
Deep Learning AMI
Developer Guide

Deep Learning AMI Developer Guide

Deep Learning AMI: Developer Guide
Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not
Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or
discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may
or may not be affiliated with, connected to, or sponsored by Amazon.

Deep Learning AMI Developer Guide

Table of Contents
What Is the AWS Deep Learning AMI? 1

About This Guide 1
Prerequisites ... 1
Example Uses 1
Features 2

Preinstalled Frameworks 2
Preinstalled GPU Software 2
Model Serving and Visualization 2

Getting Started 4
How to Get Started with the DLAMI 4
DLAMI Selection 4

CUDA Installations and Framework Bindings 5
Base 5
Conda 6
Architecture 7
OS 7

Instance Selection 7
Pricing 8
Region Availability ... 9
GPU 9
CPU 9
Inferentia ... 10
Habana 10

Launching a DLAMI 12
Step 1: Launch a DLAMI 12
DLAMI ID 13
EC2 Console 13
Marketplace Search 14
Step 2: Connect to the DLAMI 14
Step 3: Secure Your DLAMI Instance 14
Step 4: Test Your DLAMI 15
Clean Up 15
Jupyter Setup 15

Secure Jupyter ... 16
Start Server ... 16
Configure Client 17
Log in to the Jupyter notebook server ... 18

Using a DLAMI 22
Conda DLAMI 22

Introduction to the Deep Learning AMI with Conda 22
Log in to Your DLAMI 22
Start the TensorFlow Environment 23
Switch to the PyTorch Python 3 Environment 24
Switch to the MXNet Python 3 Environment 24
Removing Environments 25

Base DLAMI 25
Using the Deep Learning Base AMI 25
Configuring CUDA Versions 26

Jupyter Notebooks 26
Navigating the Installed Tutorials ... 26
Switching Environments with Jupyter ... 27

Tutorials ... 27
10 Minute Tutorials ... 27
Activating Frameworks 28

iii

Deep Learning AMI Developer Guide

Debugging and Visualization 41
Distributed Training 45
Elastic Fabric Adapter ... 62
GPU Monitoring and Optimization 74
AWS Inferentia ... 82
Graviton DLAMI 97
Habana DLAMI 104
Inference 105
Using Frameworks with ONNX 109
Model Serving 117

Upgrading Your DLAMI 124
DLAMI Upgrade 124
Software Updates 124

Security ... 126
Data Protection 126
Identity and Access Management 127

Authenticating With Identities ... 127
Managing Access Using Policies ... 129
IAM with Amazon EMR 131

Logging and Monitoring 131
Usage Tracking 131

Compliance Validation 131
Resilience 132
Infrastructure Security ... 132

Related Information 133
Forums 133
Blogs 133
FAQ 133

Release Notes for DLAMI 136
Single-framework DLAMI 136
Multi-framework DLAMI 137
GPU DLAMI 137
Habana DLAMI 137
Base DLAMI 138

DLAMI deprecation notices 139
Document History 141
AWS glossary 144

iv

Deep Learning AMI Developer Guide
About This Guide

What Is the AWS Deep Learning AMI?
Welcome to the User Guide for the AWS Deep Learning AMI.

The AWS Deep Learning AMI (DLAMI) is your one-stop shop for deep learning in the cloud. This
customized machine instance is available in most Amazon EC2 regions for a variety of instance types,
from a small CPU-only instance to the latest high-powered multi-GPU instances. It comes preconfigured
with NVIDIA CUDA and NVIDIA cuDNN, as well as the latest releases of the most popular deep learning
frameworks.

About This Guide
This guide will help you launch and use the DLAMI. It covers several use cases that are common for
deep learning, for both training and inference. Choosing the right AMI for your purpose and the kind
of instances you may prefer is also covered. The DLAMI comes with several tutorials for each of the
frameworks. It also has tutorials on distributed training, debugging, using AWS Inferentia, and other key
concepts. You will find instructions on how to configure Jupyter to run the tutorials in your browser.

Prerequisites
You should be familiar with command line tools and basic Python to successfully run the DLAMI.
Tutorials on how to use each framework are provided by the frameworks themselves, however, this guide
can show you how to activate each one and find the appropriate tutorials to get started.

Example DLAMI Uses
Learning about deep learning: The DLAMI is a great choice for learning or teaching machine learning
and deep learning frameworks. It takes the headache away from troubleshooting the installations of
each framework and getting them to play along on the same computer. The DLAMI comes with a Jupyter
notebook and makes it easy to run the tutorials provided by the frameworks for people new to machine
learning and deep learning.

App development: If you're an app developer and are interested in using deep learning to make your
apps utilize the latest advances in AI, the DLAMI is the perfect test bed for you. Each framework comes
with tutorials on how to get started with deep learning, and many of them have model zoos that make
it easy to try out deep learning without having to create the neural networks yourself or to do any of
the model training. Some examples show you how to build an image detection application in just a few
minutes, or how to build a speech recognition app for your own chatbot.

Machine learning and data analytics: If you're a data scientist or interested in processing your data
with deep learning, you'll find that many of the frameworks have support for R and Spark. You will find
tutorials on how to do simple regressions, all the way up to building scalable data processing systems for
personalization and predictions systems.

Research: If you're a researcher and want to try out a new framework, test out a new model, or train
new models, the DLAMI and AWS capabilities for scale can alleviate the pain of tedious installations and
management of multiple training nodes. You can use EMR and AWS CloudFormation templates to easily
launch a full cluster of instances that are ready to go for scalable training.

Note
While your initial choice might be to upgrade your instance type up to a larger instance with
more GPUs (up to 8), you can also scale horizontally by creating a cluster of DLAMI instances. To

1

https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cudnn

Deep Learning AMI Developer Guide
Features

quickly set up a cluster, you can use the predefined AWS CloudFormation template. Check out
Related Information (p. 133) for more information on cluster builds.

Features of the DLAMI
Preinstalled Frameworks
There are currently two primary flavors of the DLAMI with other variations related to the operating
system (OS) and software versions:

• Deep Learning AMI with Conda (p. 6) - frameworks installed separately using conda packages and
separate Python environments

• Deep Learning Base AMI (p. 5) - no frameworks installed; only NVIDIA CUDA and other
dependencies

The Deep Learning AMI with Conda uses Anaconda environments to isolate each framework, so you can
switch between them at will and not worry about their dependencies conflicting.

For more information on selecting the best DLAMI for you, take a look at .

This is the full list of supported frameworks by Deep Learning AMI with Conda:

• Apache MXNet (Incubating)
• PyTorch
• TensorFlow 2

Note
We no longer include the CNTK, Caffe, Caffe2, Theano, Chainer, or Keras Conda environments
in the AWS Deep Learning AMI starting with the v28 release. Previous releases of the AWS Deep
Learning AMI that contain these environments will continue to be available. However, we will
only provide updates to these environments if there are security fixes published by the open
source community for these frameworks.

Preinstalled GPU Software
Even if you use a CPU-only instance, the DLAMI will have NVIDIA CUDA and NVIDIA cuDNN. The installed
software is the same regardless of the instance type. Keep in mind that GPU-specific tools only work on
an instance that has at least one GPU. More information on this is covered in the Selecting the Instance
Type for DLAMI (p. 7).

• Latest version of NVIDIA CUDA
• Latest version of NVIDIA cuDNN
• Older versions of CUDA are available as well. See the CUDA Installations and Framework

Bindings (p. 5) for more information.

Model Serving and Visualization
Deep Learning AMI with Conda comes preinstalled with two kinds of model servers, one for MXNet and
one for TensorFlow, as well as TensorBoard, for model visualizations.

• Model Server for Apache MXNet (MMS) (p. 118)

2

https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cudnn

Deep Learning AMI Developer Guide
Model Serving and Visualization

• TensorFlow Serving (p. 120)
• TensorBoard (p. 43)

3

Deep Learning AMI Developer Guide
How to Get Started with the DLAMI

Getting Started

How to Get Started with the DLAMI
This guide includes tips about picking the DLAMI that's right for you, selecting an instance type that fits
your use case and budget, and Related Information (p. 133) that describes custom setups that may be
of interest.

If you're new to using AWS or using Amazon EC2, start with the Deep Learning AMI with Conda (p. 6).
If you're familiar with Amazon EC2 and other AWS services like Amazon EMR, Amazon EFS, or Amazon
S3, and are interested in integrating those services for projects that need distributed training or
inference, then check out Related Information (p. 133) to see if one fits your use case.

We recommend that you check out Choosing Your DLAMI (p. 4) to get an idea of which instance type
might be best for your application.

Another option is this quick tutorial: Launch a AWS Deep Learning AMI (in 10 minutes).

Next Step

Choosing Your DLAMI (p. 4)

Choosing Your DLAMI
We offer a range of DLAMI options. To help you select the correct DLAMI for your use case, we group
images by the hardware type or functionality for which they were developed. Our top level groupings
are:

• DLAMI Type: CUDA versus Base versus Single-Framework versus Multi-Framework (Conda DLAMI)
• Compute Architecture: x86-based versus Arm-based AWS Graviton
• Processor Type: GPU versus CPU versus Inferentia versus Habana
• SDK: CUDA versus AWS Neuron versus SynapsesAI
• OS: Amazon Linux versus Ubuntu

The rest of the topics in this guide help further inform you and go into more details.

Topics
• CUDA Installations and Framework Bindings (p. 5)
• Deep Learning Base AMI (p. 5)
• Deep Learning AMI with Conda (p. 6)
• DLAMI CPU Architecture Options (p. 7)
• DLAMI Operating System Options (p. 7)

Next Up

Deep Learning AMI with Conda (p. 6)

4

https://aws.amazon.com/getting-started/tutorials/get-started-dlami/
http://aws.amazon.com/ec2/graviton/
https://docs.aws.amazon.com/dlami/latest/devguide/gpu
https://docs.aws.amazon.com/dlami/latest/devguide/cpu
https://docs.aws.amazon.com/dlami/latest/devguide/inferentia
https://docs.aws.amazon.com/dlami/latest/devguide/habana
https://developer.nvidia.com/cuda-toolkit
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-intro/get-started.html
https://github.com/HabanaAI/Setup_and_Install

Deep Learning AMI Developer Guide
CUDA Installations and Framework Bindings

CUDA Installations and Framework Bindings
While deep learning is all pretty cutting edge, each framework offers "stable" versions. These stable
versions may not work with the latest CUDA or cuDNN implementation and features. Your use case and
the features you require can help you choose a framework. If you are not sure, then use the latest Deep
Learning AMI with Conda. It has official pip binaries for all frameworks with CUDA 10, using whichever
most recent version is supported by each framework. If you want the latest versions, and to customize
your deep learning environment, use the Deep Learning Base AMI.

Look at our guide on Stable Versus Release Candidates (p. 6) for further guidance.

Choose a DLAMI with CUDA
The Deep Learning Base AMI (p. 5) has all available CUDA 11 series, including 11.0, 11.1, and 11.2.

The Deep Learning AMI with Conda (p. 6) has all available CUDA 11 series, including 11.0, 11.1, and
11.2.

Note
We no longer include the CNTK, Caffe, Caffe2, Theano, Chainer, or Keras Conda environments
in the AWS Deep Learning AMI starting with the v28 release. Previous releases of the AWS
Deep Learning AMI that contain these environments continue to be available. However, we only
provide updates to these environments if there are security fixes published by the open-source
community for these frameworks.

For specific framework version numbers, see the Release Notes for DLAMI (p. 136)

Choose this DLAMI type or learn more about the different DLAMIs with the Next Up option.

Choose one of the CUDA versions and review the full list of DLAMIs that have that version in the
Appendix, or learn more about the different DLAMIs with the Next Up option.

Next Up

Deep Learning Base AMI (p. 5)

Related Topics
• For instructions on switching between CUDA versions, refer to the Using the Deep Learning Base

AMI (p. 25) tutorial.

Deep Learning Base AMI
The Deep Learning Base AMI is like an empty canvas for deep learning. It comes with everything you
need up until the point of the installation of a particular framework, and has your choice of CUDA
versions.

Why to Choose the Base DLAMI
This AMI group is useful for project contributors who want to fork a deep learning project and build the
latest. It's for someone who wants to roll their own environment with the confidence that the latest
NVIDIA software is installed and working so they can focus on picking which frameworks and versions
they want to install.

Choose this DLAMI type or learn more about the different DLAMIs with the Next Up option.

Next Up

5

Deep Learning AMI Developer Guide
Conda

DLAMI with Conda

Related Topics
• Using the Deep Learning Base AMI

Deep Learning AMI with Conda
The Conda DLAMI uses Anaconda virtual environments. These environments are configured to keep the
different framework installations separate and streamline switching between frameworks. This is great
for learning and experimenting with all of the frameworks the DLAMI has to offer. Most users find that
the new Deep Learning AMI with Conda is perfect for them.

These AMIs are the primary DLAMIs. They are updated often with the latest versions from the
frameworks, and have the latest GPU drivers and software. They are generally referred to as the AWS
Deep Learning AMI in most documents.

• The Ubuntu 18.04 DLAMI has the following frameworks: Apache MXNet (Incubating), PyTorch, and
TensorFlow 2.

• The Amazon Linux 2 DLAMI has the following frameworks: Apache MXNet (Incubating), PyTorch, and
TensorFlow 2.

Note
We no longer include the CNTK, Caffe, Caffe2, Theano, Chainer, and Keras Conda environments
in the AWS Deep Learning AMI starting with the v28 release. Previous releases of the AWS
Deep Learning AMI that contain these environments continue to be available. However, we only
provide updates to these environments if there are security fixes published by the open-source
community for these frameworks.

Stable Versus Release Candidates
The Conda AMIs use optimized binaries of the most recent formal releases from each framework.
Release candidates and experimental features are not to be expected. The optimizations depend on the
framework's support for acceleration technologies like Intel's MKL DNN, which speeds up training and
inference on C5 and C4 CPU instance types. The binaries are also compiled to support advanced Intel
instruction sets including but not limited to AVX, AVX-2, SSE4.1, and SSE4.2. These accelerate vector and
floating point operations on Intel CPU architectures. Additionally, for GPU instance types, the CUDA and
cuDNN are updated with whichever version the latest official release supports.

The Deep Learning AMI with Conda automatically installs the most optimized version of the framework
for your Amazon EC2 instance upon the framework's first activation. For more information, refer to Using
the Deep Learning AMI with Conda (p. 22).

If you want to install from source, using custom or optimized build options, the Deep Learning Base
AMI (p. 5)s might be a better option for you.

Python 2 Deprecation
The Python open source community has officially ended support for Python 2 on January 1, 2020. The
TensorFlow and PyTorch community have announced that the TensorFlow 2.1 and PyTorch 1.4 releases
are the last ones supporting Python 2. Previous releases of the DLAMI (v26, v25, etc) that contain Python
2 Conda environments continue to be available. However, we provide updates to the Python 2 Conda
environments on previously published DLAMI versions only if there are security fixes published by the
open-source community for those versions. DLAMI releases with the latest versions of the TensorFlow
and PyTorch frameworks do not contain the Python 2 Conda environments.

6

https://docs.aws.amazon.com/dlami/latest/devguide/overview-conda.html
https://docs.aws.amazon.com/dlami/latest/devguide/tutorial-base.html

Deep Learning AMI Developer Guide
Architecture

CUDA Support
Specific CUDA version numbers can be found in the GPU DLAMI release notes.

Next Up

DLAMI CPU Architecture Options (p. 7)

Related Topics
• For a tutorial on using a Deep Learning AMI with Conda, see the Using the Deep Learning AMI with

Conda (p. 22) tutorial.

DLAMI CPU Architecture Options
AWS Deep Learning AMIs are offered with either x86-based or Arm-based AWS Graviton2 CPU
architectures.

Choose one of the Graviton GPU DLAMIs to work with an Arm-based CPU architecture. All other GPU
DLAMIs are currently x86-based.

• AWS Deep Learning AMI Graviton GPU CUDA 11.4 (Ubuntu 20.04)
• AWS Deep Learning AMI Graviton GPU TensorFlow 2.6 (Ubuntu 20.04)
• AWS Deep Learning AMI Graviton GPU PyTorch 1.10 (Ubuntu 20.04)

For information about getting started with the Graviton GPU DLAMI, see The Graviton DLAMI (p. 97).
For more details on available instance types, see Selecting the Instance Type for DLAMI (p. 7).

Next Up

DLAMI Operating System Options (p. 7)

DLAMI Operating System Options
DLAMIs are offered in the following operating systems.

• Amazon Linux 2
• Ubuntu 20.04
• Ubuntu 18.04

Older versions of operating systems are available on deprecated DLAMIs. For more information on
DLAMI deprecation, see Deprecations for DLAMI

Before choosing a DLAMI, assess what instance type you need and identify your AWS Region.

Next Up

Selecting the Instance Type for DLAMI (p. 7)

Selecting the Instance Type for DLAMI
See the AWS Deep Learning AMI Catalog for recommended Amazon EC2 instance families that are
compatible with specific DLAMIs.

7

https://docs.aws.amazon.com/dlami/latest/devguide/appendix-ami-release-notes.html#appendix-ami-release-notes-gpu
http://aws.amazon.com/ec2/graviton/
http://aws.amazon.com/releasenotes/aws-deep-learning-ami-graviton-gpu-cuda-11-4-ubuntu-20-04/
http://aws.amazon.com/releasenotes/aws-deep-learning-ami-graviton-gpu-tensorflow-2-6-ubuntu-20-04/
http://aws.amazon.com/releasenotes/deep-learning-ami-graviton-gpu-pytorch-1-10-ubuntu-20-04/
https://docs.aws.amazon.com/dlami/latest/devguide/deprecations.html
http://aws.amazon.com/releasenotes/aws-deep-learning-ami-catalog/

Deep Learning AMI Developer Guide
Pricing

More generally, consider the following when selecting an instance type for a DLAMI.

• If you're new to deep learning, then an instance with a single GPU might suit your needs.

• If you're budget conscious, then you can use CPU-only instances.

• If you're looking to optimize high performance and cost efficiency for deep learning model inference,
then you can use instances with AWS Inferentia chips.

• If you're looking to optimize high performance and cost efficiency for deep learning model training,
then you can use instances with Habana accelerators.

• If you're looking for a high performance GPU instance with an Arm-based CPU architecture, then you
can use the G5g instance type.

• If you're interested in running a pretrained model for inference and predictions, then you can attach an
Amazon Elastic Inference to your Amazon EC2 instance. Amazon Elastic Inference gives you access to
an accelerator with a fraction of a GPU.

• For high-volume inference services, a single CPU instance with a lot of memory, or a cluster of such
instances, might be a better solution.

• If you're using a large model with a lot of data or a high batch size, then you need a larger instance
with more memory. You can also distribute your model to a cluster of GPUs. You may find that using
an instance with less memory is a better solution for you if you decrease your batch size. This may
impact your accuracy and training speed.

• If you’re interested in running machine learning applications using NVIDIA Collective Communications
Library (NCCL) requiring high levels of inter-node communications at scale, you might want to use
Elastic Fabric Adapter (EFA).

For more detail on instances, see EC2 Instance Types.

The following topics provide information about instance type considerations.

Important
The Deep Learning AMIs include drivers, software, or toolkits developed, owned, or provided
by NVIDIA Corporation. You agree to use these NVIDIA drivers, software, or toolkits only on
Amazon EC2 instances that include NVIDIA hardware.

Topics
• Pricing for the DLAMI (p. 8)

• DLAMI Region Availability (p. 9)

• Recommended GPU Instances (p. 9)

• Recommended CPU Instances (p. 9)

• Recommended Inferentia Instances (p. 10)

• Recommended Habana Instances (p. 10)

Pricing for the DLAMI
The deep learning frameworks included in the DLAMI are free, and each has its own open-source licenses.
Although the software included in the DLAMI is free, you still have to pay for the underlying Amazon EC2
instance hardware.

Some Amazon EC2 instance types are labeled as free. It is possible to run the DLAMI on one of these free
instances. This means that using the DLAMI is entirely free when you only use that instance's capacity.
If you need a more powerful instance with more CPU cores, more disk space, more RAM, or one or more
GPUs, then you need an instance that is not in the free-tier instance class.

For more information about instance selection and pricing, see Amazon EC2 pricing.

8

https://docs.aws.amazon.com/elastic-inference/latest/developerguide/what-is-ei.html
https://docs.aws.amazon.com/dlami/latest/devguide/tutorial-efa-launching.html
https://docs.aws.amazon.com/dlami/latest/devguide/tutorial-efa-launching.html
https://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/pricing/

Deep Learning AMI Developer Guide
Region Availability

DLAMI Region Availability
Each Region supports a different range of instance types and often an instance type has a slightly
different cost in different Regions. DLAMIs are not available in every Region, but it is possible to copy
DLAMIs to the Region of your choice. See Copying an AMI for more information. Note the Region
selection list and be sure you pick a Region that's close to you or your customers. If you plan to use more
than one DLAMI and potentially create a cluster, be sure to use the same Region for all of nodes in the
cluster.

For a more info on Regions, visit EC2 Regions.

Next Up

Recommended GPU Instances (p. 9)

Recommended GPU Instances
We recommend a GPU instance for most deep learning purposes. Training new models is faster on a GPU
instance than a CPU instance. You can scale sub-linearly when you have multi-GPU instances or if you
use distributed training across many instances with GPUs. To set up distributed training, see Distributed
Training (p. 45).

The following instance types support the DLAMI. For information about GPU instance type options and
their uses, see EC2 Instance Types and select Accelerated Computing.

Note
The size of your model should be a factor in selecting an instance. If your model exceeds
an instance's available RAM, select a different instance type with enough memory for your
application.

• Amazon EC2 P3 Instances have up to 8 NVIDIA Tesla V100 GPUs.

• Amazon EC2 P4 Instances have up to 8 NVIDIA Tesla A100 GPUs.

• Amazon EC2 G3 Instances have up to 4 NVIDIA Tesla M60 GPUs.

• Amazon EC2 G4 Instances have up to 4 NVIDIA T4 GPUs.

• Amazon EC2 G5 Instances have up to 8 NVIDIA A10G GPUs.

• Amazon EC2 G5g Instances have Arm-based AWS Graviton2 processors.

DLAMI instances provide tooling to monitor and optimize your GPU processes. For more information
about monitoring your GPU processes, see GPU Monitoring and Optimization (p. 74).

For specific tutorials on working with G5g instances, see The Graviton DLAMI (p. 97).

Next Up

Recommended CPU Instances (p. 9)

Recommended CPU Instances
Whether you're on a budget, learning about deep learning, or just want to run a prediction service,
you have many affordable options in the CPU category. Some frameworks take advantage of Intel's
MKL DNN, which speeds up training and inference on C5 (not available in all Regions), C4, and C3 CPU
instance types. For information about CPU instance types, see EC2 Instance Types and select Compute
Optimized.

9

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/CopyingAMIs.html
https://docs.aws.amazon.com/general/latest/gr/rande.html#ec2_region
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/p3/
https://aws.amazon.com/ec2/instance-types/p4/
https://aws.amazon.com/ec2/instance-types/g3/
https://aws.amazon.com/ec2/instance-types/g4/
https://aws.amazon.com/ec2/instance-types/g5/
http://aws.amazon.com/ec2/instance-types/g5g/
http://aws.amazon.com/ec2/graviton/
https://aws.amazon.com/ec2/instance-types/

Deep Learning AMI Developer Guide
Inferentia

Note
The size of your model should be a factor in selecting an instance. If your model exceeds
an instance's available RAM, select a different instance type with enough memory for your
application.

• Amazon EC2 C5 Instances have up to 72 Intel vCPUs. C5 instances excel at scientific modeling, batch
processing, distributed analytics, high-performance computing (HPC), and machine and deep learning
inference.

• Amazon EC2 C4 Instances have up to 36 Intel vCPUs.

Next Up

Recommended Inferentia Instances (p. 10)

Recommended Inferentia Instances
AWS Inferentia instances are designed to provide high performance and cost efficiency for deep learning
model inference workloads. Specifically, Inf1 instance types use AWS Inferentia chips and the AWS
Neuron SDK, which is integrated with popular machine learning frameworks such as TensorFlow,
PyTorch, and MXNet.

Customers can use Inf1 instances to run large scale machine learning inference applications such as
search, recommendation engines, computer vision, speech recognition, natural language processing,
personalization, and fraud detection, at the lowest cost in the cloud.

Note
The size of your model should be a factor in selecting an instance. If your model exceeds
an instance's available RAM, select a different instance type with enough memory for your
application.

• Amazon EC2 Inf1 Instances have up to up to 16 AWS Inferentia chips and 100 Gbps of networking
throughput.

For more information about getting started with AWS Inferentia DLAMIs, see The AWS Inferentia Chip
With DLAMI (p. 82).

Next Up

Recommended Habana Instances (p. 10)

Recommended Habana Instances
Instances with Habana accelerators are designed to provide high performance and cost efficiency for
deep learning model training workloads. Specifically, DL1 instance types use Habana Gaudi accelerators
from Habana Labs, an Intel company. DL1 instances are ideal for training machine learning models used
in applications such as natural language processing, object detection and classification, recommendation
engines, and autonomous vehicle perception.

Instances with Habana accelerators are configured with Habana SynapseAI software and pre-integrated
with popular machine learning frameworks such as TensorFlow and PyTorch. If you are looking for an
optimal combination of performance and price for training deep learning models, consider instances
with Habana accelerators for the lowest cost to train.

Note
The size of your model should be a factor in selecting an instance. If your model exceeds
an instance's available RAM, select a different instance type with enough memory for your
application.

10

https://aws.amazon.com/ec2/instance-types/c5/
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/
https://aws.amazon.com/ec2/instance-types/inf1/

Deep Learning AMI Developer Guide
Habana

• Amazon EC2 DL1 Instances have up to eight Habana Gaudi accelerators, 256GB of accelerator memory,
4TB of local NVMe storage, and 400 Gbps of networking throughput.

For more information about getting started with Habana DLAMIs, see The Habana DLAMI (p. 104).

11

https://aws.amazon.com/ec2/instance-types/dl1/

Deep Learning AMI Developer Guide
Step 1: Launch a DLAMI

Launching and Configuring a DLAMI
If you're here you should already have a good idea of which AMI you want to launch. If not, choose
a DLAMI using the AMI selection guidelines found throughout or use the full listing of AMIs in the
Appendix section, .

You should also know which instance type and region you're going to choose. If not, browse Selecting
the Instance Type for DLAMI (p. 7).

Note
We will use p2.xlarge as the default instance type in the examples. Just replace this with
whichever instance type you have in mind.

Important
If you plan to use Elastic Inference, you have Elastic Inference Setup that must be completed
prior to launching your DLAMI.

Topics
• Step 1: Launch a DLAMI (p. 12)

• DLAMI ID (p. 13)

• EC2 Console (p. 13)

• Marketplace Search (p. 14)

• Step 2: Connect to the DLAMI (p. 14)

• Step 3: Secure Your DLAMI Instance (p. 14)

• Step 4: Test Your DLAMI (p. 15)

• Clean Up (p. 15)

• Set up a Jupyter Notebook Server (p. 15)

Step 1: Launch a DLAMI
Note
For this walkthrough, we might make references specific to the Deep Learning AMI (Ubuntu
16.04). Even if you select a different DLAMI, you should be able to follow this guide.

Launch the instance

1. You have a couple routes for launching DLAMI. Choose one:

• EC2 Console (p. 13)

• Marketplace Search (p. 14)

Tip
CLI Option: If you choose to spin up a DLAMI using the AWS CLI, you will need the AMI's ID,
the region and instance type, and your security token information. Be sure you have your
AMI and instance IDs ready. If you haven't set up the AWS CLI yet, do that first using the
guide for Installing the AWS Command Line Interface.

2. After you have completed the steps of one of those options, wait for the instance to be ready. This
usually takes only a few minutes. You can verify the status of the instance in the EC2 Console.

12

https://docs.aws.amazon.com/elastic-inference/latest/developerguide/setting-up-ei.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://console.aws.amazon.com/ec2

Deep Learning AMI Developer Guide
DLAMI ID

DLAMI ID
Find the ID for the DLAMI of your choice with the AWS Command Line Interface (AWS CLI). If you do not
already have the AWS CLI installed, see Getting started with the AWS CLI.

1. Make sure that your AWS credentials are configured.

aws configure

2. Choose a DLAMI and check the details in the release notes. Use the following command to get the ID
for the DLAMI of your choice:

aws ec2 describe-images --region us-east-1 --owners amazon \
--filters 'Name=name,Values=Deep Learning AMI (Ubuntu 18.04) Version ??.?'
 'Name=state,Values=available' \
--query 'reverse(sort_by(Images, &CreationDate))[:1].ImageId' --output text

Note
You can specify a release version for a given framework or get the latest release by
replacing the version number with a question mark.

3. The output should look similar to the following:

ami-094c089c38ed069f2

Copy this DLAMI ID and press q to exit the prompt.

Next Step

EC2 Console (p. 13)

EC2 Console
Note
To launch an instance with Elastic Fabric Adapter (EFA), refer to these steps.

1. Open the EC2 Console.
2. Note your current region in the top-most navigation. If this isn't your desired AWS Region, change

this option before proceeding. For more information, see EC2 Regions.
3. Choose Launch Instance.
4. Search for the desired instance by name:

a. Select the DLAMI that is right for you. Find the DLAMI name as listed in the release notes or find
the DLAMI ID using the AWS CLI.

b. Choose Community AMIs.

i. To view a selection of the latest DLAMIs, choose Quick Start.
ii. Choose AWS Marketplace to browse additional DLAMIs. Only a subset of available DLAMIs

will be listed here.
c. Enter the DLAMI name or search the DLAMI ID. Browse the options and then click Select on your

choice.
5. Review the details, and then choose Continue.
6. Choose an instance type. For recommendations on DLAMI instance types, see Instance Selection.

13

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started
https://docs.aws.amazon.com/dlami/latest/devguide/appendix-ami-release-notes
https://docs.aws.amazon.com/dlami/latest/devguide/tutorial-efa-launching.html
https://console.aws.amazon.com/ec2
https://docs.aws.amazon.com/general/latest/gr/rande.html#ec2_region
https://docs.aws.amazon.com/dlami/latest/devguide/appendix-ami-release-notes
https://docs.aws.amazon.com/dlami/latest/devguide/find-dlami-id
https://docs.aws.amazon.com/dlami/latest/devguide/instance-select.html

Deep Learning AMI Developer Guide
Marketplace Search

Note
If you want to use Elastic Inference (EI), click Configure Instance Details, select Add an
Amazon EI accelerator, then select the size of the Amazon EI accelerator.

7. Choose Review and Launch.
8. Review the details and pricing. Choose Launch.

Tip
Check out Get Started with Deep Learning Using the AWS Deep Learning AMI for a walk-through
with screenshots!

Next Step

Step 2: Connect to the DLAMI (p. 14)

Marketplace Search
1. Browse the AWS Marketplace and search for AWS Deep Learning AMI.
2. Browse the options, and then click Select on your choice.
3. Review the details, and then choose Continue.
4. Review the details and make note of the Region. If this isn't your desired AWS Region, change this

option before proceeding. For more information, see EC2 Regions.
5. Choose an instance type.
6. Choose a key pair, use your default one, or create a new one.
7. Review the details and pricing.
8. Choose Launch with 1-Click.

Next Step

Step 2: Connect to the DLAMI (p. 14)

Step 2: Connect to the DLAMI
Connect to the DLAMI that you launched from a client (Windows, MacOS, or Linux). For more
information, see Connect to Your Linux Instance in the Amazon EC2 User Guide for Linux Instances.

Keep a copy of the SSH login command handy if you want to do the Jupyter setup after logging in. You
will use a variation of it to connect to the Jupyter webpage.

Next Step

Step 3: Secure Your DLAMI Instance (p. 14)

Step 3: Secure Your DLAMI Instance
Always keep your operating system and other installed software up to date by applying patches and
updates as soon as they become available.

If you are using Amazon Linux or Ubuntu, when you login to your DLAMI, you are notified if updates are
available and see instructions for updating. For further information on Amazon Linux maintenance, see
Updating Instance Software. For Ubuntu instances, refer to the official Ubuntu documentation.

14

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-inference.html
https://aws.amazon.com/blogs/ai/get-started-with-deep-learning-using-the-aws-deep-learning-ami/
https://docs.aws.amazon.com/general/latest/gr/rande.html#ec2_region
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/install-updates.html
https://help.ubuntu.com/

Deep Learning AMI Developer Guide
Step 4: Test Your DLAMI

On Windows, check Windows Update regularly for software and security updates. If you prefer, have
updates applied automatically.

Important
For information about the Meltdown and Spectre vulnerabilities and how to patch your
operating system to address them, see Security Bulletin AWS-2018-013.

Step 4: Test Your DLAMI
Depending on your DLAMI version, you have different testing options:

• Deep Learning AMI with Conda (p. 6) – go to Using the Deep Learning AMI with Conda (p. 22).
• Deep Learning Base AMI (p. 5) – refer to your desired framework's installation documentation.

You can also create a Jupyter notebook, try out tutorials, or start coding in Python. For more
information, see Set up a Jupyter Notebook Server (p. 15).

Clean Up
When you no longer need the DLAMI, you can stop it or terminate it to avoid incurring continuing
charges. Stopping an instance will keep it around so you can resume it later. Your configurations, files,
and other non-volatile information is being stored in a volume on Amazon S3. You will be charged the
small S3 fee to retain the volume while the instance is stopped, but you will no longer be charged for
the compute resources while it is in the stopped state. When your start the instance again, it will mount
that volume and your data will be there. If you terminate an instance, it is gone, and you cannot start
it again. Your data actually still resides on S3, so to prevent any further charges you need to delete the
volume as well. For more instructions, see Terminate Your Instance in the Amazon EC2 User Guide for
Linux Instances.

Set up a Jupyter Notebook Server
A Jupyter notebook server enables you to create and run Jupyter notebooks from your DLAMI instance.
With Jupyter notebooks, you can conduct machine learning (ML) experiments for training and inference
while using the AWS infrastructure and accessing packages built into the DLAMI. For more information
about Jupyter notebooks, see the Jupyter Notebook documentation.

To set up a Jupyter notebook server, you must:

• Configure the Jupyter notebook server on your Amazon EC2 DLAMI instance.
• Configure your client so that you can connect to the Jupyter notebook server. We provide

configuration instructions for Windows, macOS, and Linux clients.
• Test the setup by logging in to the Jupyter notebook server.

To complete the steps to set up a Jupyter, follow the instructions in the following topics. Once you've
set up a Jupyter notebook server, see Running Jupyter Notebook Tutorials (p. 26) for information on
running the example notebooks that ship in the DLAMI.

Topics
• Secure Your Jupyter Server (p. 16)
• Start the Jupyter notebook server (p. 16)
• Configure the Client to Connect to the Jupyter Server (p. 17)

15

https://aws.amazon.com/security/security-bulletins/AWS-2018-013/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html
https://jupyter-notebook.readthedocs.io/en/latest/notebook.html

Deep Learning AMI Developer Guide
Secure Jupyter

• Test by Logging in to the Jupyter notebook server (p. 18)

Secure Your Jupyter Server
Here we set up Jupyter with SSL and a custom password.

Connect to the Amazon EC2 instance, and then complete the following procedure.

Configure the Jupyter server

1. Jupyter provides a password utility. Run the following command and enter your preferred password
at the prompt.

$ jupyter notebook password

The output will look something like this:

Enter password:
Verify password:
[NotebookPasswordApp] Wrote hashed password to /home/ubuntu/.jupyter/
jupyter_notebook_config.json

2. Create a self-signed SSL certificate. Follow the prompts to fill out your locality as you see fit. You
must enter . if you wish to leave a prompt blank. Your answers will not impact the functionality of
the certificate.

$ cd ~
$ mkdir ssl
$ cd ssl
$ openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout mykey.key -out mycert.pem

Note
You might be interested in creating a regular SSL certificate that is third party signed and does
not cause the browser to give you a security warning. This process is much more involved. Visit
Jupyter's documention for more information.

Next Step

Start the Jupyter notebook server (p. 16)

Start the Jupyter notebook server
Now you can fire up the Jupyter server by logging in to the instance and running the following command
that uses the SSL certificate you created in the previous step.

$ jupyter notebook --certfile=~/ssl/mycert.pem --keyfile ~/ssl/mykey.key

With the server started, you can now connect to it via an SSH tunnel from your client computer. When
the server runs, you will see some output from Jupyter confirming that the server is running. At this
point, ignore the callout that you can access the server via a localhost URL, because that won't work until
you create the tunnel.

Note
Jupyter will handle switching environments for you when you switch frameworks using
the Jupyter web interface. More info on this can be found in Switching Environments with
Jupyter (p. 27).

16

https://jupyter-notebook.readthedocs.io/en/stable/public_server.html#using-let-s-encrypt

Deep Learning AMI Developer Guide
Configure Client

Next Step

Configure the Client to Connect to the Jupyter Server (p. 17)

Configure the Client to Connect to the Jupyter Server

After configuring your client to connect to the Jupyter notebook server, you can create and access
notebooks on the server in your workspace and run your deep learning code on the server.

For configuration information, choose one of the following links.

Topics
• Configure a Windows Client (p. 17)
• Configure a Linux or macOS Client (p. 17)

Configure a Windows Client

Prepare

Be sure you have the following information, which you need to set up the SSH tunnel:

• The public DNS name of your Amazon EC2 instance. You can find the public DNS name in the EC2
console.

• The key pair for the private key file. For more information about accessing your key pair, see Amazon
EC2 Key Pairs in the Amazon EC2 User Guide for Linux Instances.

Using Jupyter Notebooks from a Windows Client

Refer to these guides on connecting to your Amazon EC2 instance from a Windows client.

1. Troubleshooting Connecting to Your Instance
2. Connecting to Your Linux Instance from Windows Using PuTTY

To create a tunnel to a running Jupyter server, a recommended approach is to install Git Bash on your
Windows client, then follow the Linux/macOS client instructions. However, you may use whatever
approach you want for opening an SSH tunnel with port mapping. Refer to Jupyter's documentation for
further information.

Next Step

Configure a Linux or macOS Client (p. 17)

Configure a Linux or macOS Client
1. Open a terminal.
2. Run the following command to forward all requests on local port 8888 to port 8888 on your remote

Amazon EC2 instance. Update the command by replacing the location of your key to access the
Amazon EC2 instance and the public DNS name of your Amazon EC2 instance. Note, for an Amazon
Linux AMI, the user name is ec2-user instead of ubuntu.

$ ssh -i ~/mykeypair.pem -N -f -L 8888:localhost:8888 ubuntu@ec2-###-##-##-
###.compute-1.amazonaws.com

17

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/TroubleshootingInstancesConnecting.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/putty.html
https://jupyter-notebook.readthedocs.io/en/stable/public_server.html

Deep Learning AMI Developer Guide
Log in to the Jupyter notebook server

This command opens a tunnel between your client and the remote Amazon EC2 instance that is
running the Jupyter notebook server.

