Deep Learning AMI

Developer Guide

dWS

v?

Deep Learning AMI Developer Guide

Deep Learning AMI: Developer Guide
Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not
Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or
discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may
or may not be affiliated with, connected to, or sponsored by Amazon.

Deep Learning AMI Developer Guide

Table of Contents

What Is the AWS Deep Learning AMI? ettt sttt et s e et s e et s e e e s e e s eneennenes 1
ADOUL ThIS GUILE ..eniniii ettt et et e e et et et et s e et s e e s e e easeneeneeneennen 1
[= =To [BT =T PPN 1
ez 10 2] o] LI U LYY PPN 1
FATUIES ..t ettt ettt et ettt et et e e e 2

Preinstalled FrameWOrksot 2
Preinstalled GPU SOftWAIEc.uiiiiiiiiii et et et e e et e et e et et e e e aae et e et s eeneaaneanns 2
Model Serving and VisualiZationo.veuiiniiiiriie ettt ee e e eas 2

[CT=] A d T (o I] =T {1 O O T O TR P TP P PTPPPTONN 4
How to Get Started with the DLAMI ...ttt et st e e e e 4
DLAMI SELECLION .ttt ettt ettt e et e et e ebeea s eneea s eneenseneeaseneeasenenaneananns 4

CUDA Installations and Framework Bindingscvuiiiiiiiiiiiiiiiiiine et ea e 5
2 7= <N 5
(@e]3 [« - I T O P P TR P PP PP PTPPIN 6
AFCRITECEUNE «eeee ettt ettt et et et et et e e et e e e e e e e e e e e e eanes 7
[0 1R PP PP P TP PPPPPPRN 7
INSEANCE SELECTION «.uiniiieiee ettt ettt ete et et ea e eneeaeeneaseneaenensanenennaenns 7
| Tl o [« [PPSR PPN 8
REGION AVAILADILILY ...eninii ettt et e e e 9
GPU et et et et et e e e 9
CPU ettt ettt ettt ettt e e eaas 9
[0 = (=T o | AT RSP 10
[oL 1 - I PP PP PP 10

LauNChiNg @ DLAMI ... eei ettt et ettt ettt et et et ea et ea et ea et eanenneanataennanaennesnens 12
Step T: LauNCh @ DLAMI L.ttt et e et e e e e et et e e e et e et e e aaaanan 12
DLAMI DD ettt ettt et et ettt a et et ettt et a e b ta e eaa e 13
EC2 CONSOLE «.enenieet ettt ettt ettt et et et et et et et et et et et et e e et e e et e e e et e e e e e e 13
[1 G o] F TSI T T ol o [P RPNN 14
Step 2: ConNECct t0 the DLAMIui et et e e et e e ae e et e e e e e e e e enaans 14
Step 3: Secure YOUr DLAMI INSTANCE ...uiuiniiiiii ittt e e et e e e e ae e e e e e saeesanananananans 14
STEP 4: TSt YOUI DLAMI .ttt ettt e et e e e e e eaeaeaeasasasasaasaannnananens 15
(@112 o T U o T PPN 15
JUPYEOE SOTUP e ettt ettt ettt et e et et e e ans 15

SECUIE JUPYEEE ottt ettt et e ettt e ettt e e e e e et e e eenetaensaeneans 16
SEAMT SOIVET et ettt et et e ettt e et et e e e 16
CONTFIGUIE CLIBNT ..evuiiieii ittt et et et et et et e et s et s et s ean s et saneaneaneaeneannaannns 17
Log in to the Jupyter NOteDOOK SEIVENiuiinii e 18
USING @ DLAMI Lottt ettt et et e et e et et et e et ea e e et en e e eataens 22
(@eTa o I B]I Y | PSP PP 22
Introduction to the Deep Learning AMI with Condacccveuiiiiiiiiiiiiiiiei e 22
LOg in t0 YOUr DLAMI Lottt et e et et et e e e eaaen 22
Start the TensorFlow ENVIFONMENtc.ivuiiniiiiiii ettt e e e 23
Switch to the PyTorch Python 3 ENVIrONMENtc..euniiniiiiiiiiiiic e e e 24
Switch to the MXNet Python 3 ENVIrONMENtccuiiuiiniiiiiiir et eaes 24
RemMOVING ENVIFONMENTSouiiiiiiiiiiii ettt et et e s e e e et e e e e ene e eneaaens 25
BASE DLAMI ..ttt ettt e ettt et a et et e e e e e et 25
Using the Deep Learning Base AMIcuuiuiiiniiiiiiiii ettt et e et et eae e eaeeneennenns 25
CoNfigUIING CUDA VEISIONS ..evuiiniiitiieiie ettt et eeieti et et etnsetneetneanseanseansesnsesnserasesnsenneennns 26
JUPYLEr NOTEDOOKS .. e et ettt et et e e e e e e e e e 26
Navigating the Installed TUtOralsccuvuniiniiiii e 26
Switching Environments wWith JUPYLErcoiiiiiiii e 27
L1 o] g T | PP TP PR PRTNN 27
TO MINUEE TULOTIALS . eniniiiei ettt ettt ettt et et et ea et ea et enennenerennannens 27
ACtivating FramEWOTKScuniuiiiiie ittt ettt e e et s et e et ea s e en e enseneeaseneeneneees 28

Deep Learning AMI Developer Guide

Debugging and Visualizationc.eueeuiiiiiniiie et e e e ee et s ee e e e e e ana 41
Distributed Training c.uen it e e ettt et et e e et et et e e et e e e aaanaans 45

o T Aol o= o g Tl ¥ =T o T PR 62

GPU Monitoring and Optimizationccuuiiiiiiiii et 74

AWS INFOIENTIA ..eeniiie ittt ettt ettt e e et e et e et e et e ebeeaeen e eneeaneeanns 82

Graviton DLAMI ... et ettt e et e et e e et e e e eanes 97

HABana DLAMI ...ttt et et et e et e et e ea e eb et et et e e b e ebeeaeenns 104

L8] =T =T o [l < T PP PTT P PP 105

Using Frameworks With ONNXiiniiii ettt e e e e e eenne 109

MOAEL SEIVING ettt ettt ettt ettt e et et e e et e ean e et e et e ebeeneetneeaneeenns 117

UPGrading YOUr DLAMIuiiiii ittt ettt et et et et et e et e et e et e et e ea e eaneeaneeaaeenaeenneens 124
DLAMI UPQGIade ...ceneineiieii ettt ettt ettt et e e e et e et et e e et e ea et et e et e et e et e et eeneaneeeneenns 124
SOFEWANE UPAAtES ...eeeiiei ittt e et e et e et e et e et et e e e eaa e ebaeebeenaennas 124
SY=Tel1] 11 4 PP P P PRPRPPRNt 126
Data ProteCHIONenieiiii ettt ettt ettt et et et et e e e e b eaeaa e 126
Identity and ACCESS MaNAgEMIENTuiiniinii ittt et et et et et et et et et eaneaeaneanaanenns 127
Authenticating With [dentitiesoooiiiiiiiii e e 127

Managing Access USING POLICIESccunieniiniieii et e e e e e e 129

IAM With AMAzon EMR ...ttt et et e et e et et e e et e e eaaeeaaae 131

Logging and MONITOIINGevniiniiiiiiii ettt e et et e e e e et e e ean e e eaneaneaneeneaneaneaneanes 131
USQGE TraCKING «.eneeneeie ittt ettt ettt et et e e et et et e et e et e et eea e tneeaneenaeeraeenaaannns 131
ComPpliance Validationiee i ettt e et e et a e et a e aas 131
RESILIEINCE ... ettt ettt ettt e e et et et et et et et ettt et e e e e eans 132
INFrastrUuCTUre SECUIILY ...ceuie i ettt et e et et et e et e et e eneeneannees 132
Related INFOrMAation ... ettt et e e e et e e e e e e e e e e eaeenns 133
FOPUMS o ettt e et ea st e a e s e et e e eaeaaaens 133

2] oY PPN 133

YO PP PPPP 133
Release NOLES FOr DLAMI ...ttt ettt et e et et e e et et e et e et e et e enaeeneeaneeeneenns 136
SiNGLe-framEWOIrK DLAMI ...ttt et et et et et e e e e et e e et e e et e e e e eanaanaanas 136
MULti-frameWOrk DLAMIcuuiiii ettt ettt et et e e e et e et e et e ea e eb e e eeneeaneeeneeanas 137

GPU DLAMI L.ttt ettt et e et et e et et et et et e et e et e et e ea e en e en e an e eaneeaaaeas 137
HADaNa DLAMI ...t ettt et et et et et e et e et e et et et et et ea e eaeeneanns 137

BASE DLAMI ...ttt ettt et ettt et et et e eh e eh et et et et eaeeanae 138

D] I AN Y | e =T o] cYer= Yl o) I g o [T PPN 139
(D Te Yol N3 =] o fll o 11 o] o VPP P PP 141
AWS GLOSSAIY ..eneineeie ettt ettt ettt ettt e et et e et e et et et et et ettt e ea et et e et e eh e e et et et eheeneanns 144

Deep Learning AMI Developer Guide
About This Guide

What Is the AWS Deep Learning AMI?

Welcome to the User Guide for the AWS Deep Learning AMI.

The AWS Deep Learning AMI (DLAMI) is your one-stop shop for deep learning in the cloud. This
customized machine instance is available in most Amazon EC2 regions for a variety of instance types,
from a small CPU-only instance to the latest high-powered multi-GPU instances. It comes preconfigured
with NVIDIA CUDA and NVIDIA cuDNN, as well as the latest releases of the most popular deep learning
frameworks.

About This Guide

This guide will help you launch and use the DLAMIL. It covers several use cases that are common for
deep learning, for both training and inference. Choosing the right AMI for your purpose and the kind

of instances you may prefer is also covered. The DLAMI comes with several tutorials for each of the
frameworks. It also has tutorials on distributed training, debugging, using AWS Inferentia, and other key
concepts. You will find instructions on how to configure Jupyter to run the tutorials in your browser.

Prerequisites

You should be familiar with command line tools and basic Python to successfully run the DLAMI.
Tutorials on how to use each framework are provided by the frameworks themselves, however, this guide
can show you how to activate each one and find the appropriate tutorials to get started.

Example DLAMI Uses

Learning about deep learning: The DLAMI is a great choice for learning or teaching machine learning
and deep learning frameworks. It takes the headache away from troubleshooting the installations of
each framework and getting them to play along on the same computer. The DLAMI comes with a Jupyter
notebook and makes it easy to run the tutorials provided by the frameworks for people new to machine
learning and deep learning.

App development: If you're an app developer and are interested in using deep learning to make your
apps utilize the latest advances in Al, the DLAMI is the perfect test bed for you. Each framework comes
with tutorials on how to get started with deep learning, and many of them have model zoos that make
it easy to try out deep learning without having to create the neural networks yourself or to do any of
the model training. Some examples show you how to build an image detection application in just a few
minutes, or how to build a speech recognition app for your own chatbot.

Machine learning and data analytics: If you're a data scientist or interested in processing your data

with deep learning, you'll find that many of the frameworks have support for R and Spark. You will find
tutorials on how to do simple regressions, all the way up to building scalable data processing systems for
personalization and predictions systems.

Research: If you're a researcher and want to try out a new framework, test out a new model, or train
new models, the DLAMI and AWS capabilities for scale can alleviate the pain of tedious installations and
management of multiple training nodes. You can use EMR and AWS CloudFormation templates to easily
launch a full cluster of instances that are ready to go for scalable training.

Note
While your initial choice might be to upgrade your instance type up to a larger instance with
more GPUs (up to 8), you can also scale horizontally by creating a cluster of DLAMI instances. To

https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cudnn

Deep Learning AMI Developer Guide
Features

quickly set up a cluster, you can use the predefined AWS CloudFormation template. Check out
Related Information (p. 133) for more information on cluster builds.

