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Deep learning and process understanding 
for data-driven Earth system science
Markus Reichstein1,2*, Gustau Camps-Valls3, Bjorn Stevens4, Martin Jung1, Joachim Denzler2,5, Nuno Carvalhais1,6 & Prabhat7

Machine learning approaches are increasingly used to extract patterns and insights from the ever-increasing stream of 
geospatial data, but current approaches may not be optimal when system behaviour is dominated by spatial or temporal 
context. Here, rather than amending classical machine learning, we argue that these contextual cues should be used as 
part of deep learning (an approach that is able to extract spatio-temporal features automatically) to gain further process 
understanding of Earth system science problems, improving the predictive ability of seasonal forecasting and modelling 
of long-range spatial connections across multiple timescales, for example. The next step will be a hybrid modelling 
approach, coupling physical process models with the versatility of data-driven machine learning.

H umans have always striven to predict and understand the world, 
and the ability to make better predictions has given competi-
tive advantages in diverse contexts (such as weather, diseases or 

financial markets). Yet the tools for prediction have substantially changed 
over time, from ancient Greek philosophical reasoning to non-scientific 
medieval methods such as soothsaying, towards modern scientific dis-
course, which has come to include hypothesis testing, theory develop-
ment and computer modelling underpinned by statistical and physical 
relationships, that is, laws1. A success story in the geosciences is weather 
prediction, which has greatly improved through the integration of better 
theory, increased computational power, and established observational 
systems, which allow for the assimilation of large amounts of data into the 
modelling system2. Nevertheless, we can accurately predict the evolution 
of the weather on a timescale of days, not months. Seasonal meteorolog-
ical predictions, forecasting extreme events such as flooding or fire, and 
long-term climate projections are still major challenges. This is especially 
true for predicting dynamics in the biosphere, which is dominated by 
biologically mediated processes such as growth or reproduction, and is 
strongly controlled by seemingly stochastic disturbances such as fires and 
landslides. Such predictive problems have not seen much progress in the 
past few decades3.

At the same time, a deluge of Earth system data has become available, 
with storage volumes already well beyond dozens of petabytes and rapidly 
increasing transmission rates exceeding hundreds of terabytes per day4. 
These data come from a plethora of sensors measuring states, fluxes and 
intensive or time/space-integrated variables, representing fifteen or more 
orders of temporal and spatial magnitude. They include remote sensing 
from a few metres to hundreds of kilometres above Earth as well as in situ 
observations (increasingly from autonomous sensors) at and below the 
surface and in the atmosphere, many of which are further being comple-
mented by citizen science observations. Model simulation output adds to 
this deluge; the CMIP-5 dataset of the Climate Model Intercomparison 
Project, used extensively for scientific groundwork towards periodic  
climate assessments, is over 3 petabytes in size, and the next generation, 
CMIP-6, is estimated to reach up to 30 petabytes5. The data from models 
share many of the challenges and statistical properties of observational 
data, including many forms of uncertainty. In summary, Earth system 
data are exemplary of all four of the ‘four Vs’ of ‘big data’: volume, velocity, 

variety and veracity (see Fig. 1). One key challenge is to extract interpret-
able information and knowledge from this big data, possibly almost in 
real time and integrating between disciplines.

Taken together, our ability to collect and create data far outpaces our 
ability to sensibly assimilate it, let alone understand it. Predictive ability in 
the last few decades has not increased apace with data availability. To get 
the most out of the explosive growth and diversity of Earth system data, 
we face two major tasks in the coming years: (1) extracting knowledge 
from the data deluge, and (2) deriving models that learn much more 
from data than traditional data assimilation approaches can, while still 
respecting our evolving understanding of nature’s laws.

The combination of unprecedented data sources, increased computa-
tional power, and the recent advances in statistical modelling and machine 
learning offer exciting new opportunities for expanding our knowledge 
about the Earth system from data. In particular, many tools are available 
from the fields of machine learning and artificial intelligence, but they 
need to be further developed and adapted to geo-scientific analysis. Earth 
system science offers new opportunities, challenges and methodological  
demands, in particular for recent research lines focusing on spatio- 
temporal context and uncertainties (Box 1; see https://developers.
google.com/machine-learning/glossary/ and http://www.wildml.com/
deep-learning-glossary/ for more complete glossaries).

In the following sections we review the development of machine learn-
ing in the geoscientific context, and highlight how deep learning—that 
is, the automatic extraction of abstract (spatio-temporal) features—has 
the potential to overcome many of the limitations that have, until now, 
hindered a more wide-spread adoption of machine learning. We further 
lay out the most promising but also challenging approaches in combining 
machine learning with physical modelling.

State-of-the-art geoscientific machine learning
Machine learning is now a successful part of several research-driven 
and operational geoscientific processing schemes, addressing the 
atmosphere, the land surface and the ocean, and has co-evolved with 
data availability over the past decade. Early landmarks in classifica-
tion of land cover and clouds emerged almost 30 years ago through 
the coincidence of high-resolution satellite data and the first revival 
of neural networks6,7. Most major machine learning methodological 
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development (for example, kernel methods or ‘random forests’) has 
subsequently been applied to geoscience and remote sensing problems, 
often when data suitable for pertinent methods became available8. 
Thus, machine learning has become a universal approach in geoscien-
tific classification, and change- and anomaly-detection problems9–12. In 
the past few years, geoscience has begun to use deep learning to better 
exploit spatial and temporal structures in the data, features that would 
normally be problematic for traditional machine learning to extract 
(see Table 1, and below).