Next Step

Test by Logging in to the Jupyter notebook server (p. 18)

Test by Logging in to the Jupyter notebook server
Now you are ready to log in to the Jupyter notebook server.

Your next step is to test the connection to the server through your browser.

1. In the address bar of your browser, type the following URL, or click on this link: https://
localhost:8888

2. With a self signed SSL certificate, your browser will warn you and prompt you to avoid continuing to
visit the website.

18

https://localhost:8888
https://localhost:8888

Deep Learning AMI Developer Guide
Log in to the Jupyter notebook server

Since you set this up yourself, it is safe to continue. Depending your browser you will get an
"advanced", "show details", or similar button.

19

Deep Learning AMI Developer Guide
Log in to the Jupyter notebook server

20

Deep Learning AMI Developer Guide
Log in to the Jupyter notebook server

Click on this, then click on the "proceed to localhost" link. If the connection is successful, you see the
Jupyter notebook server webpage. At this point, you will be asked for the password you previously
setup.

Now you have access to the Jupyter notebook server that is running on the DLAMI. You can create
new notebooks or run the provided Tutorials (p. 27).

21

Deep Learning AMI Developer Guide
Conda DLAMI

Using a DLAMI
Topics

• Using the Deep Learning AMI with Conda (p. 22)
• Using the Deep Learning Base AMI (p. 25)
• Running Jupyter Notebook Tutorials (p. 26)
• Tutorials (p. 27)

The following sections describe how the Deep Learning AMI with Conda can be used to switch
environments, run sample code from each of the frameworks, and run Jupyter so you can try out
different notebook tutorials.

Using the Deep Learning AMI with Conda
Topics

• Introduction to the Deep Learning AMI with Conda (p. 22)
• Log in to Your DLAMI (p. 22)
• Start the TensorFlow Environment (p. 23)
• Switch to the PyTorch Python 3 Environment (p. 24)
• Switch to the MXNet Python 3 Environment (p. 24)
• Removing Environments (p. 25)

Introduction to the Deep Learning AMI with Conda
Conda is an open source package management system and environment management system that
runs on Windows, macOS, and Linux. Conda quickly installs, runs, and updates packages and their
dependencies. Conda easily creates, saves, loads and switches between environments on your local
computer.

The Deep Learning AMI with Conda has been configured for you to easily switch between deep learning
environments. The following instructions guide you on some basic commands with conda. They also
help you verify that the basic import of the framework is functioning, and that you can run a couple
simple operations with the framework. You can then move on to more thorough tutorials provided with
the DLAMI or the frameworks' examples found on each frameworks' project site.

Log in to Your DLAMI
After you log in to your server, you will see a server "message of the day" (MOTD) describing various
Conda commands that you can use to switch between the different deep learning frameworks. Below is
an example MOTD. Your specific MOTD may vary as new versions of the DLAMI are released.

Note
We no longer include the CNTK, Caffe, Caffe2, Theano, Chainer, and Keras Conda environments
in the AWS Deep Learning AMI starting with the v28 release. Previous releases of the AWS Deep
Learning AMI that contain these environments will continue to be available. However, we will
only provide updates to these environments if there are security fixes published by the open
source community for these frameworks.

===
 __| __|_)

22

Deep Learning AMI Developer Guide
Start the TensorFlow Environment

 _| (/ Deep Learning AMI (Ubuntu 18.04) Version 40.0
 ___|___|___|
===

Welcome to Ubuntu 18.04.5 LTS (GNU/Linux 5.4.0-1037-aws x86_64v)

Please use one of the following commands to start the required environment with the
 framework of your choice:
for AWS MX 1.7 (+Keras2) with Python3 (CUDA 10.1 and Intel MKL-DNN)
 _______________________________ source activate mxnet_p36
for AWS MX 1.8 (+Keras2) with Python3 (CUDA + and Intel MKL-DNN)
 ___________________________ source activate mxnet_latest_p37
for AWS MX(+AWS Neuron) with Python3 ___
 source activate aws_neuron_mxnet_p36
for AWS MX(+Amazon Elastic Inference) with Python3 _______________________________________
 source activate amazonei_mxnet_p36
for TensorFlow(+Keras2) with Python3 (CUDA + and Intel MKL-DNN)
 _____________________________ source activate tensorflow_p37
for Tensorflow(+AWS Neuron) with Python3 ___ source
 activate aws_neuron_tensorflow_p36
for TensorFlow 2(+Keras2) with Python3 (CUDA 10.1 and Intel MKL-DNN)
 _______________________ source activate tensorflow2_p36
for TensorFlow 2.3 with Python3.7 (CUDA + and Intel MKL-DNN) ________________________
 source activate tensorflow2_latest_p37
for PyTorch 1.4 with Python3 (CUDA 10.1 and Intel MKL)
 ___ source activate pytorch_p36
for PyTorch 1.7.1 with Python3.7 (CUDA 11.0 and Intel MKL) ________________________________
 source activate pytorch_latest_p37
for PyTorch (+AWS Neuron) with Python3 __
 source activate aws_neuron_pytorch_p36
for base Python3 (CUDA 10.0)
 ___ source activate
 python3

Each Conda command has the following pattern:

source activate framework_python-version

For example, you may see for MXNet(+Keras1) with Python3 (CUDA 10.1)
_____________________ source activate mxnet_p36, which signifies that the environment has
MXNet, Keras 1, Python 3, and CUDA 10.1. And to activate this environment, the command you would
use is:

$ source activate mxnet_p36

Start the TensorFlow Environment
Note
When you launch your first Conda environment, please be patient while it loads. The Deep
Learning AMI with Conda automatically installs the most optimized version of the framework
for your EC2 instance upon the framework's first activation. You should not expect subsequent
delays.

1. Activate the TensorFlow virtual environment for Python 3.

$ source activate tensorflow_p37

2. Start the iPython terminal.

(tensorflow_37)$ ipython

23

Deep Learning AMI Developer Guide
Switch to the PyTorch Python 3 Environment

3. Run a quick TensorFlow program.

import tensorflow as tf
hello = tf.constant('Hello, TensorFlow!')
sess = tf.Session()
print(sess.run(hello))

You should see "Hello, Tensorflow!"

Next Up

Running Jupyter Notebook Tutorials (p. 26)

Switch to the PyTorch Python 3 Environment
If you're still in the iPython console, use quit(), then get ready to switch environments.

• Activate the PyTorch virtual environment for Python 3.

$ source activate pytorch_p36

Test Some PyTorch Code
To test your installation, use Python to write PyTorch code that creates and prints an array.

1. Start the iPython terminal.

(pytorch_p36)$ ipython

2. Import PyTorch.

import torch

You might see a warning message about a third-party package. You can ignore it.

3. Create a 5x3 matrix with the elements initialized randomly. Print the array.

x = torch.rand(5, 3)
print(x)

Verify the result.

tensor([[0.3105, 0.5983, 0.5410],
 [0.0234, 0.0934, 0.0371],
 [0.9740, 0.1439, 0.3107],
 [0.6461, 0.9035, 0.5715],
 [0.4401, 0.7990, 0.8913]])

Switch to the MXNet Python 3 Environment
If you're still in the iPython console, use quit(), then get ready to switch environments.

24

Deep Learning AMI Developer Guide
Removing Environments

• Activate the MXNet virtual environment for Python 3.

$ source activate mxnet_p36

Test Some MXNet Code

To test your installation, use Python to write MXNet code that creates and prints an array using the
NDArray API. For more information, see NDArray API.

1. Start the iPython terminal.

(mxnet_p36)$ ipython

2. Import MXNet.

import mxnet as mx

You might see a warning message about a third-party package. You can ignore it.

3. Create a 5x5 matrix, an instance of the NDArray, with elements initialized to 0. Print the array.

mx.ndarray.zeros((5,5)).asnumpy()

Verify the result.

array([[0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.]], dtype=float32)

You can find more examples of MXNet in the MXNet tutorials section.

Removing Environments
If you run out of space on the DLAMI, you can choose to uninstall Conda packages that you are not using:

conda env list
conda env remove –-name <env_name>

Using the Deep Learning Base AMI

Using the Deep Learning Base AMI
The Base AMI comes with a foundational platform of GPU drivers and acceleration libraries to deploy
your own customized deep learning environment. By default the AMI is configured with the NVIDIA
CUDA 11.0 environment. You can also switch between different versions of CUDA. Refer to the following
instructions for how to do this.

25

https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html

Deep Learning AMI Developer Guide
Configuring CUDA Versions

Configuring CUDA Versions
You can verify the CUDA version by running NVIDIA's nvcc program.

nvcc --version

You can select and verify a particular CUDA version with the following bash command:

sudo rm /usr/local/cuda
sudo ln -s /usr/local/cuda-11.0 /usr/local/cuda

For more information, see the Base DLAMI release notes.

Running Jupyter Notebook Tutorials
Tutorials and examples ship with each of the deep learning projects' source and in most cases they will
run on any DLAMI. If you chose the Deep Learning AMI with Conda (p. 6), you get the added benefit of a
few hand-picked tutorials already set up and ready to try out.

Important
To run the Jupyter notebook tutorials installed on the DLAMI, you will need to Set up a Jupyter
Notebook Server (p. 15).

Once the Jupyter server is running, you can run the tutorials through your web browser. If you are
running the Deep Learning AMI with Conda or if you have set up Python environments, you can switch
Python kernels from the Jupyter notebook interface. Select the appropriate kernel before trying to run
a framework-specific tutorial. Further examples of this are provided for users of the Deep Learning AMI
with Conda.

Note
Many tutorials require additional Python modules that may not be set up on your DLAMI. If you
get an error like "xyz module not found", log in to the DLAMI, activate the environment as
described above, then install the necessary modules.

Tip
Deep learning tutorials and examples often rely on one or more GPUs. If your instance type
doesn't have a GPU, you may need to change some of the example's code to get it to run.

Navigating the Installed Tutorials
Once you're logged in to the Jupyter server and can see the tutorials directory (on Deep Learning AMI
with Conda only), you will be presented with folders of tutorials by each framework name. If you don't
see a framework listed, then tutorials are not available for that framework on your current DLAMI. Click
on the name of the framework to see the listed tutorials, then click a tutorial to launch it.

The first time you run a notebook on the Deep Learning AMI with Conda, it will want to know which
environment you would like to use. It will prompt you to select from a list. Each environment is named
according to this pattern:

Environment (conda_framework_python-version)

For example, you might see Environment (conda_mxnet_p36), which signifies that the environment
has MXNet and Python 3. The other variation of this would be Environment (conda_mxnet_p27),
which signifies that the environment has MXNet and Python 2.

26

https://docs.aws.amazon.com/dlami/latest/devguide/appendix-ami-release-notes.html#appendix-ami-release-notes-base

Deep Learning AMI Developer Guide
Switching Environments with Jupyter

Tip
If you're concerned about which version of CUDA is active, one way to see it is in the MOTD
when you first log in to the DLAMI.

Switching Environments with Jupyter
If you decide to try a tutorial for a different framework, be sure to verify the currently running kernel.
This info can be seen in the upper right of the Jupyter interface, just below the logout button. You can
change the kernel on any open notebook by clicking the Jupyter menu item Kernel, then Change Kernel,
and then clicking the environment that suits the notebook you're running.

At this point you'll need to rerun any cells because a change in the kernel will erase the state of anything
you've run previously.

Tip
Switching between frameworks can be fun and educational, however you can run out of
memory. If you start running into errors, look at the terminal window that has the Jupyter
server running. There are helpful messages and error logging here, and you may see an out-
of-memory error. To fix this, you can go to the home page of your Jupyter server, click the
Running tab, then click Shutdown for each of the tutorials that are probably still running in the
background and eating up all of your memory.

Next Up

For more examples and sample code from each framework, click Next or continue to Apache MXNet
(Incubating) (p. 28).

Tutorials
The following are tutorials on how to use the Deep Learning AMI with Conda's software.

Topics

• 10 Minute Tutorials (p. 27)

• Activating Frameworks (p. 28)

• Debugging and Visualization (p. 41)

• Distributed Training (p. 45)

• Elastic Fabric Adapter (p. 62)

• GPU Monitoring and Optimization (p. 74)

• The AWS Inferentia Chip With DLAMI (p. 82)

• The Graviton DLAMI (p. 97)

• The Habana DLAMI (p. 104)

• Inference (p. 105)

• Using Frameworks with ONNX (p. 109)

• Model Serving (p. 117)

10 Minute Tutorials
• Launch a AWS Deep Learning AMI (in 10 minutes)

• Train a Deep Learning model with AWS Deep Learning Containers on Amazon EC2 (in 10 minutes)

27

https://aws.amazon.com/getting-started/tutorials/get-started-dlami/
https://aws.amazon.com/getting-started/tutorials/train-deep-learning-model-aws-ec2-containers/

Deep Learning AMI Developer Guide
Activating Frameworks

Activating Frameworks
The following are the deep learning frameworks installed on the Deep Learning AMI with Conda. Click on
a framework to learn how to activate it.

Topics
• Apache MXNet (Incubating) (p. 28)
• Caffe2 (p. 30)
• Chainer (p. 30)
• CNTK (p. 31)
• Keras (p. 33)
• PyTorch (p. 34)
• TensorFlow (p. 36)
• TensorFlow 2 (p. 37)
• TensorFlow with Horovod (p. 39)
• TensorFlow 2 with Horovod (p. 40)
• Theano (p. 41)

Apache MXNet (Incubating)

Activating Apache MXNet (Incubating)

This tutorial shows how to activate MXNet on an instance running the Deep Learning AMI with Conda
(DLAMI on Conda) and run a MXNet program.

When a stable Conda package of a framework is released, it's tested and pre-installed on the
DLAMI. If you want to run the latest, untested nightly build, you can Installing MXNet's Nightly Build
(experimental) (p. 29) manually.

To run MXNet on the DLAMI with Conda

1. To activate the framework, open an Amazon Elastic Compute Cloud (Amazon EC2) instance of the
DLAMI with Conda.
• For MXNet and Keras 2 on Python 3 with CUDA 9.0 and MKL-DNN, run this command:

$ source activate mxnet_p36

• For MXNet and Keras 2 on Python 2 with CUDA 9.0 and MKL-DNN, run this command:

$ source activate mxnet_p27

2. Start the iPython terminal.

(mxnet_p36)$ ipython

3. Run a quick MXNet program. Create a 5x5 matrix, an instance of the NDArray, with elements
initialized to 0. Print the array.

import mxnet as mx
mx.ndarray.zeros((5,5)).asnumpy()

4. Verify the result.

28

Deep Learning AMI Developer Guide
Activating Frameworks

array([[0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.]], dtype=float32)

Installing MXNet's Nightly Build (experimental)

You can install the latest MXNet build into either or both of the MXNet Conda environments on your
Deep Learning AMI with Conda.

To install MXNet from a nightly build

1. • For the Python 3 MXNet environment, run this command:

$ source activate mxnet_p36

• For the Python 2 MXNet environment, run this command:

$ source activate mxnet_p27

2. Remove the currently installed MXNet.

Note
The remaining steps assume you are using the mxnet_p36 environment.

(mxnet_p36)$ pip uninstall mxnet-cu90mkl

3. Install the latest nightly build of MXNet.

(mxnet_p36)$ pip install --pre mxnet-cu90mkl

4. To verify you have successfully installed latest nightly build, start the IPython terminal and check
the version of MXNet.

(mxnet_p36)$ ipython

import mxnet
print (mxnet.__version__)

The output should print the latest stable version of MXNet.

More Tutorials

You can find more tutorials in the Deep Learning AMI with Conda tutorials folder, which is in the home
directory of the DLAMI.

1. Use Apache MXNet (Incubating) for Inference with a ResNet 50 Model (p. 107)
2. Use Apache MXNet (Incubating) for Inference with an ONNX Model (p. 106)
3. Model Server for Apache MXNet (MMS) (p. 118)

For more tutorials and examples, see the framework's official Python documentation, the Python API for
MXNet, or the Apache MXNet website.

29

https://mxnet.apache.org/api/python.html
https://mxnet.apache.org/api/python.html
https://mxnet.incubator.apache.org/

Deep Learning AMI Developer Guide
Activating Frameworks

Caffe2
Note
We no longer include the CNTK, Caffe, Caffe2 and Theano Conda environments in the AWS
Deep Learning AMI starting with the v28 release. Previous releases of the AWS Deep Learning
AMI that contain these environments will continue to be available. However, we will only
provide updates to these environments if there are security fixes published by the open source
community for these frameworks.

Caffe2 Tutorial

To activate the framework, follow these instructions on your Deep Learning AMI with Conda.

There is only the Python 2 with CUDA 9 with cuDNN 7 option:

$ source activate caffe2_p27

Start the iPython terminal.

(caffe2_p27)$ ipython

Run a quick Caffe2 program.

from caffe2.python import workspace, model_helper
import numpy as np
Create random tensor of three dimensions
x = np.random.rand(4, 3, 2)
print(x)
print(x.shape)
workspace.FeedBlob("my_x", x)
x2 = workspace.FetchBlob("my_x")
print(x2)

You should see the initial numpy random arrays printed and then those loaded into a Caffe2 blob. Note
that after loading they are the same.

More Tutorials

For more tutorials and examples refer to the framework's official Python docs, Python API for Caffe2,
and the Caffe2 website.

Chainer
Note
We no longer include Chainer Conda environments in the AWS Deep Learning AMI starting
with the v28 release. Previous releases of the AWS Deep Learning AMI that contain these
environments will continue to be available. However, we will only provide updates to these
environments if there are security fixes published by the open source community for these
frameworks.

Chainer is a flexible Python-based framework for easily and intuitively writing complex neural network
architectures. Chainer makes it easy to use multi-GPU instances for training. Chainer also automatically
logs results, graph loss and accuracy, and produces output for visualizing the neural network with a
computational graph. It is included with the Deep Learning AMI with Conda (DLAMI with Conda).

30

https://caffe2.ai/doxygen-python/html/annotated.html
https://caffe2.ai
https://chainer.org/
https://docs.chainer.org/en/stable/reference/graph.html

Deep Learning AMI Developer Guide
Activating Frameworks

Activate Chainer

1. Connect to the instance running Deep Learning AMI with Conda. Refer to the the section called
“Instance Selection” (p. 7) or the Amazon EC2 documentation on how to select or connect to an
instance.

2. • Activate the Python 3 Chainer environment:

$ source activate chainer_p36

• Activate the Python 2 Chainer environment:

$ source activate chainer_p27

3. Start the iPython terminal:

(chainer_p36)$ ipython

4. Test importing Chainer to verify that it is working properly:

import chainer

You may see a few warning messages, but no error.

More Info

• Try the tutorials for Chainer (p. 45).

• The Chainer examples folder inside the source you downloaded earlier contains more examples. Try
them to see how they perform.

• To learn more about Chainer, see the Chainer documentation website.

CNTK
Note
We no longer include the CNTK, Caffe, Caffe2 and Theano Conda environments in the AWS
Deep Learning AMI starting with the v28 release. Previous releases of the AWS Deep Learning
AMI that contain these environments will continue to be available. However, we will only
provide updates to these environments if there are security fixes published by the open source
community for these frameworks.

Activating CNTK

This tutorial shows how to activate CNTK on an instance running the Deep Learning AMI with Conda
(DLAMI on Conda) and run a CNTK program.

When a stable Conda package of a framework is released, it's tested and pre-installed on the
DLAMI. If you want to run the latest, untested nightly build, you can Install the CNTK Nightly Build
(experimental) (p. 32) manually.

To run CNTK on the DLAMI with Conda

1. To activate CNTK, open an Amazon Elastic Compute Cloud (Amazon EC2) instance of the DLAMI with
Conda.

• For Python 3 with CUDA 9 with cuDNN 7:

31

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html
https://docs.chainer.org/

Deep Learning AMI Developer Guide
Activating Frameworks

$ source activate cntk_p36

• For Python 2 with CUDA 9 with cuDNN 7:

$ source activate cntk_p27

2. Start the iPython terminal.

(cntk_p36)$ ipython

3. • If you have a CPU instance, run this quick CNTK program.

import cntk as C
C.__version__
c = C.constant(3, shape=(2,3))
c.asarray()

You should see the CNTK version, then the output of a 2x3 array of 3's.

• If you have a GPU instance, you can test it with the following code example. A result of True is
what you would expect if CNTK can access the GPU.

from cntk.device import try_set_default_device, gpu
try_set_default_device(gpu(0))

Install the CNTK Nightly Build (experimental)

You can install the latest CNTK build into either or both of the CNTK Conda environments on your Deep
Learning AMI with Conda.

To install CNTK from a nightly build

1. • For CNTK and Keras 2 on Python 3 with CUDA 9.0 and MKL-DNN, run this command:

$ source activate cntk_p36

• For CNTK and Keras 2 on Python 2 with CUDA 9.0 and MKL-DNN, run this command:

$ source activate cntk_p27

2. The remaining steps assume you are using the cntk_p36 environment. Remove the currently
installed CNTK.

(cntk_p36)$ pip uninstall cntk

3. To install the CNTK nightly build, you first need to find the version you want to install from the
CNTK nightly website.

4. • (Option for GPU instances) - To install the nightly build, you would use the following,
substituting in the desired build:

(cntk_p36)$ pip install https://cntk.ai/PythonWheel/GPU/latest-nightly-build

Replace the URL in the previous command with the GPU version for your current Python
environment.

32

https://cntk.ai/nightly-linux.html

Deep Learning AMI Developer Guide
Activating Frameworks

• (Option for CPU instances) - To install the nightly build, you would use the following,
substituting in the desired build:

(cntk_p36)$ pip install https://cntk.ai/PythonWheel/CPU-Only/latest-nightly-build

Replace the URL in the previous command with the CPU version for your current Python
environment.

5. To verify you have successfully installed latest nightly build, start the IPython terminal and check
the version of CNTK.

(cntk_p36)$ ipython

import cntk
print (cntk.__version__)

The output should print something similar to 2.6-rc0.dev20181015

More Tutorials

For more tutorials and examples, see the framework's official Python docs, Python API for CNTK, or the
CNTK website.

Keras

Keras Tutorial

1. To activate the framework, use these commands on your the section called “Conda DLAMI” (p. 22)
CLI.

• For Keras 2 with an MXNet backend on Python 3 with CUDA 9 with cuDNN 7:

$ source activate mxnet_p36

• For Keras 2 with an MXNet backend on Python 2 with CUDA 9 with cuDNN 7:

$ source activate mxnet_p27

• For Keras 2 with a TensorFlow backend on Python 3 with CUDA 9 with cuDNN 7:

$ source activate tensorflow_p36

• For Keras 2 with a TensorFlow backend on Python 2 with CUDA 9 with cuDNN 7:

$ source activate tensorflow_p27

2. To test importing Keras to verify which backend is activated, use these commands:

$ ipython
import keras as k

The following should appear on your screen:

33

https://cntk.ai/pythondocs/gettingstarted.html
https://www.microsoft.com/en-us/cognitive-toolkit/

Deep Learning AMI Developer Guide
Activating Frameworks

Using MXNet backend

If Keras is using TensorFlow, the following is displayed:

Using TensorFlow backend

Note
If you get an error, or if the wrong backend is still being used, you can update your Keras
configuration manually. Edit the ~/.keras/keras.json file and change the backend
setting to mxnet or tensorflow.

More Tutorials

• For a multi-GPU tutorial using Keras with a MXNet backend, try the Keras-MXNet Multi-GPU Training
Tutorial (p. 54).

• You can find examples for Keras with a MXNet backend in the Deep Learning AMI with Conda ~/
examples/keras-mxnet directory.

• You can find examples for Keras with a TensorFlow backend in the Deep Learning AMI with Conda ~/
examples/keras directory.

• For additional tutorials and examples, see the Keras website.

PyTorch

Activating PyTorch

When a stable Conda package of a framework is released, it's tested and pre-installed on the
DLAMI. If you want to run the latest, untested nightly build, you can Install PyTorch's Nightly Build
(experimental) (p. 35) manually.

To activate the currently installed framework, follow these instructions on your Deep Learning AMI with
Conda.

For PyTorch on Python 3 with CUDA 10 and MKL-DNN, run this command:

$ source activate pytorch_p36

For PyTorch on Python 2 with CUDA 10 and MKL-DNN, run this command:

$ source activate pytorch_p27

Start the iPython terminal.

(pytorch_p36)$ ipython

Run a quick PyTorch program.

import torch
x = torch.rand(5, 3)
print(x)

34

https://keras.io/

Deep Learning AMI Developer Guide
Activating Frameworks

print(x.size())
y = torch.rand(5, 3)
print(torch.add(x, y))

You should see the initial random array printed, then its size, and then the addition of another random
array.

Install PyTorch's Nightly Build (experimental)

How to install PyTorch from a nightly build

You can install the latest PyTorch build into either or both of the PyTorch Conda environments on your
Deep Learning AMI with Conda.

1. • (Option for Python 3) - Activate the Python 3 PyTorch environment:

$ source activate pytorch_p36

• (Option for Python 2) - Activate the Python 2 PyTorch environment:

$ source activate pytorch_p27

2. The remaining steps assume you are using the pytorch_p36 environment. Remove the currently
installed PyTorch:

(pytorch_p36)$ pip uninstall torch

3. • (Option for GPU instances) - Install the latest nightly build of PyTorch with CUDA 10.0:

(pytorch_p36)$ pip install torch_nightly -f https://download.pytorch.org/whl/
nightly/cu100/torch_nightly.html

• (Option for CPU instances) - Install the latest nightly build of PyTorch for instances with no
GPUs:

(pytorch_p36)$ pip install torch_nightly -f https://download.pytorch.org/whl/
nightly/cpu/torch_nightly.html

4. To verify you have successfully installed latest nightly build, start the IPython terminal and check
the version of PyTorch.

(pytorch_p36)$ ipython

import torch
print (torch.__version__)

The output should print something similar to 1.0.0.dev20180922

5. To verify that the PyTorch nightly build works well with the MNIST example, you can run a test script
from PyTorch's examples repository:

(pytorch_p36)$ cd ~
(pytorch_p36)$ git clone https://github.com/pytorch/examples.git pytorch_examples
(pytorch_p36)$ cd pytorch_examples/mnist
(pytorch_p36)$ python main.py || exit 1

35

Deep Learning AMI Developer Guide
Activating Frameworks

More Tutorials

You can find more tutorials in the Deep Learning AMI with Conda tutorials folder in the home directory
of the DLAMI. For further tutorials and examples refer to the framework's official docs, PyTorch
documentation, and the PyTorch website.

• PyTorch to ONNX to MXNet Tutorial (p. 116)
• PyTorch to ONNX to CNTK Tutorial (p. 114)

TensorFlow

Activating TensorFlow

This tutorial shows how to activate TensorFlow on an instance running the Deep Learning AMI with
Conda (DLAMI on Conda) and run a TensorFlow program.

When a stable Conda package of a framework is released, it's tested and pre-installed on the DLAMI.
If you want to run the latest, untested nightly build, you can Install TensorFlow's Nightly Build
(experimental) (p. 36) manually.

To run TensorFlow on the DLAMI with Conda

1. To activate TensorFlow, open an Amazon Elastic Compute Cloud (Amazon EC2) instance of the
DLAMI with Conda.
• For TensorFlow and Keras 2 on Python 3 with CUDA 9.0 and MKL-DNN, run this command:

$ source activate tensorflow_p36

• For TensorFlow and Keras 2 on Python 2 with CUDA 9.0 and MKL-DNN, run this command:

$ source activate tensorflow_p27

2. Start the iPython terminal:

(tensorflow_p36)$ ipython

3. Run a TensorFlow program to verify that it is working properly:

import tensorflow as tf
hello = tf.constant('Hello, TensorFlow!')
sess = tf.Session()
print(sess.run(hello))

Hello, TensorFlow! should appear on your screen.

Install TensorFlow's Nightly Build (experimental)

You can install the latest TensorFlow build into either or both of the TensorFlow Conda environments on
your Deep Learning AMI with Conda.

To install TensorFlow from a nightly build

1. • For the Python 3 TensorFlow environment, run the following command:

36

http://pytorch.org/docs/master/
http://pytorch.org/docs/master/
http://pytorch.org

Deep Learning AMI Developer Guide
Activating Frameworks

$ source activate tensorflow_p36

• For the Python 2 TensorFlow environment, run the following command:

$ source activate tensorflow_p27

2. Remove the currently installed TensorFlow.

Note
The remaining steps assume you are using the tensorflow_p36 environment.

(tensorflow_p36)$ pip uninstall tensorflow

3. Install the latest nightly build of TensorFlow.

(tensorflow_p36)$ pip install tf-nightly

4. To verify you have successfully installed latest nightly build, start the IPython terminal and check
the version of TensorFlow.

(tensorflow_p36)$ ipython

import tensorflow
print (tensorflow.__version__)

The output should print something similar to 1.12.0-dev20181012

More Tutorials

TensorFlow with Horovod (p. 55)

TensorBoard (p. 43)

TensorFlow Serving (p. 120)

For tutorials, see the folder called Deep Learning AMI with Conda tutorials in the home
directory of the DLAMI.

For more tutorials and examples, see the TensorFlow documentation for the TensorFlow Python API or
see the TensorFlow website.

TensorFlow 2
This tutorial shows how to activate TensorFlow 2 on an instance running the Deep Learning AMI with
Conda (DLAMI on Conda) and run a TensorFlow 2 program.

When a stable Conda package of a framework is released, it's tested and pre-installed on the DLAMI.
If you want to run the latest, untested nightly build, you can Install TensorFlow 2's Nightly Build
(experimental) (p. 38) manually.

Activating TensorFlow 2

To run TensorFlow on the DLAMI with Conda

1. To activate TensorFlow 2, open an Amazon Elastic Compute Cloud (Amazon EC2) instance of the
DLAMI with Conda.

37

https://www.tensorflow.org/api_docs/python/
https://www.tensorflow.org

Deep Learning AMI Developer Guide
Activating Frameworks

2. For TensorFlow 2 and Keras 2 on Python 3 with CUDA 10.1 and MKL-DNN, run this command:

$ source activate tensorflow2_p36

3. Start the iPython terminal:

(tensorflow2_p36)$ ipython

4. Run a TensorFlow 2 program to verify that it is working properly:

import tensorflow as tf
hello = tf.constant('Hello, TensorFlow!')
tf.print(hello)

Hello, TensorFlow! should appear on your screen.

Install TensorFlow 2's Nightly Build (experimental)

You can install the latest TensorFlow 2 build into either or both of the TensorFlow 2 Conda environments
on your Deep Learning AMI with Conda.

To install TensorFlow from a nightly build

1. For the Python 3 TensorFlow 2 environment, run the following command:

$ source activate tensorflow2_p36

2. Remove the currently installed TensorFlow.

Note
The remaining steps assume you are using the tensorflow2_p36 environment.

(tensorflow2_p36)$ pip uninstall tensorflow

3. Install the latest nightly build of TensorFlow.

(tensorflow2_p36)$ pip install tf-nightly

4. To verify you have successfully installed latest nightly build, start the IPython terminal and check
the version of TensorFlow.

(tensorflow2_p36)$ ipython

import tensorflow
print (tensorflow.__version__)

The output should print something similar to 2.1.0-dev20191122

More Tutorials

For tutorials, see the folder called Deep Learning AMI with Conda tutorials in the home
directory of the DLAMI.

38

Deep Learning AMI Developer Guide
Activating Frameworks

For more tutorials and examples, see the TensorFlow documentation for the TensorFlow Python API or
see the TensorFlow website.

TensorFlow with Horovod

This tutorial shows how to activate TensorFlow with Horovod on an AWS Deep Learning AMI (DLAMI)
with Conda. Horovod is pre-installed in the Conda environments for TensorFlow. The Python3
environment is recommended.

Note
Only P3.*, P2.*, and G3.* instance types are supported.

To activate TensorFlow and test Horovod on the DLAMI with Conda

1. Open an Amazon Elastic Compute Cloud (Amazon EC2) instance of the DLAMI with Conda. For help
getting started with a DLAMI, see the section called “How to Get Started with the DLAMI” (p. 4).

2. (Recommended) For TensorFlow 1.15 with Horovod on Python 3 with CUDA 11, run the following
command:

$ source activate tensorflow_p37

3. Start the iPython terminal:

(tensorflow_p37)$ ipython

4. Test importing TensorFlow with Horovod to verify that it's working properly:

import horovod.tensorflow as hvd
hvd.init()

The following may appear on your screen (you may ignore any warning messages).

--
[[55425,1],0]: A high-performance Open MPI point-to-point messaging module
was unable to find any relevant network interfaces:

Module: OpenFabrics (openib)
 Host: ip-172-31-72-4

Another transport will be used instead, although this may result in
lower performance.
--

More Info

• TensorFlow with Horovod (p. 55)

• For tutorials, see the examples/horovod folder in the home directory of the DLAMI.

• For even more tutorials and examples, see the Horovod GitHub project.

39

https://www.tensorflow.org/api_docs/python/
https://www.tensorflow.org
https://github.com/uber/horovod

Deep Learning AMI Developer Guide
Activating Frameworks

TensorFlow 2 with Horovod

This tutorial shows how to activate TensorFlow 2 with Horovod on an AWS Deep Learning AMI (DLAMI)
with Conda. Horovod is pre-installed in the Conda environments for TensorFlow 2. The Python3
environment is recommended.

Note
Only P3.*, P2.*, and G3.* instance types are supported.

To activate TensorFlow 2 and test Horovod on the DLAMI with Conda

1. Open an Amazon Elastic Compute Cloud (Amazon EC2) instance of the DLAMI with Conda. For help
getting started with a DLAMI, see the section called “How to Get Started with the DLAMI” (p. 4).

• (Recommended) For TensorFlow 2 with Horovod on Python 3 with CUDA 10, run this command:

$ source activate tensorflow2_p36

• For TensorFlow 2 with Horovod on Python 2 with CUDA 10, run this command:

$ source activate tensorflow2_p27

2. Start the iPython terminal:

(tensorflow2_p36)$ ipython

3. Test importing TensorFlow 2 with Horovod to verify that it's working properly:

import horovod.tensorflow as hvd
hvd.init()

If you don't receive any output, then Horovod is working properly. The following may appear on your
screen (you may ignore any warning messages).

--
[[55425,1],0]: A high-performance Open MPI point-to-point messaging module
was unable to find any relevant network interfaces:

Module: OpenFabrics (openib)
 Host: ip-172-31-72-4

Another transport will be used instead, although this may result in
lower performance.
--

More Info

• For tutorials, see the examples/horovod folder in the home directory of the DLAMI.

• For even more tutorials and examples, see the Horovod GitHub project.

40

https://github.com/uber/horovod

Deep Learning AMI Developer Guide
Debugging and Visualization

Theano

Theano Tutorial

Note
We no longer include the CNTK, Caffe, Caffe2 and Theano Conda environments in the AWS
Deep Learning AMI starting with the v28 release. Previous releases of the AWS Deep Learning
AMI that contain these environments will continue to be available. However, we will only
provide updates to these environments if there are security fixes published by the open source
community for these frameworks.

To activate the framework, follow these instructions on your Deep Learning AMI with Conda.

For Theano + Keras in Python 3 with CUDA 9 with cuDNN 7:

$ source activate theano_p36

For Theano + Keras in Python 2 with CUDA 9 with cuDNN 7:

$ source activate theano_p27

Start the iPython terminal.

(theano_p36)$ ipython

Run a quick Theano program.

import numpy
import theano
import theano.tensor as T
from theano import pp
x = T.dscalar('x')
y = x ** 2
gy = T.grad(y, x)
pp(gy)

You should see Theano computing a symbolic gradient.

More Tutorials

For further tutorials and examples refer to the framework's official docs, Theano Python API, and the
Theano website.

Debugging and Visualization
Learn about the debugging and visualization options for the DLAMI. Click on one of the options to learn
how to use it.

Topics

• MXBoard (p. 42)

41

http://deeplearning.net/software/theano/library/index.html
http://deeplearning.net/software/theano/

Deep Learning AMI Developer Guide
Debugging and Visualization

• TensorBoard (p. 43)

MXBoard
MXBoard lets you to visually inspect and interpret your MXNet runs and graphs using the TensorBoard
software. It runs a web server that serves a webpage for viewing and interacting with the MXBoard
visualizations.

MXNet, TensorBoard, and MXBoard are preinstalled with the Deep Learning AMI with Conda (DLAMI
with Conda). In this tutorial, you use an MXBoard function to generate logs that are compatible with
TensorBoard.

Topics
• Using MXNet with MXBoard (p. 42)

• More Info (p. 43)

Using MXNet with MXBoard

Generate MXBoard Log Data Compatible with TensorBoard

1. Connect to your Amazon Elastic Compute Cloud (Amazon EC2) instance of the DLAMI with Conda.

2. Activate the Python 3 MXNet environment.

$ source activate mxnet_p36

3. Prepare a Python script for writing data generated by the normal operator to an event file. The data
is generated ten times with decreasing standard deviation, then written to the event file each time.
You will see data distribution gradually become more centered around the mean value. Note that
you will specify the event file in the logs folder. You pass this folder path to the TensorBoard binary.

$ vi mxboard_normal.py

4. Paste the following in the file and save it:

import mxnet as mx
from mxboard import SummaryWriter

with SummaryWriter(logdir='./logs') as sw:
 for i in range(10):
 # create a normal distribution with fixed mean and decreasing std
 data = mx.nd.normal(loc=0, scale=10.0/(i+1), shape=(10, 3, 8, 8))
 sw.add_histogram(tag='norml_dist', values=data, bins=200, global_step=i)

5. Run the script. This will generate logs in a logs folder that you can use for visualizations.

$ python mxboard_normal.py

6. Now you must switch to the TensorFlow environment to use TensorBoard and MXBoard to visualize
the logs. This is a required dependency for MXBoard and TensorBoard.

$ source activate tensorflow_p36

42

https://github.com/awslabs/mxboard

Deep Learning AMI Developer Guide
Debugging and Visualization

7. Pass the location of the logs to tensorboard:

$ tensorboard --logdir=./logs --host=127.0.0.1 --port=8888

TensorBoard launches the visualization web server on port 8888.
8. For easy access from your local browser, you can change the web server port to port 80 or another

port. Whichever port you use, you will need to open this port in the EC2 security group for your
DLAMI. You can also use port forwarding. For instructions on changing your security group settings
and port forwarding, see Set up a Jupyter Notebook Server (p. 15). The default settings are
described in the next step.

Note
If you need to run both Jupyter server and a MXBoard server, use a different port for each.

9. Open port 8888 (or the port you assigned to the visualization web server) on your EC2 instance.

a. Open your EC2 instance in the Amazon EC2console at https://console.aws.amazon.com/ec2/.
b. In the Amazon EC2 console, choose Network & Security, then choose Security Groups.
c. For Security Group, , choose the one that was created most recently (see the timestamp in the

description).
d. Choose the Inbound tab, and choose Edit.
e. Choose Add Rule.
f. In the new row, type the following:

Type : Custom TCP Rule

Protocol: TCP

Port Range: 8888 (or the port that you assigned to the visualization server)

Source: Custom IP (specify address/range)
10. If you want to visualize the data from local browser, type the following command to forward the

data that is rendering on the EC2 instance to your local machine.