Features of the DLAMI

Preinstalled Frameworks

There are currently two primary flavors of the DLAMI with other variations related to the operating
system (OS) and software versions:

« Deep Learning AMI with Conda (p. 6) - frameworks installed separately using conda packages and
separate Python environments

« Deep Learning Base AMI (p. 5) - no frameworks installed; only NVIDIA CUDA and other
dependencies

The Deep Learning AMI with Conda uses Anaconda environments to isolate each framework, so you can
switch between them at will and not worry about their dependencies conflicting.

For more information on selecting the best DLAMI for you, take a look at .
This is the full list of supported frameworks by Deep Learning AMI with Conda:

« Apache MXNet (Incubating)
« PyTorch
« TensorFlow 2

Note

We no longer include the CNTK, Caffe, Caffe2, Theano, Chainer, or Keras Conda environments
in the AWS Deep Learning AMI starting with the v28 release. Previous releases of the AWS Deep
Learning AMI that contain these environments will continue to be available. However, we will
only provide updates to these environments if there are security fixes published by the open
source community for these frameworks.

Preinstalled GPU Software

Even if you use a CPU-only instance, the DLAMI will have NVIDIA CUDA and NVIDIA cuDNN. The installed
software is the same regardless of the instance type. Keep in mind that GPU-specific tools only work on
an instance that has at least one GPU. More information on this is covered in the Selecting the Instance
Type for DLAMI (p. 7).

« Latest version of NVIDIA CUDA
« Latest version of NVIDIA cuDNN

« Older versions of CUDA are available as well. See the CUDA Installations and Framework
Bindings (p. 5) for more information.

Model Serving and Visualization

Deep Learning AMI with Conda comes preinstalled with two kinds of model servers, one for MXNet and
one for TensorFlow, as well as TensorBoard, for model visualizations.

« Model Server for Apache MXNet (MMS) (p. 118)

https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cudnn

Deep Learning AMI Developer Guide
Model Serving and Visualization

« TensorFlow Serving (p. 120)
« TensorBoard (p. 43)

Deep Learning AMI Developer Guide
How to Get Started with the DLAMI

Getting Started

How to Get Started with the DLAMI

This guide includes tips about picking the DLAMI that's right for you, selecting an instance type that fits
your use case and budget, and Related Information (p. 133) that describes custom setups that may be
of interest.

If you're new to using AWS or using Amazon EC2, start with the Deep Learning AMI with Conda (p. 6).
If you're familiar with Amazon EC2 and other AWS services like Amazon EMR, Amazon EFS, or Amazon
S3, and are interested in integrating those services for projects that need distributed training or
inference, then check out Related Information (p. 133) to see if one fits your use case.

We recommend that you check out Choosing Your DLAMI (p. 4) to get an idea of which instance type
might be best for your application.

Another option is this quick tutorial: Launch a AWS Deep Learning AMI (in 10 minutes).
Next Step

Choosing Your DLAMI (p. 4)

Choosing Your DLAMI

We offer a range of DLAMI options. To help you select the correct DLAMI for your use case, we group
images by the hardware type or functionality for which they were developed. Our top level groupings
are:

« DLAMI Type: CUDA versus Base versus Single-Framework versus Multi-Framework (Conda DLAMI)
« Compute Architecture: x86-based versus Arm-based AWS Graviton
» Processor Type: GPU versus CPU versus Inferentia versus Habana

« SDK: CUDA versus AWS Neuron versus SynapsesAl
« 0OS: Amazon Linux versus Ubuntu

The rest of the topics in this guide help further inform you and go into more details.

Topics
« CUDA Installations and Framework Bindings (p. 5)
« Deep Learning Base AMI (p. 5)
« Deep Learning AMI with Conda (p. 6)
« DLAMI CPU Architecture Options (p. 7)
o DLAMI Operating System Options (p. 7)

Next Up

Deep Learning AMI with Conda (p. 6)

https://aws.amazon.com/getting-started/tutorials/get-started-dlami/
http://aws.amazon.com/ec2/graviton/
https://docs.aws.amazon.com/dlami/latest/devguide/gpu
https://docs.aws.amazon.com/dlami/latest/devguide/cpu
https://docs.aws.amazon.com/dlami/latest/devguide/inferentia
https://docs.aws.amazon.com/dlami/latest/devguide/habana
https://developer.nvidia.com/cuda-toolkit
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-intro/get-started.html
https://github.com/HabanaAI/Setup_and_Install

Deep Learning AMI Developer Guide
CUDA Installations and Framework Bindings

CUDA Installations and Framework Bindings

While deep learning is all pretty cutting edge, each framework offers "stable" versions. These stable
versions may not work with the latest CUDA or cuDNN implementation and features. Your use case and
the features you require can help you choose a framework. If you are not sure, then use the latest Deep
Learning AMI with Conda. It has official pip binaries for all frameworks with CUDA 10, using whichever
most recent version is supported by each framework. If you want the latest versions, and to customize
your deep learning environment, use the Deep Learning Base AMI.

Look at our guide on Stable Versus Release Candidates (p. 6) for further guidance.

Choose a DLAMI with CUDA

The Deep Learning Base AMI (p. 5) has all available CUDA 11 series, including 11.0, 11.1, and 11.2.

The Deep Learning AMI with Conda (p. 6) has all available CUDA 11 series, including 11.0, 11.1, and
11.2.

Note

We no longer include the CNTK, Caffe, Caffe2, Theano, Chainer, or Keras Conda environments
in the AWS Deep Learning AMI starting with the v28 release. Previous releases of the AWS
Deep Learning AMI that contain these environments continue to be available. However, we only
provide updates to these environments if there are security fixes published by the open-source
community for these frameworks.

For specific framework version numbers, see the Release Notes for DLAMI (p. 136)
Choose this DLAMI type or learn more about the different DLAMIs with the Next Up option.

Choose one of the CUDA versions and review the full list of DLAMIs that have that version in the
Appendix, or learn more about the different DLAMIs with the Next Up option.

Next Up

Deep Learning Base AMI (p. 5)

Related Topics

« For instructions on switching between CUDA versions, refer to the Using the Deep Learning Base
AMI (p. 25) tutorial.

Deep Learning Base AMI

The Deep Learning Base AMI is like an empty canvas for deep learning. It comes with everything you
need up until the point of the installation of a particular framework, and has your choice of CUDA
versions.

Why to Choose the Base DLAMI

This AMI group is useful for project contributors who want to fork a deep learning project and build the
latest. It's for someone who wants to roll their own environment with the confidence that the latest
NVIDIA software is installed and working so they can focus on picking which frameworks and versions
they want to install.

Choose this DLAMI type or learn more about the different DLAMIs with the Next Up option.

Next Up

Deep Learning AMI Developer Guide
Conda

DLAMI with Conda

Related Topics

» Using the Deep Learning Base AMI

Deep Learning AMI with Conda

The Conda DLAMI uses Anaconda virtual environments. These environments are configured to keep the
different framework installations separate and streamline switching between frameworks. This is great
for learning and experimenting with all of the frameworks the DLAMI has to offer. Most users find that
the new Deep Learning AMI with Conda is perfect for them.

These AMls are the primary DLAMIs. They are updated often with the latest versions from the
frameworks, and have the latest GPU drivers and software. They are generally referred to as the AWS
Deep Learning AMI in most documents.

o The Ubuntu 18.04 DLAMI has the following frameworks: Apache MXNet (Incubating), PyTorch, and
TensorFlow 2.

« The Amazon Linux 2 DLAMI has the following frameworks: Apache MXNet (Incubating), PyTorch, and
TensorFlow 2.

Note

We no longer include the CNTK, Caffe, Caffe2, Theano, Chainer, and Keras Conda environments
in the AWS Deep Learning AMI starting with the v28 release. Previous releases of the AWS
Deep Learning AMI that contain these environments continue to be available. However, we only
provide updates to these environments if there are security fixes published by the open-source
community for these frameworks.

Stable Versus Release Candidates

The Conda AMIs use optimized binaries of the most recent formal releases from each framework.
Release candidates and experimental features are not to be expected. The optimizations depend on the
framework's support for acceleration technologies like Intel's MKL DNN, which speeds up training and
inference on C5 and C4 CPU instance types. The binaries are also compiled to support advanced Intel
instruction sets including but not limited to AVX, AVX-2, SSE4.1, and SSE4.2. These accelerate vector and
floating point operations on Intel CPU architectures. Additionally, for GPU instance types, the CUDA and
cuDNN are updated with whichever version the latest official release supports.

The Deep Learning AMI with Conda automatically installs the most optimized version of the framework
for your Amazon EC2 instance upon the framework's first activation. For more information, refer to Using
the Deep Learning AMI with Conda (p. 22).

If you want to install from source, using custom or optimized build options, the Deep Learning Base
AMI (p. 5)s might be a better option for you.

Python 2 Deprecation

The Python open source community has officially ended support for Python 2 on January 1, 2020. The
TensorFlow and PyTorch community have announced that the TensorFlow 2.1 and PyTorch 1.4 releases
are the last ones supporting Python 2. Previous releases of the DLAMI (v26, v25, etc) that contain Python
2 Conda environments continue to be available. However, we provide updates to the Python 2 Conda
environments on previously published DLAMI versions only if there are security fixes published by the
open-source community for those versions. DLAMI releases with the latest versions of the TensorFlow
and PyTorch frameworks do not contain the Python 2 Conda environments.

https://docs.aws.amazon.com/dlami/latest/devguide/overview-conda.html
https://docs.aws.amazon.com/dlami/latest/devguide/tutorial-base.html

Deep Learning AMI Developer Guide
Architecture

CUDA Support

Specific CUDA version numbers can be found in the GPU DLAMI release notes.
Next Up

DLAMI CPU Architecture Options (p. 7)

Related Topics

« For a tutorial on using a Deep Learning AMI with Conda, see the Using the Deep Learning AMI with
Conda (p. 22) tutorial.

DLAMI CPU Architecture Options

AWS Deep Learning AMiIs are offered with either x86-based or Arm-based AWS Graviton2 CPU
architectures.

Choose one of the Graviton GPU DLAMIs to work with an Arm-based CPU architecture. All other GPU
DLAM s are currently x86-based.

o AWS Deep Learning AMI Graviton GPU CUDA 11.4 (Ubuntu 20.04)
o AWS Deep Learning AMI Graviton GPU TensorFlow 2.6 (Ubuntu 20.04)
« AWS Deep Learning AMI Graviton GPU PyTorch 1.10 (Ubuntu 20.04)

For information about getting started with the Graviton GPU DLAMI, see The Graviton DLAMI (p. 97).
For more details on available instance types, see Selecting the Instance Type for DLAMI (p. 7).
Next Up

DLAMI Operating System Options (p. 7)

DLAMI Operating System Options

DLAMIs are offered in the following operating systems.

« Amazon Linux 2
« Ubuntu 20.04
o Ubuntu 18.04

Older versions of operating systems are available on deprecated DLAMIs. For more information on
DLAMI deprecation, see Deprecations for DLAMI

Before choosing a DLAMI, assess what instance type you need and identify your AWS Region.
Next Up

Selecting the Instance Type for DLAMI (p. 7)

Selecting the Instance Type for DLAMI

See the AWS Deep Learning AMI Catalog for recommended Amazon EC2 instance families that are
compatible with specific DLAMIs.

https://docs.aws.amazon.com/dlami/latest/devguide/appendix-ami-release-notes.html#appendix-ami-release-notes-gpu
http://aws.amazon.com/ec2/graviton/
http://aws.amazon.com/releasenotes/aws-deep-learning-ami-graviton-gpu-cuda-11-4-ubuntu-20-04/
http://aws.amazon.com/releasenotes/aws-deep-learning-ami-graviton-gpu-tensorflow-2-6-ubuntu-20-04/
http://aws.amazon.com/releasenotes/deep-learning-ami-graviton-gpu-pytorch-1-10-ubuntu-20-04/
https://docs.aws.amazon.com/dlami/latest/devguide/deprecations.html
http://aws.amazon.com/releasenotes/aws-deep-learning-ami-catalog/

Deep Learning AMI Developer Guide
Pricing

More generally, consider the following when selecting an instance type for a DLAMI.

