Deep Learning Convolutional Neural Networks
for Radio Identification

Shamnaz Riyaz, Kunal Sankhe, Stratis loannidis, and Kaushik Chowdhury
Electrical and Computer Engineering Department, Northeastern University, Boston, MA, USA
Email: mohammedriyaz.s @husky.neu.edu, sankhe.ku@husky.neu.edu, ioannidis @ece.neu.edu, krc @ece.neu.edu

Abstract—Advances in software defined radio (SDR) tech-
nology allow unprecedented control on the entire processing
chain, allowing modification of each functional block as well
as sampling the changes in the input waveform. This paper
describes a method for uniquely identifying a specific radio
among nominally similar devices using a combination of SDR
sensing capability and machine learning (ML) techniques. The
key benefit of this approach is that ML operates on raw 1/Q
samples and distinguishes devices using only the transmitter
hardware-induced signal modifications that serve as a unique
signature for a particular device. No higher level decoding,
feature engineering, or protocol knowledge is needed, further
mitigating challenges of ID spoofing and coexistence of multiple
protocols in a shared spectrum. The contributions of the paper
are as follows: (i) The operational blocks in a typical wireless
communications processing chain are modified in a simulation
study to demonstrate RF impairments, which we exploit. (ii)
Using an over-the-air dataset compiled from an experimental
testbed of SDRs, an optimized deep convolutional neural network
(CNN) architecture is proposed, and results are quantitatively
compared with alternate techniques such as support vector
machines and logistic regression. (iii) Research challenges for
increasing the robustness of the approach, as well as the
parallel processing needs for efficient training, are described.
Our work demonstrates up to 90-99% experimental accuracy at
transmitter-receiver distances varying between 2-50 feet over a
noisy, multi-path wireless channel.

I. INTRODUCTION

Emerging applications in the context of smart cities, au-
tonomous vehicles, Internet of Things, and complex military
missions, among others, require reconfigurability both at the
systems and the protocol level within its communications
architecture. These advances rely on a critical enabling com-
ponent, namely, software defined radio (SDR): this allows
cross-layer programmability of the transceiver hardware using
high level directives. The promise of intelligent or so called
cognitive radios builds on the SDR concept, where the radio is
capable of gathering contextual information and adapting its
own operation by changing the settings on the SDR based on
what it perceives in its surroundings.

In many mission critical scenarios, problems in authenti-
cating devices, ID spoofing and unauthorized transmissions
are major concerns. Moreover, high bandwidth applications
are causing a spectrum crunch, leading network providers
to explore innovative spectrum sharing regimes in the TV
whitespace and the sub-6GHz bands. In all of the above,
identifying (i) the type of the protocol in use, and (ii) the
specific radio transmitter (among many other nominally sim-
ilar radios) become important. Our work on SDR-enabled

device fingerprinting tackles these two scenarios by learning
characteristic features of the transmitters in a pre-deployment
training phase, which is then exploited during actual network
operation. We recognize that SDRs come in diverse form
factors with varying on-board computational resources. Thus,
for general purpose use, any device fingerprinting approach
must be computationally simple once deployed in the field. For
this reason, we propose machine learning (ML) techniques,
specifically, Deep Convolutional Neural Networks (CNNs),
and experimentally demonstrate near-perfect radio identifica-
tion performance in many practical scenarios.

e Overview of our approach: ML techniques have been
remarkably successful in image and speech recognition, how-
ever, their utility for device level fingerprinting by feature
learning has yet to be conclusively demonstrated. True au-
tonomous behavior of SDRs, not only in terms of detecting
spectrum usage, but also in terms of self-tuning a multitude
of parameters and reacting to environmental stimulus is now
a distinct possibility. We collect over 20 - 10¢ RF I/Q sam-
ples over multiple transmission rounds for each transmitter-
receiver pair composed of off-the-shelf USRP SDRs. The
SDRs transmit standards compliant IEEE 802.11ac physical
layer waveforms, to create a database of received signals.
These I/Q samples carry embedded signatures characteristic
of different active transmitter hardware, but are also subject to
alterations introduced by the wireless channel. The approach of
providing raw time series radio signal by treating the complex
data as dimension of 2 real valued I/Q inputs to the CNN,
is motivated from modulation classification [1]. It has been
found to be a promising technique for feature learning on large
time series data. We develop a CNN architecture composed
of multiple convolutional and max-pooling layers optimized
for the task of radio fingerprinting. We partition the collected
samples into separate instances and perform offline training on
a computational cloud cluster, assigning weights to the inter-
neuron connections. A holdout data set composed of totally
unseen samples is used for estimation of detection accuracy.
e Contributions and paper structure: Our work makes the
following key contributions. We survey and classify exist-
ing approaches in Sec. II. We design a simulation model
of a typical wireless communications processing chain in
MATLAB, and then modify the ideal operational blocks to
demonstrate the RF impairments that we wish to learn in
Sec. III. We describe the data gathering process for training the
classifier in Sec. IV. We architect and experimentally validate
an optimized deep convolutional neural network (CNN) for