$ ssh -Y -L localhost:8888:localhost:8888 user_id@ec2_instance_ip

11. Open the web page for the MXBoard visualizations by using the public IP or DNS address of the EC2
instance that's running the DLAMI with Conda and the port that you opened for MXBoard:

http://127.0.0.1:8888

More Info

To learn more about MXBoard, see the MXBoard website.

TensorBoard
TensorBoard lets you to visually inspect and interpret your TensorFlow runs and graphs. It runs a web
server that serves a webpage for viewing and interacting with the TensorBoard visualizations.

TensorFlow and TensorBoard are preinstalled with the Deep Learning AMI with Conda (DLAMI with
Conda). The DLAMI with Conda also includes an example script that uses TensorFlow to train an MNIST
model with extra logging features enabled. MNIST is a database of handwritten numbers that is
commonly used to train image recognition models. In this tutorial, you use the script to train an MNIST
model, and TensorBoard and the logs to create visualizations.

Topics

43

https://console.aws.amazon.com/ec2/
https://github.com/awslabs/mxboard
https://www.tensorflow.org/get_started/summaries_and_tensorboard

Deep Learning AMI Developer Guide
Debugging and Visualization

• Train an MNIST Model and Visualize the Training with TensorBoard (p. 44)

• More Info (p. 45)

Train an MNIST Model and Visualize the Training with TensorBoard

Visualize MNIST model training with TensorBoard

1. Connect to your Amazon Elastic Compute Cloud (Amazon EC2) instance of the DLAMI with Conda.

2. Activate the Python 2.7 TensorFlow environment and navigate to the directory that contains the
folder with the TensorBoard example scripts:

$ source activate tensorflow_p27
$ cd ~/examples/tensorboard/

3. Run the script that trains an MNIST model with extended logging enabled:

$ python mnist_with_summaries.py

The script writes the logs to /tmp/tensorflow/mnist.

4. Pass the location of the logs to tensorboard:

$ tensorboard --logdir=/tmp/tensorflow/mnist

TensorBoard launches the visualization web server on port 6006.

5. For easy access from your local browser, you can change the web server port to port 80 or another
port. Whichever port you use, you will need to open this port in the EC2 security group for your
DLAMI. You can also use port forwarding. For instructions on changing your security group settings
and port forwarding, see Set up a Jupyter Notebook Server (p. 15). The default settings are
described in the next step.

Note
If you need to run both Jupyter server and a TensorBoard server, use a different port for
each.

6. Open port 6006 (or the port you assigned to the visualization web server) on your EC2 instance.

a. Open your EC2 instance in the Amazon EC2console at https://console.aws.amazon.com/ec2/.

b. In the Amazon EC2 console, choose Network & Security, then chooseSecurity Groups.

c. For Security Group, , choose the one that was created most recently (see the time stamp in the
description).

d. Choose the Inbound tab, and choose Edit.

e. Choose Add Rule.

f. In the new row, type the followings:

Type : Custom TCP Rule

Protocol: TCP

Port Range: 6006 (or the port that you assigned to the visualization server)

Source: Custom IP (specify address/range)

7. Open the web page for the TensorBoard visualizations by using the public IP or DNS address of the
EC2 instance that's running the DLAMI with Conda and the port that you opened for TensorBoard:

44

https://console.aws.amazon.com/ec2/

Deep Learning AMI Developer Guide
Distributed Training

http:// YourInstancePublicDNS:6006

More Info

To learn more about TensorBoard, see the TensorBoard website.

Distributed Training
Learn about the options the DLAMI has for training with multiple GPUs. For increased performance, see
Elastic Fabric Adapter (p. 62) Click on one of the options to learn how to use it.

Topics

• Chainer (p. 45)

• Keras with MXNet (p. 54)

• TensorFlow with Horovod (p. 55)

Chainer
Note
We no longer include Chainer Conda environments in the AWS Deep Learning AMI starting
with the v28 release. Previous releases of the AWS Deep Learning AMI that contain these
environments will continue to be available. However, we will only provide updates to these
environments if there are security fixes published by the open source community for these
frameworks.

Chainer is a flexible Python-based framework for easily and intuitively writing complex neural network
architectures. Chainer makes it easy to use multi-GPU instances for training. Chainer also automatically
logs results, graph loss and accuracy, and produces output for visualizing the neural network with a
computational graph. It is included with the Deep Learning AMI with Conda (DLAMI with Conda).

The following topics show you how to train on multiple GPUs, a single GPU, and a CPU, create
visualizations, and test your Chainer installation.

Topics

• Training a Model with Chainer (p. 45)

• Use Chainer to Train on Multiple GPUs (p. 46)

• Use Chainer to Train on a Single GPU (p. 48)

• Use Chainer to Train with CPUs (p. 49)

• Graphing Results (p. 50)

• Testing Chainer (p. 54)

• More Info (p. 54)

Training a Model with Chainer

This tutorial shows you how to use example Chainer scripts to train a model with the MNIST dataset.
MNIST is a database of handwritten numbers that is commonly used to train image recognition models.
The tutorial also shows the difference in training speed between training on a CPU and one or more
GPUs.

45

https://www.tensorflow.org/get_started/summaries_and_tensorboard
https://chainer.org/
https://docs.chainer.org/en/stable/reference/graph.html

Deep Learning AMI Developer Guide
Distributed Training

Use Chainer to Train on Multiple GPUs

To train on multiple GPUs

1. Connect to the instance running Deep Learning AMI with Conda. Refer to the the section called
“Instance Selection” (p. 7) or the Amazon EC2 documentation on how to select or connect to an
instance. To run this tutorial, you will want to use an instance with at least two GPUs.

2. Activate the Python 3 Chainer environment:

$ source activate chainer_p36

3. To get the latest tutorials, clone the Chainer repository, and navigate to the examples folder:

(chainer_p36) :~$ cd ~/src
(chainer_p36) :~/src$ CHAINER_VERSION=v$(python -c "import chainer;
 print(chainer.__version__)")
(chainer_p36) :~/src$ git clone -b $CHAINER_VERSION https://github.com/chainer/
chainer.git
(chainer_p36) :~/src$ cd chainer/examples/mnist

4. Run the example in the train_mnist_data_parallel.py script. By default, the script uses
the GPUs running on your instance of Deep Learning AMI with Conda. The script can be run
on a maximum of two GPUs. It will ignore any GPUs past the first two. It detects one or both
automatically. If you are running an instance without GPUs, skip to Use Chainer to Train with
CPUs (p. 49), later in this tutorial.

(chainer_p36) :~/src/chainer/examples/mnist$ python train_mnist_data_parallel.py

Note
This example will return the following error due to the inclusion of a beta feature not
included in the DLAMI.
chainerx ModuleNotFoundError: No module named 'chainerx'

While the Chainer script trains a model using the MNIST database, you see the results for each
epoch.

Then you see example output as the script runs. The following example output was run on a
p3.8xlarge instance. The script's output shows "GPU: 0, 1", which indicates that it is using the first
two of the four available GPUs. The scripts typically use an index of GPUs starting with zero, instead
of a total count.

GPU: 0, 1

unit: 1000
Minibatch-size: 400
epoch: 20

epoch main/loss validation/main/loss main/accuracy validation/main/accuracy
 elapsed_time
1 0.277561 0.114709 0.919933 0.9654
 6.59261
2 0.0882352 0.0799204 0.973334 0.9752
 8.25162
3 0.0520674 0.0697055 0.983967 0.9786
 9.91661
4 0.0326329 0.0638036 0.989834 0.9805
 11.5767
5 0.0272191 0.0671859 0.9917 0.9796
 13.2341

46

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html

Deep Learning AMI Developer Guide
Distributed Training

6 0.0151008 0.0663898 0.9953 0.9813
 14.9068
7 0.0137765 0.0664415 0.995434 0.982
 16.5649
8 0.0116909 0.0737597 0.996 0.9801
 18.2176
9 0.00773858 0.0795216 0.997367 0.979
 19.8797
10 0.00705076 0.0825639 0.997634 0.9785
 21.5388
11 0.00773019 0.0858256 0.9978 0.9787
 23.2003
12 0.0120371 0.0940225 0.996034 0.9776
 24.8587
13 0.00906567 0.0753452 0.997033 0.9824
 26.5167
14 0.00852253 0.082996 0.996967 0.9812
 28.1777
15 0.00670928 0.102362 0.997867 0.9774
 29.8308
16 0.00873565 0.0691577 0.996867 0.9832
 31.498
17 0.00717177 0.094268 0.997767 0.9802
 33.152
18 0.00585393 0.0778739 0.998267 0.9827
 34.8268
19 0.00764773 0.107757 0.9975 0.9773
 36.4819
20 0.00620508 0.0834309 0.998167 0.9834
 38.1389

5. While your training is running it is useful to look at your GPU utilization. You can verify which GPUs
are active and view their load. NVIDIA provides a tool for this, which can be run with the command
nvidia-smi. However, it will only tell you a snapshot of the utilization, so it's more informative
to combine this with the Linux command watch. The following command will use watch with
nvidia-smi to refresh the current GPU utilization every tenth of a second. Open up another
terminal session to your DLAMI, and run the following command:

(chainer_p36) :~$ watch -n0.1 nvidia-smi

You will see an output similar to the following result. Use ctrl-c to close the tool, or just keep it
running while you try out other examples in your first terminal session.

Every 0.1s: nvidia-smi Wed Feb 28 00:28:50 2018

Wed Feb 28 00:28:50 2018
+---+
| NVIDIA-SMI 384.111 Driver Version: 384.111 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla V100-SXM2... On | 00000000:00:1B.0 Off | 0 |
| N/A 46C P0 56W / 300W | 728MiB / 16152MiB | 10% Default |
+-------------------------------+----------------------+----------------------+
| 1 Tesla V100-SXM2... On | 00000000:00:1C.0 Off | 0 |
| N/A 44C P0 53W / 300W | 696MiB / 16152MiB | 4% Default |
+-------------------------------+----------------------+----------------------+
| 2 Tesla V100-SXM2... On | 00000000:00:1D.0 Off | 0 |
| N/A 42C P0 38W / 300W | 10MiB / 16152MiB | 0% Default |
+-------------------------------+----------------------+----------------------+

47

Deep Learning AMI Developer Guide
Distributed Training

| 3 Tesla V100-SXM2... On | 00000000:00:1E.0 Off | 0 |
| N/A 46C P0 40W / 300W | 10MiB / 16152MiB | 0% Default |
+-------------------------------+----------------------+----------------------+

+---+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|===|
| 0 54418 C python 718MiB |
| 1 54418 C python 686MiB |
+---+

In this example, GPU 0 and GPU 1 are active, and GPU 2 and 3 are not. You can also see memory
utilization per GPU.

6. As training completes, note the elapsed time in your first terminal session. In the example, elapsed
time is 38.1389 seconds.

Use Chainer to Train on a Single GPU

This example shows how to train on a single GPU. You might do this if you have only one GPU available
or just to see how multi-GPU training might scale with Chainer.

To use Chainer to train on a single GPU

• For this example, you use another script, train_mnist.py, and tell it to use just GPU 0 with the --
gpu=0 argument. To see how a different GPUs activate in the nvidia-smi console, you can tell the
script to use GPU number 1 by using --gpu=1 .

(chainer_p36) :~/src/chainer/examples/mnist$ python train_mnist.py --gpu=0

GPU: 0
unit: 1000
Minibatch-size: 100
epoch: 20

epoch main/loss validation/main/loss main/accuracy validation/main/accuracy
 elapsed_time
1 0.192348 0.0909235 0.940934 0.9719
 5.3861
2 0.0746767 0.069854 0.976566 0.9785
 8.97146
3 0.0477152 0.0780836 0.984982 0.976
 12.5596
4 0.0347092 0.0701098 0.988498 0.9783
 16.1577
5 0.0263807 0.08851 0.991515 0.9793
 19.7939
6 0.0253418 0.0945821 0.991599 0.9761
 23.4643
7 0.0209954 0.0683193 0.993398 0.981
 27.0317
8 0.0179036 0.080285 0.994149 0.9819
 30.6325
9 0.0183184 0.0690474 0.994198 0.9823
 34.2469
10 0.0127616 0.0776328 0.996165 0.9814
 37.8693
11 0.0145421 0.0970157 0.995365 0.9801
 41.4629

48

Deep Learning AMI Developer Guide
Distributed Training

12 0.0129053 0.0922671 0.995899 0.981
 45.0233
13 0.0135988 0.0717195 0.995749 0.9857
 48.6271
14 0.00898215 0.0840777 0.997216 0.9839
 52.2269
15 0.0103909 0.123506 0.996832 0.9771
 55.8667
16 0.012099 0.0826434 0.996616 0.9847
 59.5001
17 0.0066183 0.101969 0.997999 0.9826
 63.1294
18 0.00989864 0.0877713 0.997116 0.9829
 66.7449
19 0.0101816 0.0972672 0.996966 0.9822
 70.3686
20 0.00833862 0.0899327 0.997649 0.9835
 74.0063

In this example, running on a single GPU took almost twice as long! Training larger models or
larger datasets will yield different results from this example, so experiment to further evaluate GPU
performance.

Use Chainer to Train with CPUs

Now try training on a CPU-only mode. Run the same script, python train_mnist.py, without
arguments:

(chainer_p36) :~/src/chainer/examples/mnist$ python train_mnist.py

In the output, GPU: -1 indicates that no GPU is used:

GPU: -1
unit: 1000
Minibatch-size: 100
epoch: 20

epoch main/loss validation/main/loss main/accuracy validation/main/accuracy
 elapsed_time
1 0.192083 0.0918663 0.94195 0.9712
 11.2661
2 0.0732366 0.0790055 0.977267 0.9747
 23.9823
3 0.0485948 0.0723766 0.9844 0.9787
 37.5275
4 0.0352731 0.0817955 0.987967 0.9772
 51.6394
5 0.029566 0.0807774 0.990217 0.9764
 65.2657
6 0.025517 0.0678703 0.9915 0.9814
 79.1276
7 0.0194185 0.0716576 0.99355 0.9808
 93.8085
8 0.0174553 0.0786768 0.994217 0.9809
 108.648
9 0.0148924 0.0923396 0.994983 0.9791
 123.737
10 0.018051 0.099924 0.99445 0.9791
 139.483
11 0.014241 0.0860133 0.995783 0.9806
 156.132

49

Deep Learning AMI Developer Guide
Distributed Training

12 0.0124222 0.0829303 0.995967 0.9822
 173.173
13 0.00846336 0.122346 0.997133 0.9769
 190.365
14 0.011392 0.0982324 0.996383 0.9803
 207.746
15 0.0113111 0.0985907 0.996533 0.9813
 225.764
16 0.0114328 0.0905778 0.996483 0.9811
 244.258
17 0.00900945 0.0907504 0.9974 0.9825
 263.379
18 0.0130028 0.0917099 0.996217 0.9831
 282.887
19 0.00950412 0.0850664 0.997133 0.9839
 303.113
20 0.00808573 0.112367 0.998067 0.9778
 323.852

In this example, MNIST was trained in 323 seconds, which is more than 11x longer than training with two
GPUs. If you've ever doubted the power of GPUs, this example shows how much more efficient they are.

Graphing Results

Chainer also automatically logs results, graph loss and accuracy, and produces output for plotting the
computational graph.

To generate the computational graph

1. After any training run finishes, you may navigate to the result directory and view the run's
accuracy and loss in the form of two automatically generated images. Navigate there now, and list
the contents:

(chainer_p36) :~/src/chainer/examples/mnist$ cd result
(chainer_p36) :~/src/chainer/examples/mnist/result$ ls

The result directory contains two files in .png format: accuracy.png and loss.png.

2. To view the graphs, use the scp command to copy them to your local computer.

In a macOS terminal, running the following scp command downloads all three files to your
Downloads folder. Replace the placeholders for the location of the key file and server address with
your information. For other operating systems, use the appropriate scp command format. Note, for
an Amazon Linux AMI, the user name is ec2-user.

(chainer_p36) :~/src/chainer/examples/mnist/result$ scp -i "your-key-file.pem"
 ubuntu@your-dlami-address.compute-1.amazonaws.com:~/src/chainer/examples/mnist/result/
*.png ~/Downloads

The following images are examples of accuracy, loss, and computational graphs, respectively.

50

Deep Learning AMI Developer Guide
Distributed Training

51

Deep Learning AMI Developer Guide
Distributed Training

52

Deep Learning AMI Developer Guide
Distributed Training

53

Deep Learning AMI Developer Guide
Distributed Training

Testing Chainer

To test Chainer and verify GPU support with a preinstalled test script, run the following command:

(chainer_p36) :~/src/chainer/examples/mnist/result$ cd ~/src/bin
(chainer_p36) :~/src/bin$./testChainer

This downloads Chainer source code and runs the Chainer multi-GPU MNIST example.

More Info

To learn more about Chainer, see the Chainer documentation website. The Chainer examples folder
contains more examples. Try them to see how they perform.

Keras with MXNet
This tutorial shows how to activate and use Keras 2 with the MXNet backend on a Deep Learning AMI
with Conda.

Activate Keras with the MXNet backend and test it on the DLAMI with Conda

1. To activate Keras with the MXNet backend, open an Amazon Elastic Compute Cloud (Amazon EC2)
instance of the DLAMI with Conda.
• For Python 3, run this command:

$ source activate mxnet_p36

• For Python 2, run this command:

$ source activate mxnet_p27

2. Start the iPython terminal:

(mxnet_p36)$ ipython

3. Test importing Keras with MXNet to verify that it is working properly:

import keras as k

The following should appear on your screen (possibly after a few warning messages).

Using MXNet backend

Note
If you get an error, or if the TensorFlow backend is still being used, you need to update
your Keras config manually. Edit the ~/.keras/keras.json file and change the backend
setting to mxnet.

Keras-MXNet Multi-GPU Training Tutorial

Train a convolutional neural network (CNN)

1. Open a terminal and SSH into your DLAMI.

54

https://docs.chainer.org/

Deep Learning AMI Developer Guide
Distributed Training

2. Navigate to the ~/examples/keras-mxnet/ folder.

3. Run nvidia-smi in your terminal window to determine the number of available GPUs on your
DLAMI. In the next step, you will run the script as-is if you have four GPUs.

4. (Optional) Run the following command to open the script for editing.

(mxnet_p36)$ vi cifar10_resnet_multi_gpu.py

5. (Optional) The script has the following line that defines the number of GPUs. Update it if necessary.

model = multi_gpu_model(model, gpus=4)

6. Now, run the training.

(mxnet_p36)$ python cifar10_resnet_multi_gpu.py

Note
Keras-MXNet runs up to two times faster with the channels_first image_data_format set. To
change to channels_first, edit your Keras config file (~/.keras/keras.json) and set the
following: "image_data_format": "channels_first".
For more performance tuning techniques, see Keras-MXNet performance tuning guide.

More Info

• You can find examples for Keras with a MXNet backend in the Deep Learning AMI with Conda ~/
examples/keras-mxnet directory.

• For even more tutorials and examples, see the Keras-MXNet GitHub project.

TensorFlow with Horovod
This tutorial shows how to use TensorFlow with Horovod on a Deep Learning AMI with Conda. Horovod
is preinstalled in the Conda environments for TensorFlow. The Python 3 environment is recommended.
The instructions here assume you have a working DLAMI instance with one or more GPUs. For more
information, see How to Get Started with the DLAMI (p. 4).

Note
Only P3.*, P2.*, and G3.* instance types are supported.

Note
There are two locations where mpirun (via OpenMPI) is available. It is available in /usr/bin and
/home/ubuntu/anaconda3/envs/<env>/bin. env is an environment corresponding to the
framework, such as Tensorflow and Apache MXNet. The newer OpenMPI versions are available in
the conda environments. We recommend using the absolute path of the mpirun binary or the --
prefix flag to run mpi workloads. For example, with the Tensorflow python36 environment, use
either:

/home/ubuntu/anaconda3/envs/tensorflow_p36/bin/mpirun <args>

or

mpirun --prefix /home/ubuntu/anaconda3/envs/tensorflow_p36/bin <args>

Activate and Test TensorFlow with Horovod

1. Verify that your instance has active GPUs. NVIDIA provides a tool for this:

55

https://github.com/awslabs/keras-apache-mxnet/blob/master/docs/mxnet_backend/performance_guide.md
https://github.com/awslabs/keras-apache-mxnet
https://www.open-mpi.org/faq/?category=running#mpirun-prefix
https://www.open-mpi.org/faq/?category=running#mpirun-prefix

Deep Learning AMI Developer Guide
Distributed Training

$ nvidia-smi

2. Activate the Python 3 TensorFlow environment:

$ source activate tensorflow_p36

3. Start the iPython terminal:

(tensorflow_p36)$ ipython

4. Test importing TensorFlow with Horovod to verify that it is working properly:

import horovod.tensorflow as hvd
hvd.init()

The following may appear on your screen (possibly after a few warning messages).

--
[[55425,1],0]: A high-performance Open MPI point-to-point messaging module
was unable to find any relevant network interfaces:

Module: OpenFabrics (openib)
 Host: ip-172-31-72-4

Another transport will be used instead, although this may result in
lower performance.
--

Configure Your Horovod Hosts File

You can use Horovod for single-node, multi-GPU training, or for multiple-node, multi-GPU training. If
you plan to use multiple nodes for distributed training, you must add each DLAMI private IP address to
a hosts file. The DLAMI you are currently logged into is referred to as the leader. Other DLAMI instances
that are part of the cluster are referred to as members.

Before you start this section, launch one or more DLAMI, and wait for them to be in the Ready state. The
example scripts expect a hosts file, so even if you plan to use only one DLAMI, create a hosts file with
only one entry. If you edit the hosts file after training commences, you must restart training for added or
removed hosts to take effect.

To configure Horovod for training

1. Change directories to where the training scripts reside.

cd ~/examples/horovod/tensorflow

2. Use vim to edit a file in the leader's home directory.

vim hosts

3. Select one of the members in the Amazon Elastic Compute Cloud console, and the description
pane of the console appears. Find the Private IPs field and copy the IP and paste it in a text file.
Copy each member's private IP on a new line. Then, next to each IP, add a space and then the text
slots=8 as shown below. This represents how many GPUs each instance has. The p3.16xlarge

56

Deep Learning AMI Developer Guide
Distributed Training

instances have 8 GPUs, so if you chose a different instance type, you would provide the actual
number of GPUs for each instance. For the leader you can use localhost. With a cluster of 4 nodes,
it should look similar to the following:

172.100.1.200 slots=8
172.200.8.99 slots=8
172.48.3.124 slots=8
localhost slots=8

Save the file and exit back to the leader's terminal.
4. Add the SSH key used by the member instances to the ssh-agent.

eval `ssh-agent -s`
ssh-add <key_name>.pem

5. Now your leader knows how to reach each member. This is all going to happen on the private
network interfaces. Next, use a short bash function to help send commands to each member.

function runclust(){ while read -u 10 host; do host=${host%% slots*}; ssh -o
 "StrictHostKeyChecking no" $host ""$2""; done 10<$1; };

6. Tell the other members not to do “StrickHostKeyChecking” as this may cause training to stop
responding.

runclust hosts "echo \"StrictHostKeyChecking no\" >> ~/.ssh/config"

Train with Synthetic Data

Your DLAMI ships with an example script to train a model with synthetic data. This tests whether your
leader can communicate with the members of the cluster. A hosts file is required. Refer to Configure Your
Horovod Hosts File (p. 56) for instructions.

To test Horovod training with example data

1. ~/examples/horovod/tensorflow/train_synthetic.sh defaults to 8 GPUs, but you can
provide it the number of GPUs you want to run. The following example runs the script, passing 4 as
a parameter for 4 GPUs.

$./train_synthetic.sh 4

After some warning messages, you see the following output that verifies Horovod is using 4 GPUs.

PY3.6.5 |Anaconda custom (64-bit)| (default, Apr 29 2018, 16:14:56) [GCC
 7.2.0]TF1.11.0Horovod size: 4

Then, after some other warnings, you see the start of a table and some data points. If you don't
want to watch for 1,000 batches, break out of the training.

 Step Epoch Speed Loss FinLoss LR
 0 0.0 105.6 6.794 7.708 6.40000
 1 0.0 311.7 0.000 4.315 6.38721
 100 0.1 3010.2 0.000 34.446 5.18400
 200 0.2 3013.6 0.000 13.077 4.09600
 300 0.2 3012.8 0.000 6.196 3.13600

57

Deep Learning AMI Developer Guide
Distributed Training

 400 0.3 3012.5 0.000 3.551 2.30401

2. Horovod uses all local GPUs first before attempting to use the GPUs of the members of the cluster.
So, to make sure distributed training across the cluster is working, try out the full number of GPUs
you intend to use. If, for example, you have 4 members that are p3.16xlarge instance type, you have
32 GPUs across your cluster. This is where you would want to try out the full 32GPUs.

./train_synthetic.sh 32

Your output is similar to the previous test. The Horovod size is 32, and roughly four-times the speed.
With this experimentation completed, you have tested your leader and its ability to communicate
with the members. If you run into any issues, check the Troubleshooting (p. 61) section.

Prepare the ImageNet Dataset

In this section, you download the ImageNet dataset, then generate a TFRecord-format dataset from
the raw dataset. A set of preprocessing scripts is provided on the DLAMI for the ImageNet dataset that
you can use for either ImageNet or as a template for another dataset. The main training scripts that are
configured for ImageNet are also provided. The following section assumes that you have launched a
DLAMI with an EC2 instance with 8 GPUs. We recommend the p3.16xlarge instance type.

In the ~/examples/horovod/tensorflow/utils directory on your DLAMI you find the following
scripts:

• utils/preprocess_imagenet.py - Use this to convert the raw ImageNet dataset to the TFRecord
format.

• utils/tensorflow_image_resizer.py - Use this to resize the TFRecord dataset as
recommended for ImageNet training.

Prepare the ImageNet Dataset

1. Visit image-net.org, create an account, acquire an access key, and download the dataset. image-
net.org hosts the raw dataset. To download it, you are required to have an ImageNet account and
an access key. The account is free, and to get the free access key you must agree to the ImageNet
license.

2. Use the image preprocessing script to generate a TFRecord format dataset from the raw ImageNet
dataset. From the ~/examples/horovod/tensorflow/utils directory:

python preprocess_imagenet.py \
 --local_scratch_dir=[YOUR DIRECTORY] \
 --imagenet_username=[imagenet account] \
 --imagenet_access_key=[imagenet access key]

3. Use the image resizing script. If you resize the images, training runs more quickly and better aligns
with the ResNet reference paper. From the ~/examples/horovod/utils/preprocess directory:

python tensorflow_image_resizer.py \
 -d imagenet \
 -i [PATH TO TFRECORD TRAINING DATASET] \
 -o [PATH TO RESIZED TFRECORD TRAINING DATASET] \
 --subset_name train \
 --num_preprocess_threads 60 \
 --num_intra_threads 2 \
 --num_inter_threads 2

58

http://image-net.org
http://image-net.org
http://image-net.org
https://arxiv.org/abs/1512.03385

Deep Learning AMI Developer Guide
Distributed Training

Train a ResNet-50 ImageNet Model on a Single DLAMI

Note

• The script in this tutorial expects the preprocessed training data to be in the ~/data/tf-
imagenet/ folder. Refer to Prepare the ImageNet Dataset (p. 58) for instructions.

• A hosts file is required. Refer to Configure Your Horovod Hosts File (p. 56) for instructions.

Use Horovod to Train a ResNet50 CNN on the ImageNet Dataset

1. Navigate to the ~/examples/horovod/tensorflow folder.

cd ~/examples/horovod/tensorflow

2. Verify your configuration and set the number of GPUs to use in training. First, review the hosts that
is in the same folder as the scripts. This file must be updated if you use an instance with fewer than
8 GPUs. By default it says localhost slots=8. Update the number 8 to be the number of GPUs
you want to use.

3. A shell script is provided that takes the number of GPUs you plan to use as its only parameter. Run
this script to start training. The example below uses 4 for four GPUs.

./train.sh 4

4. It takes several hours to finish. It uses mpirun to distribute the training across your GPUs.

Train a ResNet-50 ImageNet Model on a Cluster of DLAMIs

Note

• The script in this tutorial expects the preprocessed training data to be in the ~/data/tf-
imagenet/ folder. Refer to Prepare the ImageNet Dataset (p. 58) for instructions.

• A hosts file is required. Refer to Configure Your Horovod Hosts File (p. 56) for instructions.

This example walks you through training a ResNet-50 model on a prepared dataset across multiple
nodes in a cluster of DLAMIs.

• For faster performance, we recommend that you have the dataset locally on each member of the
cluster.

Use this copyclust function to copy data to other members.

function copyclust(){ while read -u 10 host; do host=${host%% slots*}; rsync -azv "$2"
 $host:"$3"; done 10<$1; };

Or, if you have the files sitting in an S3 bucket, use the runclust function to download the files to each
member directly.

runclust hosts "tmux new-session -d \"export AWS_ACCESS_KEY_ID=YOUR_ACCESS_KEY && export
 AWS_SECRET_ACCESS_KEY=YOUR_SECRET && aws s3 sync s3://your-imagenet-bucket ~/data/tf-
imagenet/ && aws s3 sync s3://your-imagenet-validation-bucket ~/data/tf-imagenet/\""

59

Deep Learning AMI Developer Guide
Distributed Training

Using tools that let you manage multiple nodes at once is a great time-saver. You can either wait for
each step and manage each instance separately, or use tools such as tmux or screen to let you disconnect
and resume sessions.

After the copying is completed, you're ready to start training. Run the script, passing 32 as a parameter
for the 32 GPUs we're using for this run. Use tmux or similar tool if you're concerned about disconnecting
and terminating your session, which would end the training run.

./train.sh 32

The following output is what you see when running the training on ImageNet with 32 GPUs. Thirty-two
GPUs take 90–110 minutes.

 Step Epoch Speed Loss FinLoss LR
 0 0.0 440.6 6.935 7.850 0.00100
 1 0.0 2215.4 6.923 7.837 0.00305
 50 0.3 19347.5 6.515 7.425 0.10353
 100 0.6 18631.7 6.275 7.173 0.20606
 150 1.0 19742.0 6.043 6.922 0.30860
 200 1.3 19790.7 5.730 6.586 0.41113
 250 1.6 20309.4 5.631 6.458 0.51366
 300 1.9 19943.9 5.233 6.027 0.61619
 350 2.2 19329.8 5.101 5.864 0.71872
 400 2.6 19605.4 4.787 5.519 0.82126
 ...
 13750 87.9 19398.8 0.676 1.082 0.00217
 13800 88.2 19827.5 0.662 1.067 0.00156
 13850 88.6 19986.7 0.591 0.997 0.00104
 13900 88.9 19595.1 0.598 1.003 0.00064
 13950 89.2 19721.8 0.633 1.039 0.00033
 14000 89.5 19567.8 0.567 0.973 0.00012
 14050 89.8 20902.4 0.803 1.209 0.00002
 Finished in 6004.354426383972

After a training run is completed, the script follows up with an evaluation run. It runs on the leader
because it runs quickly enough without having to distribute the job to the other members. The following
is the output of the evaluation run.

Horovod size: 32
Evaluating
Validation dataset size: 50000
[ip-172-31-36-75:54959] 7 more processes have sent help message help-btl-vader.txt / cma-
permission-denied
[ip-172-31-36-75:54959] Set MCA parameter "orte_base_help_aggregate" to 0 to see all help /
 error messages
 step epoch top1 top5 loss checkpoint_time(UTC)
 14075 90.0 75.716 92.91 0.97 2018-11-14 08:38:28

The following is an example output when this script is run with 256 GPUs where the runtime was
between 14 and 15 minutes.

 Step Epoch Speed Loss FinLoss LR
 1400 71.6 143451.0 1.189 1.720 0.14850
 1450 74.2 142679.2 0.897 1.402 0.10283
 1500 76.7 143268.6 1.326 1.809 0.06719
 1550 79.3 142660.9 1.002 1.470 0.04059
 1600 81.8 143302.2 0.981 1.439 0.02190
 1650 84.4 144808.2 0.740 1.192 0.00987

60

Deep Learning AMI Developer Guide
Distributed Training

 1700 87.0 144790.6 0.909 1.359 0.00313
 1750 89.5 143499.8 0.844 1.293 0.00026
Finished in 860.5105031204224

Finished evaluation
1759 90.0 75.086 92.47 0.99 2018-11-20 07:18:18

Troubleshooting

The following command may help get past errors that come up when you experiment with Horovod.

• If the training crashes for some reason, mpirun may fail to clean up all the python processes on each
machine. In that case, before you start the next job, stop the python processes on all machines as
follows:

runclust hosts "pkill -9 python"

• If the process finishes abruptly without error, try deleting your log folder.

runclust hosts "rm -rf ~/imagenet_resnet/"

• If other unexplained issues pop up, check your disk space. If you're out, try removing the logs folder
since that is full of checkpoints and data. You can also increase the size of the volumes for each
member.

runclust hosts "df /"

• As a last resort you can also try rebooting.

runclust hosts "sudo reboot"

You may receive the following error code if you try to use TensorFlow with Horovod on an unsupported
instance type:

NotFoundError Traceback (most recent call last)
<ipython-input-3-e90ed6cabab4> in <module>()
----> 1 import horovod.tensorflow as hvd

~/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/horovod/tensorflow/__init__.py
 in <module>()
** *34* check_extension('horovod.tensorflow', 'HOROVOD_WITH_TENSORFLOW', __file__,
 'mpi_lib')
** *35*
---> 36 from horovod.tensorflow.mpi_ops import allgather, broadcast, _allreduce
** *37* from horovod.tensorflow.mpi_ops import init, shutdown
** *38* from horovod.tensorflow.mpi_ops import size, local_size, rank, local_rank

~/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/horovod/tensorflow/mpi_ops.py
 in <module>()
** *56*
** *57* MPI_LIB = _load_library('mpi_lib' + get_ext_suffix(),
---> 58 ['HorovodAllgather', 'HorovodAllreduce'])
** *59*
** *60* _basics = _HorovodBasics(__file__, 'mpi_lib')

~/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/horovod/tensorflow/mpi_ops.py
 in _load_library(name, op_list)
** *43* """

61

Deep Learning AMI Developer Guide
Elastic Fabric Adapter

** *44* filename = resource_loader.get_path_to_datafile(name)
---> 45 library = load_library.load_op_library(filename)
** *46* for expected_op in (op_list or []):
** *47* for lib_op in library.OP_LIST.op:

~/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/tensorflow/python/framework/
load_library.py in load_op_library(library_filename)
** *59* RuntimeError: when unable to load the library or get the python wrappers.
** *60* """
---> 61 lib_handle = py_tf.TF_LoadLibrary(library_filename)
** *62*
** *63* op_list_str = py_tf.TF_GetOpList(lib_handle)

NotFoundError: /home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/
horovod/tensorflow/mpi_lib.cpython-36m-x86_64-linux-gnu.so: undefined symbol:
 _ZN10tensorflow14kernel_factory17OpKernelRegistrar12InitInternalEPKNS_9KernelDefEN4absl11string_viewEPFPNS_8OpKernelEPNS_20OpKernelConstructionEE

More Info

For utilities and examples, see the ~/examples/horovod folder in the home directory of the DLAMI.

For even more tutorials and examples, see the Horovod GitHub project.

Elastic Fabric Adapter
An Elastic Fabric Adapter (EFA) is a network device that you can attach to your DLAMI instance to
accelerate High Performance Computing (HPC) applications. EFA enables you to achieve the application
performance of an on-premises HPC cluster, with the scalability, flexibility, and elasticity provided by the
AWS Cloud.

The following topics show you how to get started using EFA with the DLAMI.

Topics
• Launching a AWS Deep Learning AMI Instance With EFA (p. 62)
• Using EFA on the DLAMI (p. 65)

Launching a AWS Deep Learning AMI Instance With EFA
The latest DLAMI is ready to use with EFA and comes with the required drivers, kernel modules, libfabric,
openmpi and the NCCL OFI plugin for GPU instances.

Supported CUDA Versions: NCCL Applications with EFA are only supported on CUDA-10.0, CUDA-10.1,
CUDA-10.2, and CUDA-11.0 because the NCCL OFI plugin requires a NCCL version > 2.4.2.

Note:

• When running a NCCL Application using mpirun on EFA, you will have to specify the full path to the
EFA supported installation as:

/opt/amazon/openmpi/bin/mpirun <command>

• To enable your application to use EFA, add FI_PROVIDER="efa" to the mpirun command as shown
in Using EFA on the DLAMI (p. 65).

Topics
• Prepare an EFA Enabled Security Group (p. 63)

62

https://github.com/uber/horovod
http://aws.amazon.com/hpc/efa/
https://github.com/aws/aws-ofi-nccl/tree/aws

Deep Learning AMI Developer Guide
Elastic Fabric Adapter

• Launch Your Instance (p. 63)
• Verify EFA Attachment (p. 64)

Prepare an EFA Enabled Security Group

EFA requires a security group that allows all inbound and outbound traffic to and from the security group
itself. For more information, see the EFA Documentation.

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Security Groups and then choose Create Security Group.
3. In the Create Security Group window, do the following:

• For Security group name, enter a descriptive name for the security group, such as EFA-enabled
security group.

• (Optional) For Description, enter a brief description of the security group.
• For VPC, select the VPC into which you intend to launch your EFA-enabled instances.
• Choose Create.

4. Select the security group that you created, and on the Description tab, copy the Group ID.
5. On the Inbound and Outbound tabs, do the following:

• Choose Edit.
• For Type, choose All traffic.
• For Source, choose Custom.
• Paste the security group ID that you copied into the field.
• Choose Save.

6. Enable inbound traffic referring to Authorizing Inbound Traffic for Your Linux Instances. If you skip
this step, you won't be able to communicate with your DLAMI instance.

Launch Your Instance

EFA on the AWS Deep Learning AMI is currently supported with the following instance types and
operating systems:

• P3dn.24xlarge: Amazon Linux, Amazon Linux 2, Ubuntu 16.04, and Ubuntu 18.04
• P4d.24xlarge: Amazon Linux 2, Ubuntu 16.04, and Ubuntu 18.04

The following section shows how to launch an EFA enabled DLAMI instance. For more information on
launching an EFA enabled instance, see Launch EFA-Enabled Instances into a Cluster Placement Group.

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. Choose Launch Instance.
3. On the Choose an AMI page, Select the ‘Deep Learning AMI (Ubuntu 18.04) Version 25.0
4. On the Choose an Instance Type page, select one of the following supported instance types

and then choose Next: Configure Instance Details. Refer to this link for the list of supported
instances: Get started with EFA and MPI

5. On the Configure Instance Details page, do the following:

• For Number of instances, enter the number of EFA-enabled instances that you want to launch.
• For Network and Subnet, select the VPC and subnet into which to launch the instances.
• [Optional] For Placement group, select Add instance to placement group. For best performance,

launch the instances within a placement group.