Another class of problem where machine learning has been success-
ful is regression. An example is soil mapping, where measurements 
of soil properties and covariates exist at points sparsely distributed in 
space, and where a ‘random forest’, a popular and efficient machine 
learning approach, is used to predict spatially dense estimates of soil 
properties or soil types13,14. In the past decade, machine learning has 
attained outstanding results in the regression estimation of biogeo-
physical parameters from remotely sensed reflectances at local and 
global scales15–17. These approaches emphasize spatial prediction, that 
is, prediction of properties that are relatively static over the observa-
tional time period.

Yet what makes the Earth system interesting is that it is not static, 
but dynamic. Machine learning regression techniques have also been 
used to study these dynamics by mapping temporally varying features 
onto temporally varying target variables in land, ocean and atmos-
phere domains. Since variables such as land–atmosphere or ocean– 
atmosphere carbon uptake cannot be observed everywhere, one challenge  
has been to infer continental or global estimates from point obser-
vations, by building models that relate climate and remote-sensing  
co-variates to the target variables. In this context, machine learning  
methods have proved more powerful and flexible than previous 
mechanistic or semi-empirical modelling approaches. For instance, 
an artificial neural network with one hidden layer was able to filter 
out noise, predict the diurnal and seasonal variation of carbon dioxide  
(CO2) fluxes, and extract patterns such as an increased respiration 
in spring during root growth, which was formerly unquantified and 
not well represented in carbon cycle models18. Further developments 
have then allowed us to quantify global terrestrial photosynthesis and 
evapotranspiration of water in a purely data-driven way19,20. Spatial, 

seasonal, interannual or decadal variations of such machine-learning- 
predicted fluxes are even being used as important benchmarks for physical  
land-surface and climate model evaluation21–24. Similarly, ocean CO2 
concentrations and fluxes have been mapped spatio-temporally with 
neural networks, where classification and regression approaches have 
been combined, both for stratifying the data and for prediction25. 
Recently the random forest method has also been used to predict 
spatio-temporally varying precipitation26. Overall, we conclude that a 
diversity of influential machine learning approaches have already been 
applied across all the major sub-domains of Earth system science and 
are increasingly being integrated into operational schemes and being 
used to discover patterns, to improve our understanding and to evaluate 
comprehensive physical models.

Notwithstanding the success of machine learning in the geosciences, 
important caveats and limitations have hampered its wider adoption 
and impact. A few pitfalls such as the risk of naive extrapolation,  
sampling or other data biases, ignorance of confounding factors, inter-
pretation of statistical association as causal relation, or fundamental 
flaws in multiple hypothesis testing (‘P-fishing’)27–29 should be avoided 
by best practice and expert intervention. More fundamentally, there 
are inherent limitations of machine learning approaches as applied at 
present. It is in this realm that the techniques of deep learning promise 
breakthroughs.

Classical machine learning approaches benefit from domain-specific, 
hand-crafted features to account for dependencies in time or space (for 
example, cumulative precipitation derived from a daily time series), but 
rarely exploit spatio-temporal dependencies exhaustively. For instance, 
in ocean–atmosphere or land–atmosphere CO2 flux prediction19,25, 
mapping of instantaneous, local environmental conditions (such as 
radiation, temperature and humidity) to instantaneous fluxes is per-
formed. In reality, processes at a certain point in time and space are 
almost always additionally affected by the state of the system, which is 
often not well observed and thus not available as a predictor. However, 
previous time steps and neighbouring grid cells contain hidden infor-
mation on the state of the system (for example, a long period without 
rainfall combined with sustained sunny days implies a drought). One 
example where both spatial and temporal context are highly relevant 
is the prediction of fire occurrence and characteristics such as burnt 
area and trace gas emissions. Fire occurrence and spread depends not 
only on instantaneous climatic drivers and sources of ignition (such 
as humans, lightning or both) but also on state variables, such as the 
state and amount of available fuel3. Fire spread and thus the burned 
area depends not only on the local conditions of each pixel but also on 
the spatial arrangement and connectivity of fuel, its moisture, terrain 
properties, and of course wind speed and direction. Similarly, classi-
fying a certain atmospheric situation as a hurricane or extratropical  
storm requires knowledge of the spatial context such as a storm’s 
geometry as constituted by pixels, their values, and their topology. For 
instance, detecting symmetric outflow and a visible ‘eye’ is important 
for detecting hurricanes and assessing their strength, and this cannot 
be determined by localized, single-pixel values alone.

Certainly, temporally dynamic properties (‘memory effects’) can be 
represented by hand-designed and domain-specific features in machine 
learning. Examples are cumulative sums of daily temperature, which are 
used to predict phenological phases of vegetation, and the standardized 
precipitation index30, which summarizes precipitation anomalies over 
the last months as a meteorological indicator of drought states. Very 
often, these approaches only consider memory in a single variable, 
ignoring the interactive effects of several variables, although excep-
tions exist22,31.

