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ABSTRACT

Image based vehicle insurance processing is an important
area with large scope for automation. In this paper we con-
sider the problem of car damage classification, where some
of the categories can be fine-granular. We explore deep learn-
ing based techniques for this purpose. Initially, we try di-
rectly training a CNN. However, due to small set of labeled
data, it does not work well. Then, we explore the effect of
domain-specific pre-training followed by fine-tuning. Finally,
we experiment with transfer learning and ensemble learning.
Experimental results show that transfer learning works bet-
ter than domain specific fine-tuning. We achieve accuracy of
89.5% with combination of transfer and ensemble learning.

Index Terms— Car damage classification, CNN, transfer
learning, convolutional auto-encoders

1. INTRODUCTION

Today, in the car insurance industry, a lot of money is wasted
due to claims leakage [1][2]. Claims leakage / Underwriting
leakage is defined as the difference between the actual claim
payment made and the amount that should have been paid if
all industry leading practices were applied. Visual inspection
and validation have been used to reduce such effects. How-
ever, they introduce delays in the claim processing. There has
been efforts by to few start-ups to mitigate claim processing
time [3][4]. An automated system for the car insurance claim
processing is a need of an hour.

In this paper, we employ Convolutional Neural Network
(CNN) based methods for classification of car damage types.
Specifically, we consider common damage types such as
bumper dent, door dent, glass shatter, head lamp broken,
tail lamp broken, scratch and smash. To best of our knowl-
edge, there is no publicly available dataset for car damage
classification. Therefore, we created our own dataset by
collecting images from web and manually annotating them.
The classification task is challenging due to factors such as
large inter-class similarity, barely visible damages. We ex-
perimented with many techniques such as directly training
a CNN, pre-training a CNN using auto-encoder followed by
fine-tuning, using transfer learning from large CNNs trained
on Imagenet and building an ensemble classifier on top of
the set of pre-trained classifiers. We observe that transfer

learning combined with ensemble learning works the best.
We also device a method to localize a particular damage
type. Experimental results validate the effectiveness of our
proposed solution.

2. RELATED WORKS

Deep learning has shown promising results in machine learn-
ing applications. In particular, CNNs perform well for com-
puter vision tasks such as visual object recognition and detec-
tion [5] [6]. Application of to structural damage assessment
has been studied in [7]. Authors proposes deep learning based
method for Structural Health Monitoring (SHM) to charac-
terize the damage in the form of cracks on a composite ma-
terial. Unsupervised representation is employed and results
have been shown on a wide range of loading conditions with
limited number of labeled training image data.

Most of the supervised methods need large amount of la-
beled data and compute resources. Unsupervised pre-training
techniques such as Autoencoders [8] proved to improve the
generalization performance of the classifier in case of small
number of labeled samples. For images, Convolutional Au-
toEncoders (CAE) [9] have shown promising results.

A very well known technique which has worked effec-
tively in case of small labeled data is transfer learning [10]
[11]. A network which is trained on a source task is used as
a feature extractor for target task. There are many CNN mod-
els trained on Imagenet which are available publicly such as
VGG-16 [12], VGG-19 [12], Alexnet [6], Inception [13], Cars
[14], Resnet [15]. Transferable feature representation learned
by CNN minimizes the effect of over-fitting in case of small
labeled set [10].

Traditional machine learning techniques have also been
experimented for automated damage assessment. Jaywardena
et al [16] proposed a method for vehicle scratch damage de-
tection by registering 3D CAD model of undamaged vehicle
(ground truth) on the image of the damaged vehicle. There
has been attempts to analyze damage in geographical regions
using satellite images [17][18][19]. To best of our knowledge,
deep learning based techniques have not been employed for
automated car damage classification, especially for the fine-
granular classification.



Classes Train size Aug. train size Test size

Bumper Dent 186 1116 49
Door dent 155 930 39
Glass shatter 215 1290 54
Head-lamp broken 197 1182 49
Tail-lamp broken 79 474 21
Scratch 186 1116 46
Smash 182 1092 45
No damage 1271 7626 318

Table 1. Description of our dataset.

3. DATASET DESCRIPTION

Since there is no publicly available dataset for car damage
classification, we created our own dataset consisting of im-
ages belonging to different types of car damages. We consider
seven commonly observed types of damages such as bumper
dent, door dent, glass shatter, head lamp broken, tail lamp
broken, scratch and smash. In addition, we also collect im-
ages which belong to a no damage class. The images were
collected from web and were manually annotated. Table 1
shows the description of the dataset.
3.1. Data augmentation

It is known that an augmentation of the dataset with affine
transformed images improves the generalization performance
of the classifier. Hence, we synthetically enlarged the dataset
approx. five times by appending it with random rotations (be-
tween -20 to 20 degrees) and horizontal flip transformations.