63

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa-start.html#efa-start-security
https://console.aws.amazon.com/ec2/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/authorizing-access-to-an-instance.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa-start.html#efa-start-instances
https://console.aws.amazon.com/ec2/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa-start.html

Deep Learning AMI Developer Guide
Elastic Fabric Adapter

• [Optional] For Placement group name, select Add to a new placement group, enter a descriptive
name for the placement group, and then for Placement group strategy, select cluster.

• Make sure to enable the “Elastic Fabric Adapter” on this page. If this option is disabled, change
the subnet to one that supports your selected instance type.

• In the Network Interfaces section, for device eth0, choose New network interface. You can
optionally specify a primary IPv4 address and one or more secondary IPv4 addresses. If you're
launching the instance into a subnet that has an associated IPv6 CIDR block, you can optionally
specify a primary IPv6 address and one or more secondary IPv6 addresses.

• Choose Next: Add Storage.
6. On the Add Storage page, specify the volumes to attach to the instances in addition to the volumes

specified by the AMI (such as the root device volume), and then choose Next: Add Tags.
7. On the Add Tags page, specify tags for the instances, such as a user-friendly name, and then choose

Next: Configure Security Group.
8. On the Configure Security Group page, for Assign a security group, select Select an existing

security group, and then select the security group that you created previously.
9. Choose Review and Launch.
10. On the Review Instance Launch page, review the settings, and then choose Launch to choose a key

pair and to launch your instances.

Verify EFA Attachment

From the Console

After launching the instance, check the instance details in the AWS Console. To do this, select the
instance in the EC2 console and look at the Description Tab in the lower pane on the page. Find the
parameter ‘Network Interfaces: eth0’ and click on eth0 which opens a pop-up. Make sure that ‘Elastic
Fabric Adapter’ is enabled.

If EFA is not enabled, you can fix this by either:

• Terminating the EC2 instance and launching a new one with the same steps. Make sure the EFA is
attached.

• Attach EFA to an existing instance.

1. In the EC2 Console, go to Network Interfaces.
2. Click on Create a Network Interface.
3. Select the same subnet that your instance is in.
4. Make sure to enable the ‘Elastic Fabric Adapter’ and click on Create.
5. Go back to the EC2 Instances Tab and select your instance.
6. Go to Actions: Instance State and stop the instance before you attach EFA.
7. From Actions, select Networking: Attach Network Interface.
8. Select the interface you just created and click on attach.
9. Restart your instance.

From the Instance

The following test script is already present on the DLAMI. Run it to ensure that the kernel modules are
loaded correctly.

$ fi_info -p efa

Your output should look similar to the following.

64

Deep Learning AMI Developer Guide
Elastic Fabric Adapter

provider: efa
 fabric: EFA-fe80::e5:56ff:fe34:56a8
 domain: efa_0-rdm
 version: 2.0
 type: FI_EP_RDM
 protocol: FI_PROTO_EFA
provider: efa
 fabric: EFA-fe80::e5:56ff:fe34:56a8
 domain: efa_0-dgrm
 version: 2.0
 type: FI_EP_DGRAM
 protocol: FI_PROTO_EFA
provider: efa;ofi_rxd
 fabric: EFA-fe80::e5:56ff:fe34:56a8
 domain: efa_0-dgrm
 version: 1.0
 type: FI_EP_RDM
 protocol: FI_PROTO_RXD

Verify Security Group Configuration

The following test script is already present on the DLAMI. Run it to ensure that the security group you
created is configured correctly.

$ cd ~/src/bin/efa-tests/
$./efa_test.sh

Your output should look similar to the following.

Starting server...
Starting client...
bytes #sent #ack total time MB/sec usec/xfer Mxfers/sec
64 10 =10 1.2k 0.02s 0.06 1123.55 0.00
256 10 =10 5k 0.00s 17.66 14.50 0.07
1k 10 =10 20k 0.00s 67.81 15.10 0.07
4k 10 =10 80k 0.00s 237.45 17.25 0.06
64k 10 =10 1.2m 0.00s 921.10 71.15 0.01
1m 10 =10 20m 0.01s 2122.41 494.05 0.00

If it stops responding or does not complete, ensure that your security group has the correct inbound/
outbound rules.

Using EFA on the DLAMI
The following section describes how to use EFA to run multi-node applications on the AWS Deep
Learning AMI.

Topics
• Running Multi-Node Applications with EFA (p. 65)

Running Multi-Node Applications with EFA

To run an application across a cluster of nodes some configuration is needed.

Enable Passwordless SSH

Select one node in your cluster as the leader node. The remaining nodes are referred to as the member
nodes.

65

Deep Learning AMI Developer Guide
Elastic Fabric Adapter

1. On the leader node, generate the RSA keypair.

ssh-keygen -t rsa -N "" -f ~/.ssh/id_rsa

2. Change the permissions of the private key on the leader node.

chmod 600 ~/.ssh/id_rsa

3. Copy the public key ~/.ssh/id_rsa.pub to and append it to ~/.ssh/authorized_keys of the
member nodes in the cluster.

4. You should now be able to directly login to the member nodes from the leader node using the
private ip.

ssh <member private ip>

5. Disable strictHostKeyChecking and enable agent forwarding on the leader node by adding the
following to the ~/.ssh/config file on the leader node:

Host *
 ForwardAgent yes
Host *
 StrictHostKeyChecking no

6. On Amazon Linux and Amazon Linux 2 instances, run the following command on the leader node to
provide correct permissions to the config file:

chmod 600 ~/.ssh/config

Create Hosts File

On the leader node, create a hosts file to identify the nodes in the cluster. The hosts file must have
an entry for each node in the cluster. Create a file ~/hosts and add each node using the private ip as
follows:

localhost slots=8
<private ip of node 1> slots=8
<private ip of node 2> slots=8

2-Node NCCL Plugin Check

The nccl_message_transfer is a simple test to ensure that the NCCL OFI Plugin is working as expected.
The test validates functionality of NCCL's connection establishment and data transfer APIs. Make sure
you use the complete path to mpirun as shown in the example while running NCCL applications with
EFA. Change the params np and N based on the number of instances and GPUs in your cluster. For more
information, see the AWS OFI NCCL documentation.

P3dn.24xlarge check

The following nccl_message_transfer test is for CUDA 10.0. You can run the commands for CUDA 10.1
and 10.2 by replacing the CUDA version.

$/opt/amazon/openmpi/bin/mpirun \
 -n 2 -N 1 --hostfile hosts \
 -x LD_LIBRARY_PATH=/usr/local/cuda-10.0/efa/lib:/usr/local/cuda-10.0/lib:/usr/
local/cuda-10.0/lib64:/usr/local/cuda-10.0:$LD_LIBRARY_PATH \

66

https://github.com/aws/aws-ofi-nccl/tree/master/tests

Deep Learning AMI Developer Guide
Elastic Fabric Adapter

 -x FI_PROVIDER="efa" --mca btl tcp,self --mca btl_tcp_if_exclude lo,docker0 --
bind-to none \
 ~/src/bin/efa-tests/efa-cuda-10.0/nccl_message_transfer

Your output should look like the following. You can check the output to see that EFA is being used as the
OFI provider.

INFO: Function: ofi_init Line: 702: NET/OFI Forcing AWS OFI ndev 4
INFO: Function: ofi_init Line: 714: NET/OFI Selected Provider is efa
INFO: Function: main Line: 49: NET/OFI Process rank 1 started. NCCLNet device used on
 ip-172-31-15-30 is AWS Libfabric.
INFO: Function: main Line: 53: NET/OFI Received 4 network devices
INFO: Function: main Line: 57: NET/OFI Server: Listening on dev 0
INFO: Function: ofi_init Line: 702: NET/OFI Forcing AWS OFI ndev 4
INFO: Function: ofi_init Line: 714: NET/OFI Selected Provider is efa
INFO: Function: main Line: 49: NET/OFI Process rank 0 started. NCCLNet device used on
 ip-172-31-15-30 is AWS Libfabric.
INFO: Function: main Line: 53: NET/OFI Received 4 network devices
INFO: Function: main Line: 57: NET/OFI Server: Listening on dev 0
INFO: Function: main Line: 96: NET/OFI Send connection request to rank 0
INFO: Function: main Line: 69: NET/OFI Send connection request to rank 1
INFO: Function: main Line: 100: NET/OFI Server: Start accepting requests
INFO: Function: main Line: 73: NET/OFI Server: Start accepting requests
INFO: Function: main Line: 103: NET/OFI Successfully accepted connection from rank 0
INFO: Function: main Line: 107: NET/OFI Rank 1 posting 255 receive buffers
INFO: Function: main Line: 76: NET/OFI Successfully accepted connection from rank 1
INFO: Function: main Line: 80: NET/OFI Sent 255 requests to rank 1
INFO: Function: main Line: 131: NET/OFI Got completions for 255 requests for rank 0
INFO: Function: main Line: 131: NET/OFI Got completions for 255 requests for rank 1

Multi-node NCCL Performance Test on P3dn.24xlarge

To check NCCL Performance with EFA, run the standard NCCL Performance test that is available on the
official NCCL-Tests Repo. The DLAMI comes with this test already built for both CUDA 10.0, 10.1, and
10.2. You can similarly run your own script with EFA.

When constructing your own script, refer to the following guidance:

• Provide the FI_PROVIDER="efa" flag to enable EFA use.

• Use the complete path to mpirun as shown in the example while running NCCL applications with EFA.

• Change the params np and N based on the number of instances and GPUs in your cluster.

• Add the NCCL_DEBUG=INFO flag and make sure that the logs indicate EFA usage as "Selected Provider
is EFA".

Use the command watch nvidia-smi on any of the member nodes to monitor GPU usage. The
following watch nvidia-smi commands are for CUDA 10.0 and depend on the Operating System of
your instance. You can run the commands for CUDA 10.1 and 10.2 by replacing the CUDA version.

• Amazon Linux and Amazon Linux 2:

$ /opt/amazon/openmpi/bin/mpirun \
 -x FI_PROVIDER="efa" -n 16 -N 8 \
 -x NCCL_DEBUG=INFO \
 -x NCCL_TREE_THRESHOLD=0 \
 -x LD_LIBRARY_PATH=/usr/local/cuda-10.0/efa/lib:/usr/local/cuda-10.0/lib:/usr/
local/cuda-10.0/lib64:/usr/local/cuda-10.0:/opt/amazon/efa/lib64:/opt/amazon/openmpi/
lib64:$LD_LIBRARY_PATH \
 --hostfile hosts --mca btl tcp,self --mca btl_tcp_if_exclude lo,docker0 --bind-
to none \

67

https://github.com/NVIDIA/nccl-tests.git

Deep Learning AMI Developer Guide
Elastic Fabric Adapter

 $HOME/src/bin/efa-tests/efa-cuda-10.0/all_reduce_perf -b 8 -e 1G -f 2 -g 1 -c 1
 -n 100

• Ubuntu 16.04 and Ubuntu 18.04:

$ /opt/amazon/openmpi/bin/mpirun \
 -x FI_PROVIDER="efa" -n 16 -N 8 \
 -x NCCL_DEBUG=INFO \
 -x NCCL_TREE_THRESHOLD=0 \
 -x LD_LIBRARY_PATH=/usr/local/cuda-10.0/efa/lib:/usr/local/cuda-10.0/lib:/usr/
local/cuda-10.0/lib64:/usr/local/cuda-10.0:/opt/amazon/efa/lib:/opt/amazon/openmpi/lib:
$LD_LIBRARY_PATH \
 --hostfile hosts --mca btl tcp,self --mca btl_tcp_if_exclude lo,docker0 --bind-
to none \
 $HOME/src/bin/efa-tests/efa-cuda-10.0/all_reduce_perf -b 8 -e 1G -f 2 -g 1 -c 1
 -n 100

Your output should look like the following.

nThread 1 nGpus 1 minBytes 8 maxBytes 1073741824 step: 2(factor) warmup iters: 5 iters:
 100 validation: 1
#
Using devices
Rank 0 Pid 3801 on ip-172-31-41-105 device 0 [0x00] Tesla V100-SXM2-32GB
Rank 1 Pid 3802 on ip-172-31-41-105 device 1 [0x00] Tesla V100-SXM2-32GB
Rank 2 Pid 3803 on ip-172-31-41-105 device 2 [0x00] Tesla V100-SXM2-32GB
Rank 3 Pid 3804 on ip-172-31-41-105 device 3 [0x00] Tesla V100-SXM2-32GB
Rank 4 Pid 3805 on ip-172-31-41-105 device 4 [0x00] Tesla V100-SXM2-32GB
Rank 5 Pid 3807 on ip-172-31-41-105 device 5 [0x00] Tesla V100-SXM2-32GB
Rank 6 Pid 3810 on ip-172-31-41-105 device 6 [0x00] Tesla V100-SXM2-32GB
Rank 7 Pid 3813 on ip-172-31-41-105 device 7 [0x00] Tesla V100-SXM2-32GB
Rank 8 Pid 4124 on ip-172-31-41-36 device 0 [0x00] Tesla V100-SXM2-32GB
Rank 9 Pid 4125 on ip-172-31-41-36 device 1 [0x00] Tesla V100-SXM2-32GB
Rank 10 Pid 4126 on ip-172-31-41-36 device 2 [0x00] Tesla V100-SXM2-32GB
Rank 11 Pid 4127 on ip-172-31-41-36 device 3 [0x00] Tesla V100-SXM2-32GB
Rank 12 Pid 4128 on ip-172-31-41-36 device 4 [0x00] Tesla V100-SXM2-32GB
Rank 13 Pid 4130 on ip-172-31-41-36 device 5 [0x00] Tesla V100-SXM2-32GB
Rank 14 Pid 4132 on ip-172-31-41-36 device 6 [0x00] Tesla V100-SXM2-32GB
Rank 15 Pid 4134 on ip-172-31-41-36 device 7 [0x00] Tesla V100-SXM2-32GB
ip-172-31-41-105:3801:3801 [0] NCCL INFO Bootstrap : Using [0]ens5:172.31.41.105<0>
ip-172-31-41-105:3801:3801 [0] NCCL INFO NET/OFI Forcing AWS OFI ndev 4
ip-172-31-41-105:3801:3801 [0] NCCL INFO NET/OFI Selected Provider is efa
NCCL version 2.4.8+cuda10.0
ip-172-31-41-105:3810:3810 [6] NCCL INFO Bootstrap : Using [0]ens5:172.31.41.105<0>
ip-172-31-41-105:3810:3810 [6] NCCL INFO NET/OFI Forcing AWS OFI ndev 4
ip-172-31-41-105:3810:3810 [6] NCCL INFO NET/OFI Selected Provider is efa
ip-172-31-41-105:3805:3805 [4] NCCL INFO Bootstrap : Using [0]ens5:172.31.41.105<0>
ip-172-31-41-105:3805:3805 [4] NCCL INFO NET/OFI Forcing AWS OFI ndev 4
ip-172-31-41-105:3805:3805 [4] NCCL INFO NET/OFI Selected Provider is efa
ip-172-31-41-105:3807:3807 [5] NCCL INFO Bootstrap : Using [0]ens5:172.31.41.105<0>
ip-172-31-41-105:3807:3807 [5] NCCL INFO NET/OFI Forcing AWS OFI ndev 4
ip-172-31-41-105:3807:3807 [5] NCCL INFO NET/OFI Selected Provider is efa
ip-172-31-41-105:3803:3803 [2] NCCL INFO Bootstrap : Using [0]ens5:172.31.41.105<0>
ip-172-31-41-105:3803:3803 [2] NCCL INFO NET/OFI Forcing AWS OFI ndev 4
ip-172-31-41-105:3803:3803 [2] NCCL INFO NET/OFI Selected Provider is efa
ip-172-31-41-105:3813:3813 [7] NCCL INFO Bootstrap : Using [0]ens5:172.31.41.105<0>
ip-172-31-41-105:3802:3802 [1] NCCL INFO Bootstrap : Using [0]ens5:172.31.41.105<0>
ip-172-31-41-105:3813:3813 [7] NCCL INFO NET/OFI Forcing AWS OFI ndev 4
ip-172-31-41-105:3813:3813 [7] NCCL INFO NET/OFI Selected Provider is efa
ip-172-31-41-105:3802:3802 [1] NCCL INFO NET/OFI Forcing AWS OFI ndev 4
ip-172-31-41-105:3802:3802 [1] NCCL INFO NET/OFI Selected Provider is efa
ip-172-31-41-105:3804:3804 [3] NCCL INFO Bootstrap : Using [0]ens5:172.31.41.105<0>
ip-172-31-41-105:3804:3804 [3] NCCL INFO NET/OFI Forcing AWS OFI ndev 4

68

Deep Learning AMI Developer Guide
Elastic Fabric Adapter

ip-172-31-41-105:3804:3804 [3] NCCL INFO NET/OFI Selected Provider is efa
ip-172-31-41-105:3801:3862 [0] NCCL INFO Setting affinity for GPU 0 to
 ffffffff,ffffffff,ffffffff
ip-172-31-41-105:3801:3862 [0] NCCL INFO NCCL_TREE_THRESHOLD set by environment to 0.
ip-172-31-41-36:4128:4128 [4] NCCL INFO Bootstrap : Using [0]ens5:172.31.41.36<0>
ip-172-31-41-36:4128:4128 [4] NCCL INFO NET/OFI Forcing AWS OFI ndev 4
ip-172-31-41-36:4128:4128 [4] NCCL INFO NET/OFI Selected Provider is efa

-----------------------------some output truncated-----------------------------------

ip-172-31-41-105:3804:3869 [3] NCCL INFO comm 0x7f8c5c0025b0 rank 3 nranks 16 cudaDev 3
 nvmlDev 3 - Init COMPLETE
#
out-of-place
 in-place
size count type redop time algbw busbw error time algbw
 busbw error
(B) (elements) (us) (GB/s) (GB/s) (us) (GB/s)
 (GB/s)
ip-172-31-41-105:3801:3801 [0] NCCL INFO Launch mode Parallel
ip-172-31-41-36:4124:4191 [0] NCCL INFO comm 0x7f28400025b0 rank 8 nranks 16 cudaDev 0
 nvmlDev 0 - Init COMPLETE
ip-172-31-41-36:4126:4192 [2] NCCL INFO comm 0x7f62240025b0 rank 10 nranks 16 cudaDev 2
 nvmlDev 2 - Init COMPLETE
ip-172-31-41-105:3802:3867 [1] NCCL INFO comm 0x7f5ff00025b0 rank 1 nranks 16 cudaDev 1
 nvmlDev 1 - Init COMPLETE
ip-172-31-41-36:4132:4193 [6] NCCL INFO comm 0x7ffa0c0025b0 rank 14 nranks 16 cudaDev 6
 nvmlDev 6 - Init COMPLETE
ip-172-31-41-105:3803:3866 [2] NCCL INFO comm 0x7fe9600025b0 rank 2 nranks 16 cudaDev 2
 nvmlDev 2 - Init COMPLETE
ip-172-31-41-36:4127:4188 [3] NCCL INFO comm 0x7f6ad00025b0 rank 11 nranks 16 cudaDev 3
 nvmlDev 3 - Init COMPLETE
ip-172-31-41-105:3813:3868 [7] NCCL INFO comm 0x7f341c0025b0 rank 7 nranks 16 cudaDev 7
 nvmlDev 7 - Init COMPLETE
ip-172-31-41-105:3810:3864 [6] NCCL INFO comm 0x7f5f980025b0 rank 6 nranks 16 cudaDev 6
 nvmlDev 6 - Init COMPLETE
ip-172-31-41-36:4128:4187 [4] NCCL INFO comm 0x7f234c0025b0 rank 12 nranks 16 cudaDev 4
 nvmlDev 4 - Init COMPLETE
ip-172-31-41-36:4125:4194 [1] NCCL INFO comm 0x7f2ca00025b0 rank 9 nranks 16 cudaDev 1
 nvmlDev 1 - Init COMPLETE
ip-172-31-41-36:4134:4190 [7] NCCL INFO comm 0x7f0ca40025b0 rank 15 nranks 16 cudaDev 7
 nvmlDev 7 - Init COMPLETE
ip-172-31-41-105:3807:3865 [5] NCCL INFO comm 0x7f3b280025b0 rank 5 nranks 16 cudaDev 5
 nvmlDev 5 - Init COMPLETE
ip-172-31-41-36:4130:4189 [5] NCCL INFO comm 0x7f62080025b0 rank 13 nranks 16 cudaDev 5
 nvmlDev 5 - Init COMPLETE
ip-172-31-41-105:3805:3863 [4] NCCL INFO comm 0x7fec100025b0 rank 4 nranks 16 cudaDev 4
 nvmlDev 4 - Init COMPLETE
 8 2 float sum 145.4 0.00 0.00 2e-07 152.8 0.00
 0.00 1e-07
 16 4 float sum 137.3 0.00 0.00 1e-07 137.2 0.00
 0.00 1e-07
 32 8 float sum 137.0 0.00 0.00 1e-07 137.4 0.00
 0.00 1e-07
 64 16 float sum 137.7 0.00 0.00 1e-07 137.5 0.00
 0.00 1e-07
 128 32 float sum 136.2 0.00 0.00 1e-07 135.3 0.00
 0.00 1e-07
 256 64 float sum 136.4 0.00 0.00 1e-07 137.4 0.00
 0.00 1e-07
 512 128 float sum 135.5 0.00 0.01 1e-07 151.0 0.00
 0.01 1e-07
 1024 256 float sum 151.0 0.01 0.01 2e-07 137.7 0.01
 0.01 2e-07
 2048 512 float sum 138.1 0.01 0.03 5e-07 138.1 0.01
 0.03 5e-07

69

Deep Learning AMI Developer Guide
Elastic Fabric Adapter

 4096 1024 float sum 140.5 0.03 0.05 5e-07 140.3 0.03
 0.05 5e-07
 8192 2048 float sum 144.6 0.06 0.11 5e-07 144.7 0.06
 0.11 5e-07
 16384 4096 float sum 149.4 0.11 0.21 5e-07 149.3 0.11
 0.21 5e-07
 32768 8192 float sum 156.7 0.21 0.39 5e-07 183.9 0.18
 0.33 5e-07
 65536 16384 float sum 167.7 0.39 0.73 5e-07 183.6 0.36
 0.67 5e-07
 131072 32768 float sum 193.8 0.68 1.27 5e-07 193.0 0.68
 1.27 5e-07
 262144 65536 float sum 243.9 1.07 2.02 5e-07 258.3 1.02
 1.90 5e-07
 524288 131072 float sum 309.0 1.70 3.18 5e-07 309.0 1.70
 3.18 5e-07
 1048576 262144 float sum 709.3 1.48 2.77 5e-07 693.2 1.51
 2.84 5e-07
 2097152 524288 float sum 1116.4 1.88 3.52 5e-07 1105.7 1.90
 3.56 5e-07
 4194304 1048576 float sum 2088.9 2.01 3.76 5e-07 2157.3 1.94
 3.65 5e-07
 8388608 2097152 float sum 2869.7 2.92 5.48 5e-07 2847.2 2.95
 5.52 5e-07
 16777216 4194304 float sum 4631.7 3.62 6.79 5e-07 4643.9 3.61
 6.77 5e-07
 33554432 8388608 float sum 8769.2 3.83 7.17 5e-07 8743.5 3.84
 7.20 5e-07
 67108864 16777216 float sum 16964 3.96 7.42 5e-07 16846 3.98
 7.47 5e-07
 134217728 33554432 float sum 33403 4.02 7.53 5e-07 33058 4.06
 7.61 5e-07
 268435456 67108864 float sum 59045 4.55 8.52 5e-07 58625 4.58
 8.59 5e-07
 536870912 134217728 float sum 115842 4.63 8.69 5e-07 115590 4.64
 8.71 5e-07
 1073741824 268435456 float sum 228178 4.71 8.82 5e-07 224997 4.77
 8.95 5e-07
Out of bounds values : 0 OK
Avg bus bandwidth : 2.80613
#

P4d.24xlarge check

The following nccl_message_transfer test is for CUDA 11.0.

$/opt/amazon/openmpi/bin/mpirun \
 -n 2 -N 1 --hostfile hosts \
 -x LD_LIBRARY_PATH=/usr/local/cuda-11.0/efa/lib:/usr/local/cuda-11.0/lib:/usr/
local/cuda-11.0/lib64:/usr/local/cuda-11.0:$LD_LIBRARY_PATH \
 -x FI_EFA_USE_DEVICE_RDMA=1 -x NCCL_ALGO=ring -x --mca pml ^cm \
 -x FI_PROVIDER="efa" --mca btl tcp,self --mca btl_tcp_if_exclude lo,docker0 --
bind-to none \
 ~/src/bin/efa-tests/efa-cuda-11.0/nccl_message_transfer

Your output should look like the following. You can check the output to see that EFA is being used as the
OFI provider.

INFO: Function: ofi_init Line: 1078: NET/OFI Running on P4d platform, Setting
 NCCL_TOPO_FILE environment variable to /usr/local/cuda-11.0/efa/share/aws-ofi-nccl/xml/
p4d-24xl-topo.xml

70

Deep Learning AMI Developer Guide
Elastic Fabric Adapter

INFO: Function: ofi_init Line: 1078: NET/OFI Running on P4d platform, Setting
 NCCL_TOPO_FILE environment variable to /usr/local/cuda-11.0/efa/share/aws-ofi-nccl/xml/
p4d-24xl-topo.xml
INFO: Function: ofi_init Line: 1152: NET/OFI Selected Provider is efa
INFO: Function: main Line: 68: NET/OFI Process rank 1 started. NCCLNet device used on
 ip-172-31-79-191 is AWS Libfabric.
INFO: Function: main Line: 72: NET/OFI Received 4 network devices
INFO: Function: main Line: 107: NET/OFI Network supports communication using CUDA buffers.
 Dev: 3
INFO: Function: main Line: 113: NET/OFI Server: Listening on dev 3
INFO: Function: ofi_init Line: 1152: NET/OFI Selected Provider is efa
INFO: Function: main Line: 68: NET/OFI Process rank 0 started. NCCLNet device used on
 ip-172-31-70-99 is AWS Libfabric.
INFO: Function: main Line: 72: NET/OFI Received 4 network devices
INFO: Function: main Line: 107: NET/OFI Network supports communication using CUDA buffers.
 Dev: 3
INFO: Function: main Line: 113: NET/OFI Server: Listening on dev 3
INFO: Function: main Line: 126: NET/OFI Send connection request to rank 1
INFO: Function: main Line: 160: NET/OFI Send connection request to rank 0
INFO: Function: main Line: 164: NET/OFI Server: Start accepting requests
INFO: Function: main Line: 167: NET/OFI Successfully accepted connection from rank 0
INFO: Function: main Line: 171: NET/OFI Rank 1 posting 255 receive buffers
INFO: Function: main Line: 130: NET/OFI Server: Start accepting requests
INFO: Function: main Line: 133: NET/OFI Successfully accepted connection from rank 1
INFO: Function: main Line: 137: NET/OFI Sent 255 requests to rank 1
INFO: Function: main Line: 223: NET/OFI Got completions for 255 requests for rank 1
INFO: Function: main Line: 223: NET/OFI Got completions for 255 requests for rank 0

Multi-node NCCL Performance Test on P4d.24xlarge

To check NCCL Performance with EFA, run the standard NCCL Performance test that is available on the
official NCCL-Tests Repo. The DLAMI comes with this test already built for CUDA 11.0. You can similarly
run your own script with EFA.

When constructing your own script, refer to the following guidance:

• Provide the FI_PROVIDER="efa" flag to enable EFA use.

• Use the complete path to mpirun as shown in the example while running NCCL applications with EFA.

• Change the params np and N based on the number of instances and GPUs in your cluster.

• Add the NCCL_DEBUG=INFO flag and make sure that the logs indicate EFA usage as "Selected Provider
is EFA".

• Add the FI_EFA_USE_DEVICE_RDMA=1 flag to use EFA's RDMA functionality for one-sided and two-
sided transfer.

Use the command watch nvidia-smi on any of the member nodes to monitor GPU usage. The
following watch nvidia-smi commands are for CUDA 11.0 and depend on the Operating System of
your instance.

• Amazon Linux 2:

$ /opt/amazon/openmpi/bin/mpirun \
 -x FI_PROVIDER="efa" -n 16 -N 8 \
 -x NCCL_DEBUG=INFO \
 -x FI_EFA_USE_DEVICE_RDMA=1 -x NCCL_ALGO=ring -x --mca pml ^cm \
 -x LD_LIBRARY_PATH=/usr/local/cuda-11.0/efa/lib:/usr/local/cuda-11.0/lib:/usr/
local/cuda-11.0/lib64:/usr/local/cuda-11.0:/opt/amazon/efa/lib64:/opt/amazon/openmpi/
lib64:$LD_LIBRARY_PATH \
 --hostfile hosts --mca btl tcp,self --mca btl_tcp_if_exclude lo,docker0 --bind-
to none \

71

https://github.com/NVIDIA/nccl-tests.git

Deep Learning AMI Developer Guide
Elastic Fabric Adapter

 $HOME/src/bin/efa-tests/efa-cuda-11.0/all_reduce_perf -b 8 -e 1G -f 2 -g 1 -c 1
 -n 100

• Ubuntu 16.04 and Ubuntu 18.04:

$ /opt/amazon/openmpi/bin/mpirun \
 -x FI_PROVIDER="efa" -n 16 -N 8 \
 -x NCCL_DEBUG=INFO \
 -x FI_EFA_USE_DEVICE_RDMA=1 -x NCCL_ALGO=ring -x --mca pml ^cm \
 -x LD_LIBRARY_PATH=/usr/local/cuda-11.0/efa/lib:/usr/local/cuda-11.0/lib:/usr/
local/cuda-11.0/lib64:/usr/local/cuda-11.0:/opt/amazon/efa/lib:/opt/amazon/openmpi/lib:
$LD_LIBRARY_PATH \
 --hostfile hosts --mca btl tcp,self --mca btl_tcp_if_exclude lo,docker0 --bind-
to none \
 $HOME/src/bin/efa-tests/efa-cuda-11.0/all_reduce_perf -b 8 -e 1G -f 2 -g 1 -c 1
 -n 100

Your output should look like the following.

nThread 1 nGpus 1 minBytes 8 maxBytes 1073741824 step: 2(factor) warmup iters: 5 iters:
 100 validation: 1
 #
 # Using devices
 # Rank 0 Pid 18546 on ip-172-31-70-88 device 0 [0x10] A100-SXM4-40GB
 # Rank 1 Pid 18547 on ip-172-31-70-88 device 1 [0x10] A100-SXM4-40GB
 # Rank 2 Pid 18548 on ip-172-31-70-88 device 2 [0x20] A100-SXM4-40GB
 # Rank 3 Pid 18549 on ip-172-31-70-88 device 3 [0x20] A100-SXM4-40GB
 # Rank 4 Pid 18550 on ip-172-31-70-88 device 4 [0x90] A100-SXM4-40GB
 # Rank 5 Pid 18551 on ip-172-31-70-88 device 5 [0x90] A100-SXM4-40GB
 # Rank 6 Pid 18552 on ip-172-31-70-88 device 6 [0xa0] A100-SXM4-40GB
 # Rank 7 Pid 18556 on ip-172-31-70-88 device 7 [0xa0] A100-SXM4-40GB
 # Rank 8 Pid 19502 on ip-172-31-78-249 device 0 [0x10] A100-SXM4-40GB
 # Rank 9 Pid 19503 on ip-172-31-78-249 device 1 [0x10] A100-SXM4-40GB
 # Rank 10 Pid 19504 on ip-172-31-78-249 device 2 [0x20] A100-SXM4-40GB
 # Rank 11 Pid 19505 on ip-172-31-78-249 device 3 [0x20] A100-SXM4-40GB
 # Rank 12 Pid 19506 on ip-172-31-78-249 device 4 [0x90] A100-SXM4-40GB
 # Rank 13 Pid 19507 on ip-172-31-78-249 device 5 [0x90] A100-SXM4-40GB
 # Rank 14 Pid 19508 on ip-172-31-78-249 device 6 [0xa0] A100-SXM4-40GB
 # Rank 15 Pid 19509 on ip-172-31-78-249 device 7 [0xa0] A100-SXM4-40GB
 ip-172-31-70-88:18546:18546 [0] NCCL INFO Bootstrap : Using [0]eth0:172.31.71.137<0>
 [1]eth1:172.31.70.88<0> [2]eth2:172.31.78.243<0> [3]eth3:172.31.77.226<0>
 ip-172-31-70-88:18546:18546 [0] NCCL INFO NET/OFI Running on P4d platform, Setting
 NCCL_TOPO_FILE environment variable to /usr/local/cuda-11.0/efa/share/aws-ofi-nccl/xml/
p4d-24xl-topo.xml
 ip-172-31-70-88:18546:18546 [0] NCCL INFO NET/OFI Selected Provider is efa
 ip-172-31-70-88:18546:18546 [0] NCCL INFO NET/Plugin: Failed to find
 ncclCollNetPlugin_v3 symbol.
 ip-172-31-70-88:18546:18546 [0] NCCL INFO Using network AWS Libfabric
 NCCL version 2.7.8+cuda11.0
 ip-172-31-70-88:18552:18552 [6] NCCL INFO Bootstrap : Using [0]eth0:172.31.71.137<0>
 [1]eth1:172.31.70.88<0> [2]eth2:172.31.78.243<0> [3]eth3:172.31.77.226<0>
 ip-172-31-70-88:18552:18552 [6] NCCL INFO NET/OFI Running on P4d platform, Setting
 NCCL_TOPO_FILE environment variable to /usr/local/cuda-11.0/efa/share/aws-ofi-nccl/xml/
p4d-24xl-topo.xml
 ip-172-31-70-88:18551:18551 [5] NCCL INFO Bootstrap : Using [0]eth0:172.31.71.137<0>
 [1]eth1:172.31.70.88<0> [2]eth2:172.31.78.243<0> [3]eth3:172.31.77.226<0>
 ip-172-31-70-88:18556:18556 [7] NCCL INFO Bootstrap : Using [0]eth0:172.31.71.137<0>
 [1]eth1:172.31.70.88<0> [2]eth2:172.31.78.243<0> [3]eth3:172.31.77.226<0>
 ip-172-31-70-88:18548:18548 [2] NCCL INFO Bootstrap : Using [0]eth0:172.31.71.137<0>
 [1]eth1:172.31.70.88<0> [2]eth2:172.31.78.243<0> [3]eth3:172.31.77.226<0>
 ip-172-31-70-88:18550:18550 [4] NCCL INFO Bootstrap : Using [0]eth0:172.31.71.137<0>
 [1]eth1:172.31.70.88<0> [2]eth2:172.31.78.243<0> [3]eth3:172.31.77.226<0>
 ip-172-31-70-88:18552:18552 [6] NCCL INFO NET/OFI Selected Provider is efa

72

Deep Learning AMI Developer Guide
Elastic Fabric Adapter

 ip-172-31-70-88:18552:18552 [6] NCCL INFO NET/Plugin: Failed to find
 ncclCollNetPlugin_v3 symbol.
 ip-172-31-70-88:18552:18552 [6] NCCL INFO Using network AWS Libfabric
 ip-172-31-70-88:18556:18556 [7] NCCL INFO NET/OFI Running on P4d platform, Setting
 NCCL_TOPO_FILE environment variable to /usr/local/cuda-11.0/efa/share/aws-ofi-nccl/xml/
p4d-24xl-topo.xml
 ip-172-31-70-88:18548:18548 [2] NCCL INFO NET/OFI Running on P4d platform, Setting
 NCCL_TOPO_FILE environment variable to /usr/local/cuda-11.0/efa/share/aws-ofi-nccl/xml/
p4d-24xl-topo.xml
 ip-172-31-70-88:18550:18550 [4] NCCL INFO NET/OFI Running on P4d platform, Setting
 NCCL_TOPO_FILE environment variable to /usr/local/cuda-11.0/efa/share/aws-ofi-nccl/xml/
p4d-24xl-topo.xml
 ip-172-31-70-88:18551:18551 [5] NCCL INFO NET/OFI Running on P4d platform, Setting
 NCCL_TOPO_FILE environment variable to /usr/local/cuda-11.0/efa/share/aws-ofi-nccl/xml/
p4d-24xl-topo.xml
 ip-172-31-70-88:18547:18547 [1] NCCL INFO Bootstrap : Using [0]eth0:172.31.71.137<0>
 [1]eth1:172.31.70.88<0> [2]eth2:172.31.78.243<0> [3]eth3:172.31.77.226<0>
 ip-172-31-70-88:18549:18549 [3] NCCL INFO Bootstrap : Using [0]eth0:172.31.71.137<0>
 [1]eth1:172.31.70.88<0> [2]eth2:172.31.78.243<0> [3]eth3:172.31.77.226<0>
 ip-172-31-70-88:18547:18547 [1] NCCL INFO NET/OFI Running on P4d platform, Setting
 NCCL_TOPO_FILE environment variable to /usr/local/cuda-11.0/efa/share/aws-ofi-nccl/xml/
p4d-24xl-topo.xml
 ip-172-31-70-88:18549:18549 [3] NCCL INFO NET/OFI Running on P4d platform, Setting
 NCCL_TOPO_FILE environment variable to /usr/local/cuda-11.0/efa/share/aws-ofi-nccl/xml/
p4d-24xl-topo.xml
 ip-172-31-70-88:18547:18547 [1] NCCL INFO NET/OFI Selected Provider is efa
 ip-172-31-70-88:18547:18547 [1] NCCL INFO NET/Plugin: Failed to find
 ncclCollNetPlugin_v3 symbol.
 ip-172-31-70-88:18547:18547 [1] NCCL INFO Using network AWS Libfabric
 ip-172-31-70-88:18549:18549 [3] NCCL INFO NET/OFI Selected Provider is efa
 ip-172-31-70-88:18549:18549 [3] NCCL INFO NET/Plugin: Failed to find
 ncclCollNetPlugin_v3 symbol.
 ip-172-31-70-88:18549:18549 [3] NCCL INFO Using network AWS Libfabric
 ip-172-31-70-88:18551:18551 [5] NCCL INFO NET/OFI Selected Provider is efa
 ip-172-31-70-88:18551:18551 [5] NCCL INFO NET/Plugin: Failed to find
 ncclCollNetPlugin_v3 symbol.
 ip-172-31-70-88:18551:18551 [5] NCCL INFO Using network AWS Libfabric
 ip-172-31-70-88:18556:18556 [7] NCCL INFO NET/OFI Selected Provider is efa
 ip-172-31-70-88:18556:18556 [7] NCCL INFO NET/Plugin: Failed to find
 ncclCollNetPlugin_v3 symbol.
 ip-172-31-70-88:18556:18556 [7] NCCL INFO Using network AWS Libfabric
 ip-172-31-70-88:18548:18548 [2] NCCL INFO NET/OFI Selected Provider is efa
 ip-172-31-70-88:18548:18548 [2] NCCL INFO NET/Plugin: Failed to find
 ncclCollNetPlugin_v3 symbol.
 ip-172-31-70-88:18548:18548 [2] NCCL INFO Using network AWS Libfabric
 ip-172-31-70-88:18550:18550 [4] NCCL INFO NET/OFI Selected Provider is efa
 ip-172-31-70-88:18550:18550 [4] NCCL INFO NET/Plugin: Failed to find
 ncclCollNetPlugin_v3 symbol.
 ip-172-31-70-88:18550:18550 [4] NCCL INFO Using network AWS Libfabric
-----------------------------some output truncated-----------------------------------
 #
 # out-of-place
 in-place
 # size count type redop time algbw busbw error time
 algbw busbw error
 # (B) (elements) (us) (GB/s) (GB/s) (us)
 (GB/s) (GB/s)
 ip-172-31-70-88:18546:18546 [0] NCCL INFO Launch mode Parallel
 8 2 float sum 158.9 0.00 0.00 2e-07 158.1
 0.00 0.00 1e-07
 16 4 float sum 158.3 0.00 0.00 1e-07 159.3
 0.00 0.00 1e-07
 32 8 float sum 157.8 0.00 0.00 1e-07 158.1
 0.00 0.00 1e-07
 64 16 float sum 158.7 0.00 0.00 1e-07 158.4
 0.00 0.00 6e-08

73

Deep Learning AMI Developer Guide
GPU Monitoring and Optimization

 128 32 float sum 160.2 0.00 0.00 6e-08 158.8
 0.00 0.00 6e-08
 256 64 float sum 159.8 0.00 0.00 6e-08 159.8
 0.00 0.00 6e-08
 512 128 float sum 161.7 0.00 0.01 6e-08 161.7
 0.00 0.01 6e-08
 1024 256 float sum 177.8 0.01 0.01 5e-07 177.4
 0.01 0.01 5e-07
 2048 512 float sum 198.1 0.01 0.02 5e-07 198.1
 0.01 0.02 5e-07
 4096 1024 float sum 226.2 0.02 0.03 5e-07 225.8
 0.02 0.03 5e-07
 8192 2048 float sum 249.3 0.03 0.06 5e-07 249.4
 0.03 0.06 5e-07
 16384 4096 float sum 250.4 0.07 0.12 5e-07 251.0
 0.07 0.12 5e-07
 32768 8192 float sum 256.7 0.13 0.24 5e-07 257.2
 0.13 0.24 5e-07
 65536 16384 float sum 269.8 0.24 0.46 5e-07 271.2
 0.24 0.45 5e-07
 131072 32768 float sum 288.3 0.45 0.85 5e-07 286.8
 0.46 0.86 5e-07
 262144 65536 float sum 296.1 0.89 1.66 5e-07 295.6
 0.89 1.66 5e-07
 524288 131072 float sum 376.7 1.39 2.61 5e-07 382.0
 1.37 2.57 5e-07
 1048576 262144 float sum 448.6 2.34 4.38 5e-07 451.1
 2.32 4.36 5e-07
 2097152 524288 float sum 620.2 3.38 6.34 5e-07 615.9
 3.41 6.38 5e-07
 4194304 1048576 float sum 768.2 5.46 10.24 5e-07 759.8
 5.52 10.35 5e-07
 8388608 2097152 float sum 1228.5 6.83 12.80 5e-07 1223.3
 6.86 12.86 5e-07
 16777216 4194304 float sum 2002.7 8.38 15.71 5e-07 2004.5
 8.37 15.69 5e-07
 33554432 8388608 float sum 2988.8 11.23 21.05 5e-07 3012.0
 11.14 20.89 5e-07
 67108864 16777216 float sum 8072.1 8.31 15.59 5e-07 8102.4
 8.28 15.53 5e-07
 134217728 33554432 float sum 11431 11.74 22.01 5e-07 11474
 11.70 21.93 5e-07
 268435456 67108864 float sum 17603 15.25 28.59 5e-07 17641
 15.22 28.53 5e-07
 536870912 134217728 float sum 35110 15.29 28.67 5e-07 35102
 15.29 28.68 5e-07
 1073741824 268435456 float sum 70231 15.29 28.67 5e-07 70110
 15.32 28.72 5e-07
 # Out of bounds values : 0 OK
 # Avg bus bandwidth : 7.14456

GPU Monitoring and Optimization
The following section will guide you through GPU optimization and monitoring options. This section is
organized like a typical workflow with monitoring overseeing preprocessing and training.

