I	Pressure	Test Number of Moisture Can Number	After Moisture Can Number
Weight of Sam	ple After Te	est Weight	Confining I	Pressure	Test Number of 2	After Moisture Can Number
Weight of Sam	ple After Te	2.836	Confining I	5,752	Test Number of Moisture Can Number S// Wet Wt + Can	2
Weight of Sam	ple After Te	2.836	Confining I	Pressure	Test Number of 2 6 Moisture Can Number	After Moisture Can Number
Weight of Sam	ple After Te	2.836	Confining I	5,752	Test Number 2 Moisture Can Number 5// Wet Wt + Can 68.98	After Moisture Can Number
Weight of Sam	After Te           2,837           2,827	2.836	Confining I	5,752	Test Number 2 Moisture Can Number 5// Wet Wt + Can 68.98	After Moisture Can Number Wet Wt + Can
Weight of Sam	After Te           2,837           2,837           2,837	2.836	Confining I	5,752	Test Number of $2^{\circ}$ Moisture Can Number $5^{\circ}$ Wet Wt + Can $68.98$ Dry Wt + Can $52.71$ Wt of Can	After Moisture Can Number Wet Wt + Can
Weight of Sam	After Te	2.836	Confining I Height	5,752	Test Number 2 Moisture Can Number 5// Wet Wt + Can 68.98 Dry Wt + Can 52,71	After Moisture Can Number Wet Wt + Can Dry Wt + Can

1		1
		i
	1	
······		

Field Sample Number		Lab Number	Depth		
Weight of Sample	After Test Weight	Confining Pressure	Test Number of	f	
Diameter		Height	Moisture Can Number	After Moisture Can Number	
			Wet Wt + Can	Wet Wt + Can	
			Dry Wt + Can	Dry Wt + Can	
Ave	prage	Average	Wt of Can	Wt of Can	

Total Length:


59-518-17



Thu, 26-OCT-2017 12:42:57

* Saturation is set to 100% for phase calculations.

Test File



	Sample No.	Tes	st No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
C	SS-518-17	υυ	-38-17	71.0	DT	10/18/201	MD		UU-38-2017.dat
Δ	SS-518-17	υu	-39-17	71.0	DT	10/18/201	MD		UU-39-2017.dat
			Project	: IM-8-094	(092)346	Location:		Projec	st No.:
NOT th Dakoia Department of Transportation		5	Boring	No.: 1		Sample Type	e:		
D	partment of Transportat	akota ment of Transportation			C'IL D	Deals we had 1			

DDOT.	Project: IM-8-094(092)346	Location:	Project No.:		
	Boring No.: 1	Sample Type:			
most of Vermonastation	Description: T.L. 26" Brn Cly with Silt Deposits,Rock up to 1/4", SLICKEN SIDED				
	Remarks: 69.7-70.2				