For the classification experiments, the dataset was ran-
domly split into 80%-20% where 80% was used for training
and 20% was used for testing. Table 1 describes the size of
our train and test sets.

Fig. 1 shows sample images for each class. Note that the
classification task is non-trivial due to large inter-class simi-
larity. Especially, since the damage does not cover the entire
image (but a small section of it), it renders classification task
even more difficult.

4. TRAINING A CNN

In the first set of experiments, we trained a CNN starting with
the random initialization. Our CNN architecture consist of
10 layers: Conv1-Pool1-Conv2-Pool2-Conv3-Pool3-Conv4-
Pool4-FC-Softmax where Conv, Pool, FC and Softmax de-
notes convolution layer, pooling layer, fully connected layer
and a softmax layer respectively. Each convolutional layer
has 16 filters of size 5 × 5. A RELU non-linearity is used
for every convolutional layer. The total number of weights in
the network are approx. 423K. Dropout was added to each
layer which is known to improve generalization performance.
We trained a CNN on original as well as on the augmented
dataset.

Fig. 1. Sample images for car damage types. Rows from top
to bottom indicates damage types Bumper dent, Door dent,
Glass shatter, Head-lamp broken, Tail-lamp broken, Scratch,
Smash, No damage

Table 2 shows the result of the CNN training from ran-
dom initialization. It can be seen that the data augmentation
indeed helps to improve the generalization and provides better
performance that just original dataset.

We are aware that the data used for training the CNN
(even after augmentation) is quite less compared to the num-
ber of parameters and it may result in overfitting. However,
we performed this experiment to set a benchmark for rest of
the experiments.
4.1. Convolutional Autoencoder

Unsupervised pre-training is a well known technique in the
cases where training data is scarce [8]. The primary objec-
tive of an unsupervised learning methods is to extract useful
features from the set of un-labeled data by learning the input
data distribution. They detect and remove input redundancies,



Method
Without Augmentation With Augmentation

Acc Prec Recall Acc Prec Recall

CNN 71.33 63.27 52.5 72 46 64 03 61 01
AE-CNN 73.43 67.21 55.32 72 30 63 69 59 48

Table 2. Test accuracy with CNN training and (CAE + fine-
tuning).

Fig. 2. Transfer learning setup used in our experiments.
Source task is Imagenet classification while Target task is car
damage classification.

and usually only preserve essential aspects of the data which
tend to assist the classification task. A fully connected auto-
encoders, especially in case of images, leads to large number
of trainable parameters. Convolutional AutoEncoders (CAE)
provides a better alternative because of less number of param-
eters due to sparse connections and weight sharing [9]. CAE
is trained in the layer wise manner where unsupervised lay-
ers can be stacked on top of each other to build the hierarchy.
Each layer is trained independently of others where output of
a previous layer acts as an input for the subsequent layer. Fi-
nally, the complete set of layers are stacked and fine-tuned
by back-propagation using cross-entropy objective function
. Unsupervised initialization tend to avoid local minima and
increase the networks performance stability.

For training a CAE, we used unlabeled images from Stan-
ford car dataset[20]. The size of the dataset was synthetically
increased by adding rotation and flip transformations. Since
the target images belong to car damage type, we expect that
learning the car specific features should help the classification
task. The layers are then fine tuned using a smaller learning
rate as compared to the training. The row, AE-CNN, in Ta-
ble 2 shows the result with autoencoder pre-training. It can
be seen that an autoencoder pre-training does help the clas-
sification task. The similar experiment was performed using
augmented car damage images and there as well we see im-
provement in the test accuracy as compared to no pre-training.

5. TRANSFER LEARNING

Transfer learning has shown promising results in case of
small labeled data [10] [11]. In the transfer learning setting,
a knowledge from the source task is transferred to the target

task. The intuition is that some knowledge is specific for
individual domains, while some knowledge may be common
between different domains which may help to improve per-
formance for the target domain / task. However, in the cases
where the source domain and target domain are not related
to each other, brute-force transfer may be unsuccessful and
can lead to the degraded performance. In our case, we use
the CNN models which are trained on the Imagenet dataset.
Since the Imagenet dataset contains car as a object, we ex-
pect the transfer to be useful which we extensively validate
by experimenting with multiple pre-trained models. Fig. 2
shows the transfer learning experiment setup we use. Since
we use the pre-trained models which are trained for Imagenet,
the Source task is the Imagenet classification. A pre-trained
model is used as a feature extractor for Target task i.e. car
damage images. Table 3 indicates the details of pre-trained
networks used, their parameters and feature dimension.