• Monitoring (p. 75)

• Monitor GPUs with CloudWatch (p. 75)

• Optimization (p. 80)

• Preprocessing (p. 81)

• Training (p. 81)

74

Deep Learning AMI Developer Guide
GPU Monitoring and Optimization

Monitoring
Your DLAMI comes preinstalled with several GPU monitoring tools. This guide also mentions tools that
are available to download and install.

• Monitor GPUs with CloudWatch (p. 75) - a preinstalled utility that reports GPU usage statistics to
Amazon CloudWatch.

• nvidia-smi CLI - a utility to monitor overall GPU compute and memory utilization. This is preinstalled
on your AWS Deep Learning AMI (DLAMI).

• NVML C library - a C-based API to directly access GPU monitoring and management functions. This
used by the nvidia-smi CLI under the hood and is preinstalled on your DLAMI. It also has Python and
Perl bindings to facilitate development in those languages. The gpumon.py utility preinstalled on your
DLAMI uses the pynvml package from nvidia-ml-py.

• NVIDIA DCGM - A cluster management tool. Visit the developer page to learn how to install and
configure this tool.

Tip
Check out NVIDIA's developer blog for the latest info on using the CUDA tools installed your
DLAMI:

• Monitoring TensorCore utilization using Nsight IDE and nvprof.

Monitor GPUs with CloudWatch

When you use your DLAMI with a GPU you might find that you are looking for ways to track its usage
during training or inference. This can be useful for optimizing your data pipeline, and tuning your deep
learning network.

There are two ways to configure GPU metrics with CloudWatch:

• Configure metrics with the AWS CloudWatch agent (Recommended) (p. 75)
• Configure metrics with the preinstalled gpumon.py script (p. 78)

Configure metrics with the AWS CloudWatch agent (Recommended)

Integrate your DLAMI with the unified CloudWatch agent to configure GPU metrics and monitor the
utilization of GPU coprocesses in Amazon EC2 accelerated instances.

There are four ways to configure GPU metrics with your DLAMI:

• Configure minimal GPU metrics (p. 76)
• Configure partial GPU metrics (p. 76)
• Configure all available GPU metrics (p. 76)
• Configure custom GPU metrics (p. 77)

For information on updates and security patches, see Security patching for the AWS CloudWatch
agent (p. 77)

Prerequisites

To get started, you must configure Amazon EC2 instance IAM permissions that allow your instance
to push metrics to CloudWatch. For detailed steps, see Create IAM roles and users for use with the
CloudWatch agent.

75

https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-management-library-nvml
https://pypi.org/project/nvidia-ml-py/
https://developer.nvidia.com/data-center-gpu-manager-dcgm
https://devblogs.nvidia.com/using-nsight-compute-nvprof-mixed-precision-deep-learning-models/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Install-CloudWatch-Agent.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Agent-NVIDIA-GPU.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/create-iam-roles-for-cloudwatch-agent.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/create-iam-roles-for-cloudwatch-agent.html

Deep Learning AMI Developer Guide
GPU Monitoring and Optimization

Configure minimal GPU metrics

Configure minimal GPU metrics using the dlami-cloudwatch-agent@minimal systemd service. This
service configures the following metrics:

• utilization_gpu

• utilization_memory

You can find the systemd service for minimal preconfigured GPU metrics in the following location:

/opt/aws/amazon-cloudwatch-agent/etc/dlami-amazon-cloudwatch-agent-minimal.json

Enable and start the systemd service with the following commands:

sudo systemctl enable dlami-cloudwatch-agent@minimal
sudo systemctl start dlami-cloudwatch-agent@minimal

Configure partial GPU metrics

Configure partial GPU metrics using the dlami-cloudwatch-agent@partial systemd service. This
service configures the following metrics:

• utilization_gpu

• utilization_memory

• memory_total

• memory_used

• memory_free

You can find the systemd service for partial preconfigured GPU metrics in the following location:

/opt/aws/amazon-cloudwatch-agent/etc/dlami-amazon-cloudwatch-agent-partial.json

Enable and start the systemd service with the following commands:

sudo systemctl enable dlami-cloudwatch-agent@partial
sudo systemctl start dlami-cloudwatch-agent@partial

Configure all available GPU metrics

Configure all available GPU metrics using the dlami-cloudwatch-agent@all systemd service. This
service configures the following metrics:

• utilization_gpu

• utilization_memory

• memory_total

• memory_used

• memory_free

• temperature_gpu

• power_draw

• fan_speed

• pcie_link_gen_current

76

Deep Learning AMI Developer Guide
GPU Monitoring and Optimization

• pcie_link_width_current

• encoder_stats_session_count

• encoder_stats_average_fps

• encoder_stats_average_latency

• clocks_current_graphics

• clocks_current_sm

• clocks_current_memory

• clocks_current_video

You can find the systemd service for all available preconfigured GPU metrics in the following location:

/opt/aws/amazon-cloudwatch-agent/etc/dlami-amazon-cloudwatch-agent-all.json

Enable and start the systemd service with the following commands:

sudo systemctl enable dlami-cloudwatch-agent@all
sudo systemctl start dlami-cloudwatch-agent@all

Configure custom GPU metrics

If the preconfigured metrics do not meet your requirements, you can create a custom CloudWatch agent
configuration file.

Create a custom configuration file

To create a custom configuration file, refer to the detailed steps in Manually create or edit the
CloudWatch agent configuration file.

For this example, assume that the schema definition is located at /opt/aws/amazon-cloudwatch-
agent/etc/amazon-cloudwatch-agent.json.

Configure metrics with your custom file

Run the following command to configure the CloudWatch agent according to your custom file:

sudo /opt/aws/amazon-cloudwatch-agent/bin/amazon-cloudwatch-agent-ctl \
-a fetch-config -m ec2 -s -c \
file:/opt/aws/amazon-cloudwatch-agent/etc/amazon-cloudwatch-agent.json

Security patching for the AWS CloudWatch agent

Newly released DLAMIs are configured with the latest available AWS CloudWatch agent security patches.
Refer to the following sections to update your current DLAMI with the latest security patches depending
on your operating system of choice.

Amazon Linux 2

Use yum to get the latest AWS CloudWatch agent security patches for an Amazon Linux 2 DLAMI.

 sudo yum update

Ubuntu

To get the latest AWS CloudWatch security patches for a DLAMI with Ubuntu, it is necessary to reinstall
the AWS CloudWatch agent using an Amazon S3 download link.

77

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Agent-Configuration-File-Details.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Agent-Configuration-File-Details.html

Deep Learning AMI Developer Guide
GPU Monitoring and Optimization

wget https://s3.region.amazonaws.com/amazoncloudwatch-agent-region/ubuntu/arm64/latest/
amazon-cloudwatch-agent.deb

For more information on installing the AWS CloudWatch agent using Amazon S3 download links, see
Installing and running the CloudWatch agent on your servers.

Configure metrics with the preinstalled gpumon.py script

A utility called gpumon.py is preinstalled on your DLAMI. It integrates with CloudWatch and supports
monitoring of per-GPU usage: GPU memory, GPU temperature, and GPU Power. The script periodically
sends the monitored data to CloudWatch. You can configure the level of granularity for data being sent
to CloudWatch by changing a few settings in the script. Before starting the script, however, you will need
to setup CloudWatch to receive the metrics.

How to setup and run GPU monitoring with CloudWatch

1. Create an IAM user, or modify an existing one to have a policy for publishing the metric to
CloudWatch. If you create a new user please take note of the credentials as you will need these in
the next step.

The IAM policy to search for is “cloudwatch:PutMetricData”. The policy that is added is as follows:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "cloudwatch:PutMetricData"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

Tip
For more information on creating an IAM user and adding policies for CloudWatch, refer to
the CloudWatch documentation.

2. On your DLAMI, run AWS configure and specify the IAM user credentials.

$ aws configure

3. You might need to make some modifications to the gpumon utility before you run it. You can find
the gpumon utility and README in the location defined in the following code block. For more
information on the gpumon.py script, see the Amazon S3 location of the script.

Folder: ~/tools/GPUCloudWatchMonitor
Files: ~/tools/GPUCloudWatchMonitor/gpumon.py
 ~/tools/GPUCloudWatchMonitor/README

Options:

• Change the region in gpumon.py if your instance is NOT in us-east-1.
• Change other parameters such as the CloudWatch namespace or the reporting period with
store_reso.

4. Currently the script only supports Python 3. Activate your preferred framework’s Python 3
environment or activate the DLAMI general Python 3 environment.

78

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/install-CloudWatch-Agent-commandline-fleet.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/install-CloudWatch-Agent-commandline-fleet.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/create-iam-roles-for-cloudwatch-agent.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html#cli-quick-configuration
https://s3.amazonaws.com/aws-bigdata-blog/artifacts/GPUMonitoring/gpumon.py

Deep Learning AMI Developer Guide
GPU Monitoring and Optimization

$ source activate python3

5. Run the gpumon utility in background.

(python3)$ python gpumon.py &

6. Open your browser to the https://console.aws.amazon.com/cloudwatch/ then select metric. It will
have a namespace 'DeepLearningTrain'.

Tip
You can change the namespace by modifying gpumon.py. You can also modify the
reporting interval by adjusting store_reso.

The following is an example CloudWatch chart reporting on a run of gpumon.py monitoring a training
job on p2.8xlarge instance.

79

https://console.aws.amazon.com/cloudwatch/

Deep Learning AMI Developer Guide
GPU Monitoring and Optimization

You might be interested in these other topics on GPU monitoring and optimization:

• Monitoring (p. 75)
• Monitor GPUs with CloudWatch (p. 75)

• Optimization (p. 80)
• Preprocessing (p. 81)
• Training (p. 81)

Optimization
To make the most of your GPUs, you can optimize your data pipeline and tune your deep learning
network. As the following chart describes, a naive or basic implementation of a neural network might
use the GPU inconsistently and not to its fullest potential. When you optimize your preprocessing and
data loading, you can reduce the bottleneck from your CPU to your GPU. You can adjust the neural
network itself, by using hybridization (when supported by the framework), adjusting batch size, and
synchronizing calls. You can also use multiple-precision (float16 or int8) training in most frameworks,
which can have a dramatic effect on improving throughput.

The following chart shows the cumulative performance gains when applying different optimizations.
Your results will depend on the data you are processing and the network you are optimizing.

Example GPU performance optimizations. Chart source: Performance Tricks with MXNet Gluon

80

https://github.com/ThomasDelteil/PerformanceTricksMXNetGluon

Deep Learning AMI Developer Guide
GPU Monitoring and Optimization

The following guides introduce options that will work with your DLAMI and help you boost GPU
performance.

Topics
• Preprocessing (p. 81)
• Training (p. 81)

Preprocessing

Data preprocessing through transformations or augmentations can often be a CPU-bound process,
and this can be the bottleneck in your overall pipeline. Frameworks have built-in operators for
image processing, but DALI (Data Augmentation Library) demonstrates improved performance over
frameworks’ built-in options.

• NVIDIA Data Augmentation Library (DALI): DALI offloads data augmentation to the GPU. It is not
preinstalled on the DLAMI, but you can access it by installing it or loading a supported framework
container on your DLAMI or other Amazon Elastic Compute Cloud instance. Refer to the DALI project
page on the NVIDIA website for details. For an example use-case and to download code samples, see
the SageMaker Preprocessing Training Performance sample.

• nvJPEG: a GPU-accelerated JPEG decoder library for C programmers. It supports decoding single
images or batches as well as subsequent transformation operations that are common in deep learning.
nvJPEG comes built-in with DALI, or you can download from the NVIDIA website's nvjpeg page and use
it separately.

You might be interested in these other topics on GPU monitoring and optimization:

• Monitoring (p. 75)
• Monitor GPUs with CloudWatch (p. 75)

• Optimization (p. 80)
• Preprocessing (p. 81)
• Training (p. 81)

Training

With mixed-precision training you can deploy larger networks with the same amount of memory, or
reduce memory usage compared to your single or double precision network, and you will see compute
performance increases. You also get the benefit of smaller and faster data transfers, an important factor
in multiple node distributed training. To take advantage of mixed-precision training you need to adjust
data casting and loss scaling. The following are guides describing how to do this for the frameworks that
support mixed-precision.

• NVIDIA Deep Learning SDK - docs on the NVIDIA website describing mixed-precision implementation
for MXNet, PyTorch, and TensorFlow.

Tip
Be sure to check the website for your framework of choice, and search for "mixed precision" or
"fp16" for the latest optimization techniques. Here are some mixed-precision guides you might
find helpful:

• Mixed-precision training with TensorFlow (video) - on the NVIDIA blog site.
• Mixed-precision training using float16 with MXNet - an FAQ article on the MXNet website.
• NVIDIA Apex: a tool for easy mixed-precision training with PyTorch - a blog article on the

NVIDIA website.

81

https://docs.nvidia.com/deeplearning/sdk/dali-install-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/dali-install-guide/index.html
https://github.com/aws-samples/sagemaker-cv-preprocessing-training-performance
https://developer.nvidia.com/nvjpeg
https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/
https://devblogs.nvidia.com/mixed-precision-resnet-50-tensor-cores/
https://mxnet.apache.org/api/faq/float16
https://devblogs.nvidia.com/apex-pytorch-easy-mixed-precision-training/

Deep Learning AMI Developer Guide
AWS Inferentia

You might be interested in these other topics on GPU monitoring and optimization:

• Monitoring (p. 75)
• Monitor GPUs with CloudWatch (p. 75)

• Optimization (p. 80)
• Preprocessing (p. 81)
• Training (p. 81)

The AWS Inferentia Chip With DLAMI
AWS Inferentia is a custom machine learning chip designed by AWS that you can use for high-
performance inference predictions. In order to use the chip, set up an Amazon Elastic Compute Cloud
instance and use the AWS Neuron software development kit (SDK) to invoke the Inferentia chip. To
provide customers with the best Inferentia experience, Neuron has been built into the AWS Deep
Learning AMI (DLAMI).

The following topics show you how to get started using Inferentia with the DLAMI.

Contents
• Launching a DLAMI Instance with AWS Neuron (p. 82)
• Using the DLAMI with AWS Neuron (p. 84)

Launching a DLAMI Instance with AWS Neuron
The latest DLAMI is ready to use with AWS Inferentia and comes with the AWS Neuron API package. To
launch a DLAMI instance, see Launching and Configuring a DLAMI. After you have a DLAMI, use the steps
here to ensure that your AWS Inferentia chip and AWS Neuron resources are active.

Contents
• Verify Your Instance (p. 82)
• Identifying AWS Inferentia Devices (p. 82)
• View Resource Usage (p. 83)
• Using Neuron Monitor (neuron-monitor) (p. 83)
• Upgrading Neuron Software (p. 84)

Verify Your Instance

Before using your instance, verify that it's properly setup and configured with Neuron.

Identifying AWS Inferentia Devices

To identify the number of Inferentia devices on your instance, use the following command:

neuron-ls

If your instance has Inferentia devices attached to it, your output will look similar to the following:

+--------+--------+--------+-----------+--------------+
| NEURON | NEURON | NEURON | CONNECTED | PCI |
| DEVICE | CORES | MEMORY | DEVICES | BDF |
+--------+--------+--------+-----------+--------------+
| 0 | 4 | 8 GB | 1 | 0000:00:1c.0 |
| 1 | 4 | 8 GB | 2, 0 | 0000:00:1d.0 |

82

https://docs.aws.amazon.com/dlami/latest/devguide/launch-config.html

Deep Learning AMI Developer Guide
AWS Inferentia

| 2 | 4 | 8 GB | 3, 1 | 0000:00:1e.0 |
| 3 | 4 | 8 GB | 2 | 0000:00:1f.0 |
+--------+--------+--------+-----------+--------------+

The supplied output is taken from an Inf1.6xlarge instance and includes the following columns:

• NEURON DEVICE: The logical ID assigned to the NeuronDevice. This ID is used when configuring
multiple runtimes to use different NeuronDevices.

• NEURON CORES: The number of NeuronCores present in the NeuronDevice.
• NEURON MEMORY: The amount of DRAM memory in the NeuronDevice.
• CONNECTED DEVICES: Other NeuronDevices connected to the NeuronDevice.
• PCI BDF: The PCI Bus Device Function (BDF) ID of the NeuronDevice.

View Resource Usage

View useful information about NeuronCore and vCPU utilization, memory usage, loaded models, and
Neuron applications with the neuron-top command. Launching neuron-top with no arguments will
show data for all machine learning applications that utilize NeuronCores.

neuron-top

When an application is using four NeuronCores, the output should look similar to the following image:

For more information on resources to monitor and optimize Neuron-based inference applications, see
Neuron Tools.

Using Neuron Monitor (neuron-monitor)

Neuron Monitor collects metrics from the Neuron runtimes running on the system and streams the
collected data to stdout in JSON format. These metrics are organized into metric groups that you

83

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/neuron-tools/index.html

Deep Learning AMI Developer Guide
AWS Inferentia

configure by providing a configuration file. For more information on Neuron Monitor, see the User Guide
for Neuron Monitor.

Upgrading Neuron Software

For information on how to update Neuron SDK software within DLAMI, see the AWS Neuron Setup Guide.

Next Step

Using the DLAMI with AWS Neuron (p. 84)

Using the DLAMI with AWS Neuron
A typical workflow with the AWS Neuron SDK is to compile a previously trained machine learning model
on a compilation server. After this, distribute the artifacts to the Inf1 instances for execution. AWS Deep
Learning AMI (DLAMI) comes pre-installed with everything you need to compile and run inference in an
Inf1 instance that uses Inferentia.

The following sections describe how to use the DLAMI with Inferentia.

Contents
• Using TensorFlow-Neuron and the AWS Neuron Compiler (p. 84)
• Using AWS Neuron TensorFlow Serving (p. 86)
• Using MXNet-Neuron and the AWS Neuron Compiler (p. 89)
• Using MXNet-Neuron Model Serving (p. 91)
• Using PyTorch-Neuron and the AWS Neuron Compiler (p. 94)

Using TensorFlow-Neuron and the AWS Neuron Compiler

This tutorial shows how to use the AWS Neuron compiler to compile the Keras ResNet-50 model
and export it as a saved model in SavedModel format. This format is a typical TensorFlow model
interchangeable format. You also learn how to run inference on an Inf1 instance with example input.

For more information about the Neuron SDK, see the AWS Neuron SDK documentation.

Contents
• Prerequisites (p. 84)
• Activate the Conda environment (p. 84)
• Resnet50 Compilation (p. 85)
• ResNet50 Inference (p. 86)

Prerequisites

Before using this tutorial, you should have completed the set up steps in Launching a DLAMI Instance
with AWS Neuron (p. 82). You should also have a familiarity with deep learning and using the DLAMI.

Activate the Conda environment

Activate the TensorFlow-Neuron conda environment using the following command:

source activate aws_neuron_tensorflow_p36

To exit the current conda environment, run the following command:

84

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/neuron-tools/neuron-monitor-user-guide.html
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/neuron-tools/neuron-monitor-user-guide.html
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-intro/neuron-install-guide.html
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/neuron-frameworks/tensorflow-neuron/index.html

Deep Learning AMI Developer Guide
AWS Inferentia

source deactivate

Resnet50 Compilation

Create a Python script called tensorflow_compile_resnet50.py that has the following content. This
Python script compiles the Keras ResNet50 model and exports it as a saved model.

import os
import time
import shutil
import tensorflow as tf
import tensorflow.neuron as tfn
import tensorflow.compat.v1.keras as keras
from tensorflow.keras.applications.resnet50 import ResNet50
from tensorflow.keras.applications.resnet50 import preprocess_input

Create a workspace
WORKSPACE = './ws_resnet50'
os.makedirs(WORKSPACE, exist_ok=True)

Prepare export directory (old one removed)
model_dir = os.path.join(WORKSPACE, 'resnet50')
compiled_model_dir = os.path.join(WORKSPACE, 'resnet50_neuron')
shutil.rmtree(model_dir, ignore_errors=True)
shutil.rmtree(compiled_model_dir, ignore_errors=True)

Instantiate Keras ResNet50 model
keras.backend.set_learning_phase(0)
model = ResNet50(weights='imagenet')

Export SavedModel
tf.saved_model.simple_save(
 session = keras.backend.get_session(),
 export_dir = model_dir,
 inputs = {'input': model.inputs[0]},
 outputs = {'output': model.outputs[0]})

Compile using Neuron
tfn.saved_model.compile(model_dir, compiled_model_dir)

Prepare SavedModel for uploading to Inf1 instance
shutil.make_archive(compiled_model_dir, 'zip', WORKSPACE, 'resnet50_neuron')

Compile the model using the following command:

python tensorflow_compile_resnet50.py

The compilation process will take a few minutes. When it completes, your output should look like the
following:

...
INFO:tensorflow:fusing subgraph neuron_op_d6f098c01c780733 with neuron-cc
INFO:tensorflow:Number of operations in TensorFlow session: 4638
INFO:tensorflow:Number of operations after tf.neuron optimizations: 556
INFO:tensorflow:Number of operations placed on Neuron runtime: 554
INFO:tensorflow:Successfully converted ./ws_resnet50/resnet50 to ./ws_resnet50/
resnet50_neuron

85

Deep Learning AMI Developer Guide
AWS Inferentia

...

After compilation, the saved model is zipped at ws_resnet50/resnet50_neuron.zip. Unzip the
model and download the sample image for inference using the following commands:

unzip ws_resnet50/resnet50_neuron.zip -d .
curl -O https://raw.githubusercontent.com/awslabs/mxnet-model-server/master/docs/images/
kitten_small.jpg

ResNet50 Inference

Create a Python script called tensorflow_infer_resnet50.py that has the following content. This
script runs inference on the downloaded model using a previously compiled inference model.

import os
import numpy as np
import tensorflow as tf
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications import resnet50

Create input from image
img_sgl = image.load_img('kitten_small.jpg', target_size=(224, 224))
img_arr = image.img_to_array(img_sgl)
img_arr2 = np.expand_dims(img_arr, axis=0)
img_arr3 = resnet50.preprocess_input(img_arr2)
Load model
COMPILED_MODEL_DIR = './ws_resnet50/resnet50_neuron/'
predictor_inferentia = tf.contrib.predictor.from_saved_model(COMPILED_MODEL_DIR)
Run inference
model_feed_dict={'input': img_arr3}
infa_rslts = predictor_inferentia(model_feed_dict);
Display results
print(resnet50.decode_predictions(infa_rslts["output"], top=5)[0])

Run inference on the model using the following command:

python tensorflow_infer_resnet50.py

Your output should look like the following:

...
[('n02123045', 'tabby', 0.6918919), ('n02127052', 'lynx', 0.12770271), ('n02123159',
 'tiger_cat', 0.08277027), ('n02124075', 'Egyptian_cat', 0.06418919), ('n02128757',
 'snow_leopard', 0.009290541)]

Next Step

Using AWS Neuron TensorFlow Serving (p. 86)

Using AWS Neuron TensorFlow Serving

This tutorial shows how to construct a graph and add an AWS Neuron compilation step before exporting
the saved model to use with TensorFlow Serving. TensorFlow Serving is a serving system that allows

86

Deep Learning AMI Developer Guide
AWS Inferentia

you to scale-up inference across a network. Neuron TensorFlow Serving uses the same API as normal
TensorFlow Serving. The only difference is that a saved model must be compiled for AWS Inferentia and
the entry point is a different binary named tensorflow_model_server_neuron. The binary is found
at /usr/local/bin/tensorflow_model_server_neuron and is pre-installed in the DLAMI.

For more information about the Neuron SDK, see the AWS Neuron SDK documentation.

Contents

• Prerequisites (p. 87)

• Activate the Conda environment (p. 87)

• Compile and Export the Saved Model (p. 87)

• Serving the Saved Model (p. 88)

• Generate inference requests to the model server (p. 88)

Prerequisites

Before using this tutorial, you should have completed the set up steps in Launching a DLAMI Instance
with AWS Neuron (p. 82). You should also have a familiarity with deep learning and using the DLAMI.

Activate the Conda environment

Activate the TensorFlow-Neuron conda environment using the following command:

source activate aws_neuron_tensorflow_p36

If you need to exit the current conda environment, run:

source deactivate

Compile and Export the Saved Model

Create a Python script called tensorflow-model-server-compile.py with the following
content. This script constructs a graph and compiles it using Neuron. It then exports the compiled graph
as a saved model.

import tensorflow as tf
import tensorflow.neuron
import os

tf.keras.backend.set_learning_phase(0)
model = tf.keras.applications.ResNet50(weights='imagenet')
sess = tf.keras.backend.get_session()
inputs = {'input': model.inputs[0]}
outputs = {'output': model.outputs[0]}

save the model using tf.saved_model.simple_save
modeldir = "./resnet50/1"
tf.saved_model.simple_save(sess, modeldir, inputs, outputs)

compile the model for Inferentia
neuron_modeldir = os.path.join(os.path.expanduser('~'), 'resnet50_inf1', '1')
tf.neuron.saved_model.compile(modeldir, neuron_modeldir, batch_size=1)

87

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/neuron-frameworks/tensorflow-neuron/index.html

Deep Learning AMI Developer Guide
AWS Inferentia

Compile the model using the following command:

python tensorflow-model-server-compile.py

Your output should look like the following:

...
INFO:tensorflow:fusing subgraph neuron_op_d6f098c01c780733 with neuron-cc
INFO:tensorflow:Number of operations in TensorFlow session: 4638
INFO:tensorflow:Number of operations after tf.neuron optimizations: 556
INFO:tensorflow:Number of operations placed on Neuron runtime: 554
INFO:tensorflow:Successfully converted ./resnet50/1 to /home/ubuntu/resnet50_inf1/1

Serving the Saved Model

Once the model has been compiled, you can use the following command to serve the saved model with
the tensorflow_model_server_neuron binary:

tensorflow_model_server_neuron --model_name=resnet50_inf1 \
 --model_base_path=$HOME/resnet50_inf1/ --port=8500 &

Your output should look like the following. The compiled model is staged in the Inferentia
device’s DRAM by the server to prepare for inference.

...
2019-11-22 01:20:32.075856: I external/org_tensorflow/tensorflow/cc/saved_model/
loader.cc:311] SavedModel load for tags { serve }; Status: success. Took 40764
 microseconds.
2019-11-22 01:20:32.075888: I tensorflow_serving/servables/tensorflow/
saved_model_warmup.cc:105] No warmup data file found at /home/ubuntu/resnet50_inf1/1/
assets.extra/tf_serving_warmup_requests
2019-11-22 01:20:32.075950: I tensorflow_serving/core/loader_harness.cc:87] Successfully
 loaded servable version {name: resnet50_inf1 version: 1}
2019-11-22 01:20:32.077859: I tensorflow_serving/model_servers/
server.cc:353] Running gRPC ModelServer at 0.0.0.0:8500 ...

Generate inference requests to the model server

Create a Python script called tensorflow-model-server-infer.py with the following content. This
script runs inference via gRPC, which is service framework.

import numpy as np
import grpc
import tensorflow as tf
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.resnet50 import preprocess_input
from tensorflow_serving.apis import predict_pb2
from tensorflow_serving.apis import prediction_service_pb2_grpc
from tensorflow.keras.applications.resnet50 import decode_predictions

if __name__ == '__main__':
 channel = grpc.insecure_channel('localhost:8500')
 stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)
 img_file = tf.keras.utils.get_file(

88

Deep Learning AMI Developer Guide
AWS Inferentia

 "./kitten_small.jpg",
 "https://raw.githubusercontent.com/awslabs/mxnet-model-server/master/docs/images/
kitten_small.jpg")
 img = image.load_img(img_file, target_size=(224, 224))
 img_array = preprocess_input(image.img_to_array(img)[None, ...])
 request = predict_pb2.PredictRequest()
 request.model_spec.name = 'resnet50_inf1'
 request.inputs['input'].CopyFrom(
 tf.contrib.util.make_tensor_proto(img_array, shape=img_array.shape))
 result = stub.Predict(request)
 prediction = tf.make_ndarray(result.outputs['output'])
 print(decode_predictions(prediction))

Run inference on the model by using gRPC with the following command:

python tensorflow-model-server-infer.py

Your output should look like the following:

[[('n02123045', 'tabby', 0.6918919), ('n02127052', 'lynx', 0.12770271), ('n02123159',
 'tiger_cat', 0.08277027), ('n02124075', 'Egyptian_cat', 0.06418919), ('n02128757',
 'snow_leopard', 0.009290541)]]

Using MXNet-Neuron and the AWS Neuron Compiler

The MXNet-Neuron compilation API provides a method to compile a model graph that you can run on an
AWS Inferentia device.

In this example, you use the API to compile a ResNet-50 model and use it to run inference.

For more information about the Neuron SDK, see the AWS Neuron SDK documentation.

Contents
• Prerequisites (p. 89)

• Activate the Conda Environment (p. 89)

• Resnet50 Compilation (p. 90)

• ResNet50 Inference (p. 90)

Prerequisites

Before using this tutorial, you should have completed the set up steps in Launching a DLAMI Instance
with AWS Neuron (p. 82). You should also have a familiarity with deep learning and using the DLAMI.

Activate the Conda Environment

Activate the MXNet-Neuron conda environment using the following command:

source activate aws_neuron_mxnet_p36

To exit the current conda environment, run:

89

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/neuron-frameworks/mxnet-neuron/index.html

Deep Learning AMI Developer Guide
AWS Inferentia

source deactivate

Resnet50 Compilation

Create a Python script called mxnet_compile_resnet50.py with the following content. This script
uses the MXNet-Neuron compilation Python API to compile a ResNet-50 model.

import mxnet as mx
import numpy as np

print("downloading...")
path='http://data.mxnet.io/models/imagenet/'
mx.test_utils.download(path+'resnet/50-layers/resnet-50-0000.params')
mx.test_utils.download(path+'resnet/50-layers/resnet-50-symbol.json')
print("download finished.")

sym, args, aux = mx.model.load_checkpoint('resnet-50', 0)

print("compile for inferentia using neuron... this will take a few minutes...")
inputs = { "data" : mx.nd.ones([1,3,224,224], name='data', dtype='float32') }

sym, args, aux = mx.contrib.neuron.compile(sym, args, aux, inputs)

print("save compiled model...")
mx.model.save_checkpoint("compiled_resnet50", 0, sym, args, aux)

Compile the model using the following command:

python mxnet_compile_resnet50.py

Compilation will take a few minutes. When compilation has finished, the following files will be in your
current directory:

resnet-50-0000.params
resnet-50-symbol.json
compiled_resnet50-0000.params
compiled_resnet50-symbol.json

ResNet50 Inference

Create a Python script called mxnet_infer_resnet50.py with the following content. This script
downloads a sample image and uses it to run inference with the compiled model.

import mxnet as mx
import numpy as np

path='http://data.mxnet.io/models/imagenet/'
mx.test_utils.download(path+'synset.txt')

fname = mx.test_utils.download('https://raw.githubusercontent.com/awslabs/mxnet-model-
server/master/docs/images/kitten_small.jpg')
img = mx.image.imread(fname)

convert into format (batch, RGB, width, height)
img = mx.image.imresize(img, 224, 224)
resize

90

Deep Learning AMI Developer Guide
AWS Inferentia

img = img.transpose((2, 0, 1))
Channel first
img = img.expand_dims(axis=0)
batchify
img = img.astype(dtype='float32')

sym, args, aux = mx.model.load_checkpoint('compiled_resnet50', 0)
softmax = mx.nd.random_normal(shape=(1,))
args['softmax_label'] = softmax
args['data'] = img
Inferentia context
ctx = mx.neuron()

exe = sym.bind(ctx=ctx, args=args, aux_states=aux, grad_req='null')
with open('synset.txt', 'r') as f:
 labels = [l.rstrip() for l in f]

exe.forward(data=img)
prob = exe.outputs[0].asnumpy()
print the top-5
prob = np.squeeze(prob)
a = np.argsort(prob)[::-1]
for i in a[0:5]:
 print('probability=%f, class=%s' %(prob[i], labels[i]))

Run inference with the compiled model using the following command:

python mxnet_infer_resnet50.py

Your output should look like the following:

probability=0.642454, class=n02123045 tabby, tabby cat
probability=0.189407, class=n02123159 tiger cat
probability=0.100798, class=n02124075 Egyptian cat
probability=0.030649, class=n02127052 lynx, catamount
probability=0.016278, class=n02129604 tiger, Panthera tigris

Next Step

Using MXNet-Neuron Model Serving (p. 91)

Using MXNet-Neuron Model Serving

In this tutorial, you learn to use a pre-trained MXNet model to perform real-time image classification
with Multi Model Server (MMS). MMS is a flexible and easy-to-use tool for serving deep learning models
that are trained using any machine learning or deep learning framework. This tutorial includes a
compilation step using AWS Neuron and an implementation of MMS using MXNet.

For more information about the Neuron SDK, see the AWS Neuron SDK documentation.

Contents
• Prerequisites (p. 92)

• Activate the Conda Environment (p. 92)

• Download the Example Code (p. 92)

• Compile the Model (p. 92)

• Run Inference (p. 93)

91

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/neuron-frameworks/mxnet-neuron/index.html

Deep Learning AMI Developer Guide
AWS Inferentia

Prerequisites

Before using this tutorial, you should have completed the set up steps in Launching a DLAMI Instance
with AWS Neuron (p. 82). You should also have a familiarity with deep learning and using the DLAMI.

Activate the Conda Environment

Activate the MXNet-Neuron conda environment by using the following command:

source activate aws_neuron_mxnet_p36

To exit the current conda environment, run:

source deactivate

Download the Example Code

To run this example, download the example code using the following commands:

git clone https://github.com/awslabs/multi-model-server
cd multi-model-server/examples/mxnet_vision

Compile the Model

Create a Python script called multi-model-server-compile.py with the following content. This
script compiles the ResNet50 model to the Inferentia device target.

import mxnet as mx
from mxnet.contrib import neuron
import numpy as np

path='http://data.mxnet.io/models/imagenet/'
mx.test_utils.download(path+'resnet/50-layers/resnet-50-0000.params')
mx.test_utils.download(path+'resnet/50-layers/resnet-50-symbol.json')
mx.test_utils.download(path+'synset.txt')

nn_name = "resnet-50"

#Load a model
sym, args, auxs = mx.model.load_checkpoint(nn_name, 0)

#Define compilation parameters# - input shape and dtype
inputs = {'data' : mx.nd.zeros([1,3,224,224], dtype='float32') }

compile graph to inferentia target
csym, cargs, cauxs = neuron.compile(sym, args, auxs, inputs)

save compiled model
mx.model.save_checkpoint(nn_name + "_compiled", 0, csym, cargs, cauxs)

To compile the model, use the following command:

python multi-model-server-compile.py

Your output should look like the following:

...
[21:18:40] src/nnvm/legacy_json_util.cc:209: Loading symbol saved by previous version
 v0.8.0. Attempting to upgrade...