« If you're new to deep learning, then an instance with a single GPU might suit your needs.
« If you're budget conscious, then you can use CPU-only instances.

« If you're looking to optimize high performance and cost efficiency for deep learning model inference,
then you can use instances with AWS Inferentia chips.

« If you're looking to optimize high performance and cost efficiency for deep learning model training,
then you can use instances with Habana accelerators.

« If you're looking for a high performance GPU instance with an Arm-based CPU architecture, then you
can use the G5g instance type.

« If you're interested in running a pretrained model for inference and predictions, then you can attach an
Amazon Elastic Inference to your Amazon EC2 instance. Amazon Elastic Inference gives you access to
an accelerator with a fraction of a GPU.

« For high-volume inference services, a single CPU instance with a lot of memory, or a cluster of such
instances, might be a better solution.

« If you're using a large model with a lot of data or a high batch size, then you need a larger instance
with more memory. You can also distribute your model to a cluster of GPUs. You may find that using
an instance with less memory is a better solution for you if you decrease your batch size. This may
impact your accuracy and training speed.

« If you're interested in running machine learning applications using NVIDIA Collective Communications
Library (NCCL) requiring high levels of inter-node communications at scale, you might want to use
Elastic Fabric Adapter (EFA).

For more detail on instances, see EC2 Instance Types.

The following topics provide information about instance type considerations.

Important

The Deep Learning AMls include drivers, software, or toolkits developed, owned, or provided
by NVIDIA Corporation. You agree to use these NVIDIA drivers, software, or toolkits only on
Amazon EC2 instances that include NVIDIA hardware.

Topics
« Pricing for the DLAMI (p. 8)
« DLAMI Region Availability (p. 9)
o Recommended GPU Instances (p. 9)
o Recommended CPU Instances (p. 9)
o Recommended Inferentia Instances (p. 10)
o Recommended Habana Instances (p. 10)

Pricing for the DLAMI

The deep learning frameworks included in the DLAMI are free, and each has its own open-source licenses.
Although the software included in the DLAMI is free, you still have to pay for the underlying Amazon EC2
instance hardware.

Some Amazon EC2 instance types are labeled as free. It is possible to run the DLAMI on one of these free
instances. This means that using the DLAMI is entirely free when you only use that instance's capacity.

If you need a more powerful instance with more CPU cores, more disk space, more RAM, or one or more
GPUs, then you need an instance that is not in the free-tier instance class.

For more information about instance selection and pricing, see Amazon EC2 pricing.

https://docs.aws.amazon.com/elastic-inference/latest/developerguide/what-is-ei.html
https://docs.aws.amazon.com/dlami/latest/devguide/tutorial-efa-launching.html
https://docs.aws.amazon.com/dlami/latest/devguide/tutorial-efa-launching.html
https://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/pricing/

Deep Learning AMI Developer Guide
Region Availability

DLAMI Region Availability

Each Region supports a different range of instance types and often an instance type has a slightly
different cost in different Regions. DLAMIs are not available in every Region, but it is possible to copy
DLAMIs to the Region of your choice. See Copying an AMI for more information. Note the Region
selection list and be sure you pick a Region that's close to you or your customers. If you plan to use more
than one DLAMI and potentially create a cluster, be sure to use the same Region for all of nodes in the
cluster.

For a more info on Regions, visit EC2 Regions.
Next Up

Recommended GPU Instances (p. 9)

Recommended GPU Instances

We recommend a GPU instance for most deep learning purposes. Training new models is faster on a GPU
instance than a CPU instance. You can scale sub-linearly when you have multi-GPU instances or if you
use distributed training across many instances with GPUs. To set up distributed training, see Distributed
Training (p. 45).

The following instance types support the DLAMI. For information about GPU instance type options and
their uses, see EC2 Instance Types and select Accelerated Computing.

'INI:):gize of your model should be a factor in selecting an instance. If your model exceeds
an instance's available RAM, select a different instance type with enough memory for your
application.

« Amazon EC2 P3 Instances have up to 8 NVIDIA Tesla V100 GPUs.

o Amazon EC2 P4 Instances have up to 8 NVIDIA Tesla A100 GPUs.

o Amazon EC2 G3 Instances have up to 4 NVIDIA Tesla M60 GPUs.

« Amazon EC2 G4 Instances have up to 4 NVIDIA T4 GPUs.

« Amazon EC2 G5 Instances have up to 8 NVIDIA A10G GPUs.

« Amazon EC2 G5g Instances have Arm-based AWS Graviton2 processors.

DLAMI instances provide tooling to monitor and optimize your GPU processes. For more information
about monitoring your GPU processes, see GPU Monitoring and Optimization (p. 74).

For specific tutorials on working with G5g instances, see The Graviton DLAMI (p. 97).
Next Up

Recommended CPU Instances (p. 9)

Recommended CPU Instances

Whether you're on a budget, learning about deep learning, or just want to run a prediction service,
you have many affordable options in the CPU category. Some frameworks take advantage of Intel's
MKL DNN, which speeds up training and inference on C5 (not available in all Regions), C4, and C3 CPU
instance types. For information about CPU instance types, see EC2 Instance Types and select Compute
Optimized.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/CopyingAMIs.html
https://docs.aws.amazon.com/general/latest/gr/rande.html#ec2_region
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/p3/
https://aws.amazon.com/ec2/instance-types/p4/
https://aws.amazon.com/ec2/instance-types/g3/
https://aws.amazon.com/ec2/instance-types/g4/
https://aws.amazon.com/ec2/instance-types/g5/
http://aws.amazon.com/ec2/instance-types/g5g/
http://aws.amazon.com/ec2/graviton/
https://aws.amazon.com/ec2/instance-types/

Deep Learning AMI Developer Guide
Inferentia

Note

The size of your model should be a factor in selecting an instance. If your model exceeds
an instance's available RAM, select a different instance type with enough memory for your
application.

« Amazon EC2 C5 Instances have up to 72 Intel vCPUs. C5 instances excel at scientific modeling, batch
processing, distributed analytics, high-performance computing (HPC), and machine and deep learning
inference.

« Amazon EC2 C4 Instances have up to 36 Intel vCPUs.

Next Up

Recommended Inferentia Instances (p. 10)

Recommended Inferentia Instances

AWS Inferentia instances are designed to provide high performance and cost efficiency for deep learning
model inference workloads. Specifically, Inf1 instance types use AWS Inferentia chips and the AWS
Neuron SDK, which is integrated with popular machine learning frameworks such as TensorFlow,
PyTorch, and MXNet.

Customers can use Inf1 instances to run large scale machine learning inference applications such as
search, recommendation engines, computer vision, speech recognition, natural language processing,
personalization, and fraud detection, at the lowest cost in the cloud.

Note

The size of your model should be a factor in selecting an instance. If your model exceeds
an instance's available RAM, select a different instance type with enough memory for your
application.

« Amazon EC2 Inf1 Instances have up to up to 16 AWS Inferentia chips and 100 Gbps of networking
throughput.

For more information about getting started with AWS Inferentia DLAMIs, see The AWS Inferentia Chip
With DLAMI (p. 82).

Next Up

Recommended Habana Instances (p. 10)

Recommended Habana Instances

Instances with Habana accelerators are designed to provide high performance and cost efficiency for
deep learning model training workloads. Specifically, DL1 instance types use Habana Gaudi accelerators
from Habana Labs, an Intel company. DL1 instances are ideal for training machine learning models used
in applications such as natural language processing, object detection and classification, recommendation
engines, and autonomous vehicle perception.

Instances with Habana accelerators are configured with Habana SynapseAl software and pre-integrated
with popular machine learning frameworks such as TensorFlow and PyTorch. If you are looking for an
optimal combination of performance and price for training deep learning models, consider instances
with Habana accelerators for the lowest cost to train.

Note

The size of your model should be a factor in selecting an instance. If your model exceeds
an instance's available RAM, select a different instance type with enough memory for your
application.

10

https://aws.amazon.com/ec2/instance-types/c5/
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/
https://aws.amazon.com/ec2/instance-types/inf1/

Deep Learning AMI Developer Guide
Habana

o Amazon EC2 DL1 Instances have up to eight Habana Gaudi accelerators, 256GB of accelerator memory,
4TB of local NVMe storage, and 400 Gbps of networking throughput.

For more information about getting started with Habana DLAMIs, see The Habana DLAMI (p. 104).

11

https://aws.amazon.com/ec2/instance-types/dl1/

Deep Learning AMI Developer Guide
Step 1: Launch a DLAMI

Launching and Configuring a DLAMI

If you're here you should already have a good idea of which AMI you want to launch. If not, choose
a DLAMI using the AMI selection guidelines found throughout or use the full listing of AMiIs in the
Appendix section, .

You should also know which instance type and region you're going to choose. If not, browse Selecting
the Instance Type for DLAMI (p. 7).

Note
We will use p2.xlarge as the default instance type in the examples. Just replace this with
whichever instance type you have in mind.

Important
If you plan to use Elastic Inference, you have Elastic Inference Setup that must be completed
prior to launching your DLAMI.

Topics
o Step 1: Launch a DLAMI (p. 12)
o DLAMIID (p. 13)
« EC2 Console (p. 13)
« Marketplace Search (p. 14)
« Step 2: Connect to the DLAMI (p. 14)
« Step 3: Secure Your DLAMI Instance (p. 14)
« Step 4: Test Your DLAMI (p. 15)
o Clean Up (p. 15)
» Set up a Jupyter Notebook Server (p. 15)

Step 1: Launch a DLAMI

Note
For this walkthrough, we might make references specific to the Deep Learning AMI (Ubuntu
16.04). Even if you select a different DLAMI, you should be able to follow this guide.

Launch the instance
1. You have a couple routes for launching DLAMI. Choose one:

« EC2 Console (p. 13)
« Marketplace Search (p. 14)

Tip

CLI Option: If you choose to spin up a DLAMI using the AWS CLI, you will need the AMI's ID,
the region and instance type, and your security token information. Be sure you have your
AMI and instance IDs ready. If you haven't set up the AWS CLI yet, do that first using the
guide for Installing the AWS Command Line Interface.

2. After you have completed the steps of one of those options, wait for the instance to be ready. This
usually takes only a few minutes. You can verify the status of the instance in the EC2 Console.

12

https://docs.aws.amazon.com/elastic-inference/latest/developerguide/setting-up-ei.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://console.aws.amazon.com/ec2

Deep Learning AMI Developer Guide
DLAMI ID

DLAMI ID

Find the ID for the DLAMI of your choice with the AWS Command Line Interface (AWS CLI). If you do not
already have the AWS CLlI installed, see Getting started with the AWS CLI.

1. Make sure that your AWS credentials are configured.

aws configure

2. Choose a DLAMI and check the details in the release notes. Use the following command to get the ID
for the DLAMI of your choice:

aws ec2 describe-images --region us-east-1 --owners amazon \

--filters 'Name=name,Values=Deep Learning AMI (Ubuntu 18.04) Version ??7.7?'
'Name=state,Values=available' \

--query 'reverse(sort_by(Images, &CreationDate))[:1].ImageId' --output text

Note
You can specify a release version for a given framework or get the latest release by
replacing the version number with a question mark.

3. The output should look similar to the following:

ami-094c089c38ed069£f2

Copy this DLAMI ID and press q to exit the prompt.

Next Step

EC2 Console (p. 13)

EC2 Console

Note
To launch an instance with Elastic Fabric Adapter (EFA), refer to these steps.

1. Open the EC2 Console.

2. Note your current region in the top-most navigation. If this isn't your desired AWS Region, change
this option before proceeding. For more information, see EC2 Regions.