Machine learning can also use hand-designed features, such as  
terrain shape and topographical or texture features from satellite 
images, to incorporate spatial context6. This is analogous to earlier 
approaches in computer vision where objects were often characterized  
by a set of features describing edges, textures, shapes and colours. 
Such features were then fed into a standard machine learning algo-
rithm for localization, classification or detection of objects in images. 
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Fig. 1 | Big data challenges in the geoscientific context. Data size now 
exceeds 100 petabytes, and is growing quasi-exponentially (tapering of 
the figure to the right indicates decreasing data size.) The speed of change 
exceeds 5 petabytes a year; data are taken at frequencies of up to 10 Hz or 
more; reprocessing and versioning are common challenges. Data sources 
can be one- to four-dimensional, spatially integrated, from the organ level 
(such as leaves) to the global level. Earth has diverse observational systems, 
from remote sensing to in situ observation. The uncertainty of data can 
stem from observational errors or conceptual inconsistencies.
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Similar approaches have been followed for decades in remote-sensing 
image classification8–10. Hand-designed features can be seen both as an 
advantage (control of the explanatory drivers) and as a disadvantage  
(tedious, ad hoc process, probably non-optimal), but certainly the  
concerns related to the use of a restricted and subjective choice of fea-
tures rather than an extensive and generic approach remain valid and 
important. New developments in deep learning, however, no longer 
limit us to such approaches.

Deep learning opportunities in Earth system science
Deep learning has achieved notable success in modelling ordered 
sequences and data with spatial context in the fields of computer 
vision, speech recognition and control systems32, as well as in related 
scientific fields in physics33–35, chemistry36 and biology37 (see also  

ref. 38). Applications to problems in geosciences are in their infancy, 
but across the key problems (classification, anomaly detection, regres-
sion, space- or time-dependent state prediction) there are promising 
examples (see Table 1 and Supplementary Fig. 2)39,40. Two recent 
studies demonstrate the application of deep learning to the problem 
of extreme weather, for instance hurricane detection41,42—already 
mentioned as problematic for traditional machine learning to per-
form. The studies report success in applying deep learning archi-
tectures to objectively extract spatial features to define and classify 
extreme situations (for example, storms, atmospheric rivers) in 
numerical weather prediction model output. Such an approach ena-
bles rapid detection of such events and forecast simulations without 
using either subjective human annotation or methods that rely on 
predefined arbitrary thresholds for wind speed or other variables. 

Box 1 
Definition of terms
Term Explanation

Artificial intelligence, machine 
learning and deep learning

Artificial intelligence is the capacity of an algorithm to assimilate information to perform tasks that are characteristic of 
human intelligence, such as recognizing objects and sounds, contextualizing language, learning from the environment, and 
problem solving.
Machine learning is a field of statistical research for training computational algorithms that split, sort and transform a set of 
data to maximize the ability to classify, predict, cluster or discover patterns in a target dataset.
Deep learning refers to machine learning algorithms that construct hierarchical architectures of increasing sophistication. 
Artificial neural networks with many layers are examples of deep learning algorithms.

Bayesian inference Bayesian inference is a framework in statistics and machine learning that develops methods for data analysis in which 
observational evidence is used to update the probability that an hypothesis is true. The framework is mostly concerned about 
treating uncertainty, encoding prior beliefs and estimating error propagation when dealing with data and models.

Causal inference Causal inference links events, processes or properties in a system via a cause-and-effect connection. Recent observational 
causal inference algorithms attempt to discover causal relationships in observational data.

Convolution Convolution is one of the most important operations in signal and image processing, and it can operate in objects that are 
one-dimensional (for example, speech), two-dimensional (for example, images) or three-dimensional (for example, video). 
A convolutional filter is essentially a weighting vector/matrix/cube that uses a sliding-window approach. Depending on the 
kernel structure, the convolution enhances some features of the data, such as edges, trends or flat regions. Convolution is 
embedded in convolutional neural networks at the neuron level, which extracts useful features from the previous layers.

Differentiable programming Differentiable programming refers to a programming paradigm to generate code that is automatically differentiated, such that 
its parameters can be seamlessly optimized. It generalizes current deep learning frameworks to arbitrary programs, which 
may include the hybrid modelling approaches that we discuss in ‘Integration with physical modelling’.

Feedforward versus recurrent 
networks

An artificial neural network is a computational algorithm that simulates how signals are transferred between a network of 
neurons, via synapses. In an artificial neural network, information is transferred only in the forward direction, whereas in a 
recurrent artificial neural network the information can cycle or loop between the different nodes, creating complex dynamics 
such as memory, as seen in data.

Generative adversarial 
networks

This is a family of unsupervised machine learning methods widely used to generate realistic samples from an unknown  
probability density function. Generative adversarial networks are formed by a neural network that generates plausible  
examples; these examples are then used to attempt to fool a discriminator network that should discern real from fake examples.

Memory effects This is a metaphorical term meaning that the current behaviour of a system cannot be explained without considering the 
effect of past states or forcing variables.

Nowcasting and forecasting To forecast a certain variable means to establish a prediction of its value in the future, days to centuries from now. Nowcasting 
refers to making that prediction for a very near future (for example, predicting whether it is going to rain in a couple of hours).