92

Deep Learning AMI Developer Guide
AWS Inferentia

[21:18:40] src/nnvm/legacy_json_util.cc:217: Symbol successfully upgraded!
[21:19:00] src/operator/subgraph/build_subgraph.cc:698: start to execute partition graph.
[21:19:00] src/nnvm/legacy_json_util.cc:209: Loading symbol saved by previous version
 v0.8.0. Attempting to upgrade...
[21:19:00] src/nnvm/legacy_json_util.cc:217: Symbol successfully upgraded!

Create a file named signature.json with the following content to configure the input name and
shape:

{
 "inputs": [
 {
 "data_name": "data",
 "data_shape": [
 1,
 3,
 224,
 224
]
 }
]
}

Download the synset.txt file by using the following command. This file is a list of names for ImageNet
prediction classes.

curl -O https://s3.amazonaws.com/model-server/model_archive_1.0/examples/squeezenet_v1.1/
synset.txt

Create a custom service class following the template in the model_server_template folder. Copy the
template into your current working directory by using the following command:

cp -r ../model_service_template/* .

Edit the mxnet_model_service.py module to replace the mx.cpu() context with
the mx.neuron() context as follows. You also need to comment out the unnecessary data copy
for model_input because MXNet-Neuron does not support the NDArray and Gluon APIs.

...
self.mxnet_ctx = mx.neuron() if gpu_id is None else mx.gpu(gpu_id)
...
#model_input = [item.as_in_context(self.mxnet_ctx) for item in model_input]

Package the model with model-archiver using the following commands:

cd ~/multi-model-server/examples
model-archiver --force --model-name resnet-50_compiled --model-path mxnet_vision --handler
 mxnet_vision_service:handle

Run Inference

Start the Multi Model Server and load the model that uses the RESTful API by using the following
commands. Ensure that neuron-rtd is running with the default settings.

cd ~/multi-model-server/
multi-model-server --start --model-store examples > /dev/null # Pipe to log file if you
 want to keep a log of MMS

93

Deep Learning AMI Developer Guide
AWS Inferentia

curl -v -X POST "http://localhost:8081/models?
initial_workers=1&max_workers=4&synchronous=true&url=resnet-50_compiled.mar"
sleep 10 # allow sufficient time to load model

Run inference using an example image with the following commands:

curl -O https://raw.githubusercontent.com/awslabs/multi-model-server/master/docs/images/
kitten_small.jpg
curl -X POST http://127.0.0.1:8080/predictions/resnet-50_compiled -T kitten_small.jpg

Your output should look like the following:

[
 {
 "probability": 0.6388034820556641,
 "class": "n02123045 tabby, tabby cat"
 },
 {
 "probability": 0.16900072991847992,
 "class": "n02123159 tiger cat"
 },
 {
 "probability": 0.12221276015043259,
 "class": "n02124075 Egyptian cat"
 },
 {
 "probability": 0.028706775978207588,
 "class": "n02127052 lynx, catamount"
 },
 {
 "probability": 0.01915954425930977,
 "class": "n02129604 tiger, Panthera tigris"
 }
]

To cleanup after the test, issue a delete command via the RESTful API and stop the model server using
the following commands:

curl -X DELETE http://127.0.0.1:8081/models/resnet-50_compiled

multi-model-server --stop

You should see the following output:

{
 "status": "Model \"resnet-50_compiled\" unregistered"
}
Model server stopped.
Found 1 models and 1 NCGs.
Unloading 10001 (MODEL_STATUS_STARTED) :: success
Destroying NCG 1 :: success

Using PyTorch-Neuron and the AWS Neuron Compiler

The PyTorch-Neuron compilation API provides a method to compile a model graph that you can run on
an AWS Inferentia device.

A trained model must be compiled to an Inferentia target before it can be deployed on Inf1 instances.
The following tutorial compiles the torchvision ResNet50 model and exports it as a saved TorchScript
module. This model is then used to run inference.

94

Deep Learning AMI Developer Guide
AWS Inferentia

For convenience, this tutorial uses an Inf1 instance for both compilation and inference. In practice, you
may compile your model using another instance type, such as the c5 instance family. You must then
deploy your compiled model to the Inf1 inference server. For more information, see the AWS Neuron
PyTorch SDK Documentation.

Contents
• Prerequisites (p. 95)
• Activate the Conda Environment (p. 95)
• Resnet50 Compilation (p. 95)
• ResNet50 Inference (p. 96)

Prerequisites

Before using this tutorial, you should have completed the set up steps in Launching a DLAMI Instance
with AWS Neuron (p. 82). You should also have a familiarity with deep learning and using the DLAMI.

Activate the Conda Environment

Activate the PyTorch-Neuron conda environment using the following command:

source activate aws_neuron_pytorch_p36

To exit the current conda environment, run:

source deactivate

Resnet50 Compilation

Create a Python script called pytorch_trace_resnet50.py with the following content. This script
uses the PyTorch-Neuron compilation Python API to compile a ResNet-50 model.

Note
There is a dependency between versions of torchvision and the torch package that you should
be aware of when compiling torchvision models. These dependency rules can be managed
through pip. Torchvision==0.6.1 matches the torch==1.5.1 release, while torchvision==0.8.2
matches the torch==1.7.1 release.

import torch
import numpy as np
import os
import torch_neuron
from torchvision import models

image = torch.zeros([1, 3, 224, 224], dtype=torch.float32)

Load a pretrained ResNet50 model
model = models.resnet50(pretrained=True)

Tell the model we are using it for evaluation (not training)
model.eval()
model_neuron = torch.neuron.trace(model, example_inputs=[image])

Export to saved model
model_neuron.save("resnet50_neuron.pt")

Run the compilation script.

95

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/neuron-frameworks/pytorch-neuron/index.html
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/neuron-frameworks/pytorch-neuron/index.html

Deep Learning AMI Developer Guide
AWS Inferentia

python pytorch_trace_resnet50.py

Compilation will take a few minutes. When compilation has finished, the compiled model is saved as
resnet50_neuron.pt in the local directory.

ResNet50 Inference

Create a Python script called pytorch_infer_resnet50.py with the following content. This script
downloads a sample image and uses it to run inference with the compiled model.

import os
import time
import torch
import torch_neuron
import json
import numpy as np

from urllib import request

from torchvision import models, transforms, datasets

Create an image directory containing a small kitten
os.makedirs("./torch_neuron_test/images", exist_ok=True)
request.urlretrieve("https://raw.githubusercontent.com/awslabs/mxnet-model-server/master/
docs/images/kitten_small.jpg",
 "./torch_neuron_test/images/kitten_small.jpg")

Fetch labels to output the top classifications
request.urlretrieve("https://s3.amazonaws.com/deep-learning-models/image-models/
imagenet_class_index.json","imagenet_class_index.json")
idx2label = []

with open("imagenet_class_index.json", "r") as read_file:
 class_idx = json.load(read_file)
 idx2label = [class_idx[str(k)][1] for k in range(len(class_idx))]

Import a sample image and normalize it into a tensor
normalize = transforms.Normalize(
 mean=[0.485, 0.456, 0.406],
 std=[0.229, 0.224, 0.225])

eval_dataset = datasets.ImageFolder(
 os.path.dirname("./torch_neuron_test/"),
 transforms.Compose([
 transforms.Resize([224, 224]),
 transforms.ToTensor(),
 normalize,
])
)

image, _ = eval_dataset[0]
image = torch.tensor(image.numpy()[np.newaxis, ...])

Load model
model_neuron = torch.jit.load('resnet50_neuron.pt')

Predict
results = model_neuron(image)

Get the top 5 results
top5_idx = results[0].sort()[1][-5:]

96

Deep Learning AMI Developer Guide
Graviton DLAMI

Lookup and print the top 5 labels
top5_labels = [idx2label[idx] for idx in top5_idx]

print("Top 5 labels:\n {}".format(top5_labels))

Run inference with the compiled model using the following command:

python pytorch_infer_resnet50.py

Your output should look like the following:

Top 5 labels:
 ['tiger', 'lynx', 'tiger_cat', 'Egyptian_cat', 'tabby']

The Graviton DLAMI
AWS Graviton GPU DLAMIs are designed to provide high performance and cost efficiency for deep
learning workloads. Specifically, the G5g instance type features the Arm-based AWS Graviton2 processor,
which was built from the ground up by AWS and optimized for how customers run their workloads in the
cloud. AWS Graviton GPU DLAMIs are pre-configured with Docker, NVIDIA Docker, NVIDIA Driver, CUDA,
CuDNN, NCCL, and TensorRT, as well as popular machine learning frameworks such as TensorFlow and
PyTorch.

With the G5g instance type, you can take advantage of the price and performance benefits of Graviton2
to deploy GPU-accelerated deep learning models at a significantly lower cost when compared with x86-
based instances with GPU acceleration.

Select a Graviton DLAMI
Launch a G5g instance with the Graviton DLAMI of your choice.

For step-by-step instructions on launching a DLAMI, see Launching and Configuring a DLAMI.

For a list of the most recent Graviton DLAMIs, see the Release Notes for DLAMI.

Get Started
The following topics show you how to get started using the Graviton DLAMI.

Contents
• Using the Graviton GPU DLAMI (p. 97)
• Using the Graviton GPU TensorFlow DLAMI (p. 100)
• Using the Graviton GPU PyTorch DLAMI (p. 102)

Using the Graviton GPU DLAMI
The AWS Deep Learning AMI is ready to use with Arm processor-based Graviton GPUs. The Graviton GPU
DLAMI comes with a foundational platform of GPU drivers and acceleration libraries to deploy your own
customized deep learning environment. Docker and NVIDIA Docker are preconfigured on the Graviton
GPU DLAMI to let you deploy containerzied applications. Check the release notes for additional details
on the Graviton GPU DLAMI.

Contents

97

http://aws.amazon.com/ec2/graviton/
http://aws.amazon.com/ec2/instance-types/g5g/
https://docs.aws.amazon.com/dlami/latest/devguide/launch-config.html
https://docs.aws.amazon.com/dlami/latest/devguide/appendix-ami-release-notes.html
http://aws.amazon.com/releasenotes/aws-deep-learning-ami-graviton-gpu-cuda-11-4-ubuntu-20-04/

Deep Learning AMI Developer Guide
Graviton DLAMI

• Check GPU Status (p. 98)
• Check CUDA Version (p. 98)
• Verify Docker (p. 98)
• TensorRT (p. 99)
• Run CUDA Samples (p. 99)

Check GPU Status

Use the NVIDIA System Management Interface to check the status of your Graviton GPU.

nvidia-smi

The output of the nvidia-smi command should be similar to the following:

+---+
| NVIDIA-SMI 470.82.01 Driver Version: 470.82.01 CUDA Version: 11.4 |
|-------------------------------+----------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
===============================+======================+======================		
0 NVIDIA T4G On	00000000:00:1F.0 Off	0
N/A 32C P8 8W / 70W	0MiB / 15109MiB	0% Default
		N/A
+-------------------------------+----------------------+----------------------+

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===|
| No running processes found |
+---+

Check CUDA Version

Run the following command to check your CUDA version:

/usr/local/cuda/bin/nvcc --version | grep Cuda

Your output should look similar to the following:

nvcc: NVIDIA (R) Cuda compiler driver
Cuda compilation tools, release 11.4, V11.4.120

Verify Docker

Run a CUDA container from DockerHub to verify Docker functionality on your Graviton GPU:

sudo docker run --platform=linux/arm64 --rm \
 --gpus all nvidia/cuda:11.4.2-base-ubuntu20.04 nvidia-smi

Your output should look similar to the following:

+---+

98

https://developer.nvidia.com/nvidia-system-management-interface
https://hub.docker.com/r/nvidia/cuda

Deep Learning AMI Developer Guide
Graviton DLAMI

| NVIDIA-SMI 470.82.01 Driver Version: 470.82.01 CUDA Version: 11.4 |
|-------------------------------+----------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
===============================+======================+======================		
0 NVIDIA T4G On	00000000:00:1F.0 Off	0
N/A 33C P8 9W / 70W	0MiB / 15109MiB	0% Default
		N/A
+-------------------------------+----------------------+----------------------+

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===|
| No running processes found |
+---+

TensorRT

Use the following command to access the TensorRT command line tool:

trtexec

Your output should look similar to the following:

&&&& RUNNING TensorRT.trtexec [TensorRT v8200] # trtexec
...
&&&& PASSED TensorRT.trtexec [TensorRT v8200] # trtexec

There are TensorRT Python wheels available for installation on demand. You can find these wheels in the
following file locations:

/usr/local/tensorrt/graphsurgeon/
graphsurgeon-0.4.5-py2.py3-none-any.whl

/usr/local/tensorrt/onnx_graphsurgeon/
onnx_graphsurgeon-0.3.12-py2.py3-none-any.whl

/usr/local/tensorrt/python/
tensorrt-8.2.0.6-cp36-none-linux_aarch64.whl
tensorrt-8.2.0.6-cp37-none-linux_aarch64.whl
tensorrt-8.2.0.6-cp38-none-linux_aarch64.whl
tensorrt-8.2.0.6-cp39-none-linux_aarch64.whl

/usr/local/tensorrt/uff/
uff-0.6.9-py2.py3-none-any.whl

For additional details, see the NVIDIA TensorRT documentation.

Run CUDA Samples

The Graviton GPU DLAMI provides pre-compiled CUDA samples to help you verify different CUDA
functionalities.

ls /usr/local/cuda/compiled_samples

For example, run the vectorAdd sample with the following command:

99

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html

Deep Learning AMI Developer Guide
Graviton DLAMI

/usr/local/cuda/compiled_samples/vectorAdd

Your output should look similar to the following:

[Vector addition of 50000 elements]
Copy input data from the host memory to the CUDA device
CUDA kernel launch with 196 blocks of 256 threads
Copy output data from the CUDA device to the host memory
Test PASSED
Done

Run the transpose sample:

/usr/local/cuda/compiled_samples/transpose

Your output should look similar to the following:

Transpose Starting...

GPU Device 0: "Turing" with compute capability 7.5

> Device 0: "NVIDIA T4G"
> SM Capability 7.5 detected:
> [NVIDIA T4G] has 40 MP(s) x 64 (Cores/MP) = 2560 (Cores)
> Compute performance scaling factor = 1.00

Matrix size: 1024x1024 (64x64 tiles), tile size: 16x16, block size: 16x16

transpose simple copy , Throughput = 185.1781 GB/s, Time = 0.04219 ms, Size = 1048576
 fp32 elements, NumDevsUsed = 1, Workgroup = 256
transpose shared memory copy, Throughput = 163.8616 GB/s, Time = 0.04768 ms, Size = 1048576
 fp32 elements, NumDevsUsed = 1, Workgroup = 256
transpose naive , Throughput = 98.2805 GB/s, Time = 0.07949 ms, Size = 1048576
 fp32 elements, NumDevsUsed = 1, Workgroup = 256
transpose coalesced , Throughput = 127.6759 GB/s, Time = 0.06119 ms, Size = 1048576
 fp32 elements, NumDevsUsed = 1, Workgroup = 256
transpose optimized , Throughput = 156.2960 GB/s, Time = 0.04999 ms, Size = 1048576
 fp32 elements, NumDevsUsed = 1, Workgroup = 256
transpose coarse-grained , Throughput = 155.9157 GB/s, Time = 0.05011 ms, Size = 1048576
 fp32 elements, NumDevsUsed = 1, Workgroup = 256
transpose fine-grained , Throughput = 158.4177 GB/s, Time = 0.04932 ms, Size = 1048576
 fp32 elements, NumDevsUsed = 1, Workgroup = 256
transpose diagonal , Throughput = 133.4277 GB/s, Time = 0.05855 ms, Size = 1048576
 fp32 elements, NumDevsUsed = 1, Workgroup = 256
Test passed

Next Up

Using the Graviton GPU TensorFlow DLAMI (p. 100)

Using the Graviton GPU TensorFlow DLAMI
The AWS Deep Learning AMI is ready to use with Arm processor-based Graviton GPUs, and comes
optimized for TensorFlow. The Graviton GPU TensorFlow DLAMI includes a Python environment pre-
configured with TensorFlow Serving for deep learning inference use cases. Check the release notes for
additional details on the Graviton GPU TensorFlow DLAMI.

Contents
• Verify TensorFlow Serving Availability (p. 101)

100

https://www.tensorflow.org/tfx/guide/serving
http://aws.amazon.com/releasenotes/aws-deep-learning-ami-graviton-gpu-tensorflow-2-6-ubuntu-20-04/

Deep Learning AMI Developer Guide
Graviton DLAMI

• Verify TensorFlow and TensorFlow Serving API Availability (p. 101)
• Run Example Inference with TensorFlow Serving (p. 101)

Verify TensorFlow Serving Availability

Run the following command to verify the availability and version of TensorFlow Serving:

tensorflow_model_server --version

Your output should look similar to the following:

TensorFlow ModelServer: 0.0.0+dev.sha.3e05381e
TensorFlow Library: 2.8.0

Verify TensorFlow and TensorFlow Serving API Availability

Run the following command to verify the availability of TensorFlow and the TensorFlow Serving API:

python3 -c "import tensorflow, tensorflow_serving"

If the command is successful, there is no output.

Run Example Inference with TensorFlow Serving

Use the following commands to download a pre-trained ResNet50 model and run inference using
TensorFlow Serving:

Clone the TensorFlow Serving repository
git clone https://github.com/tensorflow/serving

Download pre-trained ResNet50 model
mkdir -p ${HOME}/resnet/1 && cd ${HOME}/resnet/1
wget https://tfhub.dev/tensorflow/resnet_50/classification/1?tf-hub-format=compressed -O
 resnet_50_classification_1.tar.gz
tar -xzvf resnet_50_classification_1.tar.gz && rm resnet_50_classification_1.tar.gz

Start TensorFlow Serving
cd $HOME
tensorflow_model_server \
 --rest_api_port=8501 \
 --model_name="resnet" \
 --model_base_path="${HOME}/resnet" &

Your output should look similar to the following:

2021-11-10 06:18:51.028341: I tensorflow_serving/model_servers/server_core.cc:486] Finished
 adding/updating models
2021-11-10 06:18:51.028420: I tensorflow_serving/model_servers/server.cc:133] Using
 InsecureServerCredentials
2021-11-10 06:18:51.028460: I tensorflow_serving/model_servers/server.cc:383] Profiler
 service is enabled
2021-11-10 06:18:51.028889: I tensorflow_serving/model_servers/server.cc:409] Running gRPC
 ModelServer at 0.0.0.0:8500 ...
[evhttp_server.cc : 245] NET_LOG: Entering the event loop ...
2021-11-10 06:18:51.030985: I tensorflow_serving/model_servers/server.cc:430] Exporting
 HTTP/REST API at:localhost:8501 ...

101

Deep Learning AMI Developer Guide
Graviton DLAMI

Use the TensorFlow Serving resnet_client example to run inference:

python3 serving/tensorflow_serving/example/resnet_client.py

Your output should look similar to the following:

2021-11-10 06:18:59.335327: I external/org_tensorflow/tensorflow/stream_executor/cuda/
cuda_dnn.cc:368] Loaded cuDNN version 8204
2021-11-10 06:18:59.956156: I external/org_tensorflow/tensorflow/core/platform/default/
subprocess.cc:304] Start cannot spawn child process
Prediction class: 285, avg latency: 111.4673 ms

Stop TensorFlow Serving with the following command:

kill $(pidof tensorflow_model_server)

Next Up

Using the Graviton GPU PyTorch DLAMI (p. 102)

Using the Graviton GPU PyTorch DLAMI
The AWS Deep Learning AMI is ready to use with Arm processor-based Graviton GPUs, and comes
optimized for PyTorch. The Graviton GPU PyTorch DLAMI includes a Python environment pre-configured
with PyTorch, TorchVision, and TorchServe for deep learning training and inference use cases. Check the
release notes for additional details on the Graviton GPU PyTorch DLAMI.

Contents
• Verify PyTorch Python Environment (p. 102)
• Run Training Sample with PyTorch (p. 103)
• Run Inference Sample with PyTorch (p. 103)

Verify PyTorch Python Environment

Connect to your G5g instance and activate the base Conda environment with the following command:

source activate base

Your command prompt should indicate that you are working in the base Conda environment, which
contains PyTorch, TorchVision, and other libraries.

(base) $

Verify the default tool paths of the PyTorch environment:

(base) $ which python
/opt/conda/bin/python

(base) $ which pip
/opt/conda/bin/pip

(base) $ which conda
/opt/conda/bin/conda

(base) $ which mamba

102

https://github.com/tensorflow/serving/tree/master/tensorflow_serving/example
http://aws.amazon.com/pytorch
https://pytorch.org/vision/stable/index.html
https://pytorch.org/serve/
http://aws.amazon.com/releasenotes/deep-learning-ami-graviton-gpu-pytorch-1-10-ubuntu-20-04/

Deep Learning AMI Developer Guide
Graviton DLAMI

/opt/conda/bin/mamba

Verify that Torch and TorchVersion are available, check their versions, and test for basic functionality:

(base) $ python
Python 3.8.12 | packaged by conda-forge | (default, Oct 12 2021, 23:06:28)
[GCC 9.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch, torchvision
>>> torch.__version__
'1.10.0'
>>> torchvision.__version__
'0.11.1'
>>> v = torch.autograd.Variable(torch.randn(10, 3, 224, 224))
>>> v = torch.autograd.Variable(torch.randn(10, 3, 224, 224)).cuda()
>>> assert isinstance(v, torch.Tensor)

Run Training Sample with PyTorch

Run a sample MNIST training job:

git clone https://github.com/pytorch/examples.git
cd examples/mnist
python main.py

Your output should look similar to the following:

...
Train Epoch: 14 [56320/60000 (94%)] Loss: 0.021424
Train Epoch: 14 [56960/60000 (95%)] Loss: 0.023695
Train Epoch: 14 [57600/60000 (96%)] Loss: 0.001973
Train Epoch: 14 [58240/60000 (97%)] Loss: 0.007121
Train Epoch: 14 [58880/60000 (98%)] Loss: 0.003717
Train Epoch: 14 [59520/60000 (99%)] Loss: 0.001729
Test set: Average loss: 0.0275, Accuracy: 9916/10000 (99%)

Run Inference Sample with PyTorch

Use the following commands to download a pre-trained densenet161 model and run inference using
TorchServe:

Set up TorchServe
cd $HOME
git clone https://github.com/pytorch/serve.git
mkdir -p serve/model_store
cd serve

Download a pre-trained densenet161 model
wget https://download.pytorch.org/models/densenet161-8d451a50.pth >/dev/null

Save the model using torch-model-archiver
torch-model-archiver --model-name densenet161 \
 --version 1.0 \
 --model-file examples/image_classifier/densenet_161/model.py \
 --serialized-file densenet161-8d451a50.pth \
 --handler image_classifier \
 --extra-files examples/image_classifier/index_to_name.json \
 --export-path model_store

Start the model server

103

Deep Learning AMI Developer Guide
Habana DLAMI

torchserve --start --no-config-snapshots \
 --model-store model_store \
 --models densenet161=densenet161.mar &> torchserve.log

Wait for the model server to start
sleep 30

Run a prediction request
curl http://127.0.0.1:8080/predictions/densenet161 -T examples/image_classifier/kitten.jpg

Your output should look similar to the following:

{
 "tiger_cat": 0.4693363308906555,
 "tabby": 0.4633873701095581,
 "Egyptian_cat": 0.06456123292446136,
 "lynx": 0.0012828150065615773,
 "plastic_bag": 0.00023322898778133094
}

Use the following commands to unregister the densenet161 model and stop the server:

curl -X DELETE http://localhost:8081/models/densenet161/1.0
torchserve --stop

Your output should look similar to the following:

{
 "status": "Model \"densenet161\" unregistered"
}
TorchServe has stopped.

The Habana DLAMI
Instances with Habana accelerators are designed to provide high performance and cost efficiency for
deep learning model training workloads. Specifically, DL1 instance types use Habana Gaudi accelerators
from Habana Labs, an Intel company. Instances with Habana accelerators are configured with Habana
SynapseAI software and pre-integrated with popular machine learning frameworks such as TensorFlow
and PyTorch.

The following topics show you how to get started using Habana Gaudi hardware with the DLAMI.

Contents
• Launching a Habana DLAMI (p. 104)

Launching a Habana DLAMI
The latest DLAMI is ready to use with Habana Gaudi accelerators. Use the following steps to launch your
Habana DLAMI and ensure that your Python and framework-specific resources are active. For additional
setup resources, see the Habana Gaudi Setup and Installation respository.

Contents
• Select a Habana DLAMI (p. 105)
• Activate Python Environment (p. 105)
• Import Machine Learning Framework (p. 105)

104

https://github.com/HabanaAI/Setup_and_Install

Deep Learning AMI Developer Guide
Inference

Select a Habana DLAMI

Launch a DL1 instance with the Habana DLAMI of your choice.

For step-by-step instructions on launching a DLAMI, see Launching and Configuring a DLAMI.

For a list of the most recent Habana DLAMIs, see the Release Notes for DLAMI.

Activate Python Environment

Connect to your DL1 instance and activate the recommended Python environment for your Habana
DLAMI. To check your recommended Python environment, select your DLAMI in the Release Notes.

Import Machine Learning Framework

Instances with Habana accelerators are pre-integrated with popular machine learning frameworks such
as TensorFlow and PyTorch. Import the machine learning framework of your choice.

Import TensorFlow

To use TensorFlow on your Habana DLAMI, navigate to the folder of the Python environment that you
activated and import TensorFlow.

/usr/bin/$PYTHON_VERSION
import tensorflow
tensorflow.__version__

To check the TensorFlow version compatible with your Habana DLAMI, select your DLAMI in the Release
Notes.

Import PyTorch

To use PyTorch on your Habana DLAMI, navigate to the folder of the Python environment that you
activated and import the appropriate PyTorch version.

/usr/bin/$PYTHON_VERSION
import torch
torch.__version__

To check the PyTorch version compatible with your Habana DLAMI, select your DLAMI in the Release
Notes.

For more information on how to run and train machine learning models in TensorFlow and PyTorch using
your Habana DLAMI, see the Habana Model References GitHub repository. For additional resources on
working with your Habana DLAMI, visit the Habana Gaudi documentation.

Inference
This section provides tutorials on how to run inference using the DLAMI's frameworks and tools.

For tutorials using Elastic Inference, see Working with Amazon Elastic Inference

Inference with Frameworks
• Use Apache MXNet (Incubating) for Inference with an ONNX Model (p. 106)
• Use Apache MXNet (Incubating) for Inference with a ResNet 50 Model (p. 107)
• Use CNTK for Inference with an ONNX Model (p. 108)

105

https://aws.amazon.com/ec2/instance-types/dl1/
https://docs.aws.amazon.com/dlami/latest/devguide/launch-config.html
https://docs.aws.amazon.com/dlami/latest/devguide/appendix-ami-release-notes.html
https://docs.aws.amazon.com/dlami/latest/devguide/appendix-ami-release-notes.html
https://docs.aws.amazon.com/dlami/latest/devguide/appendix-ami-release-notes.html
https://docs.aws.amazon.com/dlami/latest/devguide/appendix-ami-release-notes.html
https://docs.aws.amazon.com/dlami/latest/devguide/appendix-ami-release-notes.html
https://docs.aws.amazon.com/dlami/latest/devguide/appendix-ami-release-notes.html
https://github.com/HabanaAI/Model-References
https://docs.habana.ai/en/latest/
https://docs.aws.amazon.com/elastic-inference/latest/developerguide/working-with-ei.html

Deep Learning AMI Developer Guide
Inference

Inference Tools
• Model Server for Apache MXNet (MMS) (p. 118)
• TensorFlow Serving (p. 120)

Use Apache MXNet (Incubating) for Inference with an ONNX
Model

How to Use an ONNX Model for Image Inference with Apache MXNet (Incubating)

1. • (Option for Python 3) - Activate the Python 3 Apache MXNet (Incubating) environment:

$ source activate mxnet_p36

• (Option for Python 2) - Activate the Python 2 Apache MXNet (Incubating) environment:

$ source activate mxnet_p27

2. The remaining steps assume you are using the mxnet_p36 environment.
3. Download a picture of a husky.

$ curl -O https://upload.wikimedia.org/wikipedia/commons/b/b5/Siberian_Husky_bi-
eyed_Flickr.jpg

4. Download a list of classes that work with this model.

$ curl -O https://gist.githubusercontent.com/yrevar/6135f1bd8dcf2e0cc683/raw/
d133d61a09d7e5a3b36b8c111a8dd5c4b5d560ee/imagenet1000_clsid_to_human.pkl

5. Download the pre-trained VGG 16 model in ONNX format.

$ wget -O vgg16.onnx https://github.com/onnx/models/raw/master/vision/classification/
vgg/model/vgg16-7.onnx

6. Use a your preferred text editor to create a script that has the following content. This script will use
the image of the husky, get a prediction result from the pre-trained model, then look this up in the
file of classes, returning an image classification result.

import mxnet as mx
import mxnet.contrib.onnx as onnx_mxnet
import numpy as np
from collections import namedtuple
from PIL import Image
import pickle

Preprocess the image
img = Image.open("Siberian_Husky_bi-eyed_Flickr.jpg")
img = img.resize((224,224))
rgb_img = np.asarray(img, dtype=np.float32) - 128
bgr_img = rgb_img[..., [2,1,0]]
img_data = np.ascontiguousarray(np.rollaxis(bgr_img,2))
img_data = img_data[np.newaxis, :, :, :].astype(np.float32)

Define the model's input
data_names = ['data']
Batch = namedtuple('Batch', data_names)

106

Deep Learning AMI Developer Guide
Inference

Set the context to cpu or gpu
ctx = mx.cpu()

Load the model
sym, arg, aux = onnx_mxnet.import_model("vgg16.onnx")
mod = mx.mod.Module(symbol=sym, data_names=data_names, context=ctx, label_names=None)
mod.bind(for_training=False, data_shapes=[(data_names[0],img_data.shape)],
 label_shapes=None)
mod.set_params(arg_params=arg, aux_params=aux, allow_missing=True, allow_extra=True)

Run inference on the image
mod.forward(Batch([mx.nd.array(img_data)]))
predictions = mod.get_outputs()[0].asnumpy()
top_class = np.argmax(predictions)
print(top_class)
labels_dict = pickle.load(open("imagenet1000_clsid_to_human.pkl", "rb"))
print(labels_dict[top_class])

7. Then run the script, and you should see a result as follows:

248
Eskimo dog, husky

Use Apache MXNet (Incubating) for Inference with a ResNet 50
Model

How to Use a Pre-Trained Apache MXNet (Incubating) Model with the Symbol API for Image
Inference with MXNet

1. • (Option for Python 3) - Activate the Python 3 Apache MXNet (Incubating) environment:

$ source activate mxnet_p36

• (Option for Python 2) - Activate the Python 2 Apache MXNet (Incubating) environment:

$ source activate mxnet_p27

2. The remaining steps assume you are using the mxnet_p36 environment.

3. Use a your preferred text editor to create a script that has the following content. This script will
download the ResNet-50 model files (resnet-50-0000.params and resnet-50-symbol.json) and labels
list (synset.txt), download a cat image to get a prediction result from the pre-trained model, then
look this up in the result in labels list, returning a prediction result.

import mxnet as mx
import numpy as np

path='http://data.mxnet.io/models/imagenet/'
[mx.test_utils.download(path+'resnet/50-layers/resnet-50-0000.params'),
 mx.test_utils.download(path+'resnet/50-layers/resnet-50-symbol.json'),
 mx.test_utils.download(path+'synset.txt')]

ctx = mx.cpu()

with open('synset.txt', 'r') as f:
 labels = [l.rstrip() for l in f]

sym, args, aux = mx.model.load_checkpoint('resnet-50', 0)

107

Deep Learning AMI Developer Guide
Inference

fname = mx.test_utils.download('https://github.com/dmlc/web-data/blob/master/mxnet/doc/
tutorials/python/predict_image/cat.jpg?raw=true')
img = mx.image.imread(fname)
convert into format (batch, RGB, width, height)
img = mx.image.imresize(img, 224, 224) # resize
img = img.transpose((2, 0, 1)) # Channel first
img = img.expand_dims(axis=0) # batchify
img = img.astype(dtype='float32')
args['data'] = img

softmax = mx.nd.random_normal(shape=(1,))
args['softmax_label'] = softmax

exe = sym.bind(ctx=ctx, args=args, aux_states=aux, grad_req='null')

exe.forward()
prob = exe.outputs[0].asnumpy()
print the top-5
prob = np.squeeze(prob)
a = np.argsort(prob)[::-1]
for i in a[0:5]:
 print('probability=%f, class=%s' %(prob[i], labels[i]))

4. Then run the script, and you should see a result as follows:

probability=0.418679, class=n02119789 kit fox, Vulpes macrotis
probability=0.293495, class=n02119022 red fox, Vulpes vulpes
probability=0.029321, class=n02120505 grey fox, gray fox, Urocyon cinereoargenteus
probability=0.026230, class=n02124075 Egyptian cat
probability=0.022557, class=n02085620 Chihuahua

Use CNTK for Inference with an ONNX Model
Note
We no longer include the CNTK, Caffe, Caffe2 and Theano Conda environments in the AWS
Deep Learning AMI starting with the v28 release. Previous releases of the AWS Deep Learning
AMI that contain these environments will continue to be available. However, we will only
provide updates to these environments if there are security fixes published by the open source
community for these frameworks.

Note
The VGG-16 model used in this tutorial consumes a large amount of memory. When selecting
your AWS Deep Learning AMI instance, you may need an instance with more than 30 GB of RAM.

How to Use an ONNX Model for Inference with CNTK

1. • (Option for Python 3) - Activate the Python 3 CNTK environment:

$ source activate cntk_p36

• (Option for Python 2) - Activate the Python 2 CNTK environment:

$ source activate cntk_p27

2. The remaining steps assume you are using the cntk_p36 environment.

3. Create a new file with your text editor, and use the following program in a script to open ONNX
format file in CNTK.

import cntk as C

108

Deep Learning AMI Developer Guide
Using Frameworks with ONNX

Import the Chainer model into CNTK via the CNTK import API
z = C.Function.load("vgg16.onnx", device=C.device.cpu(), format=C.ModelFormat.ONNX)
print("Loaded vgg16.onnx!")

After you run this script, CNTK will have loaded the model.
4. You may also try running inference with CNTK. First, download a picture of a husky.

$ curl -O https://upload.wikimedia.org/wikipedia/commons/b/b5/Siberian_Husky_bi-
eyed_Flickr.jpg

5. Next, download a list of classes will work with this model.

$ curl -O https://gist.githubusercontent.com/yrevar/6135f1bd8dcf2e0cc683/raw/
d133d61a09d7e5a3b36b8c111a8dd5c4b5d560ee/imagenet1000_clsid_to_human.pkl

6. Edit the previously created script to have the following content. This new version will use the image
of the husky, get a prediction result, then look this up in the file of classes, returning a prediction
result.

import cntk as C
import numpy as np
from PIL import Image
from IPython.core.display import display
import pickle

Import the model into CNTK via the CNTK import API
z = C.Function.load("vgg16.onnx", device=C.device.cpu(), format=C.ModelFormat.ONNX)
print("Loaded vgg16.onnx!")
img = Image.open("Siberian_Husky_bi-eyed_Flickr.jpg")
img = img.resize((224,224))
rgb_img = np.asarray(img, dtype=np.float32) - 128
bgr_img = rgb_img[..., [2,1,0]]
img_data = np.ascontiguousarray(np.rollaxis(bgr_img,2))
predictions = np.squeeze(z.eval({z.arguments[0]:[img_data]}))
top_class = np.argmax(predictions)
print(top_class)
labels_dict = pickle.load(open("imagenet1000_clsid_to_human.pkl", "rb"))
print(labels_dict[top_class])

7. Then run the script, and you should see a result as follows:

248
Eskimo dog, husky

Using Frameworks with ONNX
The Deep Learning AMI with Conda now supports Open Neural Network Exchange (ONNX) models
for some frameworks. Choose one of the topics listed below to learn how to use ONNX on your Deep
Learning AMI with Conda.

If you want to use an existing ONNX model on a DLAMI, see Use Apache MXNet (Incubating) for Inference
with an ONNX Model (p. 106).

About ONNX
The Open Neural Network Exchange (ONNX) is an open format used to represent deep learning models.
ONNX is supported by Amazon Web Services, Microsoft, Facebook, and several other partners. You can

109

http://onnx.ai/
http://onnx.ai/

Deep Learning AMI Developer Guide
Using Frameworks with ONNX

design, train, and deploy deep learning models with any framework you choose. The benefit of ONNX
models is that they can be moved between frameworks with ease.

The Deep Learning AMI with Conda currently highlights some of the ONNX features in the following
collection of tutorials.

• Apache MXNet to ONNX to CNTK Tutorial (p. 110)
• Chainer to ONNX to CNTK Tutorial (p. 111)
• Chainer to ONNX to MXNet Tutorial (p. 113)
• PyTorch to ONNX to CNTK Tutorial (p. 114)
• PyTorch to ONNX to MXNet Tutorial (p. 116)

You might also want to refer to the ONNX project documentation and tutorials:

• ONNX Project on GitHub
• ONNX Tutorials

Apache MXNet to ONNX to CNTK Tutorial
Note
We no longer include the CNTK, Caffe, Caffe2 and Theano Conda environments in the AWS
Deep Learning AMI starting with the v28 release. Previous releases of the AWS Deep Learning
AMI that contain these environments will continue to be available. However, we will only
provide updates to these environments if there are security fixes published by the open source
community for these frameworks.

ONNX Overview

The Open Neural Network Exchange (ONNX) is an open format used to represent deep learning models.
ONNX is supported by Amazon Web Services, Microsoft, Facebook, and several other partners. You can
design, train, and deploy deep learning models with any framework you choose. The benefit of ONNX
models is that they can be moved between frameworks with ease.

This tutorial shows you how to use the Deep Learning AMI with Conda with ONNX. By following these
steps, you can train a model or load a pre-trained model from one framework, export this model to
ONNX, and then import the model in another framework.

ONNX Prerequisites

To use this ONNX tutorial, you must have access to a Deep Learning AMI with Conda version 12 or later.
For more information about how to get started with a Deep Learning AMI with Conda, see Deep Learning
AMI with Conda (p. 6).

Important
These examples use functions that might require up to 8 GB of memory (or more). Be sure to
choose an instance type with enough memory.

Launch a terminal session with your Deep Learning AMI with Conda to begin the following tutorial.

Convert an Apache MXNet (incubating) Model to ONNX, then Load the Model
into CNTK

How to Export a Model from Apache MXNet (incubating)

You can install the latest MXNet build into either or both of the MXNet Conda environments on your
Deep Learning AMI with Conda.