RF Fingerprinting

v v

Supervised Unsupervised

(A priori labeling (Real time grouping
of samples) of samples)
v v
v v [9] iHMRF

Classification [10] Nonparametric Bayesian

(Unique class
identification)

Similarity-based
(Matching with
database entries)

v
[3] 802.11 wireless driver FP ‘
[4] Passive wireless AP FP

v

Conventional
(Hand crafted
Feature extractors)

Deep Learning
(Multi-layer
neural network)

' ;

[5] Frequency domain approach
[6] PARADIS
[7] GTID

[1] Modulation Recognition - CNN
[8] Deep learning - physical layer

Figure 1: RF Fingerprinting classification

radio fingerprinting in Sec. V, and quantitatively compare this
approach with support vector machines and logistical regres-
sion in Sec. VI. Finally, research challenges for increasing
the robustness of our approach are listed in Sec. VII and the
conclusions are drawn in Sec. VIII. In summary, our CNN
design demonstrates up to 90-99% experimental accuracy at
transmitter-receiver distances varying between 2-50 feet over
a noisy, multi-path wireless channel.

II. RELATED WORK

The key idea behind radio fingerprinting is to extract unique
patterns (or features) and use them as signatures to identify
devices. A variety of features at the physical (PHY) layer,
medium access control (MAC) layer, and upper layers have
been utilized for radio fingerprinting [2]. Simple unique iden-
tifiers such as IP addresses, MAC addresses, international mo-
bile station equipment identity (IMEI) numbers can easily be
spoofed. Location-based features such as radio signal strength
(RSS) and channel state information (CSI) are susceptible
to mobility and environmental changes. We are interested
in studying those features that are inherent to a device’s
hardware, which are also unchanging and not easily replicated
by malicious agents. We classify existing approaches in Fig. 1.

A. Supervised learning

This type of learning requires a large collection of labeled
samples prior to network deployment for training the ML
algorithm.

1) Similarity-based: Similarity measurements involve com-
paring the observed signature of the given device with the
references present in a master database. In [3], a passive
fingerprinting technique is proposed that identifies the wireless
device driver running on an IEEE 802.11 compliant node by
collecting traces of probe request frames from the devices. A
supervised Bayesian approach is used to analyze the collected

traces and generate the device driver fingerprint. [4] describes
a passive blackbox-based technique, that uses TCP or UDP
packet inter-arrival time to determine the type of access points
using wavelet analysis. However these techniques rely on prior
knowledge of vendor specific features.

2) Classification-based: There are several studies on super-
vised learning that exploit RF features such as I/Q imbalance,
phase imbalance, frequency error, and received signal strength,
to name a few. e Conventional: This form of classification
examines a match with pre-selected features using domain
knowledge of the system, i.e., the dominant feature(s) must
be known a priori. [5] proposes classification by extracting
the known preamble within a packet and computing spectral
components. A set of log-spectral-energy features are given
as input to the k-nearest neighbors (k-NN) discriminatory
classifier. PARADIS [6] fingerprints 802.11 devices based on
modulation-specific errors in the frame using SVM and k-NN
algorithms with an accuracy of 99%. In [7], a technique for
physical device and device-type classification called GTID us-
ing artificial neural networks is proposed. This method exploits
variations in clock skews as well as hardware compositions of
the devices. In general, as multiple different features are used,
selecting the right set of features is a major challenge. This
also causes scalability problems when large number of devices
are present, leading to increased computational complexity in
training. @ Deep Learning: Deep learning offers a powerful
framework for supervised learning approach. It can learn
functions of increasing complexity, leverages large datasets,
and greatly increases the the number of layers, in addition to
neurons within a layer. [1] and [8] apply deep learning at the
physical layer, specifically focusing on modulation recognition
using convolutional neural networks. They classify 11 different
modulation schemes. However, this approach does not identify
a device, as we do here, but only the modulation type used by
the transmitter.