3. Choose Launch Instance.
4, Search for the desired instance by name:

a. Select the DLAMI that is right for you. Find the DLAMI name as listed in the release notes or find
the DLAMI ID using the AWS CLI.

b. Choose Community AMils.

i. To view a selection of the latest DLAMIs, choose Quick Start.

ii. Choose AWS Marketplace to browse additional DLAMIs. Only a subset of available DLAMIs
will be listed here.

c. Enter the DLAMI name or search the DLAMI ID. Browse the options and then click Select on your
choice.

5. Review the details, and then choose Continue.
6. Choose an instance type. For recommendations on DLAMI instance types, see Instance Selection.

13

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started
https://docs.aws.amazon.com/dlami/latest/devguide/appendix-ami-release-notes
https://docs.aws.amazon.com/dlami/latest/devguide/tutorial-efa-launching.html
https://console.aws.amazon.com/ec2
https://docs.aws.amazon.com/general/latest/gr/rande.html#ec2_region
https://docs.aws.amazon.com/dlami/latest/devguide/appendix-ami-release-notes
https://docs.aws.amazon.com/dlami/latest/devguide/find-dlami-id
https://docs.aws.amazon.com/dlami/latest/devguide/instance-select.html

Deep Learning AMI Developer Guide
Marketplace Search

Note
If you want to use Elastic Inference (El), click Configure Instance Details, select Add an
Amazon El accelerator, then select the size of the Amazon El accelerator.

7. Choose Review and Launch.
8. Review the details and pricing. Choose Launch.

Tip
Check out Get Started with Deep Learning Using the AWS Deep Learning AMI for a walk-through
with screenshots!

Next Step

Step 2: Connect to the DLAMI (p. 14)

Marketplace Search

Browse the AWS Marketplace and search for AWS Deep Learning AMI.
Browse the options, and then click Select on your choice.
Review the details, and then choose Continue.

PUunN=

Review the details and make note of the Region. If this isn't your desired AWS Region, change this
option before proceeding. For more information, see EC2 Regions.

Choose an instance type.

Choose a key pair, use your default one, or create a new one.
Review the details and pricing.

Choose Launch with 1-Click.

© N O W!

Next Step

Step 2: Connect to the DLAMI (p. 14)

Step 2: Connect to the DLAMI

Connect to the DLAMI that you launched from a client (Windows, MacQS, or Linux). For more
information, see Connect to Your Linux Instance in the Amazon EC2 User Guide for Linux Instances.

Keep a copy of the SSH login command handy if you want to do the Jupyter setup after logging in. You
will use a variation of it to connect to the Jupyter webpage.

Next Step

Step 3: Secure Your DLAMI Instance (p. 14)

Step 3: Secure Your DLAMI Instance

Always keep your operating system and other installed software up to date by applying patches and
updates as soon as they become available.

If you are using Amazon Linux or Ubuntu, when you login to your DLAMI, you are notified if updates are
available and see instructions for updating. For further information on Amazon Linux maintenance, see
Updating Instance Software. For Ubuntu instances, refer to the official Ubuntu documentation.

14

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-inference.html
https://aws.amazon.com/blogs/ai/get-started-with-deep-learning-using-the-aws-deep-learning-ami/
https://docs.aws.amazon.com/general/latest/gr/rande.html#ec2_region
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/install-updates.html
https://help.ubuntu.com/

Deep Learning AMI Developer Guide
Step 4: Test Your DLAMI

On Windows, check Windows Update regularly for software and security updates. If you prefer, have
updates applied automatically.

Important
For information about the Meltdown and Spectre vulnerabilities and how to patch your
operating system to address them, see Security Bulletin AWS-2018-013.

Step 4. Test Your DLAMI

Depending on your DLAMI version, you have different testing options:

« Deep Learning AMI with Conda (p. 6) — go to Using the Deep Learning AMI with Conda (p. 22).
» Deep Learning Base AMI (p. 5) — refer to your desired framework's installation documentation.

You can also create a Jupyter notebook, try out tutorials, or start coding in Python. For more
information, see Set up a Jupyter Notebook Server (p. 15).

Clean Up

When you no longer need the DLAMI, you can stop it or terminate it to avoid incurring continuing
charges. Stopping an instance will keep it around so you can resume it later. Your configurations, files,
and other non-volatile information is being stored in a volume on Amazon S3. You will be charged the
small S3 fee to retain the volume while the instance is stopped, but you will no longer be charged for
the compute resources while it is in the stopped state. When your start the instance again, it will mount
that volume and your data will be there. If you terminate an instance, it is gone, and you cannot start

it again. Your data actually still resides on S3, so to prevent any further charges you need to delete the
volume as well. For more instructions, see Terminate Your Instance in the Amazon EC2 User Guide for
Linux Instances.

Set up a Jupyter Notebook Server

A Jupyter notebook server enables you to create and run Jupyter notebooks from your DLAMI instance.
With Jupyter notebooks, you can conduct machine learning (ML) experiments for training and inference
while using the AWS infrastructure and accessing packages built into the DLAMI. For more information
about Jupyter notebooks, see the Jupyter Notebook documentation.

To set up a Jupyter notebook server, you must:

« Configure the Jupyter notebook server on your Amazon EC2 DLAMI instance.

« Configure your client so that you can connect to the Jupyter notebook server. We provide
configuration instructions for Windows, macOS, and Linux clients.

« Test the setup by logging in to the Jupyter notebook server.

To complete the steps to set up a Jupyter, follow the instructions in the following topics. Once you've
set up a Jupyter notebook server, see Running Jupyter Notebook Tutorials (p. 26) for information on
running the example notebooks that ship in the DLAMI.

Topics
« Secure Your Jupyter Server (p. 16)
« Start the Jupyter notebook server (p. 16)
« Configure the Client to Connect to the Jupyter Server (p. 17)

15

https://aws.amazon.com/security/security-bulletins/AWS-2018-013/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html
https://jupyter-notebook.readthedocs.io/en/latest/notebook.html

Deep Learning AMI Developer Guide
Secure Jupyter

« Test by Logging in to the Jupyter notebook server (p. 18)

Secure Your Jupyter Server

Here we set up Jupyter with SSL and a custom password.

Connect to the Amazon EC2 instance, and then complete the following procedure.
Configure the Jupyter server

1. Jupyter provides a password utility. Run the following command and enter your preferred password
at the prompt.

$ jupyter notebook password

The output will look something like this:

Enter password:

Verify password:

[NotebookPasswordApp] Wrote hashed password to /home/ubuntu/.jupyter/
jupyter_notebook_ config.json

2. Create a self-signed SSL certificate. Follow the prompts to fill out your locality as you see fit. You
must enter . if you wish to leave a prompt blank. Your answers will not impact the functionality of
the certificate.

cd ~

mkdir ssl

cd ssl

openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout mykey.key -out mycert.pem

® v u W

Note

You might be interested in creating a regular SSL certificate that is third party signed and does
not cause the browser to give you a security warning. This process is much more involved. Visit
Jupyter's documention for more information.

Next Step

Start the Jupyter notebook server (p. 16)

Start the Jupyter notebook server

Now you can fire up the Jupyter server by logging in to the instance and running the following command
that uses the SSL certificate you created in the previous step.

$ jupyter notebook --certfile=~/ssl/mycert.pem --keyfile ~/ssl/mykey.key

With the server started, you can now connect to it via an SSH tunnel from your client computer. When
the server runs, you will see some output from Jupyter confirming that the server is running. At this
point, ignore the callout that you can access the server via a localhost URL, because that won't work until
you create the tunnel.

Note

Jupyter will handle switching environments for you when you switch frameworks using
the Jupyter web interface. More info on this can be found in Switching Environments with
Jupyter (p. 27).

16

https://jupyter-notebook.readthedocs.io/en/stable/public_server.html#using-let-s-encrypt

Deep Learning AMI Developer Guide
Configure Client

Next Step

Configure the Client to Connect to the Jupyter Server (p. 17)

Configure the Client to Connect to the Jupyter Server

After configuring your client to connect to the Jupyter notebook server, you can create and access
notebooks on the server in your workspace and run your deep learning code on the server.

For configuration information, choose one of the following links.

Topics
« Configure a Windows Client (p. 17)
« Configure a Linux or macOS Client (p. 17)

Configure a Windows Client

Prepare
Be sure you have the following information, which you need to set up the SSH tunnel:

« The public DNS name of your Amazon EC2 instance. You can find the public DNS name in the EC2
console.

« The key pair for the private key file. For more information about accessing your key pair, see Amazon
EC2 Key Pairs in the Amazon EC2 User Guide for Linux Instances.

Using Jupyter Notebooks from a Windows Client
Refer to these guides on connecting to your Amazon EC2 instance from a Windows client.

1. Troubleshooting Connecting to Your Instance
2. Connecting to Your Linux Instance from Windows Using PuTTY

To create a tunnel to a running Jupyter server, a recommended approach is to install Git Bash on your
Windows client, then follow the Linux/macOS client instructions. However, you may use whatever
approach you want for opening an SSH tunnel with port mapping. Refer to Jupyter's documentation for
further information.

Next Step

Configure a Linux or macOS Client (p. 17)

Configure a Linux or macOS Client

1. Open a terminal.

2. Run the following command to forward all requests on local port 8888 to port 8888 on your remote
Amazon EC2 instance. Update the command by replacing the location of your key to access the
Amazon EC2 instance and the public DNS name of your Amazon EC2 instance. Note, for an Amazon
Linux AMI, the user name is ec2-user instead of ubuntu.

$ ssh -i ~/mykeypair.pem -N -f -L 8888:localhost:8888 ubuntu@ec2-###-##-##-
###.compute-1.amazonaws.com

17

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/TroubleshootingInstancesConnecting.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/putty.html
https://jupyter-notebook.readthedocs.io/en/stable/public_server.html

Deep Learning AMI Developer Guide
Log in to the Jupyter notebook server

This command opens a tunnel between your client and the remote Amazon EC2 instance that is
running the Jupyter notebook server.

Next Step

Test by Logging in to the Jupyter notebook server (p. 18)

Test by Logging in to the Jupyter notebook server

Now you are ready to log in to the Jupyter notebook server.

Your next step is to test the connection to the server through your browser.
1. In the address bar of your browser, type the following URL, or click on this link: https://
localhost:8888

2. With a self signed SSL certificate, your browser will warn you and prompt you to avoid continuing to
visit the website.

18

https://localhost:8888
https://localhost:8888

Deep Learning AMI Developer Guide
Log in to the Jupyter notebook server

Your connection is not private

Attackers might be trying to steal your information from localk
passwords, messages, or credit cards). Learn more

MET::ERR_CERT_AUTHORITY_INVALID

D Help improve Safe Browsing by sending some system information

Privacy policy

Since you set this up yourself, it is safe to continue. Depending your browser you will get an
"advanced", "show details", or similar button.

19

Deep Learning AMI Developer Guide
Log in to the Jupyter notebook server

Your connection is not private

Attackers might be trying to steal your information from localhost
passwords, messages, or credit cards). Learn more

NET::ERR_CERT_AUTHORITY_INVALID

[:| Help improve Safe Browsing by sending some system information and |

Privacy policy

Hide advanced

This server could not prove that it is localhost; its security certific:
your computer's operating system. This may be caused by a misco
attacker intercepting your connection.

Proceed to localhost (unsafe)

20

Deep Learning AMI Developer Guide
Log in to the Jupyter notebook server

Click on this, then click on the "proceed to localhost" link. If the connection is successful, you see the
Jupyter notebook server webpage. At this point, you will be asked for the password you previously
setup.

Now you have access to the Jupyter notebook server that is running on the DLAMI. You can create
new notebooks or run the provided Tutorials (p. 27).