Probabilistic programming Probabilistic programming is a method of defining probabilistic models using a unified high-level programming language. 
Statistical inference is automatically achieved by built-in inference machines, freeing the developer from the difficulties of 
high-performance probabilistic inference.

Radiative transfer models These are mathematical models that describe how radiation at different wavelengths (such as visible light) propagates 
through different media (such as the atmosphere or a vegetation canopy) by simulating absorption, emission, transmission 
and scattering processes.

Remote sensing Most remote sensing deals with measuring the radiance at different wavelengths reflected or emitted from an object or 
surface. Remote sensing uses satellite or airborne sensors to detect and classify objects as well as to estimate geoscientific 
variables of interest (temperature, salinity or carbon dioxide concentrations), based on propagated reflectance signals (such 
as electromagnetic radiation).

Supervised and unsupervised 
learning

In supervised learning an algorithm learns the input-to-output relationship after being provided both the inputs and the 
respective outputs. For example, the input might be a set of photos and the output might be a set of corresponding labels. In 
unsupervised learning the algorithm does not have access to the output, so the goal is to infer the underlying structure of the 
data. For example, the algorithm could automatically separate pictures with different statistical or semantic properties (such 
as a set of images of cats and dogs).

Teleconnections Teleconnections refer to climate anomalies related to each other at large distances (typically thousands of kilometres).  
Quantifying teleconnection patterns allows the prediction of key patterns on Earth, which are distant in space and time.  
For example, predicting an El Niño event enables prediction of North American rainfall, snowfall, droughts or temperature 
patterns with lead times of a few weeks to months.
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In particular, such an approach uses the information in the spatial 
shape of events, such as the typical spiral of hurricanes. Similarly, for 
classification of urban areas the automatic extraction of multi-scale 
features from remote-sensing data strongly improved the classifica-
tion accuracy (to almost always greater than 95%)43.

While deep learning approaches have classically been divided into 
spatial learning (for example, convolutional neural networks for 
object classification) and sequence learning (for example, speech 
recognition), there is a growing interest in blending these two 
perspectives. A prototypical example is video and motion predic-
tion44,45, a problem that has striking similarities to many dynamic 
geoscience problems. Here we are faced with time-evolving multi- 
dimensional structures, such as organized precipitating convection,  
which dominates patterns of tropical rainfall, and vegetation 
states that influence the flow of carbon and evapotranspiration. 
Studies are beginning to apply combined convolutional–recurrent 
approaches to geoscientific problems such as precipitation nowcast-
ing (Table 1)46. Modelling atmospheric and ocean transport, fire 
spread, soil movements or vegetation dynamics are other examples 
of problems where spatio-temporal dynamics are important, but 
that have yet to benefit from a concerted effort to apply these new 
approaches.

In short, the similarities between the types of data addressed with  
classical deep learning applications and geoscientific data make a 
compelling argument for the integration of deep learning into the 
geosciences (Fig. 2). Images are analogous to two-dimensional data 
fields containing particular variables in analogy to colour triplets 
(RGB values) in photographs, while videos can be linked to a sequence 
of images and hence to two-dimensional fields that evolve over time. 
Similarly, natural language and speech signals share the same multi- 
resolution characteristics of dynamic time series of Earth system  
variables. Furthermore, classification, regression, anomaly detection, 
and dynamic modelling are typical problems in both computer vision 
and the geosciences.

Deep-learning challenges in Earth system science
The similarities between classical deep learning applications and  
geoscience applications outlined above are striking. Yet numerous  

differences exist. For example, while classical computer vision  
applications deal with photos which have three channels (red, green, 
blue) hyperspectral satellite images extend to hundreds of spectral 
channels well beyond the visible range, which often induce differ-
ent statistical properties to those of natural images. This includes 
spatial dependence and interdependence of variables, violating the 
important assumption of identically, independently distributed data. 
Additionally, integrating multi-sensor data is not trivial since different  
sensors exhibit different imaging geometries, spatial and temporal  
resolution, physical meaning, content and statistics. Sequences of 
(multi-sensor) satellite observations also come with diverse noise 
sources, uncertainty levels, missing data and (often systematic) gaps 
(owing to the presence of clouds or snow, distortions in acquisition, 
storage and transmission, and so on).

In addition, spectral, spatial and temporal dimensionalities raise 
computational challenges. Data volume is increasing and soon it will 
be necessary to deal with petabytes per day globally. At present, the 
biggest meteorological agencies have to process terabytes per day in 
near real time, often at very high (32-bit, 64-bit) precision. Further, 
while typical computer vision applications have worked with image 
sizes of 512 × 512 pixels, a moderate-resolution (around 1 km) global 
field has sizes of approximately 40,000 × 20,000 pixels, that is, three 
orders of magnitude more.