110

https://github.com/onnx/onnx
https://github.com/onnx/tutorials
http://onnx.ai/

Deep Learning AMI Developer Guide
Using Frameworks with ONNX

1. • (Option for Python 3) - Activate the Python 3 MXNet environment:

$ source activate mxnet_p36

• (Option for Python 2) - Activate the Python 2 MXNet environment:

$ source activate mxnet_p27

2. The remaining steps assume that you are using the mxnet_p36 environment.

3. Download the model files.

curl -O https://s3.amazonaws.com/onnx-mxnet/model-zoo/vgg16/vgg16-symbol.json
curl -O https://s3.amazonaws.com/onnx-mxnet/model-zoo/vgg16/vgg16-0000.params

4. To export the model files from MXNet to the ONNX format, create a new file with your text editor
and use the following program in a script.

import numpy as np
import mxnet as mx
from mxnet.contrib import onnx as onnx_mxnet
converted_onnx_filename='vgg16.onnx'

Export MXNet model to ONNX format via MXNet's export_model API
converted_onnx_filename=onnx_mxnet.export_model('vgg16-symbol.json',
 'vgg16-0000.params', [(1,3,224,224)], np.float32, converted_onnx_filename)

Check that the newly created model is valid and meets ONNX specification.
import onnx
model_proto = onnx.load(converted_onnx_filename)
onnx.checker.check_model(model_proto)

You may see some warning messages, but you can safely ignore those for now. After you run this
script, you will see the newly created .onnx file in the same directory.

5. Now that you have an ONNX file you can try running inference with it with the following example:

• Use CNTK for Inference with an ONNX Model (p. 108)

ONNX Tutorials

• Apache MXNet to ONNX to CNTK Tutorial (p. 110)

• Chainer to ONNX to CNTK Tutorial (p. 111)

• Chainer to ONNX to MXNet Tutorial (p. 113)

• PyTorch to ONNX to MXNet Tutorial (p. 116)

• PyTorch to ONNX to CNTK Tutorial (p. 114)

Chainer to ONNX to CNTK Tutorial
Note
We no longer include the CNTK, Caffe, Caffe2 and Theano Conda environments in the AWS
Deep Learning AMI starting with the v28 release. Previous releases of the AWS Deep Learning
AMI that contain these environments will continue to be available. However, we will only
provide updates to these environments if there are security fixes published by the open source
community for these frameworks.

111

Deep Learning AMI Developer Guide
Using Frameworks with ONNX

ONNX Overview

The Open Neural Network Exchange (ONNX) is an open format used to represent deep learning models.
ONNX is supported by Amazon Web Services, Microsoft, Facebook, and several other partners. You can
design, train, and deploy deep learning models with any framework you choose. The benefit of ONNX
models is that they can be moved between frameworks with ease.

This tutorial shows you how to use the Deep Learning AMI with Conda with ONNX. By following these
steps, you can train a model or load a pre-trained model from one framework, export this model to
ONNX, and then import the model in another framework.

ONNX Prerequisites

To use this ONNX tutorial, you must have access to a Deep Learning AMI with Conda version 12 or later.
For more information about how to get started with a Deep Learning AMI with Conda, see Deep Learning
AMI with Conda (p. 6).

Important
These examples use functions that might require up to 8 GB of memory (or more). Be sure to
choose an instance type with enough memory.

Launch a terminal session with your Deep Learning AMI with Conda to begin the following tutorial.

Convert a Chainer Model to ONNX, then Load the Model into CNTK

First, activate the Chainer environment:

$ source activate chainer_p36

Create a new file with your text editor, and use the following program in a script to fetch a model from
Chainer's model zoo, then export it to the ONNX format.

import numpy as np
import chainer
import chainercv.links as L
import onnx_chainer

Fetch a vgg16 model
model = L.VGG16(pretrained_model='imagenet')

Prepare an input tensor
x = np.random.rand(1, 3, 224, 224).astype(np.float32) * 255

Run the model on the data
with chainer.using_config('train', False):
 chainer_out = model(x).array

Export the model to a .onnx file
out = onnx_chainer.export(model, x, filename='vgg16.onnx')

Check that the newly created model is valid and meets ONNX specification.
import onnx
model_proto = onnx.load("vgg16.onnx")
onnx.checker.check_model(model_proto)

After you run this script, you will see the newly created .onnx file in the same directory.

Now that you have an ONNX file you can try running inference with it with the following example:

• Use CNTK for Inference with an ONNX Model (p. 108)

112

http://onnx.ai/

Deep Learning AMI Developer Guide
Using Frameworks with ONNX

ONNX Tutorials

• Apache MXNet to ONNX to CNTK Tutorial (p. 110)
• Chainer to ONNX to CNTK Tutorial (p. 111)
• Chainer to ONNX to MXNet Tutorial (p. 113)
• PyTorch to ONNX to MXNet Tutorial (p. 116)
• PyTorch to ONNX to CNTK Tutorial (p. 114)

Chainer to ONNX to MXNet Tutorial

ONNX Overview

The Open Neural Network Exchange (ONNX) is an open format used to represent deep learning models.
ONNX is supported by Amazon Web Services, Microsoft, Facebook, and several other partners. You can
design, train, and deploy deep learning models with any framework you choose. The benefit of ONNX
models is that they can be moved between frameworks with ease.

This tutorial shows you how to use the Deep Learning AMI with Conda with ONNX. By following these
steps, you can train a model or load a pre-trained model from one framework, export this model to
ONNX, and then import the model in another framework.

ONNX Prerequisites

To use this ONNX tutorial, you must have access to a Deep Learning AMI with Conda version 12 or later.
For more information about how to get started with a Deep Learning AMI with Conda, see Deep Learning
AMI with Conda (p. 6).

Important
These examples use functions that might require up to 8 GB of memory (or more). Be sure to
choose an instance type with enough memory.

Launch a terminal session with your Deep Learning AMI with Conda to begin the following tutorial.

Convert a Chainer Model to ONNX, then Load the Model into MXNet

First, activate the Chainer environment:

$ source activate chainer_p36

Create a new file with your text editor, and use the following program in a script to fetch a model from
Chainer's model zoo, then export it to the ONNX format.

import numpy as np
import chainer
import chainercv.links as L
import onnx_chainer

Fetch a vgg16 model
model = L.VGG16(pretrained_model='imagenet')

Prepare an input tensor
x = np.random.rand(1, 3, 224, 224).astype(np.float32) * 255

Run the model on the data
with chainer.using_config('train', False):
 chainer_out = model(x).array

113

http://onnx.ai/

Deep Learning AMI Developer Guide
Using Frameworks with ONNX

Export the model to a .onnx file
out = onnx_chainer.export(model, x, filename='vgg16.onnx')

Check that the newly created model is valid and meets ONNX specification.
import onnx
model_proto = onnx.load("vgg16.onnx")
onnx.checker.check_model(model_proto)

After you run this script, you will see the newly created .onnx file in the same directory.

Now that you have an ONNX file you can try running inference with it with the following example:

• Use Apache MXNet (Incubating) for Inference with an ONNX Model (p. 106)

ONNX Tutorials

• Apache MXNet to ONNX to CNTK Tutorial (p. 110)
• Chainer to ONNX to CNTK Tutorial (p. 111)
• Chainer to ONNX to MXNet Tutorial (p. 113)
• PyTorch to ONNX to MXNet Tutorial (p. 116)
• PyTorch to ONNX to CNTK Tutorial (p. 114)

PyTorch to ONNX to CNTK Tutorial
Note
We no longer include the CNTK, Caffe, Caffe2 and Theano Conda environments in the AWS
Deep Learning AMI starting with the v28 release. Previous releases of the AWS Deep Learning
AMI that contain these environments will continue to be available. However, we will only
provide updates to these environments if there are security fixes published by the open source
community for these frameworks.

ONNX Overview

The Open Neural Network Exchange (ONNX) is an open format used to represent deep learning models.
ONNX is supported by Amazon Web Services, Microsoft, Facebook, and several other partners. You can
design, train, and deploy deep learning models with any framework you choose. The benefit of ONNX
models is that they can be moved between frameworks with ease.

This tutorial shows you how to use the Deep Learning AMI with Conda with ONNX. By following these
steps, you can train a model or load a pre-trained model from one framework, export this model to
ONNX, and then import the model in another framework.

ONNX Prerequisites

To use this ONNX tutorial, you must have access to a Deep Learning AMI with Conda version 12 or later.
For more information about how to get started with a Deep Learning AMI with Conda, see Deep Learning
AMI with Conda (p. 6).

Important
These examples use functions that might require up to 8 GB of memory (or more). Be sure to
choose an instance type with enough memory.

Launch a terminal session with your Deep Learning AMI with Conda to begin the following tutorial.

Convert a PyTorch Model to ONNX, then Load the Model into CNTK

First, activate the PyTorch environment:

114

http://onnx.ai/

Deep Learning AMI Developer Guide
Using Frameworks with ONNX

$ source activate pytorch_p36

Create a new file with your text editor, and use the following program in a script to train a mock model in
PyTorch, then export it to the ONNX format.

Build a Mock Model in Pytorch with a convolution and a reduceMean layer\
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
import torch.onnx as torch_onnx

class Model(nn.Module):
 def __init__(self):
 super(Model, self).__init__()
 self.conv = nn.Conv2d(in_channels=3, out_channels=32, kernel_size=(3,3), stride=1,
 padding=0, bias=False)

 def forward(self, inputs):
 x = self.conv(inputs)
 #x = x.view(x.size()[0], x.size()[1], -1)
 return torch.mean(x, dim=2)

Use this an input trace to serialize the model
input_shape = (3, 100, 100)
model_onnx_path = "torch_model.onnx"
model = Model()
model.train(False)

Export the model to an ONNX file
dummy_input = Variable(torch.randn(1, *input_shape))
output = torch_onnx.export(model,
 dummy_input,
 model_onnx_path,
 verbose=False)

After you run this script, you will see the newly created .onnx file in the same directory. Now, switch to
the CNTK Conda environment to load the model with CNTK.

Next, activate the CNTK environment:

$ source deactivate
$ source activate cntk_p36

Create a new file with your text editor, and use the following program in a script to open ONNX format
file in CNTK.

import cntk as C
Import the PyTorch model into CNTK via the CNTK import API
z = C.Function.load("torch_model.onnx", device=C.device.cpu(), format=C.ModelFormat.ONNX)

After you run this script, CNTK will have loaded the model.

You may also export to ONNX using CNTK by appending the following to your previous script then
running it.

Export the model to ONNX via the CNTK export API

115

Deep Learning AMI Developer Guide
Using Frameworks with ONNX

z.save("cntk_model.onnx", format=C.ModelFormat.ONNX)

ONNX Tutorials

• Apache MXNet to ONNX to CNTK Tutorial (p. 110)
• Chainer to ONNX to CNTK Tutorial (p. 111)
• Chainer to ONNX to MXNet Tutorial (p. 113)
• PyTorch to ONNX to MXNet Tutorial (p. 116)
• PyTorch to ONNX to CNTK Tutorial (p. 114)

PyTorch to ONNX to MXNet Tutorial

ONNX Overview

The Open Neural Network Exchange (ONNX) is an open format used to represent deep learning models.
ONNX is supported by Amazon Web Services, Microsoft, Facebook, and several other partners. You can
design, train, and deploy deep learning models with any framework you choose. The benefit of ONNX
models is that they can be moved between frameworks with ease.

This tutorial shows you how to use the Deep Learning AMI with Conda with ONNX. By following these
steps, you can train a model or load a pre-trained model from one framework, export this model to
ONNX, and then import the model in another framework.

ONNX Prerequisites

To use this ONNX tutorial, you must have access to a Deep Learning AMI with Conda version 12 or later.
For more information about how to get started with a Deep Learning AMI with Conda, see Deep Learning
AMI with Conda (p. 6).

Important
These examples use functions that might require up to 8 GB of memory (or more). Be sure to
choose an instance type with enough memory.

Launch a terminal session with your Deep Learning AMI with Conda to begin the following tutorial.

Convert a PyTorch Model to ONNX, then Load the Model into MXNet

First, activate the PyTorch environment:

$ source activate pytorch_p36

Create a new file with your text editor, and use the following program in a script to train a mock model in
PyTorch, then export it to the ONNX format.

Build a Mock Model in PyTorch with a convolution and a reduceMean layer
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
import torch.onnx as torch_onnx

class Model(nn.Module):
 def __init__(self):

116

http://onnx.ai/

Deep Learning AMI Developer Guide
Model Serving

 super(Model, self).__init__()
 self.conv = nn.Conv2d(in_channels=3, out_channels=32, kernel_size=(3,3), stride=1,
 padding=0, bias=False)

 def forward(self, inputs):
 x = self.conv(inputs)
 #x = x.view(x.size()[0], x.size()[1], -1)
 return torch.mean(x, dim=2)

Use this an input trace to serialize the model
input_shape = (3, 100, 100)
model_onnx_path = "torch_model.onnx"
model = Model()
model.train(False)

Export the model to an ONNX file
dummy_input = Variable(torch.randn(1, *input_shape))
output = torch_onnx.export(model,
 dummy_input,
 model_onnx_path,
 verbose=False)
print("Export of torch_model.onnx complete!")

After you run this script, you will see the newly created .onnx file in the same directory. Now, switch to
the MXNet Conda environment to load the model with MXNet.

Next, activate the MXNet environment:

$ source deactivate
$ source activate mxnet_p36

Create a new file with your text editor, and use the following program in a script to open ONNX format
file in MXNet.

import mxnet as mx
from mxnet.contrib import onnx as onnx_mxnet
import numpy as np

Import the ONNX model into MXNet's symbolic interface
sym, arg, aux = onnx_mxnet.import_model("torch_model.onnx")
print("Loaded torch_model.onnx!")
print(sym.get_internals())

After you run this script, MXNet will have loaded the model, and will print some basic model information.

ONNX Tutorials

• Apache MXNet to ONNX to CNTK Tutorial (p. 110)
• Chainer to ONNX to CNTK Tutorial (p. 111)
• Chainer to ONNX to MXNet Tutorial (p. 113)
• PyTorch to ONNX to MXNet Tutorial (p. 116)
• PyTorch to ONNX to CNTK Tutorial (p. 114)

Model Serving
The following are model serving options installed on the Deep Learning AMI with Conda. Click on one of
the options to learn how to use it.

117

Deep Learning AMI Developer Guide
Model Serving

Topics

• Model Server for Apache MXNet (MMS) (p. 118)

• TensorFlow Serving (p. 120)

• TorchServe (p. 122)

Model Server for Apache MXNet (MMS)
Model Server for Apache MXNet (MMS) is a flexible tool for serving deep learning models that have
been exported from Apache MXNet (incubating) or exported to an Open Neural Network Exchange
(ONNX) model format. MMS comes preinstalled with the DLAMI with Conda. This tutorial for MMS will
demonstrate how to serve an image classification model.

Topics

• Serve an Image Classification Model on MMS (p. 118)

• Other Examples (p. 119)

• More Info (p. 119)

Serve an Image Classification Model on MMS

This tutorial shows how to serve an image classification model with MMS. The model is provided via the
MMS Model Zoo, and is automatically downloaded when you start MMS. Once the server is running, it
listens for prediction requests. When you upload an image, in this case, an image of a kitten, the server
returns a prediction of the top 5 matching classes out of the 1,000 classes that the model was trained
on. More information on the models, how they were trained, and how to test them can be found in the
MMS Model Zoo.

To serve an example image classification model on MMS

1. Connect to an Amazon Elastic Compute Cloud (Amazon EC2) instance of the Deep Learning AMI with
Conda.

2. Activate an MXNet environment:

• For MXNet and Keras 2 on Python 3 with CUDA 9.0 and MKL-DNN, run this command:

$ source activate mxnet_p36

• For MXNet and Keras 2 on Python 2 with CUDA 9.0 and MKL-DNN, run this command:

$ source activate mxnet_p27

3. Run MMS with the following command. Adding > /dev/null will quiet the log output while you
run further tests.

$ mxnet-model-server --start > /dev/null

MMS is now running on your host, and is listening for inference requests.

4. Next, use a curl command to administer MMS's management endpoints, and tell it what model you
want it to serve.

$ curl -X POST "http://localhost:8081/models?url=https%3A%2F%2Fs3.amazonaws.com
%2Fmodel-server%2Fmodels%2Fsqueezenet_v1.1%2Fsqueezenet_v1.1.model"

5. MMS needs to know the number of workers you would like to use. For this test you can try 3.

118

https://github.com/awslabs/mxnet-model-server/
http://mxnet.io/
https://github.com/awslabs/mxnet-model-server/blob/master/docs/model_zoo.md
https://github.com/awslabs/mxnet-model-server/blob/master/docs/model_zoo.md

Deep Learning AMI Developer Guide
Model Serving

$ curl -v -X PUT "http://localhost:8081/models/squeezenet_v1.1?min_worker=3"

6. Download an image of a kitten and send it to the MMS predict endpoint:

$ curl -O https://s3.amazonaws.com/model-server/inputs/kitten.jpg
$ curl -X POST http://127.0.0.1:8080/predictions/squeezenet_v1.1 -T kitten.jpg

The predict endpoint returns a prediction in JSON similar to the following top five predictions,
where the image has a 94% probability of containing an Egyptian cat, followed by a 5.5% chance it
has a lynx or catamount:

{
 "prediction": [
 [{
 "class": "n02124075 Egyptian cat",
 "probability": 0.940
 },
 {
 "class": "n02127052 lynx, catamount",
 "probability": 0.055
 },
 {
 "class": "n02123045 tabby, tabby cat",
 "probability": 0.002
 },
 {
 "class": "n02123159 tiger cat",
 "probability": 0.0003
 },
 {
 "class": "n02123394 Persian cat",
 "probability": 0.0002
 }
]
]
}

7. Test out some more images, or if you have finished testing, stop the server:

$ mxnet-model-server --stop

This tutorial focuses on basic model serving. MMS also supports using Elastic Inference with model
serving. For more information, see Model Serving with Amazon Elastic Inference

When you're ready to learn more about other MMS features, see the MMS documentation on GitHub.

Other Examples

MMS has a variety of examples that you can run on your DLAMI. You can view them on the MMS project
repository.

More Info

For more MMS documentation, including how to set up MMS with Docker—or to take advantage of the
latest MMS features, star the MMS project page on GitHub.

119

https://github.com/awslabs/mxnet-model-server/blob/master/docs/elastic_inference.md
https://github.com/awslabs/mxnet-model-server/blob/master/docs/README.md
https://github.com/awslabs/mxnet-model-server/tree/master/examples
https://github.com/awslabs/mxnet-model-server/tree/master/examples
https://github.com/awslabs/mxnet-model-server

Deep Learning AMI Developer Guide
Model Serving

TensorFlow Serving
TensorFlow Serving is a flexible, high-performance serving system for machine learning models.

The tensorflow-serving-api is pre-installed with Deep Learning AMI with Conda! You will find an
example scripts to train, export, and serve an MNIST model in ~/examples/tensorflow-serving/.

To run any of these examples, first connect to your Deep Learning AMI with Conda and activate the
TensorFlow environment.

$ source activate tensorflow_p37

Now change directories to the serving example scripts folder.

$ cd ~/examples/tensorflow-serving/

Serve a Pretrained Inception Model

The following is an example you can try for serving different models like Inception. As a general rule, you
need a servable model and client scripts to be already downloaded to your DLAMI.

Serve and Test Inference with an Inception Model

1. Download the model.

$ curl -O https://s3-us-west-2.amazonaws.com/tf-test-models/INCEPTION.zip

2. Untar the model.

$ unzip INCEPTION.zip

3. Download a picture of a husky.

$ curl -O https://upload.wikimedia.org/wikipedia/commons/b/b5/Siberian_Husky_bi-
eyed_Flickr.jpg

4. Launch the server. Note, that for Amazon Linux, you must change the directory used for
model_base_path, from /home/ubuntu to /home/ec2-user.

$ tensorflow_model_server --model_name=INCEPTION --model_base_path=/home/ubuntu/
examples/tensorflow-serving/INCEPTION/INCEPTION --port=9000

5. With the server running in the foreground, you need to launch another terminal session to continue.
Open a new terminal and activate TensorFlow with source activate tensorflow_p37.
Then use your preferred text editor to create a script that has the following content. Name it
inception_client.py. This script will take an image filename as a parameter, and get a
prediction result from the pre-trained model.

from __future__ import print_function

import grpc
import tensorflow as tf
import argparse

from tensorflow_serving.apis import predict_pb2
from tensorflow_serving.apis import prediction_service_pb2_grpc

120

https://www.tensorflow.org/tfx/guide/serving

Deep Learning AMI Developer Guide
Model Serving

parser = argparse.ArgumentParser(
 description='TF Serving Test',
 formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument('--server_address', default='localhost:9000',
 help='Tenforflow Model Server Address')
parser.add_argument('--image', default='Siberian_Husky_bi-eyed_Flickr.jpg',
 help='Path to the image')
args = parser.parse_args()

def main():
 channel = grpc.insecure_channel(args.server_address)
 stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)
 # Send request
 with open(args.image, 'rb') as f:
 # See prediction_service.proto for gRPC request/response details.
 request = predict_pb2.PredictRequest()
 request.model_spec.name = 'INCEPTION'
 request.model_spec.signature_name = 'predict_images'

 input_name = 'images'
 input_shape = [1]
 input_data = f.read()
 request.inputs[input_name].CopyFrom(
 tf.make_tensor_proto(input_data, shape=input_shape))

 result = stub.Predict(request, 10.0) # 10 secs timeout
 print(result)

 print("Inception Client Passed")

if __name__ == '__main__':
 main()

6. Now run the script passing the server location and port and the husky photo's filename as the
parameters.

$ python3 inception_client.py --server=localhost:9000 --image Siberian_Husky_bi-
eyed_Flickr.jpg

Train and Serve an MNIST Model

For this tutorial we will export a model then serve it with the tensorflow_model_server application.
Finally, you can test the model server with an example client script.

Run the script that will train and export an MNIST model. As the script's only argument, you need to
provide a folder location for it to save the model. For now we can just put it in mnist_model. The script
will create the folder for you.

$ python mnist_saved_model.py /tmp/mnist_model

Be patient, as this script may take a while before providing any output. When the training is complete
and the model is finally exported you should see the following:

Done training!
Exporting trained model to mnist_model/1
Done exporting!

121

Deep Learning AMI Developer Guide
Model Serving

Your next step is to run tensorflow_model_server to serve the exported model.

$ tensorflow_model_server --port=9000 --model_name=mnist --model_base_path=/tmp/mnist_model

A client script is provided for you to test the server.

To test it out, you will need to open a new terminal window.

$ python mnist_client.py --num_tests=1000 --server=localhost:9000

More Features and Examples

If you are interested in learning more about TensorFlow Serving, check out the TensorFlow website.

You can also use TensorFlow Serving with Amazon Elastic Inference. Check out the guide on how to Use
Elastic Inference with TensorFlow Serving for more info.

TorchServe
TorchServe is a flexible tool for serving deep learning models that have been exported from PyTorch.
TorchServe comes preinstalled with the Deep Learning AMI with Conda starting with v34.

For more information on using TorchServe, see Model Server for PyTorch Documentation.

Topics

Serve an Image Classification Model on TorchServe

This tutorial shows how to serve an image classification model with TorchServe. It uses a DenseNet-161
model provided by PyTorch. Once the server is running, it listens for prediction requests. When you
upload an image, in this case, an image of a kitten, the server returns a prediction of the top 5 matching
classes out of the classes that the model was trained on.

To serve an example image classification model on TorchServe

1. Connect to an Amazon Elastic Compute Cloud (Amazon EC2) instance with Deep Learning AMI with
Conda v34 or later.

2. Activate the pytorch_latest_p36 environment.

source activate pytorch_latest_p36

3. Clone the TorchServe repository, then create a directory to store your models.

git clone https://github.com/pytorch/serve.git
mkdir model_store

4. Archive the model using the model archiver. The extra-files param uses a file from the
TorchServe repo, so update the path if necessary. For more information about the model archiver,
see Torch Model archiver for TorchServe.

wget https://download.pytorch.org/models/densenet161-8d451a50.pth
torch-model-archiver --model-name densenet161 --version 1.0 --model-file ./
serve/examples/image_classifier/densenet_161/model.py --serialized-file
 densenet161-8d451a50.pth --export-path model_store --extra-files ./serve/examples/
image_classifier/index_to_name.json --handler image_classifier

5. Run TorchServe to start an endpoint. Adding > /dev/null quiets the log output.

122

https://www.tensorflow.org/serving/
https://docs.aws.amazon.com/elastic-inference/latest/developerguide/what-is-ei.html
https://docs.aws.amazon.com/elastic-inference/latest/developerguide/ei-tensorflow-python.html
https://docs.aws.amazon.com/elastic-inference/latest/developerguide/ei-tensorflow-python.html
https://github.com/pytorch/serve/blob/master/docs/README.md
https://github.com/pytorch/serve/blob/master/model-archiver/README.md

Deep Learning AMI Developer Guide
Model Serving

torchserve --start --ncs --model-store model_store --models densenet161.mar > /dev/null

6. Download an image of a kitten and send it to the TorchServe predict endpoint:

curl -O https://s3.amazonaws.com/model-server/inputs/kitten.jpg
curl http://127.0.0.1:8080/predictions/densenet161 -T kitten.jpg

The predict endpoint returns a prediction in JSON similar to the following top five predictions,
where the image has a 47% probability of containing an Egyptian cat, followed by a 46% chance it
has a tabby cat.

{
 "tiger_cat": 0.46933576464653015,
 "tabby": 0.463387668132782,
 "Egyptian_cat": 0.0645613968372345,
 "lynx": 0.0012828196631744504,
 "plastic_bag": 0.00023323058849200606
}

7. When you finish testing, stop the server:

torchserve --stop

Other Examples

TorchServe has a variety of examples that you can run on your DLAMI instance. You can view them on
the TorchServe project repository examples page.

More Info

For more TorchServe documentation, including how to set up TorchServe with Docker and the latest
TorchServe features, see the TorchServe project pageon GitHub.

123

https://github.com/pytorch/serve/tree/master/examples
https://github.com/pytorch/serve

Deep Learning AMI Developer Guide
DLAMI Upgrade

Upgrading Your DLAMI
Here you will find information on upgrading your DLAMI and tips on updating software on your DLAMI.

Topics
• Upgrading to a New DLAMI Version (p. 124)
• Tips for Software Updates (p. 124)

Upgrading to a New DLAMI Version
DLAMI's system images are updated on a regular basis to take advantage of new deep learning
framework releases, CUDA and other software updates, and performance tuning. If you have been using
a DLAMI for some time and want to take advantage of an update, you would need to launch a new
instance. You would also have to manually transfer any datasets, checkpoints, or other valuable data.
Instead, you may use Amazon EBS to retain your data and attach it to a new DLAMI. In this way, you can
upgrade often, while minimizing the time it takes to transition your data.

Note
When attaching and moving Amazon EBS volumes between DLAMIs, you must have both the
DLAMIs and the new volume in the same Availability Zone.

1. Use the Amazon EC2console to create a new Amazon EBS volume. For detailed directions, see
Creating an Amazon EBS Volume.

2. Attach your newly created Amazon EBS volume to your existing DLAMI. For detailed directions, see
Attaching an Amazon EBS Volume.

3. Transfer your data, such as datasets, checkpoints, and configuration files.
4. Launch a DLAMI. For detailed directions, see Launching and Configuring a DLAMI (p. 12).
5. Detach the Amazon EBS volume from your old DLAMI. For detailed directions, see Detaching an

Amazon EBS Volume.
6. Attach the Amazon EBS volume to your new DLAMI. Follow the instructions from the Step 2 to

attach the volume.
7. After you verify that your data is available on your new DLAMI, stop and terminate your old DLAMI.

For detailed clean-up instructions, see Clean Up (p. 15).

Tips for Software Updates
From time to time, you may want to manually update software on your DLAMI. It is generally
recommended that you use pip to update Python packages. You should also use pip to update
packages within a Conda environment on the Deep Learning AMI with Conda. Refer to the particular
framework's or software's website for upgrading and installation instructions.

Note
We cannot guarantee that a package update will be successful. Attempting to update a package
in an environment with incompatible dependencies can result in a failure. In such a case, you
should contact the library maintainer to see if it is possible to update the package dependencies.
Alternatively, you can attempt to modify the environment in such a way that allows the update.
However, this modification will likely mean removing or updating existing packages, which
means that we can no longer guarantee stability of this environment.

124

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-creating-volume.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-attaching-volume.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-detaching-volume.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-detaching-volume.html

Deep Learning AMI Developer Guide
Software Updates

If you are interested in running the latest main branch of a particular package, activate the appropriate
environment, then add --pre to the end of the pip install --upgrade command. For example:

source activate mxnet_p36
pip install --upgrade mxnet --pre

The AWS Deep Learning AMI comes with many Conda environments and many packages preinstalled.
Due to the number of packages preinstalled, finding a set of packages that are guaranteed to be
compatible is difficult. You may see a warning "The environment is inconsistent, please check the
package plan carefully". DLAMI ensures that all the DLAMI-provided environments are correct, but
cannot guarantee that any user installed packages will function correctly.

125

Deep Learning AMI Developer Guide
Data Protection

Security in AWS Deep Learning AMI
Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center and
network architecture that is built to meet the requirements of the most security-sensitive organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes this
as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS services in
the AWS Cloud. AWS also provides you with services that you can use securely. Third-party auditors
regularly test and verify the effectiveness of our security as part of the AWS Compliance Programs. To
learn about the compliance programs that apply to DLAMI, see AWS Services in Scope by Compliance
Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You are also
responsible for other factors including the sensitivity of your data, your company’s requirements, and
applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when using
DLAMI. The following topics show you how to configure DLAMI to meet your security and compliance
objectives. You also learn how to use other AWS services that help you to monitor and secure your DLAMI
resources.

For more information, see Security in Amazon EC2.

Topics
• Data Protection in AWS Deep Learning AMI (p. 126)
• Identity and Access Management in AWS Deep Learning AMI (p. 127)
• Logging and Monitoring in AWS Deep Learning AMI (p. 131)
• Compliance Validation for AWS Deep Learning AMI (p. 131)
• Resilience in AWS Deep Learning AMI (p. 132)
• Infrastructure Security in AWS Deep Learning AMI (p. 132)

Data Protection in AWS Deep Learning AMI
The AWS shared responsibility model applies to data protection in AWS Deep Learning AMI. As described
in this model, AWS is responsible for protecting the global infrastructure that runs all of the AWS Cloud.
You are responsible for maintaining control over your content that is hosted on this infrastructure. This
content includes the security configuration and management tasks for the AWS services that you use. For
more information about data privacy, see the Data Privacy FAQ. For information about data protection in
Europe, see the AWS Shared Responsibility Model and GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set up
individual user accounts with AWS Identity and Access Management (IAM). That way each user is given
only the permissions necessary to fulfill their job duties. We also recommend that you secure your data
in the following ways:

• Use multi-factor authentication (MFA) with each account.
• Use SSL/TLS to communicate with AWS resources. We recommend TLS 1.2 or later.
• Set up API and user activity logging with AWS CloudTrail.

126

http://aws.amazon.com/compliance/shared-responsibility-model/
http://aws.amazon.com/compliance/programs/
http://aws.amazon.com/compliance/services-in-scope/
http://aws.amazon.com/compliance/services-in-scope/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-security.html
http://aws.amazon.com/compliance/shared-responsibility-model/
http://aws.amazon.com/compliance/data-privacy-faq
http://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/

Deep Learning AMI Developer Guide
Identity and Access Management

• Use AWS encryption solutions, along with all default security controls within AWS services.
• Use advanced managed security services such as Amazon Macie, which assists in discovering and

securing personal data that is stored in Amazon S3.
• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a command

line interface or an API, use a FIPS endpoint. For more information about the available FIPS endpoints,
see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form fields such as a Name field. This includes when you
work with DLAMI or other AWS services using the console, API, AWS CLI, or AWS SDKs. Any data that
you enter into tags or free-form fields used for names may be used for billing or diagnostic logs. If
you provide a URL to an external server, we strongly recommend that you do not include credentials
information in the URL to validate your request to that server.

Identity and Access Management in AWS Deep
Learning AMI

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in) and
authorized (have permissions) to use DLAMI resources. IAM is an AWS service that you can use with no
additional charge.

For more information on Identity and Access Management, see Identity and Access Management for
Amazon EC2.

Topics
• Authenticating With Identities (p. 127)
• Managing Access Using Policies (p. 129)
• IAM with Amazon EMR (p. 131)

Authenticating With Identities
Authentication is how you sign in to AWS using your identity credentials. For more information about
signing in using the AWS Management Console, see Signing in to the AWS Management Console as an
IAM user or root user in the IAM User Guide.

You must be authenticated (signed in to AWS) as the AWS account root user, an IAM user, or by assuming
an IAM role. You can also use your company's single sign-on authentication or even sign in using Google
or Facebook. In these cases, your administrator previously set up identity federation using IAM roles.
When you access AWS using credentials from another company, you are assuming a role indirectly.

To sign in directly to the AWS Management Console, use your password with your root user email
address or your IAM user name. You can access AWS programmatically using your root user or IAM
users access keys. AWS provides SDK and command line tools to cryptographically sign your request
using your credentials. If you don't use AWS tools, you must sign the request yourself. Do this using
Signature Version 4, a protocol for authenticating inbound API requests. For more information about
authenticating requests, see Signature Version 4 signing process in the AWS General Reference.

Regardless of the authentication method that you use, you might also be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication (MFA) to
increase the security of your account. To learn more, see Using multi-factor authentication (MFA) in AWS
in the IAM User Guide.

127

http://aws.amazon.com/compliance/fips/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/security-iam.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/security-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/console.html
https://console.aws.amazon.com/
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html

Deep Learning AMI Developer Guide
Authenticating With Identities

AWS account root user
When you first create an AWS account, you begin with a single sign-in identity that has complete access
to all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account. We
strongly recommend that you do not use the root user for your everyday tasks, even the administrative
ones. Instead, adhere to the best practice of using the root user only to create your first IAM user. Then
securely lock away the root user credentials and use them to perform only a few account and service
management tasks.

IAM Users and Groups
An IAM user is an identity within your AWS account that has specific permissions for a single person or
application. An IAM user can have long-term credentials such as a user name and password or a set of
access keys. To learn how to generate access keys, see Managing access keys for IAM users in the IAM
User Guide. When you generate access keys for an IAM user, make sure you view and securely save the key
pair. You cannot recover the secret access key in the future. Instead, you must generate a new access key
pair.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier to
manage for large sets of users. For example, you could have a group named IAMAdmins and give that
group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but a role
is intended to be assumable by anyone who needs it. Users have permanent long-term credentials, but
roles provide temporary credentials. To learn more, see When to create an IAM user (instead of a role) in
the IAM User Guide.

IAM Roles
An IAM role is an identity within your AWS account that has specific permissions. It is similar to an IAM
user, but is not associated with a specific person. You can temporarily assume an IAM role in the AWS
Management Console by switching roles. You can assume a role by calling an AWS CLI or AWS API
operation or by using a custom URL. For more information about methods for using roles, see Using IAM
roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Temporary IAM user permissions – An IAM user can assume an IAM role to temporarily take on
different permissions for a specific task.

• Federated user access – Instead of creating an IAM user, you can use existing identities from AWS
Directory Service, your enterprise user directory, or a web identity provider. These are known as
federated users. AWS assigns a role to a federated user when access is requested through an identity
provider. For more information about federated users, see Federated users and roles in the IAM User
Guide.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a different
account to access resources in your account. Roles are the primary way to grant cross-account access.
However, with some AWS services, you can attach a policy directly to a resource (instead of using a role
as a proxy). To learn the difference between roles and resource-based policies for cross-account access,
see How IAM roles differ from resource-based policies in the IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when you
make a call in a service, it's common for that service to run applications in Amazon EC2 or store objects
in Amazon S3. A service might do this using the calling principal's permissions, using a service role, or
using a service-linked role.

128

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#create-iam-users
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html#intro-access-roles
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html

Deep Learning AMI Developer Guide
Managing Access Using Policies

• Principal permissions – When you use an IAM user or role to perform actions in AWS, you are
considered a principal. Policies grant permissions to a principal. When you use some services, you
might perform an action that then triggers another action in a different service. In this case, you
must have permissions to perform both actions. To see whether an action requires additional
dependent actions in a policy, see in the Service Authorization Reference.

• Service role – A service role is an IAM role that a service assumes to perform actions on your behalf.
An IAM administrator can create, modify, and delete a service role from within IAM. For more
information, see Creating a role to delegate permissions to an AWS service in the IAM User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS service.
The service can assume the role to perform an action on your behalf. Service-linked roles appear
in your IAM account and are owned by the service. An IAM administrator can view, but not edit the
permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary credentials
for applications that are running on an EC2 instance and making AWS CLI or AWS API requests.
This is preferable to storing access keys within the EC2 instance. To assign an AWS role to an EC2
instance and make it available to all of its applications, you create an instance profile that is attached
to the instance. An instance profile contains the role and enables programs that are running on the
EC2 instance to get temporary credentials. For more information, see Using an IAM role to grant
permissions to applications running on Amazon EC2 instances in the IAM User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user) in the
IAM User Guide.

Managing Access Using Policies
You control access in AWS by creating policies and attaching them to IAM identities or AWS resources. A
policy is an object in AWS that, when associated with an identity or resource, defines their permissions.
You can sign in as the root user or an IAM user, or you can assume an IAM role. When you then make
a request, AWS evaluates the related identity-based or resource-based policies. Permissions in the
policies determine whether the request is allowed or denied. Most policies are stored in AWS as JSON
documents. For more information about the structure and contents of JSON policy documents, see
Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which principal can
perform actions on what resources, and under what conditions.

Every IAM entity (user or role) starts with no permissions. In other words, by default, users can
do nothing, not even change their own password. To give a user permission to do something, an
administrator must attach a permissions policy to a user. Or the administrator can add the user to a
group that has the intended permissions. When an administrator gives permissions to a group, all users
in that group are granted those permissions.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A user with
that policy can get role information from the AWS Management Console, the AWS CLI, or the AWS API.

Identity-Based Policies
Identity-based policies are JSON permissions policy documents that you can attach to an identity, such
as an IAM user, group of users, or role. These policies control what actions users and roles can perform,
on which resources, and under what conditions. To learn how to create an identity-based policy, see
Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline policies
are embedded directly into a single user, group, or role. Managed policies are standalone policies that

129

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html

Deep Learning AMI Developer Guide
Managing Access Using Policies

you can attach to multiple users, groups, and roles in your AWS account. Managed policies include AWS
managed policies and customer managed policies. To learn how to choose between a managed policy or
an inline policy, see Choosing between managed policies and inline policies in the IAM User Guide.

Resource-Based Policies
Resource-based policies are JSON policy documents that you attach to a resource. Examples of resource-
based policies are IAM role trust policies and Amazon S3 bucket policies. In services that support resource-
based policies, service administrators can use them to control access to a specific resource. For the
resource where the policy is attached, the policy defines what actions a specified principal can perform
on that resource and under what conditions. You must specify a principal in a resource-based policy.
Principals can include accounts, users, roles, federated users, or AWS services.

Resource-based policies are inline policies that are located in that service. You can't use AWS managed
policies from IAM in a resource-based policy.

Access Control Lists (ACLs)
Access control lists (ACLs) control which principals (account members, users, or roles) have permissions to
access a resource. ACLs are similar to resource-based policies, although they do not use the JSON policy
document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more about
ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer Guide.