	TRIAXIAL TEST			
Project: IM-8-094(092)346 Boring No.: 1 Sample No.: SS-518-17 Test No.: UU-38-17	Location: Tested By: DT Test Date: 10/18/2017 Sample Type:	Project Checked Depth: Elevati	By: MD 71.0	
Soil Description: T.L. 26" Brn Cly with Remarks: 69.7-70.2	Silt Deposits,Rock up to 1/4"	, SLICKEN SIDED		
Specimen Height: 5.74 in Specimen Area: 6.35 in^2 Specimen Volume: 597.53 cc	Piston Area: 0.21 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb	Membran	Strip Correction: 0.0 e Correction: 4.20 lk ion Type: Uniform	
Liquid Limit:	Plastic Limit:	Estimat	ed Specific Gravity:	2.65
	Before Test Trimmings	Before Test Specimen	After Test Specimen	After Test Trimmings
Container ID	S 10			
<pre>Wt. Container + Wet Soil, gm Wt. Container + Dry Soil, gm Wt. Container, gm Wt. Wet Soil, gm Wt. Dry Soil, gm Wt. Water, gm Water Content, % Void Ratio Degree of Saturation, % Dry Unit Weight, pcf</pre>	83.02 63.35 16.93 66.09 46.42 19.67 42.37	 1067.9 750.04 317.82 42.37 1.11 101.06 78.362	 750.04 750.04 1.1642e-013 0.00 1.11 0.00 78.438	
Initial		Height: 5.744 in Area: 6.3481 in^2 Volume: 597.53 cc	Moisture: 42. Void Ratio: 1 Dry Unit Weig Saturation: 1	.11 nt: 78.362 pcf
End of Initialization Time: 11.13 min Total Vertical Stress: 59.22 psi Total Horizontal Stress: 59.295 psi Pore Pressure: 0 psi Effective Vertical Stress: 59.22 psi Effective Horizontal Stress: 59.295 psi	Height Change: 0.001859 in Area Change: 0 in^2 Volume Change: 0.58015 cc Water Change: -0.26654 cc Correction: 4.1722 cc	Height: 5.7421 in Area: 6.3481 in^2 Volume: 596.95 cc	Moisture: 41. Void Ratio: 1 Dry Unit Weig Saturation: 1	.11 ht: 78.438 pcf
End of Consolidation/A Time: 11.13 min Total Vertical Stress: 59.22 psi Total Horizontal Stress: 59.295 psi Pore Pressure: 0 psi Effective Vertical Stress: 59.22 psi Effective Horizontal Stress: 59.295 psi	Height Change: 0.001859 in Area Change: 0 in^2 Volume Change: 0.58015 cc Water Change: -0.26654 cc Correction: 4.1722 cc	Height: 5.7421 in Area: 6.3481 in^2 Volume: 596.95 cc	Moisture: 41. Void Ratio: 1 Dry Unit Weig Saturation: 1	.11 ht: 78.438 pcf
End of Saturation Time: 11.13 min Total Vertical Stress: 59.22 psi Total Horizontal Stress: 59.295 psi Pore Pressure: 0 psi Effective Vertical Stress: 59.22 psi Effective Horizontal Stress: 59.295 psi	Height Change: 0.001859 in Area Change: 0 in^2 Volume Change: 0.58015 cc Water Change: -0.26654 cc Correction: 4.1722 cc	Height: 5.7421 in Area: 6.3481 in^2 Volume: 596.95 cc	Moisture: 41. Void Ratio: 1 Dry Unit Weig Saturation: 1	.11 ht: 78.438 pcf
End of Consolidation/B Time: 11.13 min Total Vertical Stress: 59.22 psi Total Horizontal Stress: 59.295 psi Pore Pressure: 0 psi Effective Vertical Stress: 59.22 psi Effective Horizontal Stress: 59.295 psi	Height Change: 0.001859 in Area Change: 0 in^2 Volume Change: 0.58015 cc Water Change: -0.26654 cc Correction: 4.1722 cc	Height: 5.7421 in Area: 6.3481 in^2 Volume: 596.95 cc	Moisture: 41. Void Ratio: 1 Dry Unit Weig Saturation: 1	.11 ht: 78.438 pcf
End of Shear Time: 31.349 min Total Vertical Stress: 69.6 psi Total Horizontal Stress: 59.335 psi Pore Pressure: -0.33197 psi Effective Vertical Stress: 69.932 psi Effective Horizontal Stress: 59.667 psi	Height Change: 1.1507 in Area Change: -1.5826 in^2 Volume Change: 0.57961 cc Water Change: -0.26708 cc Correction: 318.09 cc	Height: 4.5933 in Area: 7.9307 in^2 Volume: 596.95 cc	Moisture: 0.0 Void Ratio: 1 Dry Unit Weig Saturation: C	.11 ht: 78.438 pcf
At Failure Time: 17.73 min Total Vertical Stress: 72.593 psi Total Horizontal Stress: 59.287 psi Pore Pressure: -0.15384 psi Effective Vertical Stress: 72.747 psi Effective Horizontal Stress: 59.44 psi	Height Change: 0.37533 in Area Change: -0.44683 in^2 Volume Change: 0.58068 cc Water Change: -0.26708 cc Correction: 0 cc	Height: 5.3687 in Area: 6.7949 in^2 Volume: 596.95 cc	Moisture: 41. Void Ratio: 1 Dry Unit Weig Saturation: 1	11 ht: 78.438 pcf