Last but not least, unlike on ImageNet (a database of human-labelled 
images, with labels like, for example, ‘cat’ or ‘dog’47), large, labelled  
geoscientific datasets do not always exist in geoscience, not only 
because of the sizes of the datasets involved, but also owing to the con-
ceptual difficulty in labelling datasets; for example, determining that 
an image depicts a cat is much easier than determining that a dataset  
reflects a drought, given that droughts are contingent on intensity 
and extent and can change according to the methods used to collect 
and analyse the data, and that there are not enough labelled cases for 
training a machine learning system. Besides the challenge of working 
with a limited training set, geoscientific problems are often under-
constrained, leading to the possibility of models thought to be of high 
quality, which perform well in training and even test datasets, but 
deviate strongly for situations and data outside their valid domain 
(the extrapolation problem), which is true even for complex physical 

Table 1 | Conventional approaches and deep learning approaches to geoscientific tasks
Analytical task Scientific task Conventional approaches Limitations of conventional approaches Emergent or potential approaches

Classification and anomaly detection

Finding extreme weather 
patterns

Multivariate, threshold-based 
detection

Heuristic approach, ad hoc criteria 
used

Supervised and semi-supervised  
convolutional neural networks41,42

Land-use and change 
detection

Pixel-by-pixel spectral  
classification

Shallow spatial context used, or none Convolutional neural networks43

Regression

Predict fluxes from  
atmospheric conditions

Random forests, kernel 
methods, feedforward neural 
networks

Memory and lag effects not  
considered

Recurrent neural networks, long- 
short-term-memories (LSTMs)89,99,100

Predict vegetation properties 
from atmospheric conditions

Semi-empirical algorithms  
(temperature sums, water 
deficits)

Prescriptive in terms of functional 
forms and dynamic assumptions

Recurrent neural networks90, possibly 
with spatial context

Predict river runoff in  
ungauged catchments

Process models or statistical 
models with hand-designed 
topographic features91

Consideration of spatial context  
limited to hand-designed features

Combination of convolutional neural 
network with recurrent networks

State prediction

Precipitation nowcasting Physical modelling with data 
assimilation

Computational limits due to resolution,  
data used only to update states

Convolutional–LSTM nets short-range 
spatial context92

Downscaling and bias- 
correcting forecasts

Dynamic modelling and  
statistical approaches

Computational limits, subjective 
feature selection

Convolutional nets72, conditional 
generative adversarial networks 
(cGANs)53,93,101

Seasonal forecasts Physical modelling with initial 
conditions from data

Fully dependent on physical model, 
current skill relatively weak

Convolutional–LSTM nets with  
long-range spatial context

Transport modelling Physical modelling of transport Fully dependent on physical model, 
computational limits

Hybrid physical–convolutional network 
models68,94

1 9 8  |  N A T U RE   |  V O L  5 6 6  |  1 4  F E B R U A R Y  2 0 1 9



Perspective RESEARCH

Earth system models48. Overall, we identify five major challenges and 
avenues for the successful adoption of deep learning approaches in 
the geosciences, as follows.

(1) Interpretability
Improving predictive accuracy is important but insufficient. 
Certainly, interpretability and understanding are crucial, including 
visualization of the results for analysis by humans. Interpretability 
has been identified as a potential weakness of deep neural networks, 
and achieving it is a current focus in deep learning49. The field is 
still far from achieving self-explanatory models, and also far from 
causal discovery from observational data50,51. Yet we should note that, 

given their complexity, modern Earth system models are in practice 
often also not easily traceable back to their assumptions, limiting 
their interpretability too.

(2) Physical consistency
Deep learning models can fit observations very well, but predictions 
may be physically inconsistent or implausible, owing to extrapo-
lation or observational biases, for example. Integration of domain 
knowledge and achievement of physical consistency by teaching 
models about the governing physical rules of the Earth system can 
provide very strong theoretical constraints on top of the observa-
tional ones.

a
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Super-resolution and fusion

Video prediction

Language translation

Pattern classification
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Fig. 2 | Four examples of typical deep learning applications (left 
panels) and the geoscientific problems they can be applied to (right 
panels). a, Object recognition in images links to classification of 
extreme weather patterns using a unified convolutional neural network 
on climate simulation data41. b, Super-resolution applications relate to 
statistical downscaling of climate model output72. c, Video prediction is 

similar to short-term forecasting of Earth system variables. Right image, 
courtesy of Sujan Koirala and Paul Bodesheim, Max Planck Institute for 
Biogeochemistry. d, Language translation links to modelling of dynamic 
time series (ref. 96 and figure 11 in ref. 97). Left image, courtesy of Stephen 
Merity (figure 1 in https://smerity.com/articles/2016/google_nmt_arch.
html).
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(3) Complex and uncertain data
Deep learning methods are needed to cope with complex statistics, 
multiple outputs, different noise sources and high-dimensional spaces. 
New network topologies that not only exploit local neighbourhood 
(even at different scales), but also long-range relationships (for example, 
for teleconnections) are urgently needed, but the exact cause-and-effect 
relations between variables are not clear in advance and need to be  
discovered. Modelling uncertainties will be certainly an important aspect 
and will require concepts from Bayesian/probabilistic inference to be 
integrated, directly addressing such uncertainties (see Box 1 and ref. 52).

(4) Limited labels
Deep learning methods are needed to learn from few labelled exam-
ples while exploiting the wealth of information in related unlabelled 
observations. These methods include unsupervised density modelling, 
feature extraction, semi-supervised learning and domain adaptation53 
(see Box 1).

(5) Computational demand
There is a huge technical challenge regarding the high computational 
cost of current geoscience problems—an excellent example of how to 
address this is Google’s Earth Engine, which allowed the solution of real 
problems from deforestation54 to lake55 monitoring and is expected to 
follow up with deep learning applications in the future.