B. Unsupervised learning

Unsupervised learning is effective when there is no prior
label information about devices. In [9], an infinite Hidden
Markov Random field (iHMRF)-based online classification
algorithm is proposed for wireless fingerprinting using unsu-
pervised clustering techniques and batch updates. Transmit-
ter characteristics are used in [10] where a non-parametric
Bayesian approach (namely, an infinite Gaussian Mixture
Model) classifies multiple devices in an unsupervised, passive
manner.

Transmitter identification using deep learning architectures
is still in a nascent stage. Our work focuses on generation and
processing of large number of RF I/Q samples to train the
classifiers and eventually identify the devices uniquely.

III. CAUSES OF HARDWARE IMPAIRMENTS

Using the MATLAB Communications System Toolbox, we
simulate a typical wireless communications processing chain
(see Fig. 2, with the shifts in the received complex valued
I/Q samples), and then modify the ideal operational blocks to
introduce RF impairments, typically seen in actual hardware

+ Input symbols
® Reference points
1
. L. G
% +
Sos +
s o ° +e °
£ +
<
o 0 + +
3 +
&
> 5 d 4+ o 4
805 +
/ <] +
PR
1/Q Imbalance . ' . B

4 05 0 05 1
DAC > \ In-phase Amplitude
v T
Digital o " Phase '
armonics .
Baseband Distortion l!\lmse 7 L
o) | o
: Anti-aliasing Filter
Y S/ 2
» DAC v \ >® Nonlinear Distortion
*+ Input symbols + Input symbols
® Reference points ® Reference points
1 / - 1 +e +° . °
[0 @ + +
° °
205 205 .
[=3 [=
g , rd ¥ ‘ E o 1o [} o+
® 0 2 0
2 2 +
IS ‘ * L4 ’ o i s o+ ®+
B-05 §-05
8 5} +
+
4 \ oy - / 1 .) ot o+
4 05 0 05 1 4 05 0 05 1

In-phase Amplitude In-phase Amplitude

Figure 2: Typical transceiver chain with various sources of RF
impairments.

implementations. This allows us to individually study the I/Q
imbalance, phase noise, carrier frequency and phase offset, and
nonlinearity of power amplifier, harmonic and power amplifier
distortions.

oI/Q imbalance: Quadrature mixers that convert baseband
to RF and vice versa are often impaired by gain and phase
mismatches between the parallel sections of the RF chain
dealing with the in-phase (I) and quadrature (Q) signal paths.
The analog gain is never the same for each signal path
and the difference between their amplitude causes amplitude
imbalance. In addition, the delay is never exactly 90°, which
causes phase imbalance.

ePhase Noise: The up-conversion of a baseband signal to
a carrier frequency f. is performed at the transmitter by
mixing the baseband signal with the carrier signal. Instead
of generating a pure tone at frequency f., i.e., e/2™/e? the
generated tone is actually e/27/t+¢(t) 'where ¢(t) is a random
phase noise. The phase noise introduces a rotational jitter.
Phase noise is expressed in units of dBc/Hz, which represents
the noise power relative to the carrier contained in a 1 Hz
bandwidth centered at a certain offset from the carrier. Typical
value of phase noise level is in the range [—100, —48] dBc/Hz,
with frequency offset in the range [20, 200] Hz.

e Carrier Frequency and Phase offset: The performance of
crystal oscillators used for generating the carrier frequency is
specified with an accuracy in parts per million (ppm). The
difference in transmitter and receiver carrier frequencies is
referred to as carrier frequency offset.

eHarmonic distortions: The harmonics in a transmitted signal
are caused by nonlinearities in the transmitter-side digital-to-

USRP HW
Support
package

USRP HW
Support
package

Baseband Waveform RF Transmission

X o Data Collection
Generation — &
VA S

RF Reception

MATLAB 2017a,
LTE System Toolbox
&

WLAN System
Toolbox

4

Transmit n Mo
N A

Receive

Transmit
Receive

MATLAB 2017a,
LTE System Toolbox
&

WLAN System
Toolbox

B210/X310
SDR platform

B210
SDR platform

Figure 3: Data collection using SDR

analog converters. Harmonic distortion is measured in terms
of total harmonic distortion, which is a ratio of the sum of
the powers of all harmonic components to the power of the
fundamental frequency of the signal. This distortion is usually
expressed in either percent or in dB relative to the fundamental
component of the signal.

ePower amplifier distortions: Power amplifier (PA) non-
linearities mainly appear when the amplifier is operated in
its non-linear region, i.e., close to its maximum output power,
where significant compression of the output signal occurs. The
distortions of the PA are generally modeled using AM/AM
(amplitude to amplitude) and AM/PM (amplitude to phase)
curves. The AM/AM causes amplitude distortion whereas
AM/PM introduces phase shift. The nonlinearity of amplifier
is modeled using Cubic Polynomial and Hyperbolic Tangent
methods using Third-order input intercept point (IIP3) param-
eter. I[IP3 expressed in (dBm) represents a scalar specifying
the third order intercept.