Other Policy Types
AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set the
maximum permissions that an identity-based policy can grant to an IAM entity (IAM user or role).
You can set a permissions boundary for an entity. The resulting permissions are the intersection of
entity's identity-based policies and its permissions boundaries. Resource-based policies that specify
the user or role in the Principal field are not limited by the permissions boundary. An explicit deny
in any of these policies overrides the allow. For more information about permissions boundaries, see
Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions for
an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a service for
grouping and centrally managing multiple AWS accounts that your business owns. If you enable all
features in an organization, then you can apply service control policies (SCPs) to any or all of your
accounts. The SCP limits permissions for entities in member accounts, including each AWS account
root user. For more information about Organizations and SCPs, see How SCPs work in the AWS
Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session policies.
Permissions can also come from a resource-based policy. An explicit deny in any of these policies
overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple Policy Types
When multiple types of policies apply to a request, the resulting permissions are more complicated to
understand. To learn how AWS determines whether to allow a request when multiple policy types are
involved, see Policy evaluation logic in the IAM User Guide.

130

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

Deep Learning AMI Developer Guide
IAM with Amazon EMR

IAM with Amazon EMR
You can use AWS Identity and Access Management with Amazon EMR to define users, AWS resources,
groups, roles, and policies. You can also control which AWS services these users and roles can access.

For more information on using IAM with Amazon EMR, see AWS Identity and Access Management for
Amazon EMR.

Logging and Monitoring in AWS Deep Learning
AMI

Your AWS Deep Learning AMI instance comes with several GPU monitoring tools including a utility that
reports GPU usage statistics to Amazon CloudWatch. For more information, see GPU Monitoring and
Optimization and Monitoring Amazon EC2.

Usage Tracking
The following AWS Deep Learning AMI operating system distributions include code that allows AWS to
collect instance type, instance ID, DLAMI type, and OS information. No information on the commands
used within the DLAMI is collected or retained. No other information about the DLAMI is collected or
retained.

• Ubuntu 16.04
• Ubuntu 18.04
• Ubuntu 20.04
• Amazon Linux 2

To opt out of usage tracking for your DLAMI, add a tag to your Amazon EC2 instance during launch.
The tag should use the key OPT_OUT_TRACKING with the associated value set to true. For more
information, see Tag your Amazon EC2 resources.

Compliance Validation for AWS Deep Learning AMI
Third-party auditors assess the security and compliance of AWS Deep Learning AMI as part of multiple
AWS compliance programs. For information on the supported compliance programs, see Compliance
Validation for Amazon EC2.

For a list of AWS services in scope of specific compliance programs, see AWS Services in Scope by
Compliance Program. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see Downloading
Reports in AWS Artifact.

Your compliance responsibility when using DLAMI is determined by the sensitivity of your data, your
company's compliance objectives, and applicable laws and regulations. AWS provides the following
resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying security- and compliance-focused baseline
environments on AWS.

131

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-access-iam.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-access-iam.html
https://docs.aws.amazon.com/dlami/latest/devguide/tutorial-gpu.html
https://docs.aws.amazon.com/dlami/latest/devguide/tutorial-gpu.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/monitoring_ec2.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/compliance-validation.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/compliance-validation.html
http://aws.amazon.com/compliance/services-in-scope/
http://aws.amazon.com/compliance/services-in-scope/
http://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
http://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance

Deep Learning AMI Developer Guide
Resilience

• AWS Compliance Resources – This collection of workbooks and guides might apply to your industry
and location.

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service assesses
how well your resource configurations comply with internal practices, industry guidelines, and
regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within AWS
that helps you check your compliance with security industry standards and best practices.

Resilience in AWS Deep Learning AMI
The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions provide
multiple physically separated and isolated Availability Zones, which are connected with low-latency,
high-throughput, and highly redundant networking. With Availability Zones, you can design and operate
applications and databases that automatically fail over between zones without interruption. Availability
Zones are more highly available, fault tolerant, and scalable than traditional single or multiple data
center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

For information on features to help support your data resiliency and backup needs, see Resilience in
Amazon EC2.

Infrastructure Security in AWS Deep Learning AMI
The infrastructure security of AWS Deep Learning AMI is backed by Amazon EC2. For more information,
see Infrastructure Security in Amazon EC2.

132

http://aws.amazon.com/compliance/resources/
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
http://aws.amazon.com/about-aws/global-infrastructure/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/disaster-recovery-resiliency.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/disaster-recovery-resiliency.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/infrastructure-security.html

Deep Learning AMI Developer Guide
Forums

Related Information
Topics

• Forums (p. 133)

• Related Blog Posts (p. 133)

• FAQ (p. 133)

Forums
• Forum: AWS Deep Learning AMIs

Related Blog Posts
• Updated List of Articles Related to Deep Learning AMIs

• Launch a AWS Deep Learning AMI (in 10 minutes)

• Faster Training with Optimized TensorFlow 1.6 on Amazon EC2 C5 and P3 Instances

• New AWS Deep Learning AMIs for Machine Learning Practitioners

• New Training Courses Available: Introduction to Machine Learning & Deep Learning on AWS

• Journey into Deep Learning with AWS

FAQ
• Q. How do I keep track of product announcements related to DLAMI?

Here are two suggestions for this:

• Bookmark this blog category, "AWS Deep Learning AMIs" found here: Updated List of Articles
Related to Deep Learning AMIs.

• "Watch" the Forum: AWS Deep Learning AMIs

• Q. Are the NVIDIA drivers and CUDA installed?

Yes. Some DLAMIs have different versions. The Deep Learning AMI with Conda (p. 6) has the most
recent versions of any DLAMI. This is covered in more detail in CUDA Installations and Framework
Bindings (p. 5). You can also refer to the specific AMI's detail page on the marketplace to confirm what
is installed.

• Q. Is cuDNN installed?

Yes.

• Q. How do I see that the GPUs are detected and their current status?

Run nvidia-smi. This will show one or more GPUs, depending on the instance type, along with their
current memory consumption.

133

https://forums.aws.amazon.com/forum.jspa?forumID=263
https://aws.amazon.com/blogs/ai/category/artificial-intelligence/aws-deep-learning-amis/
https://aws.amazon.com/getting-started/tutorials/get-started-dlami/
https://aws.amazon.com/blogs/machine-learning/faster-training-with-optimized-tensorflow-1-6-on-amazon-ec2-c5-and-p3-instances/
https://aws.amazon.com/blogs/ai/new-aws-deep-learning-amis-for-machine-learning-practitioners/
https://aws.amazon.com/blogs/apn/new-training-courses-available-introduction-to-machine-learning-deep-learning-on-aws/
https://aws.amazon.com/blogs/aws/journey-into-deep-learning-with-aws/
https://aws.amazon.com/blogs/ai/category/artificial-intelligence/aws-deep-learning-amis/
https://aws.amazon.com/blogs/ai/category/artificial-intelligence/aws-deep-learning-amis/
https://forums.aws.amazon.com/forum.jspa?forumID=263

Deep Learning AMI Developer Guide
FAQ

• Q. Are virtual environments set up for me?

Yes, but only on the Deep Learning AMI with Conda (p. 6).

• Q. What version of Python is installed?

Each DLAMI has both Python 2 and 3. The Deep Learning AMI with Conda (p. 6) have environments for
both versions for each framework.

• Q. Is Keras installed?

This depends on the AMI. The Deep Learning AMI with Conda (p. 6) has Keras available as a front end
for each framework. The version of Keras depends on the framework's support for it.

• Q. Is it free?

All of the DLAMIs are free. However, depending on the instance type you choose, the instance may not
be free. See Pricing for the DLAMI (p. 8) for more info.

• Q. I'm getting CUDA errors or GPU-related messages from my framework. What's wrong?

Check what instance type you used. It needs to have a GPU for many examples and tutorials to work. If
running nvidia-smi shows no GPU, then you need to spin up another DLAMI using an instance with
one or more GPUs. See Selecting the Instance Type for DLAMI (p. 7) for more info.

• Q. Can I use Docker?

Docker has been pre-installed since version 14 of the Deep Learning AMI with Conda. Note that you
will want to use nvidia-docker on GPU instances to make use of the GPU.

• Q. What regions are Linux DLAMIs available in?

Region Code

US East (Ohio) us-east-2

US East (N. Virginia) us-east-1

GovCloud us-gov-west-1

US West (N. California) us-west-1

US West (Oregon) us-west-2

Beijing (China) cn-north-1

Ningxia (China) cn-northwest-1

Asia Pacific (Mumbai) ap-south-1

Asia Pacific (Seoul) ap-northeast-2

Asia Pacific (Singapore) ap-southeast-1

Asia Pacific (Sydney) ap-southeast-2

Asia Pacific (Tokyo) ap-northeast-1

Canada (Central) ca-central-1

EU (Frankfurt) eu-central-1

EU (Ireland) eu-west-1

EU (London) eu-west-2

134

https://github.com/NVIDIA/nvidia-docker

Deep Learning AMI Developer Guide
FAQ

Region Code

EU (Paris) eu-west-3

SA (Sao Paulo) sa-east-1

• Q. What regions are Windows DLAMIs available in?

Region Code

US East (Ohio) us-east-2

US East (N. Virginia) us-east-1

GovCloud us-gov-west-1

US West (N. California) us-west-1

US West (Oregon) us-west-2

Beijing (China) cn-north-1

Asia Pacific (Mumbai) ap-south-1

Asia Pacific (Seoul) ap-northeast-2

Asia Pacific (Singapore) ap-southeast-1

Asia Pacific (Sydney) ap-southeast-2

Asia Pacific (Tokyo) ap-northeast-1

Canada (Central) ca-central-1

EU (Frankfurt) eu-central-1

EU (Ireland) eu-west-1

EU (London) eu-west-2

EU (Paris) eu-west-3

SA (Sao Paulo) sa-east-1

135

Deep Learning AMI Developer Guide
Single-framework DLAMI

Release Notes for DLAMI
Note
AWS Deep Learning AMIs have a nightly release cadence for security patches. These incremental
security patches are not included in official release notes.

For information on related hardware, frameworks, and ID retrieval, see the AWS Deep Learning AMI
Catalog. For the current and historic DLAMI release notes, see:

Single-framework DLAMI
TensorFlow-specific AMI

• AWS Deep Learning AMI GPU TensorFlow 2.9 (Amazon Linux 2)

• AWS Deep Learning AMI GPU TensorFlow 2.9 (Ubuntu 20.04)

• AWS Deep Learning AMI GPU TensorFlow 2.8 (Amazon Linux 2)

• AWS Deep Learning AMI GPU TensorFlow 2.8 (Ubuntu 20.04)

• AWS Deep Learning AMI GPU TensorFlow 2.7 (Amazon Linux 2)

• AWS Deep Learning AMI GPU TensorFlow 2.7 (Ubuntu 20.04)

• AWS Deep Learning AMI GPU TensorFlow 2.6 (Amazon Linux 2)

• AWS Deep Learning AMI GPU TensorFlow 2.6 (Ubuntu 20.04)

• AWS Deep Learning AMI Graviton GPU TensorFlow 2.6 (Ubuntu 20.04)

• AWS Deep Learning AMI GPU TensorFlow 2.6 (Ubuntu 18.04)

• AWS Deep Learning AMI GPU TensorFlow 2.5 (Amazon Linux 2)

• AWS Deep Learning AMI GPU TensorFlow 2.5 (Ubuntu 20.04)

PyTorch-specific AMI

• AWS Deep Learning AMI GPU PyTorch 1.11 (Amazon Linux 2)

• AWS Deep Learning AMI GPU PyTorch 1.11 (Ubuntu 20.04)

• AWS Deep Learning AMI GPU PyTorch 1.10 (Amazon Linux 2)

• AWS Deep Learning AMI GPU PyTorch 1.10 (Ubuntu 20.04)

• AWS Deep Learning AMI Graviton GPU PyTorch 1.10 (Ubuntu 20.04)

• AWS Deep Learning AMI GPU PyTorch 1.10 (Ubuntu 18.04)

• AWS Deep Learning AMI GPU PyTorch 1.9 (Amazon Linux 2)

• AWS Deep Learning AMI GPU PyTorch 1.9 (Ubuntu 20.04)

• AWS Deep Learning AMI GPU PyTorch 1.9 (Ubuntu 18.04)

MXNet-specific AMI

• AWS Deep Learning AMI GPU MXNet 1.9 (Amazon Linux 2)

• AWS Deep Learning AMI GPU MXNet 1.9 (Ubuntu 20.04)

136

http://aws.amazon.com/releasenotes/aws-deep-learning-ami-catalog/
http://aws.amazon.com/releasenotes/aws-deep-learning-ami-catalog/
http://aws.amazon.com/releasenotes/deep-learning-ami-gpu-tensorflow-2-9-amazon-linux-2/
http://aws.amazon.com/releasenotes/deep-learning-ami-gpu-tensorflow-2-9-ubuntu-20-04/
http://aws.amazon.com/releasenotes/live-deep-learning-ami-gpu-tensorflow-2-8-amazon-linux-2/
http://aws.amazon.com/releasenotes/aws-deep-learning-ami-gpu-tensorflow-2-8-ubuntu-20-04/
http://aws.amazon.com/releasenotes/aws-deep-learning-ami-gpu-tensorflow-2-7-amazon-linux-2/
http://aws.amazon.com/releasenotes/aws-deep-learning-ami-gpu-tensorflow-2-7-ubuntu-20-04/
http://aws.amazon.com/releasenotes/aws-deep-learning-ami-gpu-tensorflow-2-6-amazon-linux-2/
http://aws.amazon.com/releasenotes/aws-deep-learning-ami-gpu-tensorflow-2-6-ubuntu-20-04/
http://aws.amazon.com/releasenotes/aws-deep-learning-ami-graviton-gpu-tensorflow-2-6-ubuntu-20-04/
http://aws.amazon.com/releasenotes/aws-deep-learning-ami-gpu-tensorflow-2-6-ubuntu-18-04/
http://aws.amazon.com/releasenotes/aws-deep-learning-gpu-tensorflow-ami-amazon-linux-2-version-1-x-x
http://aws.amazon.com/releasenotes/aws-deep-learning-gpu-tensorflow-ami-ubuntu-20-04-version-1-x-x
http://aws.amazon.com/releasenotes/aws-deep-learning-ami-gpu-pytorch-1-11-amazon-linux-2
http://aws.amazon.com/releasenotes/aws-deep-learning-ami-gpu-pytorch-1-11-ubuntu-20-04
http://aws.amazon.com/releasenotes/aws-deep-learning-ami-gpu-pytorch-1-10-amazon-linux-2
http://aws.amazon.com/releasenotes/aws-deep-learning-ami-gpu-pytorch-1-10-ubuntu-20-04
http://aws.amazon.com/releasenotes/deep-learning-ami-graviton-gpu-pytorch-1-10-ubuntu-20-04/
http://aws.amazon.com/releasenotes/aws-deep-learning-ami-gpu-pytorch-1-10-ubuntu-18-04
http://aws.amazon.com/releasenotes/aws-deep-learning-gpu-pytorch-ami-amazon-linux-2-version-1-x-x
http://aws.amazon.com/releasenotes/aws-deep-learning-gpu-pytorch-ami-ubuntu-20-04-version-1-x-x
http://aws.amazon.com/releasenotes/aws-deep-learning-gpu-pytorch-ami-ubuntu-18-04-version-1-x-x
http://aws.amazon.com/releasenotes/aws-deep-learning-ami-gpu-mxnet-1-9-amazon-linux-2
http://aws.amazon.com/releasenotes/aws-deep-learning-ami-gpu-mxnet-1-9-ubuntu-20-04

Deep Learning AMI Developer Guide
Multi-framework DLAMI

Multi-framework DLAMI
• AWS Deep Learning AMI (Amazon Linux 2)
• AWS Deep Learning AMI (Amazon Linux)
• AWS Deep Learning AMI (Ubuntu 18.04)
• AWS Deep Learning AMI (Ubuntu 16.04)

GPU DLAMI
CUDA 11.1

• AWS Deep Learning AMI GPU CUDA 11.1 (Amazon Linux 2)
• AWS Deep Learning AMI GPU CUDA 11.1 (Ubuntu 20.04)
• AWS Deep Learning AMI GPU CUDA 11.1 (Ubuntu 18.04)

CUDA 11.2

• AWS Deep Learning AMI GPU CUDA 11.2 (Amazon Linux 2)
• AWS Deep Learning AMI GPU CUDA 11.2 (Ubuntu 20.04)
• AWS Deep Learning AMI GPU CUDA 11.2 (Ubuntu 18.04)

CUDA 11.3

• AWS Deep Learning AMI GPU CUDA 11.3 (Amazon Linux 2)
• AWS Deep Learning AMI GPU CUDA 11.3 (Ubuntu 20.04)
• AWS Deep Learning AMI GPU CUDA 11.3 (Ubuntu 18.04)

CUDA 11.4

• AWS Deep Learning AMI GPU CUDA 11.4 (Amazon Linux 2)
• AWS Deep Learning AMI GPU CUDA 11.4 (Ubuntu 20.04)
• AWS Deep Learning AMI Graviton GPU CUDA 11.4 (Ubuntu 20.04)
• AWS Deep Learning AMI GPU CUDA 11.4 (Ubuntu 18.04)

CUDA 11.5

• AWS Deep Learning AMI GPU CUDA 11.5 (Amazon Linux 2)
• AWS Deep Learning AMI GPU CUDA 11.5 (Ubuntu 20.04)

Habana DLAMI
TensorFlow-specific AMI

• AWS Deep Learning AMI Habana TensorFlow SynapseAI (Amazon Linux 2)
• AWS Deep Learning AMI Habana TensorFlow SynapseAI (Ubuntu 20.04)
• AWS Deep Learning AMI Habana TensorFlow SynapseAI (Ubuntu 18.04)

137

http://aws.amazon.com/releasenotes/aws-deep-learning-ami-amazon-linux-2
http://aws.amazon.com/releasenotes/aws-deep-learning-ami-amazon-linux
http://aws.amazon.com/releasenotes/aws-deep-learning-ami-ubuntu-18-04
http://aws.amazon.com/releasenotes/aws-deep-learning-ami-ubuntu-16-04
http://aws.amazon.com/releasenotes/aws-deep-learning-gpu-ami-amazon-linux-2-version-1-x-x
http://aws.amazon.com/releasenotes/aws-deep-learning-gpu-ami-ubuntu-20-04-version-1-x-x
http://aws.amazon.com/releasenotes/aws-deep-learning-gpu-ami-ubuntu-18-04-version-1-x-x
http://aws.amazon.com/releasenotes/aws-deep-learning-gpu-ami-amazon-linux-2-version-2-x-x
http://aws.amazon.com/releasenotes/aws-deep-learning-gpu-ami-ubuntu-20-04-version-2-x-x
http://aws.amazon.com/releasenotes/aws-deep-learning-gpu-ami-ubuntu-18-04-version-2-x-x
http://aws.amazon.com/releasenotes/aws-deep-learning-ami-gpu-cuda-11-3-amazon-linux-2
http://aws.amazon.com/releasenotes/aws-deep-learning-ami-gpu-cuda-11-3-ubuntu-20-04
http://aws.amazon.com/releasenotes/aws-deep-learning-ami-gpu-cuda-11-3-ubuntu-18-04
http://aws.amazon.com/releasenotes/aws-deep-learning-ami-gpu-cuda-11-4-amazon-linux-2
http://aws.amazon.com/releasenotes/aws-deep-learning-ami-gpu-cuda-11-4-ubuntu-20-04
http://aws.amazon.com/releasenotes/aws-deep-learning-ami-graviton-gpu-cuda-11-4-ubuntu-20-04/
http://aws.amazon.com/releasenotes/aws-deep-learning-ami-gpu-cuda-11-4-ubuntu-18-04
http://aws.amazon.com/releasenotes/aws-deep-learning-ami-gpu-cuda-11-5-amazon-linux-2
http://aws.amazon.com/releasenotes/aws-deep-learning-ami-gpu-cuda-11-5-ubuntu-20-04
http://aws.amazon.com/releasenotes/aws-deep-learning-ami-habana-tensorflow-synapseai-amazon-linux-2
http://aws.amazon.com/releasenotes/aws-deep-learning-ami-habana-tensorflow-synapseai-ubuntu-20-04
http://aws.amazon.com/releasenotes/aws-deep-learning-ami-habana-tensorflow-synapseai-ubuntu-18-04

Deep Learning AMI Developer Guide
Base DLAMI

PyTorch-specific AMI

• AWS Deep Learning AMI Habana PyTorch SynapseAI (Amazon Linux 2)
• AWS Deep Learning AMI Habana PyTorch SynapseAI (Ubuntu 20.04)
• AWS Deep Learning AMI Habana PyTorch SynapseAI (Ubuntu 18.04)

Base DLAMI
• AWS Deep Learning Base AMI (Amazon Linux 2)
• AWS Deep Learning Base AMI (Amazon Linux)
• AWS Deep Learning Base AMI GPU CUDA 11 (Ubuntu 20.04)
• AWS Deep Learning Base AMI (Ubuntu 18.04)
• AWS Deep Learning Base AMI (Ubuntu 16.04)

138

http://aws.amazon.com/releasenotes/aws-deep-learning-ami-habana-pytorch-synapseai-amazon-linux-2
http://aws.amazon.com/releasenotes/aws-deep-learning-ami-habana-pytorch-synapseai-ubuntu-20-04
http://aws.amazon.com/releasenotes/aws-deep-learning-ami-habana-pytorch-synapseai-ubuntu-18-04
http://aws.amazon.com/releasenotes/aws-deep-learning-base-ami-amazon-linux-2
http://aws.amazon.com/releasenotes/aws-deep-learning-base-ami-amazon-linux
http://aws.amazon.com/releasenotes/aws-deep-learning-ami-gpu-cuda-11-ubuntu-20-04/
http://aws.amazon.com/releasenotes/aws-deep-learning-base-ami-ubuntu-18-04
http://aws.amazon.com/releasenotes/aws-deep-learning-base-ami-ubuntu-16-04

Deep Learning AMI Developer Guide

DLAMI deprecation notices
The following table lists information on deprecated features in the AWS Deep Learning AMI.

Deprecated Feature Deprecation Date Deprecation Notice

Ubuntu 16.04 10/07/2021 Ubuntu Linux 16.04 LTS
reached the end of its five-
year LTS window on April
30, 2021 and is no longer
supported by its vendor.
There are no longer updates
to the Deep Learning Base
AMI (Ubuntu 16.04) in new
releases as of October
2021. Previous releases will
continue to be available.

Amazon Linux 10/07/2021 Amazon Linux is end-of-life
as of December 2020. There
are no longer updates to the
Deep Learning AMI (Amazon
Linux) in new releases as
of October 2021. Previous
releases of the Deep Learning
AMI (Amazon Linux) will
continue to be available.

Chainer 07/01/2020 Chainer has announced
the end of major releases
as of December, 2019.
Consequently, we will no
longer include Chainer Conda
environments on the DLAMI
starting July 2020. Previous
releases of the DLAMI that
contain these environments
will continue to be available.
We will provide updates to
these environments only
if there are security fixes
published by the open
source community for these
frameworks.

Python 3.6 06/15/2020 Due to customer requests, we
are moving to Python 3.7 for
new TF/MX/PT releases.

Python 2 01/01/2020 The Python open source
community has officially
ended support for Python 2.

The TensorFlow, PyTorch,
and MXNet communities

139

http://aws.amazon.com/blogs/aws/update-on-amazon-linux-ami-end-of-life/
https://chainer.org/announcement/2019/12/05/released-v7.html

Deep Learning AMI Developer Guide

Deprecated Feature Deprecation Date Deprecation Notice

have also announced that
TensorFlow 1.15, TensorFlow
2.1, PyTorch 1.4, and MXNet
1.6.0 releases will be the last
ones supporting Python 2.

140

Deep Learning AMI Developer Guide

Document History for AWS Deep
Learning AMI Developer Guide

update-history-change update-history-description update-history-date

Graviton DLAMI (p. 97) The AWS Deep Learning AMI
now supports images on Arm
processor-based Graviton GPUs.

November 29, 2021

Habana DLAMI (p. 104) The AWS Deep Learning AMI
now supports Habana Gaudi
hardware and the Habana
SynapseAI SDK.

October 25, 2021

TensorFlow 2 (p. 37) The Deep Learning AMI
with Conda now comes with
TensorFlow 2 with CUDA 10.

December 3, 2019

AWS Inferentia (p. 82) The Deep Learning AMI now
supports AWS Inferentia
hardware and the AWS Neuron
SDK.

December 3, 2019

Using TensorFlow Serving with
an Inception Model (p. 120)

An example for using inference
with an Inception model was
added for TensorFlow Serving,
for both with and without Elastic
Inference.

November 28, 2018

Training with 256 GPUs with
TensorFlow and Horovod (p. 55)

The TensorFlow with Horovod
tutorial was updated to add
an example of multiple-node
training.

November 28, 2018

Elastic Inference (p. 12) Elastic inference prerequisites
and related info was added to
the setup guide.

November 28, 2018

MMS v1.0 released on the
DLAMI. (p. 118)

The MMS tutorial was updated
to use the new model archive
format (.mar) and demonstrates
the new start and stop features.

November 15, 2018

Installing TensorFlow from a
Nightly Build (p. 36)

A tutorial was added that
covers how you can uninstall
TensorFlow, then install a nightly
build of TensorFlow on your
Deep Learning AMI with Conda.

October 16, 2018

Installing CNTK from a Nightly
Build (p. 31)

A tutorial was added that covers
how you can uninstall CNTK,

October 16, 2018

141

Deep Learning AMI Developer Guide

then install a nightly build of
CNTK on your Deep Learning
AMI with Conda.

Installing Apache MXNet
(Incubating) from a Nightly
Build (p. 28)

A tutorial was added that covers
how you can uninstall MXNet,
then install a nightly build of
MXNet on your Deep Learning
AMI with Conda.

October 16, 2018

Installing PyTorch from a Nightly
Build (p. 34)

A tutorial was added that covers
how you can uninstall PyTorch,
then install a nightly build of
PyTorch on your Deep Learning
AMI with Conda.

September 25, 2018

Docker is now pre-installed on
your DLAMI (p. 133)

Since v14 of the Deep Learning
AMI with Conda, Docker and
NVIDIA's version of Docker for
GPUs has been pre-installed.

September 25, 2018

TensorBoard Tutorial (p. 44) Example was moved to ~/
examples/tensorboard. Tutorial
paths updated.

July 23, 2018

MXBoard Tutorial (p. 41) A tutorial on how to use
MXBoard for visualization of
MXNet models was added.

July 23, 2018

Distributed Training
Tutorials (p. 45)

A tutorial on how to use Keras-
MXNet for multi-GPU training
was added. Chainer's tutorial
was updated to for v4.2.0.

July 23, 2018

Conda Tutorial (p. 22) The example MOTD was updated
to reflect a more recent release.

July 23, 2018

Chainer Tutorial (p. 46) The tutorial was updated to
use the latest examples from
Chainer's source.

July 23, 2018

Earlier Updates:

The following table describes important changes in each release of the AWS Deep Learning AMI before
July, 2018.

Change Description Date

TensorFlow with Horovod Added a tutorial for training
ImageNet with TensorFlow and
Horovod.

June 6, 2018

Upgrading guide Added the upgrading guide. May 15, 2018

New regions and new 10 minute
tutorial

New regions added: US West
(N. California), South America,
Canada (Central), EU (London),
and EU (Paris). Also, the first
release of a 10-minute tutorial

April 26, 2018

142

Deep Learning AMI Developer Guide

Change Description Date

titled: "Getting Started with
Deep Learning AMI".

Chainer tutorial A tutorial for using Chainer in
multi-GPU, single GPU, and
CPU modes was added. CUDA
integration was upgraded from
CUDA 8 to CUDA 9 for several
frameworks.

February 28, 2018

Linux AMIs v3.0, plus
introduction of MXNet Model
Server, TensorFlow Serving, and
TensorBoard

Added tutorials for Conda
AMIs with new model and
visualization serving capabilities
using MXNet Model Server
v0.1.5, TensorFlow Serving
v1.4.0, and TensorBoard v0.4.0.
AMI and framework CUDA
capabilities described in Conda
and CUDA overviews. Latest
release notes moved to https://
aws.amazon.com/releasenotes/

January 25, 2018

Linux AMIs v2.0 Base, Source, and Conda AMIs
updated with NCCL 2.1. Source
and Conda AMIs updated with
MXNet v1.0, PyTorch 0.3.0, and
Keras 2.0.9.

December 11, 2017

Two Windows AMI options
added

Windows 2012 R2 and 2016
AMIs released: added to AMI
selection guide and added to
release notes.

November 30, 2017

Initial documentation release Detailed description of change
with link to topic/section that
was changed.

November 15, 2017

143

https://aws.amazon.com/releasenotes/
https://aws.amazon.com/releasenotes/

Deep Learning AMI Developer Guide

AWS glossary
For the latest AWS terminology, see the AWS glossary in the AWS General Reference.

144

https://docs.aws.amazon.com/general/latest/gr/glos-chap.html

	Deep Learning AMI
	Table of Contents
	What Is the AWS Deep Learning AMI?
	About This Guide
	Prerequisites
	Example DLAMI Uses
	Features of the DLAMI
	Preinstalled Frameworks
	Preinstalled GPU Software
	Model Serving and Visualization

	Getting Started
	How to Get Started with the DLAMI
	Choosing Your DLAMI
	CUDA Installations and Framework Bindings
	Choose a DLAMI with CUDA
	Related Topics

	Deep Learning Base AMI
	Why to Choose the Base DLAMI
	Related Topics

	Deep Learning AMI with Conda
	Stable Versus Release Candidates
	Python 2 Deprecation
	CUDA Support
	Related Topics

	DLAMI CPU Architecture Options
	DLAMI Operating System Options

	Selecting the Instance Type for DLAMI
	Pricing for the DLAMI
	DLAMI Region Availability
	Recommended GPU Instances
	Recommended CPU Instances
	Recommended Inferentia Instances
	Recommended Habana Instances

	Launching and Configuring a DLAMI
	Step 1: Launch a DLAMI
	DLAMI ID
	EC2 Console
	Marketplace Search
	Step 2: Connect to the DLAMI
	Step 3: Secure Your DLAMI Instance
	Step 4: Test Your DLAMI
	Clean Up
	Set up a Jupyter Notebook Server
	Secure Your Jupyter Server
	Start the Jupyter notebook server
	Configure the Client to Connect to the Jupyter Server
	Configure a Windows Client
	Prepare
	Using Jupyter Notebooks from a Windows Client

	Configure a Linux or macOS Client

	Test by Logging in to the Jupyter notebook server

	Using a DLAMI
	Using the Deep Learning AMI with Conda
	Introduction to the Deep Learning AMI with Conda
	Log in to Your DLAMI
	Start the TensorFlow Environment
	Switch to the PyTorch Python 3 Environment
	Test Some PyTorch Code

	Switch to the MXNet Python 3 Environment
	Test Some MXNet Code

	Removing Environments

	Using the Deep Learning Base AMI
	Using the Deep Learning Base AMI
	Configuring CUDA Versions

	Running Jupyter Notebook Tutorials
	Navigating the Installed Tutorials
	Switching Environments with Jupyter

	Tutorials
	10 Minute Tutorials
	Activating Frameworks
	Apache MXNet (Incubating)
	Activating Apache MXNet (Incubating)
	Installing MXNet's Nightly Build (experimental)
	More Tutorials

	Caffe2
	Caffe2 Tutorial
	More Tutorials

	Chainer
	More Info

	CNTK
	Activating CNTK
	Install the CNTK Nightly Build (experimental)
	More Tutorials

	Keras
	Keras Tutorial
	More Tutorials

	PyTorch
	Activating PyTorch
	Install PyTorch's Nightly Build (experimental)
	More Tutorials

	TensorFlow
	Activating TensorFlow
	Install TensorFlow's Nightly Build (experimental)
	More Tutorials

	TensorFlow 2
	Activating TensorFlow 2
	Install TensorFlow 2's Nightly Build (experimental)
	More Tutorials

	TensorFlow with Horovod
	More Info

	TensorFlow 2 with Horovod
	More Info

	Theano
	Theano Tutorial
	More Tutorials

	Debugging and Visualization
	MXBoard
	Using MXNet with MXBoard
	More Info

	TensorBoard
	Train an MNIST Model and Visualize the Training with TensorBoard
	More Info

	Distributed Training
	Chainer
	Training a Model with Chainer
	Use Chainer to Train on Multiple GPUs
	Use Chainer to Train on a Single GPU
	Use Chainer to Train with CPUs
	Graphing Results
	Testing Chainer
	More Info

	Keras with MXNet
	Keras-MXNet Multi-GPU Training Tutorial
	More Info

	TensorFlow with Horovod
	Activate and Test TensorFlow with Horovod
	Configure Your Horovod Hosts File
	Train with Synthetic Data
	Prepare the ImageNet Dataset
	Train a ResNet-50 ImageNet Model on a Single DLAMI
	Train a ResNet-50 ImageNet Model on a Cluster of DLAMIs
	Troubleshooting
	More Info

	Elastic Fabric Adapter
	Launching a AWS Deep Learning AMI Instance With EFA
	Prepare an EFA Enabled Security Group
	Launch Your Instance
	Verify EFA Attachment
	From the Console
	From the Instance
	Verify Security Group Configuration

	Using EFA on the DLAMI
	Running Multi-Node Applications with EFA
	Enable Passwordless SSH
	Create Hosts File
	2-Node NCCL Plugin Check
	P3dn.24xlarge check
	Multi-node NCCL Performance Test on P3dn.24xlarge

	P4d.24xlarge check
	Multi-node NCCL Performance Test on P4d.24xlarge

	GPU Monitoring and Optimization
	Monitoring
	Monitor GPUs with CloudWatch
	Configure metrics with the AWS CloudWatch agent (Recommended)
	Prerequisites
	Configure minimal GPU metrics
	Configure partial GPU metrics
	Configure all available GPU metrics
	Configure custom GPU metrics
	Create a custom configuration file
	Configure metrics with your custom file

	Security patching for the AWS CloudWatch agent
	Amazon Linux 2
	Ubuntu

	Configure metrics with the preinstalled gpumon.py script

	Optimization
	Preprocessing
	Training

	The AWS Inferentia Chip With DLAMI
	Launching a DLAMI Instance with AWS Neuron
	Verify Your Instance
	Identifying AWS Inferentia Devices
	View Resource Usage
	Using Neuron Monitor (neuron-monitor)
	Upgrading Neuron Software

	Using the DLAMI with AWS Neuron
	Using TensorFlow-Neuron and the AWS Neuron Compiler
	Prerequisites
	Activate the Conda environment
	Resnet50 Compilation
	ResNet50 Inference

	Using AWS Neuron TensorFlow Serving
	Prerequisites
	Activate the Conda environment
	Compile and Export the Saved Model
	Serving the Saved Model
	Generate inference requests to the model server

	Using MXNet-Neuron and the AWS Neuron Compiler
	Prerequisites
	Activate the Conda Environment
	Resnet50 Compilation
	ResNet50 Inference

	Using MXNet-Neuron Model Serving
	Prerequisites
	Activate the Conda Environment
	Download the Example Code
	Compile the Model
	Run Inference

	Using PyTorch-Neuron and the AWS Neuron Compiler
	Prerequisites
	Activate the Conda Environment
	Resnet50 Compilation
	ResNet50 Inference

	The Graviton DLAMI
	Select a Graviton DLAMI
	Get Started
	Using the Graviton GPU DLAMI
	Check GPU Status
	Check CUDA Version
	Verify Docker
	TensorRT
	Run CUDA Samples

	Using the Graviton GPU TensorFlow DLAMI
	Verify TensorFlow Serving Availability
	Verify TensorFlow and TensorFlow Serving API Availability
	Run Example Inference with TensorFlow Serving

	Using the Graviton GPU PyTorch DLAMI
	Verify PyTorch Python Environment
	Run Training Sample with PyTorch
	Run Inference Sample with PyTorch

	The Habana DLAMI
	Launching a Habana DLAMI
	Select a Habana DLAMI
	Activate Python Environment
	Import Machine Learning Framework
	Import TensorFlow
	Import PyTorch

	Inference
	Inference with Frameworks
	Inference Tools
	Use Apache MXNet (Incubating) for Inference with an ONNX Model
	Use Apache MXNet (Incubating) for Inference with a ResNet 50 Model
	Use CNTK for Inference with an ONNX Model

	Using Frameworks with ONNX
	About ONNX
	Apache MXNet to ONNX to CNTK Tutorial
	ONNX Overview
	ONNX Prerequisites
	Convert an Apache MXNet (incubating) Model to ONNX, then Load the Model into CNTK
	ONNX Tutorials

	Chainer to ONNX to CNTK Tutorial
	ONNX Overview
	ONNX Prerequisites
	Convert a Chainer Model to ONNX, then Load the Model into CNTK
	ONNX Tutorials

	Chainer to ONNX to MXNet Tutorial
	ONNX Overview
	ONNX Prerequisites
	Convert a Chainer Model to ONNX, then Load the Model into MXNet
	ONNX Tutorials

	PyTorch to ONNX to CNTK Tutorial
	ONNX Overview
	ONNX Prerequisites
	Convert a PyTorch Model to ONNX, then Load the Model into CNTK
	ONNX Tutorials

	PyTorch to ONNX to MXNet Tutorial
	ONNX Overview
	ONNX Prerequisites
	Convert a PyTorch Model to ONNX, then Load the Model into MXNet
	ONNX Tutorials

	Model Serving
	Model Server for Apache MXNet (MMS)
	Serve an Image Classification Model on MMS
	Other Examples
	More Info

	TensorFlow Serving
	Serve a Pretrained Inception Model
	Train and Serve an MNIST Model
	More Features and Examples

	TorchServe
	Serve an Image Classification Model on TorchServe

	Upgrading Your DLAMI
	Upgrading to a New DLAMI Version
	Tips for Software Updates

	Security in AWS Deep Learning AMI
	Data Protection in AWS Deep Learning AMI
	Identity and Access Management in AWS Deep Learning AMI
	Authenticating With Identities
	AWS account root user
	IAM Users and Groups
	IAM Roles

	Managing Access Using Policies
	Identity-Based Policies
	Resource-Based Policies
	Access Control Lists (ACLs)
	Other Policy Types
	Multiple Policy Types

	IAM with Amazon EMR

	Logging and Monitoring in AWS Deep Learning AMI
	Usage Tracking

	Compliance Validation for AWS Deep Learning AMI
	Resilience in AWS Deep Learning AMI
	Infrastructure Security in AWS Deep Learning AMI

	Related Information
	Forums
	Related Blog Posts
	FAQ

	Release Notes for DLAMI
	Single-framework DLAMI
	Multi-framework DLAMI
	GPU DLAMI
	Habana DLAMI
	Base DLAMI

	DLAMI deprecation notices
	Document History for AWS Deep Learning AMI Developer Guide
	AWS glossary