	TRIAXIAL TEST			
Project: IM-8-094(092)346 Boring No.: 1 Sample No.: SS-518-17 Test No.: UU-39-17	Location: Tested By: DT Test Date: 10/18/2017 Sample Type:	Project Checked Depth: 7 Elevatio	By: MD 1.0	
Soil Description: T.L. 26" Brn Cly with S Remarks: 70.2-70.7	ilt Deposits,Rock up to 1/4"	, SLICKEN SIDED		
Specimen Height: 5.75 in Specimen Area: 6.30 in^2 Specimen Volume: 593.95 cc	Piston Area: 0.21 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb	Membrane	Strip Correction: 0.0 Correction: 4.20 ll Con Type: Uniform	
Liquid Limit:	Plastic Limit:	Estimate	ed Specific Gravity:	2.65
	Before Test Trimmings	Before Test Specimen	After Test Specimen	After Test Trimmings
Container ID	S14			
<pre>Wt. Container + Wet Soil, gm Wt. Container + Dry Soil, gm Wt. Container, gm Wt. Wet Soil, gm Wt. Dry Soil, gm Wt. Water, gm Water Content, % Void Ratio Degree of Saturation, % Dry Unit Weight, pcf</pre>	95.3 75.59 16.92 78.38 58.67 19.71 33.59 	1156.4 865.61 290.8 33.59 0.82 108.79 90.982	 865.61 865.61 0 0.00 0.81 0.00 91.476	
Initial		Height: 5.754 in Area: 6.2991 in^2 Volume: 593.95 cc	Moisture: 33. Void Ratio: 0 Dry Unit Weig Saturation: 1	.82 ht: 90.982 pcf
End of Initialization Time: 11.134 min Total Vertical Stress: 118.25 psi Total Horizontal Stress: 118.27 psi Pore Pressure: 0 psi Effective Vertical Stress: 118.25 psi Effective Horizontal Stress: 118.27 psi	Height Change: 0.010364 in Area Change: 0 in^2 Volume Change: 3.2093 cc Water Change: -0.21023 cc Correction: 26.918 cc	Height: 5.7436 in Area: 6.2991 in^2 Volume: 590.74 cc	Moisture: 30. Void Ratio: 0 Dry Unit Weig Saturation: 1	.81 ht: 91.476 pcf
End of Consolidation/A Time: 11.134 min Total Vertical Stress: 118.25 psi Total Horizontal Stress: 118.27 psi Pore Pressure: 0 psi Effective Vertical Stress: 118.25 psi Effective Horizontal Stress: 118.27 psi	Height Change: 0.010364 in Area Change: 0 in^2 Volume Change: 3.2093 cc Water Change: -0.21023 cc Correction: 26.918 cc	Height: 5.7436 in Area: 6.2991 in^2 Volume: 590.74 cc	Moisture: 30. Void Ratio: 0 Dry Unit Weig Saturation: 1	.81 ht: 91.476 pcf
End of Saturation Time: 11.134 min Total Vertical Stress: 118.25 psi Total Horizontal Stress: 118.27 psi Pore Pressure: 0 psi Effective Vertical Stress: 118.25 psi Effective Horizontal Stress: 118.27 psi	Height Change: 0.010364 in Area Change: 0 in^2 Volume Change: 3.2093 cc Water Change: -0.21023 cc Correction: 26.918 cc	Height: 5.7436 in Area: 6.2991 in^2 Volume: 590.74 cc	Moisture: 30. Void Ratio: 0 Dry Unit Weig Saturation: 1	.81 ht: 91.476 pcf
End of Consolidation/B Time: 11.134 min Total Vertical Stress: 118.25 psi Total Horizontal Stress: 118.27 psi Pore Pressure: 0 psi Effective Vertical Stress: 118.25 psi Effective Horizontal Stress: 118.27 psi	Height Change: 0.010364 in Area Change: 0 in^2 Volume Change: 3.2093 cc Water Change: -0.21023 cc Correction: 26.918 cc	Height: 5.7436 in Area: 6.2991 in^2 Volume: 590.74 cc	Moisture: 30 Void Ratio: C Dry Unit Weig Saturation: 1	.81 ht: 91.476 pcf
End of Shear Time: 31.33 min Total Vertical Stress: 131.2 psi Total Horizontal Stress: 118.29 psi Pore Pressure: -0.19432 psi Effective Vertical Stress: 131.4 psi Effective Horizontal Stress: 118.48 psi	Height Change: 1.1592 in Area Change: -1.5465 in^2 Volume Change: 3.2093 cc Water Change: -0.21023 cc Correction: 291.01 cc	Height: 4.5948 in Area: 7.8455 in^2 Volume: 590.74 cc	Moisture: 0.0 Void Ratio: 0 Dry Unit Weig Saturation: 0	0.81 ht: 91.476 pcf
At Failure Time: 16.51 min Total Vertical Stress: 133.16 psi Total Horizontal Stress: 118.36 psi Pore Pressure: -0.080967 psi Effective Vertical Stress: 133.24 psi Effective Horizontal Stress: 118.44 psi	Height Change: 0.31496 in Area Change: -0.36712 in^2 Volume Change: 3.2093 cc Water Change: -0.21023 cc Correction: 0 cc	Height: 5.439 in Area: 6.6662 in^2 Volume: 590.74 cc	Moisture: 30. Void Ratio: 0 Dry Unit Weig Saturation: 1	).81 ht: 91.476 pcf

## TRIAXIAL UU(Q) CCU(R) CD(S)

1

2,846

2.8 39

Field Sample Number

Weight of Sample

1067.86 Diameter

55-518-1

North Dakota Department of Transportation, Materials SFN 50459 (10-2016)