21

Deep Learning AMI Developer Guide
Conda DLAMI

Using a DLAMI

Topics
» Using the Deep Learning AMI with Conda (p. 22)
« Using the Deep Learning Base AMI (p. 25)
« Running Jupyter Notebook Tutorials (p. 26)
o Tutorials (p. 27)

The following sections describe how the Deep Learning AMI with Conda can be used to switch
environments, run sample code from each of the frameworks, and run Jupyter so you can try out
different notebook tutorials.

Using the Deep Learning AMI with Conda

Topics
« Introduction to the Deep Learning AMI with Conda (p. 22)
« Login to Your DLAMI (p. 22)
« Start the TensorFlow Environment (p. 23)
 Switch to the PyTorch Python 3 Environment (p. 24)
» Switch to the MXNet Python 3 Environment (p. 24)
« Removing Environments (p. 25)

Introduction to the Deep Learning AMI with Conda

Conda is an open source package management system and environment management system that
runs on Windows, macOS, and Linux. Conda quickly installs, runs, and updates packages and their
dependencies. Conda easily creates, saves, loads and switches between environments on your local
computer.

The Deep Learning AMI with Conda has been configured for you to easily switch between deep learning

environments. The following instructions guide you on some basic commands with conda. They also
help you verify that the basic import of the framework is functioning, and that you can run a couple

simple operations with the framework. You can then move on to more thorough tutorials provided with

the DLAMI or the frameworks' examples found on each frameworks' project site.

Log in to Your DLAMI

After you log in to your server, you will see a server "message of the day" (MOTD) describing various

Conda commands that you can use to switch between the different deep learning frameworks. Below is

an example MOTD. Your specific MOTD may vary as new versions of the DLAMI are released.

Note

We no longer include the CNTK, Caffe, Caffe2, Theano, Chainer, and Keras Conda environments
in the AWS Deep Learning AMI starting with the v28 release. Previous releases of the AWS Deep
Learning AMI that contain these environments will continue to be available. However, we will
only provide updates to these environments if there are security fixes published by the open
source community for these frameworks.

22

Deep Learning AMI Developer Guide
Start the TensorFlow Environment

|1 < / Deep Learning AMI (Ubuntu 18.04) Version 40.0

Welcome to Ubuntu 18.04.5 LTS (GNU/Linux 5.4.0-1037-aws X86_64V)

Please use one of the following commands to start the required environment with the
framework of your choice:

for AWS MX 1.7 (+Keras2) with Python3 (CUDA 10.1 and Intel MKL-DNN)

source activate mxnet_p36

for AWS MX 1.8 (+Keras2) with Python3 (CUDA + and Intel MKL-DNN)

source activate mxnet_latest_p37

for AWS MX(+AWS Neuron) with Python3
source activate aws_neuron_mxnet_p36

for AWS MX(+Amazon Elastic Inference) with Python3
source activate amazonei_mxnet_p36

for TensorFlow(+Keras2) with Python3 (CUDA + and Intel MKL-DNN)

source activate tensorflow_p37

for Tensorflow(+AWS Neuron) with Python3 source
activate aws_neuron_tensorflow_p36

for TensorFlow 2(+Keras2) with Python3 (CUDA 10.1 and Intel MKL-DNN)

source activate tensorflow2_p36

for TensorFlow 2.3 with Python3.7 (CUDA + and Intel MKL-DNN)
source activate tensorflow2_latest_p37

for PyTorch 1.4 with Python3 (CUDA 10.1 and Intel MKL)

source activate pytorch_p36

for PyTorch 1.7.1 with Python3.7 (CUDA 11.0 and Intel MKL)

source activate pytorch_latest_p37

for PyTorch (+AWS Neuron) with Python3
source activate aws_neuron_pytorch_p36
for base Python3 (CUDA 10.0)

source activate

python3

Each Conda command has the following pattern:
source activate framework_python-version

For example, you may see for MXNet(+Kerasl) with Python3 (CUDA 10.1)

source activate mxnet_p36, which signifies that the environment has
MXNet, Keras 1, Python 3, and CUDA 10.1. And to activate this environment, the command you would
use is:

$ source activate mxnet_p36

Start the TensorFlow Environment

Note

When you launch your first Conda environment, please be patient while it loads. The Deep
Learning AMI with Conda automatically installs the most optimized version of the framework
for your EC2 instance upon the framework's first activation. You should not expect subsequent
delays.

1. Activate the TensorFlow virtual environment for Python 3.

$ source activate tensorflow p37

2. Start the iPython terminal.

(tensorflow_37)$ ipython

23

Deep Learning AMI Developer Guide
Switch to the PyTorch Python 3 Environment

3. Run a quick TensorFlow program.

import tensorflow as tf

hello = tf.constant('Hello, TensorFlow!')
sess = tf.Session()
print(sess.run(hello))

You should see "Hello, Tensorflow!"
Next Up

Running Jupyter Notebook Tutorials (p. 26)

Switch to the PyTorch Python 3 Environment

If you're still in the iPython console, use quit (), then get ready to switch environments.

o Activate the PyTorch virtual environment for Python 3.

$ source activate pytorch_p36

Test Some PyTorch Code

To test your installation, use Python to write PyTorch code that creates and prints an array.

1. Start the iPython terminal.

(pytorch_p36)$ ipython

2. Import PyTorch.

import torch

You might see a warning message about a third-party package. You can ignore it.
3. Create a 5x3 matrix with the elements initialized randomly. Print the array.

X = torch.rand(5, 3)
print(x)

Verify the result.

tensor([[0.3105, 0.5983, 0.5410],
[0.0234, 0.0934, 0.0371],
[0.9740, 0.1439, 0.3107],
[0.6461, 0.9035, 0.5715],
[0.4401, 0.7990, 0.8913]])

Switch to the MXNet Python 3 Environment

If you're still in the iPython console, use quit (), then get ready to switch environments.

24

Deep Learning AMI Developer Guide
Removing Environments

o Activate the MXNet virtual environment for Python 3.

$ source activate mxnet_p36

Test Some MXNet Code

To test your installation, use Python to write MXNet code that creates and prints an array using the
NDArray API. For more information, see NDArray API.

1. Start the iPython terminal.

(mxnet_p36)$% ipython

2. Import MXNet.

import mxnet as mx

You might see a warning message about a third-party package. You can ignore it.

3. Create a 5x5 matrix, an instance of the NDArray, with elements initialized to 0. Print the array.

mx.ndarray.zeros((5,5)).asnumpy()

Verify the result.

-1,
-1,
-1,
-1,
0.]], dtype=float32)

array([[
[

S~ 0~ 0~ S~ S
O O o oo
S~ 0~ 0~ S~ o~
O O o oo
O O O oo

o O oo

C
C
C

You can find more examples of MXNet in the MXNet tutorials section.

Removing Environments

If you run out of space on the DLAMI, you can choose to uninstall Conda packages that you are not using:

conda env list
conda env remove —-name <env_name>

Using the Deep Learning Base AMI
Using the Deep Learning Base AMI

The Base AMI comes with a foundational platform of GPU drivers and acceleration libraries to deploy
your own customized deep learning environment. By default the AMI is configured with the NVIDIA
CUDA 11.0 environment. You can also switch between different versions of CUDA. Refer to the following
instructions for how to do this.

25

https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html

Deep Learning AMI Developer Guide
Configuring CUDA Versions

Configuring CUDA Versions

You can verify the CUDA version by running NVIDIA's nvcc program.

nvce --version

You can select and verify a particular CUDA version with the following bash command:

sudo rm /usr/local/cuda
sudo 1ln -s /usr/local/cuda-11.0 /usr/local/cuda

For more information, see the Base DLAMI release notes.

Running Jupyter Notebook Tutorials

Tutorials and examples ship with each of the deep learning projects' source and in most cases they will
run on any DLAMI. If you chose the Deep Learning AMI with Conda (p. 6), you get the added benefit of a
few hand-picked tutorials already set up and ready to try out.

Important
To run the Jupyter notebook tutorials installed on the DLAMI, you will need to Set up a Jupyter
Notebook Server (p. 15).

Once the Jupyter server is running, you can run the tutorials through your web browser. If you are
running the Deep Learning AMI with Conda or if you have set up Python environments, you can switch
Python kernels from the Jupyter notebook interface. Select the appropriate kernel before trying to run
a framework-specific tutorial. Further examples of this are provided for users of the Deep Learning AMI
with Conda.

Note

Many tutorials require additional Python modules that may not be set up on your DLAMI. If you
get an error like "xyz module not found", log in to the DLAMI, activate the environment as
described above, then install the necessary modules.

Tip

Deep learning tutorials and examples often rely on one or more GPUs. If your instance type
doesn't have a GPU, you may need to change some of the example's code to get it to run.

Navigating the Installed Tutorials

Once you're logged in to the Jupyter server and can see the tutorials directory (on Deep Learning AMI
with Conda only), you will be presented with folders of tutorials by each framework name. If you don't
see a framework listed, then tutorials are not available for that framework on your current DLAMI. Click
on the name of the framework to see the listed tutorials, then click a tutorial to launch it.

The first time you run a notebook on the Deep Learning AMI with Conda, it will want to know which
environment you would like to use. It will prompt you to select from a list. Each environment is named
according to this pattern:

Environment (conda_framework_ python-version)

For example, you might see Environment (conda_mxnet_p36), which signifies that the environment
has MXNet and Python 3. The other variation of this would be Environment (conda_mxnet p27),
which signifies that the environment has MXNet and Python 2.

26

https://docs.aws.amazon.com/dlami/latest/devguide/appendix-ami-release-notes.html#appendix-ami-release-notes-base

Deep Learning AMI Developer Guide
Switching Environments with Jupyter

Tip
If you're concerned about which version of CUDA is active, one way to see it is in the MOTD
when you first log in to the DLAMI.

Switching Environments with Jupyter

If you decide to try a tutorial for a different framework, be sure to verify the currently running kernel.
This info can be seen in the upper right of the Jupyter interface, just below the logout button. You can
change the kernel on any open notebook by clicking the Jupyter menu item Kernel, then Change Kernel,
and then clicking the environment that suits the notebook you're running.

At this point you'll need to rerun any cells because a change in the kernel will erase the state of anything
you've run previously.
Tip
Switching between frameworks can be fun and educational, however you can run out of
memory. If you start running into errors, look at the terminal window that has the Jupyter
server running. There are helpful messages and error logging here, and you may see an out-
of-memory error. To fix this, you can go to the home page of your Jupyter server, click the

Running tab, then click Shutdown for each of the tutorials that are probably still running in the
background and eating up all of your memory.

Next Up

For more examples and sample code from each framework, click Next or continue to Apache MXNet
(Incubating) (p. 28).

Tutorials

The following are tutorials on how to use the Deep Learning AMI with Conda's software.

Topics
« 10 Minute Tutorials (p. 27)
« Activating Frameworks (p. 28)
« Debugging and Visualization (p. 41)
o Distributed Training (p. 45)
« Elastic Fabric Adapter (p. 62)
« GPU Monitoring and Optimization (p. 74)
o The AWS Inferentia Chip With DLAMI (p. 82)
« The Graviton DLAMI (p. 97)
« The Habana DLAMI (p. 104)
o Inference (p. 105)
« Using Frameworks with ONNX (p. 109)
« Model Serving (p. 117)

10 Minute Tutorials

o Launch a AWS Deep Learning AMI (in 10 minutes)

 Train a Deep Learning model with AWS Deep Learning Containers on Amazon EC2 (in 10 minutes)

27

https://aws.amazon.com/getting-started/tutorials/get-started-dlami/
https://aws.amazon.com/getting-started/tutorials/train-deep-learning-model-aws-ec2-containers/

Deep Learning AMI Developer Guide
Activating Frameworks

Activating Frameworks

The following are the deep learning frameworks installed on the Deep Learning AMI with Conda. Click on
a framework to learn how to activate it.