By addressing these challenges, deep learning could make an even 
bigger difference in the geosciences than in classical computer vision, 
because in computer vision hand-crafted features are derived from a 
clear understanding of the world (existence of surfaces, boundaries 
between objects, and so on), the mapping from the world to images, 
and assumptions about the (visual) appearance of world points (surface 
points) on two-dimensional images. Assumptions for successful pro-
cessing include the assumption of Lambertian surfaces (that is, intensity 
does not depend on the angle between surface and light source), which 
results in the classical assumption of the constant intensity of the obser-
vation of a three-dimensional point over time. In addition, changes in 
the world (the motion of objects) are in most cases modelled as rigid 
transformations, or non-rigid transformations that arise from physical 
assumptions and that are only valid locally (such as in registration of 
brain structures, before and after removal of a tumour). Even complex 
problems in computer vision have been solved by hand-crafted features 
that reflect the assumptions and expectations that arise from common 
world knowledge. In geoscience and climate science, such global, gen-
eral knowledge is still partly missing, and indeed, is exactly what we are 
seeking in research (hence, it cannot be an assumption). All problems, 
from segmentation in remote-sensing images to regression analysis of 
certain variables, have certain assumptions that are known to be valid 
or at least good approximations. Yet the less well processes are under-
stood, the fewer high-quality hand-crafted features for modelling can be 
expected to exist. Thus, deep learning methods, particularly since they 
find a good representation from data, represent an opportunity with 
which to tackle geoscience and climate research problems.

The most promising near-future applications include nowcasting (that 
is, prediction of the very near future, up to two hours in meteorology) 
and forecasting applications, anomaly detection and classification based 
on spatial and temporal context information (see examples in Table 1). A 
longer-term vision includes data-driven seasonal forecasting, modelling 
of spatial long-range correlations across multiple timescales, modelling 
spatial dynamics where spatial context is important (for example, fires), 
and detecting teleconnections and connections between variables that 
a human may not have thought about.

We infer that deep learning will soon be the leading method for clas-
sifying and predicting space-time structures in the geosciences. More 
challenging is to gain understanding in addition to optimal prediction, 
and to achieve models that have maximally learned from data, while still 
taking into account physical and biological knowledge. One promising 
but largely uncharted approach to achieving this goal is the integration 
of machine learning with physical modelling, which we discuss next.

Integration with physical modelling
Historically, physical modelling and machine learning have often been 
treated as two different fields with very different scientific paradigms 
(theory-driven versus data-driven). Yet, in fact these approaches are 
complementary, with physical approaches in principle being directly 
interpretable and offering the potential of extrapolation beyond 
observed conditions, whereas data-driven approaches are highly  
flexible in adapting to data and are amenable to finding unexpected 
patterns (surprises). The synergy between the two approaches has been 
gaining attention56–58, expressed in benchmarking initiatives59,60 and 
in concepts such as emergent constraints27,61,62.

Here we argue that advances in machine learning and in obser-
vational and simulation capabilities within Earth sciences offer an 
opportunity to integrate simulation and data science approaches 
more intensively in multiple ways. From a systems modelling point of 
view there are five points of potential synergy (see Fig. 3, in which the  
numbered circles correspond to the following numbered list).

(1) Improving parameterizations
See Fig. 3 (circle 1). Physical models require parameters, but many of 
those cannot be easily derived from first principles. Machine learning 
can learn parameterizations to optimally describe the ground truth 
that can be observed or generated from detailed and high-resolution 
models through first principles. For example, instead of assigning 
parameters of the vegetation in an Earth system model to plant func-
tional types (a common ad hoc decision in most global land surface 
models), one can allow these parameterizations to be learned from 
appropriate sets of statistical covariates, allowing them to be more 
dynamic, interdependent and contextual. A prototypical approach has 
been taken already in hydrology where the mapping of environmental 
variables (for example, precipitation and surface slope) to catchment 
parameters (such as mean, minimum and maximum streamflow) has 
been learned from a few thousand catchments and applied globally to 
feed hydrological models63. Another example from global atmospheric 
modelling is learning the effective coarse-scale physical parameters 
of precipitating convection (for example, the fraction of water that 
is precipitating out of a cloud during convection) from data or high- 
resolution models64,65 (the high-resolution models are too expen-
sive to run, which is why coarse-scale parametrizations are needed). 
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These learned parametrizations could lead to better representations of  
tropical convection66,67.

(2) Replacing a ‘physical’ sub-model with a machine learning 
model
See Fig. 3 (circle 2). If formulations of a submodel are of semi-empirical 
nature, where the functional form has little theoretical basis (for example,  
biological processes), this submodel can be replaced by a machine 
learning model if a sufficient number of observations are available. 
This leads to a hybrid model, which combines the strengths of physical 
modelling (theoretical foundations, interpretable compartments) and 
machine learning (data-adaptiveness). For example, we could couple 
well established physical (differential) equations of diffusion for trans-
port of water in plants with machine learning for the poorly understood 
biological regulation of water transport conductance. This results in a 
more ‘physical’ model that obeys accepted conservation of mass and 
energy laws, but its regulation (biological) is flexible and learned from 
data. Such principles have recently been taken to efficiently model 
motion of water in the ocean and specifically predict sea surface tem-
peratures. Here, the motion field was learned via a deep neural network, 
and then used to update the heat content and temperatures via phys-
ically modelling the movement implied by the motion field68. Also, 
a number of atmospheric scientists have begun experimenting with 
related approaches to circumvent long-standing biases in physically 
based parameterizations of atmospheric convection65,69.