2.847

2.8 42

After Test Weight

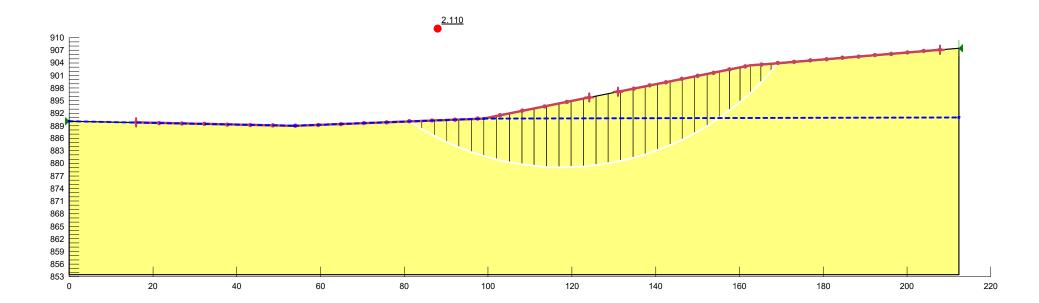
		Project Number		
, Materials	& Research	IM-8-094 (092) 346		
		Boring Number	,	
		1		
Lab Numbe	er	Depth		
uu-	-38-17	69.7 + 70.2		
Confining F	Pressure 59.2	Test Number of 2		
Height	5.744	Moisture Can Number	After Moisture Can Number	
	5.744	Wet Wt + Can 83.02	Wet Wt + Can	
-	5.745	Dry Wt + Can 63.35	Dry Wt + Can	

and the second sec	m m	~ 0		100 and 4 400	Dry VVL + Call	Dry Wt + Call
	2.843	2.842		5.745	63.35	
	Average	у ⁹⁷	Average		Wt of Can	Wt of Can
Total Length: 26" Ben Cly with sil.			5.744	16.93		
Total Length:	26" BRNC	ly with sil	+ Deposi	ts, Rock up to	, Veg "	
	~ . 8	FRACTURE	*		. 1	
< 510+F				Sample	s ample	
	1			1	70.2	70.7
69.0	693	69.5 6	, , , , , , , , , , , , , , , , , , ,	70.0	, Ci. a	71.0
Field Sample N	umber		Lab Number		Depth	
55-518-17			uu-39-17		70.2 +0 70.7	
Weight of Samp	ole After T	est Weight	Confining I	Confining Pressure Test Number of		0
1156.4			118.3			
Diameter			Height		Moisture Can Number	After Moisture Can Number
	2.857	2.821		5.756	514	
					Wet Wt + Can	Wet Wt + Can
	2.8 SO	2.808		5.7 53	95.30	
					Dry Wt + Can	Dry Wt + Can
	2.837	2.817		5.752	75.59	
	Average		Average		Wt of Can	Wt of Can
and the second second	2.	832		5.754	16.92	

Total Length:

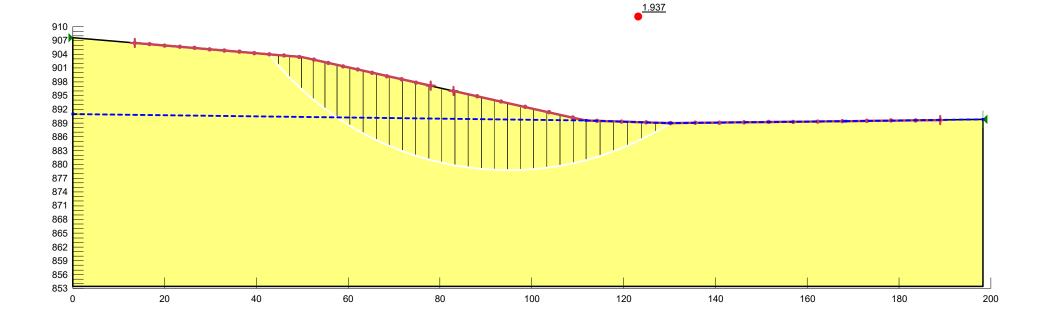

Field Sample Num	iber	Lab Number	Depth		
Weight of Sample	After Test Weight	Confining Pressure	Test Number of		
Diameter		Height	Moisture Can Number	After Moisture Can Number	
			Wet Wt + Can	Wet Wt + Can	
	·····		Dry Wt + Can	Dry Wt + Can	
A	verage	Average	Wt of Can	Wt of Can	

Total Length:


AASHTO T-234 Tested By:

# APPENDIX C

Slope Stability Analysis


Project: IM-8-094(092)346 Bridge # 94-346.396L & 94-346.400R Location: East Bridge End Boring: SB-1 Analysis Name: Name: Effective Stress Analysis

Color	Name	Model	Unit Weight (pcf)	Strength Function	Piezometric Line
	Existing Material	Shear/Normal Fn.	105	Stark Correlation: LL = 93, CF = 89	1



Project: IM-8-094(092)346 Bridge #: 94-346.396L & 94-346.400R Location: West Bridge End Boring: SB-1 Analysis: Name: Effective Stress Analysis

Color	Name	Model	Unit Weight (pcf)	Strength Function	Piezometric Line
	Existing Material	Shear/Normal Fn.	105	Stark Correlation - CF = 89, LL = 93	1