Topics
o Apache MXNet (Incubating) (p. 28)
« Caffe2 (p. 30)
« Chainer (p. 30)
« CNTK (p. 31)
« Keras (p. 33)
» PyTorch (p. 34)
« TensorFlow (p. 36)
« TensorFlow 2 (p. 37)
« TensorFlow with Horovod (p. 39)
« TensorFlow 2 with Horovod (p. 40)
e Theano (p. 41)

Apache MXNet (Incubating)

Activating Apache MXNet (Incubating)

This tutorial shows how to activate MXNet on an instance running the Deep Learning AMI with Conda
(DLAMI on Conda) and run a MXNet program.

When a stable Conda package of a framework is released, it's tested and pre-installed on the
DLAMIL. If you want to run the latest, untested nightly build, you can Installing MXNet's Nightly Build
(experimental) (p. 29) manually.

To run MXNet on the DLAMI with Conda

1. To activate the framework, open an Amazon Elastic Compute Cloud (Amazon EC2) instance of the
DLAMI with Conda.

e For MXNet and Keras 2 on Python 3 with CUDA 9.0 and MKL-DNN, run this command:

$ source activate mxnet_p36

e For MXNet and Keras 2 on Python 2 with CUDA 9.0 and MKL-DNN, run this command:

$ source activate mxnet_p27

2. Start the iPython terminal.

(mxnet_p36)$ ipython

3. Run a quick MXNet program. Create a 5x5 matrix, an instance of the NDArray, with elements
initialized to 0. Print the array.

import mxnet as mx
mx.ndarray.zeros((5,5)).asnumpy()

4. Verify the result.

28

Deep Learning AMI Developer Guide
Activating Frameworks

-1,
-1,
-1,
-1,
0.]], dtype=float32)

array([[
C

S~ 0~ 0~ S~ S
O O o oo
S~ 0~ 0~ S~ o~
O O o oo
O O o oo

o O oo

C
C
C

Installing MXNet's Nightly Build (experimental)

You can install the latest MXNet build into either or both of the MXNet Conda environments on your
Deep Learning AMI with Conda.

To install MXNet from a nightly build

1. « For the Python 3 MXNet environment, run this command:

$ source activate mxnet_p36

« For the Python 2 MXNet environment, run this command:

$ source activate mxnet_p27

2. Remove the currently installed MXNet.

Note
The remaining steps assume you are using the mxnet_p36 environment.

(mxnet_p36)$% pip uninstall mxnet-cu90mkl

3. Install the latest nightly build of MXNet.

(mxnet_p36)$% pip install --pre mxnet-cu90mkl

4, To verify you have successfully installed latest nightly build, start the IPython terminal and check
the version of MXNet.

(mxnet_p36)$ ipython

import mxnet
print (mxnet._ version_)

The output should print the latest stable version of MXNet.

More Tutorials

You can find more tutorials in the Deep Learning AMI with Conda tutorials folder, which is in the home
directory of the DLAMI.

1. Use Apache MXNet (Incubating) for Inference with a ResNet 50 Model (p. 107)
2. Use Apache MXNet (Incubating) for Inference with an ONNX Model (p. 106)
3. Model Server for Apache MXNet (MMS) (p. 118)

For more tutorials and examples, see the framework's official Python documentation, the Python API for
MXNet, or the Apache MXNet website.

29

https://mxnet.apache.org/api/python.html
https://mxnet.apache.org/api/python.html
https://mxnet.incubator.apache.org/

Deep Learning AMI Developer Guide
Activating Frameworks

Caffe2

Note

We no longer include the CNTK, Caffe, Caffe2 and Theano Conda environments in the AWS
Deep Learning AMI starting with the v28 release. Previous releases of the AWS Deep Learning
AMI that contain these environments will continue to be available. However, we will only
provide updates to these environments if there are security fixes published by the open source
community for these frameworks.

Caffe2 Tutorial

To activate the framework, follow these instructions on your Deep Learning AMI with Conda.

There is only the Python 2 with CUDA 9 with cuDNN 7 option:

$ source activate caffe2_p27

Start the iPython terminal.

(caffe2_p27)$ ipython

Run a quick Caffe2 program.

from caffe2.python import workspace, model_helper
import numpy as np

Create random tensor of three dimensions

X = np.random.rand(4, 3, 2)

print(x)

print(x.shape)

workspace.FeedBlob("my_x", x)

X2 = workspace.FetchBlob("my_x")

print(x2)

You should see the initial numpy random arrays printed and then those loaded into a Caffe2 blob. Note
that after loading they are the same.

More Tutorials

For more tutorials and examples refer to the framework's official Python docs, Python API for Caffe2,
and the Caffe2 website.

Chainer

Note

We no longer include Chainer Conda environments in the AWS Deep Learning AMI starting
with the v28 release. Previous releases of the AWS Deep Learning AMI that contain these
environments will continue to be available. However, we will only provide updates to these
environments if there are security fixes published by the open source community for these
frameworks.

Chainer is a flexible Python-based framework for easily and intuitively writing complex neural network
architectures. Chainer makes it easy to use multi-GPU instances for training. Chainer also automatically
logs results, graph loss and accuracy, and produces output for visualizing the neural network with a
computational graph. It is included with the Deep Learning AMI with Conda (DLAMI with Conda).

30

https://caffe2.ai/doxygen-python/html/annotated.html
https://caffe2.ai
https://chainer.org/
https://docs.chainer.org/en/stable/reference/graph.html

Deep Learning AMI Developer Guide
Activating Frameworks

Activate Chainer

1. Connect to the instance running Deep Learning AMI with Conda. Refer to the the section called
“Instance Selection” (p. 7) or the Amazon EC2 documentation on how to select or connect to an
instance.

2. « Activate the Python 3 Chainer environment:

$ source activate chainer_ p36

e Activate the Python 2 Chainer environment:

$ source activate chainer_p27

3. Start the iPython terminal:

(chainer_p36)$ ipython

4. Test importing Chainer to verify that it is working properly:

import chainer

You may see a few warning messages, but no error.

More Info

« Try the tutorials for Chainer (p. 45).

o The Chainer examples folder inside the source you downloaded earlier contains more examples. Try
them to see how they perform.

« To learn more about Chainer, see the Chainer documentation website.

CNTK

Note

We no longer include the CNTK, Caffe, Caffe2 and Theano Conda environments in the AWS
Deep Learning AMI starting with the v28 release. Previous releases of the AWS Deep Learning
AMI that contain these environments will continue to be available. However, we will only
provide updates to these environments if there are security fixes published by the open source
community for these frameworks.

Activating CNTK

This tutorial shows how to activate CNTK on an instance running the Deep Learning AMI with Conda
(DLAMI on Conda) and run a CNTK program.

When a stable Conda package of a framework is released, it's tested and pre-installed on the
DLAMIL. If you want to run the latest, untested nightly build, you can Install the CNTK Nightly Build
(experimental) (p. 32) manually.

To run CNTK on the DLAMI with Conda

1. To activate CNTK, open an Amazon Elastic Compute Cloud (Amazon EC2) instance of the DLAMI with
Conda.

e For Python 3 with CUDA 9 with cuDNN 7:

31

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html
https://docs.chainer.org/

Deep Learning AMI Developer Guide
Activating Frameworks

$ source activate cntk p36

For Python 2 with CUDA 9 with cuDNN 7:

$ source activate cntk_p27

2. Start the iPython terminal.

(cntk_p36)$ ipython

3. .

If you have a CPU instance, run this quick CNTK program.

import cntk as C

C._ _version_

c = C.constant(3, shape=(2,3))
c.asarray()

You should see the CNTK version, then the output of a 2x3 array of 3's.

If you have a GPU instance, you can test it with the following code example. A result of True is
what you would expect if CNTK can access the GPU.

from cntk.device import try_set_default_device, gpu
try_set_default_device(gpu(0))

Install the CNTK Nightly Build (experimental)

You can install the latest CNTK build into either or both of the CNTK Conda environments on your Deep
Learning AMI with Conda.

To install CNTK from a nightly build

1.

For CNTK and Keras 2 on Python 3 with CUDA 9.0 and MKL-DNN, run this command:

$ source activate cntk_p36

For CNTK and Keras 2 on Python 2 with CUDA 9.0 and MKL-DNN, run this command:

$ source activate cntk_p27

2. The remaining steps assume you are using the cntk_p36 environment. Remove the currently
installed CNTK.

(cntk_p36)$ pip uninstall cntk

3. Toinstall the CNTK nightly build, you first need to find the version you want to install from the
CNTK nightly website.

4. .

(Option for GPU instances) - To install the nightly build, you would use the following,
substituting in the desired build:

(cntk_p36)$ pip install https://cntk.ai/PythonWheel/GPU/latest-nightly-build

Replace the URL in the previous command with the GPU version for your current Python
environment.

32

https://cntk.ai/nightly-linux.html

Deep Learning AMI Developer Guide
Activating Frameworks

o (Option for CPU instances) - To install the nightly build, you would use the following,
substituting in the desired build:

(cntk_p36)$ pip install https://cntk.ai/PythonWheel/CPU-Only/latest-nightly-build

Replace the URL in the previous command with the CPU version for your current Python
environment.

5. To verify you have successfully installed latest nightly build, start the IPython terminal and check
the version of CNTK.

(cntk_p36)$ ipython

import cntk
print (cntk._ version_)

The output should print something similar to 2.6-rc0.dev20181015

More Tutorials

For more tutorials and examples, see the framework's official Python docs, Python API for CNTK, or the
CNTK website.

Keras

Keras Tutorial

1. To activate the framework, use these commands on your the section called “Conda DLAMI" (p. 22)
CLI.

e For Keras 2 with an MXNet backend on Python 3 with CUDA 9 with cuDNN 7:

$ source activate mxnet_p36

e For Keras 2 with an MXNet backend on Python 2 with CUDA 9 with cuDNN 7:

$ source activate mxnet_p27

« For Keras 2 with a TensorFlow backend on Python 3 with CUDA 9 with cuDNN 7:

$ source activate tensorflow_p36

e For Keras 2 with a TensorFlow backend on Python 2 with CUDA 9 with cuDNN 7:

$ source activate tensorflow_p27

2. To test importing Keras to verify which backend is activated, use these commands:

$ ipython
import keras as k

The following should appear on your screen:

33

https://cntk.ai/pythondocs/gettingstarted.html
https://www.microsoft.com/en-us/cognitive-toolkit/

Deep Learning AMI Developer Guide
Activating Frameworks

Using MXNet backend

If Keras is using TensorFlow, the following is displayed:

Using TensorFlow backend

Note

If you get an error, or if the wrong backend is still being used, you can update your Keras
configuration manually. Edit the ~/ .keras/keras. json file and change the backend
setting to mxnet or tensorflow.

More Tutorials
« For a multi-GPU tutorial using Keras with a MXNet backend, try the Keras-MXNet Multi-GPU Training
Tutorial (p. 54).

» You can find examples for Keras with a MXNet backend in the Deep Learning AMI with Conda ~/
examples/keras-mxnet directory.

« You can find examples for Keras with a TensorFlow backend in the Deep Learning AMI with Conda ~/
examples/keras directory.

« For additional tutorials and examples, see the Keras website.

PyTorch

Activating PyTorch

When a stable Conda package of a framework is released, it's tested and pre-installed on the
DLAMIL. If you want to run the latest, untested nightly build, you can Install PyTorch's Nightly Build
(experimental) (p. 35) manually.

To activate the currently installed framework, follow these instructions on your Deep Learning AMI with
Conda.

For PyTorch on Python 3 with CUDA 10 and MKL-DNN, run this command:

$ source activate pytorch_p36

For PyTorch on Python 2 with CUDA 10 and MKL-DNN, run this command:

$ source activate pytorch_ p27

Start the iPython terminal.