The problem may become more complicated if physical model and 
machine learning parameters are to be estimated simultaneously while 
maintaining interpretability, especially when several sub-models are 
replaced with machine learning approaches. In the field of chemistry 
this approach has been used in calibration exercises and to describe 
changes in unknown kinetic rates while maintaining mass balance in 
biochemical reactor modelling70, which, although less complex, bears 
many similarities to hydrological and biogeochemical modelling.

(3) Analysis of model–observation mismatch
See Fig. 3 (circle 3). Deviations of a physical model from observations 
can be perceived as imperfect knowledge causing model error, assum-
ing no observational biases. Machine learning can help to identify, vis-
ualize and understand the patterns of model error, which allows us also 
to correct model outputs accordingly. For example, machine learning 
can extract patterns from data automatically and identify those which 
are not explicitly represented in the physical model. This approach 
helps to improve the physical model and theory. In practice, it can also 
serve to correct the model bias of dynamic variables, or it can facilitate 
improved downscaling to finer spatial scales compared to tedious and 
ad hoc hand-designed approaches71,72.

(4) Constraining submodels
See Fig. 3 (circle 4). One can drive a submodel with the output from 
a machine learning algorithm, instead of another (potentially biased) 
submodel in an offline simulation. This helps to disentangle model 
error originating from the submodule of interest from errors of cou-
pled submodules. As a consequence, this simplifies and reduces biases 
and uncertainties in model parameter calibration or the assimilation 
of observed system state variables.

(5) Surrogate modelling or emulation
See Fig. 3 (circle 5). Emulation of the full (or specific parts of) a physical 
model can be useful for computational efficiency and tractability rea-
sons. Machine learning emulators, once trained, can achieve simulations 
orders of magnitude faster than the original physical model without  
sacrificing much accuracy. This allows for fast sensitivity analysis, 
model parameter calibration, and derivation of confidence intervals 
for the estimates. For example, machine learning emulators are used 
to replace computationally expensive, physics-based radiative-transfer 
models of the interactions between radiation, vegetation and atmos-
phere57,73,74, which are critical for the interpretation and assimilation 

of land-surface remote sensing in models. Emulators are also used 
in dynamic modelling, where states are evolving, for example, in  
climate modelling75 and more recently explored in vegetation dynamic 
models76. Further, given the complexity of physical models, emulation 
challenges are very good test beds in which to explore the potential of 
machine learning and deep learning approaches to extrapolate outside 
the range of training conditions.

Some of the concepts in Fig. 3 have already been adopted in a 
broad sense. For instance, linkage (3) relates to model benchmarking 
and statistical downscaling and model output statistics77,78. Here we 
argue that adopting a deep-learning approach will strongly improve 
the use of spatio-temporal context information for the modification 
of model output. Emulation (5) has been widely adopted in several 
branches of engineering and geosciences, mainly for the sake of effi-
cient modelling, but tractability issues have not yet been explored 
in depth. Other paths, such as the hybrid modelling (linkage (2)), 
appear to be much less explored. Conceptually, the hybrid approaches 
discussed above can be interpreted as deepening a neural network 
(Fig. 4) to make it more physically realistic, where the physical  
model comes on top of a neural network layers (see examples in 
Fig. 4b, c). It contrasts with the reverse approach discussed above 
where physical model output is produced and then corrected using 
additional layers of machine learning approaches. We believe that it is 
worthwhile pursuing both avenues of integrating physical modelling 
and machine learning.

Figure 3 presents a system-modelling view that seeks to integrate 
machine learning into a system model. As an alternative perspective, 
system knowledge can be integrated into a machine learning frame-
work. This may include design of the network architecture36,79, physical 
constraints in the cost function for optimization58, or expansion of the 
training dataset for undersampled domains (that is, physically based data 
augmentation)80. For instance, while usually a so-called cost function 
like ordinary least squares penalizes model–data mismatch, it can be 
modified to also avoid physically implausible predictions for lake tem-
perature modelling58. The integration of physics and machine learning 
models may not only achieve improved performance and generalizations 
but, perhaps more importantly, incorporates the consistency and credi-
bility of the machine learning models. As a byproduct, the hybridization 
has an interesting regularization effect, given that the physics discards 
implausible models. Therefore, physics-aware machine learning models 
should combat overfitting better, especially in low-to-medium sample 
sized datasets81. This notion is also related to the direction of attaining 
explainable and interpretable machine learning models (‘explainable 
AI’82), and to combining logic rules with deep neural networks83.