We input car damage images to each network and extract
feature vectors. We then train a linear classifier on these fea-
tures. We experimented with two linear classifiers, a linear
SVM and a Softmax. In case of linear SVM, the penalty pa-
rameter C was set to 1 for all experiments. In case of the
Softmax classifier, we use Adadelta optimization scheme and
cross entropy loss. We train the classifier for 100 epochs and
chose the model with best classification performance. Also,
since data augmentation helps the classifier in generalization,
we train linear classifiers on augmented feature set as well.
Table 3 indicates the accuracy, precision and recall for these
pre-trained models. It can be seen that the Resnet performs
the best among all the pre-trained models. The data augmen-
tation boost the performance in most of the cases. During the
experimentation, it was observed that the Softmax classifier
works better than linear SVM and it is faster to train.

Surprisingly, the pre-trained model of GoogleNet fine-
tuned using car dataset, performed the worst. It indicates that
only car object based features may not be effective for classi-
fying damages. The poor performance of autoencoder based
approach may as well be due to this effect. It underlines the
effectiveness of feature representation learned from large and
diverse input data distributions.

We observe that the major factor in the mis-classifications
is the ambiguty between damage and ’no damage’ class. This
is not surprising because, the damage of a part usually occu-
pies a very small portion of the image and renders identifica-
tion difficult even for the human observer. Fig. 3 shows few
examples of test images of damage which are mis-classified
as no damage.

5.1. Ensemble method

To further improve the accuracy, we performed an experiment
with ensemble of the pre-trained classifiers. For each training
image, class probability predictions are obtained from multi-
ple pre-trained networks. The weighted average of class pos-



Model Params Dim
Without Augmentation With Augmentation

Linear SVM Softmax Linear SVM Softmax
Acc Prec Recall Acc Prec Recall Acc Prec Recall Acc Prec Recall

Cars [14] 6.8M 1024 57.33 47 24 56 46 60 38 47 23 32 39 58 45 48.58 56 97 64 25 52 73 39 16
Inception [13] 5M. 2048 68.12 57 46 55 53 71 82 61 75 56 71 68 60 58.50 54 44 71 50 69 47 52 81
Alexnet 60 M. 4096 70.85 61 68 64 60 70 85 61 42 58 09 73 26 62.83 61 72 73 91 66 83 63 36
VGG-19 [12] 144M. 4096 82.77 78 62 73 16 84 22 80 76 73 60 82 29 76.30 70 60 83 90 80 74 73 41
VGG-16 [12] 138M. 4096 83.74 77 79 75 41 84 86 81 91 73 56 82 93 78.62 71 96 82 72 78 99 70 30
Resnet [15] 25.6M. 2048 86.31 80 87 78 30 88.24 84 38 81 10 87 92 84.40 78 94 87 92 83 68 79 47

Table 3. Classification performance for transfer learning. Comparison of test accuracies with different pre-trained CNN models.
Note that Resnet performs the best.

Fig. 3. Examples of test images mis-classified as ’no damage’
class with Resnet. Note that the damaged portion is barely
visible.

teriors is then used to obtain the final decision class. The
weights to be used for the linear combination are learned by
solving following least squares optimization

C =
1

N

N∑
i=1

||Piw − gi||22 (1)

Here, Pi ∈ Rm×n indicates the matrix of posteriors for the
ith training point, n indicates the number of pre-trained mod-
els used and m indicates the number of classes. w indicates
the weight for each posterior and gi indicates the (one-hot en-
coded) ground truth label for the ith training data point. N
is the total number of training points. The optimization is
solved using the gradient descent where learning rate is ad-
justed which yields the best test performance. Since Softmax
performed the best, we use it for obtaining class posteriors.
Table 5.1 shows the result of the experiment. It can be seen
that the ensemble (Top-3 and All) works better than the indi-
vidual classifiers, as expected.

5.2. Damage localization

With the same approach, we can even localize the damaged
portion. For each pixel in the test image, we crop a region of
size 100×100 around it, resize it to 224×224 and predict the
class posteriors. A damage is considered to be detected if the
probability value is above certain threshold. Fig. 4 shows the

Ensemble
Without Augmentation With Augmentation

Acc Prec Recall Acc Prec Recall

Top-3 89.37 88.05 80.91 88 40 85 88 78 91
All 89.53 88.16 80.92 88 24 86 45 78 41

Table 4. Classification performance for Ensemble technique
using Top-3 and All models

localization performance for damage types such as glass shat-
ter, smash and scratch with Resnet classifier and probability
threshold of 0.9.

(a) (b)

Fig. 4. Damage localization. (a) Glass shatter (red) and
Smash (blue), (b) Scratch (green). Note that our approach
is able to localize damage correctly.

6. CONCLUSION

In this paper, we proposed a deep learning based solution for
car damage classification. Since there was no publicly avail-
able dataset, we created a new dataset by collecting images
from web and manually annotating them. We experimented
with multiple deep learning based techniques such as train-
ing CNNs from random initialization, Convolution Autoen-
coder based pre-training followed by supervised fine tuning
and transfer learning. We observed that the transfer learning
performed the best. We also note that only car specific fea-
tures may not be effective for damage classification. It thus
underlines the superiority of feature representation learned
from the large training set.
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