(pytorch_p36)$ ipython

Run a quick PyTorch program.

import torch
X = torch.rand(5, 3)
print(x)

34

https://keras.io/

Deep Learning AMI Developer Guide
Activating Frameworks

print(x.size())
y = torch.rand(5, 3)
print(torch.add(x, y))

You should see the initial random array printed, then its size, and then the addition of another random
array.

Install PyTorch's Nightly Build (experimental)

How to install PyTorch from a nightly build

You can install the latest PyTorch build into either or both of the PyTorch Conda environments on your
Deep Learning AMI with Conda.

1. « (Option for Python 3) - Activate the Python 3 PyTorch environment:

$ source activate pytorch_p36

« (Option for Python 2) - Activate the Python 2 PyTorch environment:

$ source activate pytorch_p27

2. The remaining steps assume you are using the pytorch_p36 environment. Remove the currently
installed PyTorch:

(pytorch_p36)$ pip uninstall torch

3. « (Option for GPU instances) - Install the latest nightly build of PyTorch with CUDA 10.0:

(pytorch_p36)$ pip install torch_nightly -f https://download.pytorch.org/whl/
nightly/cul00/torch_nightly.html

« (Option for CPU instances) - Install the latest nightly build of PyTorch for instances with no
GPUs:

(pytorch_p36)$ pip install torch_nightly -f https://download.pytorch.org/whl/
nightly/cpu/torch_nightly.html

4. To verify you have successfully installed latest nightly build, start the IPython terminal and check
the version of PyTorch.

(pytorch_p36)$ ipython

import torch
print (torch._ version_)

The output should print something similarto 1.0.0.dev20180922

5. To verify that the PyTorch nightly build works well with the MNIST example, you can run a test script
from PyTorch's examples repository:

(pytorch_p36)$% cd ~

(pytorch_p36)$ git clone https://github.com/pytorch/examples.git pytorch_examples
(pytorch_p36)$ cd pytorch examples/mnist

(pytorch_p36)$ python main.py || exit 1

35

Deep Learning AMI Developer Guide
Activating Frameworks

More Tutorials

You can find more tutorials in the Deep Learning AMI with Conda tutorials folder in the home directory
of the DLAMI. For further tutorials and examples refer to the framework's official docs, PyTorch
documentation, and the PyTorch website.

o PyTorch to ONNX to MXNet Tutorial (p. 116)
o PyTorch to ONNX to CNTK Tutorial (p. 114)

TensorFlow

Activating TensorFlow

This tutorial shows how to activate TensorFlow on an instance running the Deep Learning AMI with
Conda (DLAMI on Conda) and run a TensorFlow program.

When a stable Conda package of a framework is released, it's tested and pre-installed on the DLAMI.
If you want to run the latest, untested nightly build, you can Install TensorFlow's Nightly Build
(experimental) (p. 36) manually.

To run TensorFlow on the DLAMI with Conda

1. To activate TensorFlow, open an Amazon Elastic Compute Cloud (Amazon EC2) instance of the
DLAMI with Conda.

« For TensorFlow and Keras 2 on Python 3 with CUDA 9.0 and MKL-DNN, run this command:

$ source activate tensorflow_p36

e For TensorFlow and Keras 2 on Python 2 with CUDA 9.0 and MKL-DNN, run this command:

$ source activate tensorflow_p27

2. Start the iPython terminal:

(tensorflow_p36)$ ipython

3. Run a TensorFlow program to verify that it is working properly:

import tensorflow as tf

hello = tf.constant('Hello, TensorFlow!')
sess = tf.Session()
print(sess.run(hello))

Hello, TensorFlow! should appear on your screen.

Install TensorFlow's Nightly Build (experimental)

You can install the latest TensorFlow build into either or both of the TensorFlow Conda environments on
your Deep Learning AMI with Conda.

To install TensorFlow from a nightly build

1. « For the Python 3 TensorFlow environment, run the following command:

36

http://pytorch.org/docs/master/
http://pytorch.org/docs/master/
http://pytorch.org

Deep Learning AMI Developer Guide
Activating Frameworks

$ source activate tensorflow_p36

e For the Python 2 TensorFlow environment, run the following command:

$ source activate tensorflow p27

2. Remove the currently installed TensorFlow.

Note
The remaining steps assume you are using the tensorflow_p36 environment.

(tensorflow_p36)$ pip uninstall tensorflow

3. Install the latest nightly build of TensorFlow.

(tensorflow_p36)$ pip install tf-nightly

4. To verify you have successfully installed latest nightly build, start the IPython terminal and check
the version of TensorFlow.

(tensorflow_p36)$ ipython

import tensorflow
print (tensorflow._version_)

The output should print something similarto 1.12.0-dev20181012

More Tutorials

TensorFlow with Horovod (p. 55)
TensorBoard (p. 43)

TensorFlow Serving (p. 120)

For tutorials, see the folder called Deep Learning AMI with Conda tutorials inthe home
directory of the DLAMI.

For more tutorials and examples, see the TensorFlow documentation for the TensorFlow Python API or
see the TensorFlow website.

TensorFlow 2

This tutorial shows how to activate TensorFlow 2 on an instance running the Deep Learning AMI with
Conda (DLAMI on Conda) and run a TensorFlow 2 program.

When a stable Conda package of a framework is released, it's tested and pre-installed on the DLAMI.
If you want to run the latest, untested nightly build, you can Install TensorFlow 2's Nightly Build
(experimental) (p. 38) manually.

Activating TensorFlow 2

To run TensorFlow on the DLAMI with Conda

1. To activate TensorFlow 2, open an Amazon Elastic Compute Cloud (Amazon EC2) instance of the
DLAMI with Conda.

37

https://www.tensorflow.org/api_docs/python/
https://www.tensorflow.org

Deep Learning AMI Developer Guide
Activating Frameworks

2. For TensorFlow 2 and Keras 2 on Python 3 with CUDA 10.1 and MKL-DNN, run this command:

$ source activate tensorflow2_p36

3. Start the iPython terminal:

(tensorflow2_p36)$ ipython

4. Run a TensorFlow 2 program to verify that it is working properly:

import tensorflow as tf
hello = tf.constant('Hello, TensorFlow!')
tf.print(hello)

Hello, TensorFlow! should appear on your screen.

Install TensorFlow 2's Nightly Build (experimental)

You can install the latest TensorFlow 2 build into either or both of the TensorFlow 2 Conda environments
on your Deep Learning AMI with Conda.

To install TensorFlow from a nightly build

1. For the Python 3 TensorFlow 2 environment, run the following command:

$ source activate tensorflow2_p36

2. Remove the currently installed TensorFlow.

Note
The remaining steps assume you are using the tensorflow2_p36 environment.

(tensorflow2_p36)$ pip uninstall tensorflow

3. Install the latest nightly build of TensorFlow.

(tensorflow2_p36)$ pip install tf-nightly

4. To verify you have successfully installed latest nightly build, start the IPython terminal and check
the version of TensorFlow.

(tensorflow2_p36)$ ipython

import tensorflow
print (tensorflow._version_)

The output should print something similarto 2.1.0-dev20191122

More Tutorials

For tutorials, see the folder called Deep Learning AMI with Conda tutorials in the home
directory of the DLAMI.

38

Deep Learning AMI Developer Guide
Activating Frameworks

For more tutorials and examples, see the TensorFlow documentation for the TensorFlow Python API or
see the TensorFlow website.

TensorFlow with Horovod

This tutorial shows how to activate TensorFlow with Horovod on an AWS Deep Learning AMI (DLAMI)
with Conda. Horovod is pre-installed in the Conda environments for TensorFlow. The Python3
environment is recommended.

Note
Only P3.*, P2.*, and G3.* instance types are supported.

To activate TensorFlow and test Horovod on the DLAMI with Conda
1. Open an Amazon Elastic Compute Cloud (Amazon EC2) instance of the DLAMI with Conda. For help
getting started with a DLAMI, see the section called “How to Get Started with the DLAMI" (p. 4).

2. (Recommended) For TensorFlow 1.15 with Horovod on Python 3 with CUDA 11, run the following
command:

$ source activate tensorflow p37

3. Start the iPython terminal:

(tensorflow_p37)$ ipython

4. Test importing TensorFlow with Horovod to verify that it's working properly:

import horovod.tensorflow as hvd
hvd.init()

The following may appear on your screen (you may ignore any warning messages).

[[55425,1],0]: A high-performance Open MPI point-to-point messaging module
was unable to find any relevant network interfaces:

Module: OpenFabrics (openib)
Host: ip-172-31-72-4

Another transport will be used instead, although this may result in
lower performance.

More Info

« TensorFlow with Horovod (p. 55)
« For tutorials, see the examples/horovod folder in the home directory of the DLAMI.

« For even more tutorials and examples, see the Horovod GitHub project.

39

https://www.tensorflow.org/api_docs/python/
https://www.tensorflow.org
https://github.com/uber/horovod

Deep Learning AMI Developer Guide
Activating Frameworks

TensorFlow 2 with Horovod

This tutorial shows how to activate TensorFlow 2 with Horovod on an AWS Deep Learning AMI (DLAMI)
with Conda. Horovod is pre-installed in the Conda environments for TensorFlow 2. The Python3
environment is recommended.

Note
Only P3.*, P2.*, and G3.* instance types are supported.

To activate TensorFlow 2 and test Horovod on the DLAMI with Conda

1. Open an Amazon Elastic Compute Cloud (Amazon EC2) instance of the DLAMI with Conda. For help
getting started with a DLAMI, see the section called “How to Get Started with the DLAMI" (p. 4).
e (Recommended) For TensorFlow 2 with Horovod on Python 3 with CUDA 10, run this command:
$ source activate tensorflow2_p36
e For TensorFlow 2 with Horovod on Python 2 with CUDA 10, run this command:
$ source activate tensorflow2_p27
2. Start the iPython terminal:
(tensorflow2_p36)$ ipython
3. Test importing TensorFlow 2 with Horovod to verify that it's working properly:
import horovod.tensorflow as hvd
hvd.init()
If you don't receive any output, then Horovod is working properly. The following may appear on your
screen (you may ignore any warning messages).
[[55425,1],0]: A high-performance Open MPI point-to-point messaging module
was unable to find any relevant network interfaces:
Module: OpenFabrics (openib)
Host: ip-172-31-72-4
Another transport will be used instead, although this may result in
lower performance.
More Info

« For tutorials, see the examples/horovod folder in the home directory of the DLAMI.

« For even more tutorials and examples, see the Horovod GitHub project.

40

https://github.com/uber/horovod

Deep Learning AMI Developer Guide
Debugging and Visualization

Theano

Theano Tutorial

Note

We no longer include the CNTK, Caffe, Caffe2 and Theano Conda environments in the AWS
Deep Learning AMI starting with the v28 release. Previous releases of the AWS Deep Learning
AMI that contain these environments will continue to be available. However, we will only
provide updates to these environments if there are security fixes published by the open source
community for these frameworks.

To activate the framework, follow these instructions on your Deep Learning AMI with Conda.

For Theano + Keras in Python 3 with CUDA 9 with cuDNN 7:

$ source activate theano_p36

For Theano + Keras in Python 2 with CUDA 9 with cuDNN 7:

$ source activate theano_p27

Start the iPython terminal.

(theano_p36)$ ipython

Run a quick Theano program.

import numpy

import theano

import theano.tensor as T
from theano import pp

x = T.dscalar('x"')

y = X ** 2

gy = T.grad(y, x)

pp(9y)

You should see Theano computing a symbolic gradient.
More Tutorials

For further tutorials and examples refer to the framework’s official docs, Theano Python API, and the
Theano website.

Debugging and Visualization

Learn about the debugging and visualization options for the DLAMI. Click on one of the options to learn
how to use it.

Topics
o MXBoard (p. 42)

41

http://deeplearning.net/software/theano/library/index.html
http://deeplearning.net/software/theano/

Deep Learning AMI Developer Guide
Debugging and Visualization

« TensorBoard (p. 43)

MXBoard

MXBoard lets you to visually inspect and interpret your MXNet runs and graphs using the TensorBoard
software. It runs a web server that serves a webpage for viewing and interacting with the MXBoard
visualizations.