Recent advances in two fields of methodological approaches have 
potential in facilitating the fusion of machine learning and physical 
models in a sound way: probabilistic programming52 and differenti-
able programming. Probabilistic programming allows for accounting 
of various uncertainty aspects in a formal but flexible way. A proper 
accounting for data and model uncertainty along with integration of 
knowledge by priors and constraints is critical for optimally combining 
the data-driven and theory-driven paradigms, including logical rules, 
as done in statistical relational learning. In addition, error propagation 
is conceptually seamless, facilitating well founded uncertainty margins 
for model output. This capability is largely missing so far but is crucial 
for scientific purposes, and in particular for management or policy 
decisions. Differentiable programming allows for efficient optimiza-
tion owing to automated differentiation84,85. This helps in making the 
large, nonlinear and complex inversion problem computationally more 
tractable, and in addition allows for explicit sensitivity assessments, 
thus aiding interpretability.

Advancing science
There is no doubt, as exemplified in this Perspective, that modern 
machine learning methods greatly improve classification and predic-
tion skills. This alone has great value. Yet, beyond statistical prediction, 
the question is how data-driven approaches can improve fundamental 
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scientific understanding, given that the outcome of complex statisti-
cal models, in particular, is often hard to interpret. One basic answer 
is that observations have almost always been the basis for scientific 
progress. For example, the Copernican discoveries were enabled by 
the precise observation of planetary trajectories to infer and test the 
laws governing them.

Now, although the general cycle of exploration, hypotheses gener-
ation and testing remains the same, modern data-driven science and 
machine learning can extract arbitrarily complex patterns in obser-
vational data to challenge complex theories and Earth system models 
(Supplementary Fig. 3). For instance, spatially explicit global data-
driven estimates of photosynthesis based on machine learning have 
indicated an overestimation of photosynthesis in the tropical rainforest  
by climate models86. This mismatch has led scientists to develop 
hypotheses that enable a better description of the radiative transfer in 
vegetation canopies23, which has led to better photosynthesis estimates 
in other regions, and better consistency with leaf-level observations. 
Related data-driven carbon cycle estimates have enabled the calibra-
tion of vegetation models and helped to explain the conundrum of the 
increasing seasonal amplitude of CO2 concentration at high latitudes87, 
which (according to these results) is caused by vegetation being more 
vigorous in the high latitudes.

In addition to data-driven theory and model building, such 
extracted patterns are increasingly being used as a way to explore 
improved parameterizations in Earth system models65,69, and model 
emulators are increasingly being used as a basis for model cali-
bration88. In this way, the scientific interplay between theory and 
observation, and between hypothesis generation and theory-driven 
hypothesis testing, will continue. Since the complexity of hypotheses 
and tests inferred from data and the pace of hypothesis generation 
are increasing by orders of magnitude via powerful machine learning 
techniques, we can expect unprecedented qualitative and quantita-
tive progress in the science of the complex Earth system.

Conclusion
Earth sciences need to process large and rapidly increasing amounts of 
data to provide more accurate, less uncertain, and physically consistent 

inferences in the form of prediction, modelling and understanding the 
complex Earth system. Machine learning in general and deep learning 
in particular offer promising tools to build new data-driven models for 
components of the Earth system and thus to build our understanding 
of Earth. Challenges specific to the Earth system will further stimulate 
the development of methodologies, and we have four major recom-
mendations, as follows.

(1) Recognition of the particularities of the data
Multi-source, multi-scale, high-dimensional, complex spatio-temporal 
relations, including non-trivial and lagged long-distance relationships 
(teleconnections) between variables need to be adequately modelled. 
Deep learning is well positioned to address these data challenges, and 
network architectures and algorithms need to be developed to produce 
approaches that address both spatial and temporal context at different 
scales (see Fig. 4).

(2) Plausibility and interpretability of inferences
Models should not only be accurate but also credible, incorporating 
the physics governing the Earth system. Wide adoption of machine 
learning in the Earth sciences will be facilitated if models become more 
transparent and interpretable: their parameters and feature rankings 
should have a minimal physical interpretation, and the model should 
be reducible to or explainable by a set of rules, descriptors and relations.

(3) Uncertainty estimation
Models should define their confidence and credibility. Bayesian/ 
probabilistic inference should be integrated into models, because such 
inference allows for explicit representation and propagation of uncer-
tainties. In addition, identifying and treating extrapolation is a priority.

(4) Testing against complex physical models
The spatial and temporal prediction ability of machine learning should 
be, at least, consistent with the patterns observed in physical models. 
Therefore we recommend testing the performance of machine learning 
methods against synthetic data derived from physical models of the 
Earth system. For instance, the models in Fig. 4b, c, which are applied 
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to real data, should be tested across a broad range of dynamics as sim-
ulated by complex physical models. This is of particular relevance in 
conditions of limited training data and to assess extrapolation issues.

Overall, we suggest that future models should integrate process- 
based and machine learning approaches. Data-driven machine learning 
approaches to geoscientific research will not replace physical modelling, 
but strongly complement and enrich it. Specifically, we envision various 
synergies between physical and data-driven models, with the ultimate 
goal of hybrid modelling approaches: these should obey physical laws, 
feature a conceptualized and thus interpretable structure, and at the 
same time be fully data-adaptive where theory is weak. Importantly, 
machine learning research will benefit from plausible physically based 
relationships derived from the natural sciences. Among others, two 
major Earth system challenges in which little progress has been made 
recently—the parameterization of atmospheric convection and the 
description of the spatio-temporal dependency of ecosystems on  
climate and interacting geo-factors—could be addressed using the 
hybrid approaches discussed here.

Online content
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