MXNet, TensorBoard, and MXBoard are preinstalled with the Deep Learning AMI with Conda (DLAMI
with Conda). In this tutorial, you use an MXBoard function to generate logs that are compatible with
TensorBoard.

Topics
« Using MXNet with MXBoard (p. 42)
« More Info (p. 43)

Using MXNet with MXBoard

Generate MXBoard Log Data Compatible with TensorBoard

Connect to your Amazon Elastic Compute Cloud (Amazon EC2) instance of the DLAMI with Conda.
2. Activate the Python 3 MXNet environment.

$ source activate mxnet_p36

3. Prepare a Python script for writing data generated by the normal operator to an event file. The data
is generated ten times with decreasing standard deviation, then written to the event file each time.
You will see data distribution gradually become more centered around the mean value. Note that
you will specify the event file in the logs folder. You pass this folder path to the TensorBoard binary.

$ vi mxboard_normal.py

4. Paste the following in the file and save it:

import mxnet as mx
from mxboard import SummaryWriter

with SummaryWriter(logdir='./logs') as sw:
for i in range(10):
create a normal distribution with fixed mean and decreasing std
data = mx.nd.normal(loc=0, scale=10.0/(i+1), shape=(10, 3, 8, 8))
sw.add_histogram(tag="'norml_dist', values=data, bins=200, global_step=i)

5. Run the script. This will generate logs in a Logs folder that you can use for visualizations.

$ python mxboard_normal.py

6. Now you must switch to the TensorFlow environment to use TensorBoard and MXBoard to visualize
the logs. This is a required dependency for MXBoard and TensorBoard.

$ source activate tensorflow p36

42

https://github.com/awslabs/mxboard

Deep Learning AMI Developer Guide
Debugging and Visualization

7. Pass the location of the logs to tensorboard:
$ tensorboard --logdir=./logs --host=127.0.0.1 --port=8888
TensorBoard launches the visualization web server on port 8888.

8. For easy access from your local browser, you can change the web server port to port 80 or another
port. Whichever port you use, you will need to open this port in the EC2 security group for your
DLAML. You can also use port forwarding. For instructions on changing your security group settings
and port forwarding, see Set up a Jupyter Notebook Server (p. 15). The default settings are
described in the next step.

Note
If you need to run both Jupyter server and a MXBoard server, use a different port for each.
9. Open port 8888 (or the port you assigned to the visualization web server) on your EC2 instance.
a. Open your EC2 instance in the Amazon EC2console at https://console.aws.amazon.com/ec2/.
b. Inthe Amazon EC2 console, choose Network & Security, then choose Security Groups.
For Security Group, , choose the one that was created most recently (see the timestamp in the
description).
Choose the Inbound tab, and choose Edit.
Choose Add Rule.
f. In the new row, type the following:
Type : Custom TCP Rule
Protocol: TCP
Port Range: 8888 (or the port that you assigned to the visualization server)
Source: Custom IP (specify address/range)

10. If you want to visualize the data from local browser, type the following command to forward the
data that is rendering on the EC2 instance to your local machine.
$ ssh -Y -L localhost:8888:localhost:8888 user_ideec2_instance_ip

11. Open the web page for the MXBoard visualizations by using the public IP or DNS address of the EC2
instance that's running the DLAMI with Conda and the port that you opened for MXBoard:
http://127.0.0.1:8888

More Info

To learn more about MXBoard, see the MXBoard website.

TensorBoard

TensorBoard lets you to visually inspect and interpret your TensorFlow runs and graphs. It runs a web
server that serves a webpage for viewing and interacting with the TensorBoard visualizations.

TensorFlow and TensorBoard are preinstalled with the Deep Learning AMI with Conda (DLAMI with
Conda). The DLAMI with Conda also includes an example script that uses TensorFlow to train an MNIST
model with extra logging features enabled. MNIST is a database of handwritten numbers that is
commonly used to train image recognition models. In this tutorial, you use the script to train an MNIST
model, and TensorBoard and the logs to create visualizations.

Topics

43

https://console.aws.amazon.com/ec2/
https://github.com/awslabs/mxboard
https://www.tensorflow.org/get_started/summaries_and_tensorboard

Deep Learning AMI Developer Guide
Debugging and Visualization

« Train an MNIST Model and Visualize the Training with TensorBoard (p. 44)
« More Info (p. 45)

Train an MNIST Model and Visualize the Training with TensorBoard

Visualize MNIST model training with TensorBoard

1. Connect to your Amazon Elastic Compute Cloud (Amazon EC2) instance of the DLAMI with Conda.

2. Activate the Python 2.7 TensorFlow environment and navigate to the directory that contains the
folder with the TensorBoard example scripts:

$ source activate tensorflow p27
$ cd ~/examples/tensorboard/

3. Run the script that trains an MNIST model with extended logging enabled:

$ python mnist_with_summaries.py

The script writes the logs to /tmp/tensorflow/mnist.

4. Pass the location of the logs to tensorboard:

$ tensorboard --logdir=/tmp/tensorflow/mnist

TensorBoard launches the visualization web server on port 6006.

5. For easy access from your local browser, you can change the web server port to port 80 or another
port. Whichever port you use, you will need to open this port in the EC2 security group for your
DLAMIL. You can also use port forwarding. For instructions on changing your security group settings
and port forwarding, see Set up a Jupyter Notebook Server (p. 15). The default settings are
described in the next step.

Note
If you need to run both Jupyter server and a TensorBoard server, use a different port for
each.

6. Open port 6006 (or the port you assigned to the visualization web server) on your EC2 instance.

Open your EC2 instance in the Amazon EC2console at https://console.aws.amazon.com/ec2/.
b. Inthe Amazon EC2 console, choose Network & Security, then chooseSecurity Groups.

c. For Security Group, , choose the one that was created most recently (see the time stamp in the
description).

d. Choose the Inbound tab, and choose Edit.
Choose Add Rule.
In the new row, type the followings:

Type : Custom TCP Rule
Protocol: TCP
Port Range: 6006 (or the port that you assigned to the visualization server)

Source: Custom IP (specify address/range)

7. Open the web page for the TensorBoard visualizations by using the public IP or DNS address of the
EC2 instance that's running the DLAMI with Conda and the port that you opened for TensorBoard:

44

https://console.aws.amazon.com/ec2/

Deep Learning AMI Developer Guide
Distributed Training

http:// YourInstancePublicDNS:6006

More Info

To learn more about TensorBoard, see the TensorBoard website.

Distributed Training

Learn about the options the DLAMI has for training with multiple GPUs. For increased performance, see
Elastic Fabric Adapter (p. 62) Click on one of the options to learn how to use it.
Topics

o Chainer (p. 45)

« Keras with MXNet (p. 54)

« TensorFlow with Horovod (p. 55)

Chainer

Note

We no longer include Chainer Conda environments in the AWS Deep Learning AMI starting
with the v28 release. Previous releases of the AWS Deep Learning AMI that contain these
environments will continue to be available. However, we will only provide updates to these
environments if there are security fixes published by the open source community for these
frameworks.

Chainer is a flexible Python-based framework for easily and intuitively writing complex neural network
architectures. Chainer makes it easy to use multi-GPU instances for training. Chainer also automatically
logs results, graph loss and accuracy, and produces output for visualizing the neural network with a
computational graph. It is included with the Deep Learning AMI with Conda (DLAMI with Conda).

The following topics show you how to train on multiple GPUs, a single GPU, and a CPU, create
visualizations, and test your Chainer installation.
Topics

« Training a Model with Chainer (p. 45)

« Use Chainer to Train on Multiple GPUs (p. 46)

» Use Chainer to Train on a Single GPU (p. 48)

« Use Chainer to Train with CPUs (p. 49)

« Graphing Results (p. 50)

« Testing Chainer (p. 54)

« More Info (p. 54)

Training a Model with Chainer

This tutorial shows you how to use example Chainer scripts to train a model with the MNIST dataset.
MNIST is a database of handwritten numbers that is commonly used to train image recognition models.
The tutorial also shows the difference in training speed between training on a CPU and one or more
GPUs.

45

https://www.tensorflow.org/get_started/summaries_and_tensorboard
https://chainer.org/
https://docs.chainer.org/en/stable/reference/graph.html

Deep Learning AMI Developer Guide
Distributed Training

Use Chainer to Train on Multiple GPUs

To train on multiple GPUs

1. Connect to the instance running Deep Learning AMI with Conda. Refer to the the section called
“Instance Selection” (p. 7) or the Amazon EC2 documentation on how to select or connect to an
instance. To run this tutorial, you will want to use an instance with at least two GPUs.

2. Activate the Python 3 Chainer environment:

$ source activate chainer_p36

3. To get the latest tutorials, clone the Chainer repository, and navigate to the examples folder:

(chainer_p36) :~$ cd ~/src

(chainer_p36) :~/src$ CHAINER _VERSION=v$(python -c "import chainer;
print(chainer._ version_)")

(chainer_p36) :~/src$ git clone -b $CHAINER_VERSION https://github.com/chainer/
chainer.git

(chainer_p36) :~/src$ cd chainer/examples/mnist

4. Runthe exampleinthe train mnist data_parallel.py script. By default, the script uses
the GPUs running on your instance of Deep Learning AMI with Conda. The script can be run
on a maximum of two GPUs. It will ignore any GPUs past the first two. It detects one or both
automatically. If you are running an instance without GPUs, skip to Use Chainer to Train with
CPUs (p. 49), later in this tutorial.

(chainer_p36) :~/src/chainer/examples/mnist$ python train_mnist_data_parallel.py

Note

This example will return the following error due to the inclusion of a beta feature not
included in the DLAMI.

chainerx ModuleNotFoundError: No module named 'chainerx'

While the Chainer script trains a model using the MNIST database, you see the results for each
epoch.

Then you see example output as the script runs. The following example output was run on a
p3.8xlarge instance. The script's output shows "GPU: 0, 1", which indicates that it is using the first
two of the four available GPUs. The scripts typically use an index of GPUs starting with zero, instead
of a total count.

GPU: 0, 1

unit: 1000

Minibatch-size: 400

epoch: 20

epoch main/loss validation/main/loss main/accuracy validation/main/accuracy
elapsed_time

1 0.277561 0.114709 0.919933 0.9654
6.59261

2 0.0882352 0.0799204 0.973334 0.9752
8.25162

3 0.0520674 0.0697055 0.983967 0.9786
9.91661

4 0.0326329 0.0638036 0.989834 0.9805
11.5767

5 0.0272191 0.0671859 0.9917 0.9796
13.2341

46

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html

Deep Learning AMI Developer Guide
Distributed Training

6 0.0151008 0.0663898 0.9953 0.9813
14.9068

7 0.0137765 0.0664415 0.995434 0.982
16.5649

8 0.0116909 0.0737597 0.996 0.9801
18.2176

9 0.00773858 0.0795216 0.997367 0.979
19.8797

10 0.00705076 0.0825639 0.997634 0.9785
21.5388

11 0.00773019 0.0858256 0.9978 0.9787
23.2003

12 0.0120371 0.0940225 0.996034 0.9776
24.8587

13 0.00906567 0.0753452 0.997033 0.9824
26.5167

14 0.00852253 0.082996 0.996967 0.9812
28.1777

15 0.00670928 0.102362 0.997867 0.9774
29.8308

16 0.00873565 0.0691577 0.996867 0.9832
31.498

17 0.00717177 0.094268 0.997767 0.9802
33.152

18 0.00585393 0.0778739 0.998267 0.9827
34.8268

19 0.00764773 0.107757 0.9975 0.9773
36.4819

20 0.00620508 0.0834309 0.998167 0.9834
38.1389

While your training is running it is useful to look at your GPU utilization. You can verif