IV. DATA COLLECTION FOR DEEP LEARNING

A. Experimental setup for Trace Data collection

We study the performance of different learning algorithms,
including linear support vector machine (SVM), logistic re-
gression, and CNNs, using I/Q samples collected from an
experimental setup of USRP SDRs, shown in Fig. 3. For the
purpose of data collection at the receiver end, we use a fixed
USRP B210. For the transmitter we use 5 different devices of
the same family, i.e., USRP B210.

B. Protocols of Operation

We transmit different physical layer frames defined by the
IEEE 802.11ac on each transmitter SDR. These frames are
generated using MATLAB WLAN Systems toolbox, and are
standards compliant. The data frames generated are random
since we intend to transmit any data streams. These protocol
frames are then streamed to the selected SDR for over-the-air
wireless transmission. The receiving SDR samples the incom-
ing signals at 1.92 MS/s sampling rate at center frequency
of 2.45 GHz for WiFi. The collected complex I/Q samples
are partitioned into subsequences. For our experimental study,
we set a fixed subsequence length of 128, additional details
of which are described in Sec. V-A2. Overall, we collect
approximately 20 million samples for each of five SDRs.

RelU

Q Softmax
(;:(i;;) Conv+ Conv+ (05 O Output
/a RelU ’;’L‘z RelU | ma) Max r) i L layer
samples (50x1x3) (50x2x3) Pool O I 0 (4)
Convolution layer 1 Convolution layer 2 (©) O -
O (4)
1)1 271 (2s6)
0|3 s
_______ 4311 Fully connected layers
1)1 |
: 212|0
3]2]1]2 Kernel/Filter Feature Map
Input data (b)
y‘ max(1,2,1,3) =3

y = max(0,x)

£ 216 Max Pool with 2x2
3/ 4|3 filter and stride2 | 3 | 6
2(4/1|0 ’ 4|2
» 313|122
(@) * (d

Figure 4: CNN architecture

C. Storage and Processing

The samples are further analyzed offline over (i) worksta-
tions with typical configurations of Core-i7 processor, 8GB
RAM, and flash-based 512GB storage as well as (ii) North-
eastern’s Discovery cluster that has 16 compute nodes with a
NVIDIA Tesla K40m GPU each. These nodes have 48 logical
cores each, and on each node the GPU has 2880 CUDA com-
puting cores. Each node has 128GByte of RAM configuration
and dual Intel E5 2650 CPUs @ 2.00 GHz processor. These
GPU servers are on a 10Gb/s TCP/IP backplane.

V. CNN BASED RADIO FINGERPRINTING

The success of CNNs in vision and speech domains moti-
vates our investigation in using CNNs for radio fingerprinting.
The proposed method consists of two stages, i.e., a training
stage and an identification stage. In the former, the CNN
is trained using raw IQ samples collected from each SDR
transmitter to solve a multi-class classification problem. In
the identification stage, raw IQ samples of the unknown
transmitter are fed to the trained neural network and the
transmitter is identified based on observed value at the output
layer. In this section, we first describe the CNN architecture
and then present preprocessing of input data necessary to
improve the performance.

A. CNN Architecture

Our CNN architecture is inspired in part by AlexNet [11],
which shows remarkable performance in image recognition.
As shown in the Fig. 4a, our network has four layers, which
consists of two convolutional layers and two fully connected or
dense layers. The input to the CNN is a windowed sequence
of raw 1Q samples with length 128. Each complex value is
represented as two-dimensional real values, which results in
the dimension of our input data growing to 2 x 128. This is
then fed to the first convolution layer.

The convolution layer is the core building block of the CNN,
whose primary purpose is to extract features from the input
data. It consists of a set of spatial filters (also called kernels, or

simply filters) that perform a convolution operation over input
data. The operation of the convolution filter is shown with an
example in Fig. 4b for intuitive understanding. A filter of size
2 x 2 is convolved with input data of size 4 x 4 by sliding
across its dimension to produce two-dimensional feature map.
A stride is the sliding interval of the filter and determines the
dimension of the feature map. Our example shows stride 1 to
produce a feature map of dimension 3 x 3. Each convolution
layer consists of a set of such filters, which in turn operates in-
dependently to produce a set of two-dimensional feature maps.
Our CNN architecture is composed of the convolution layer
followed by an activation step that performs a pre-determined
non-linear transformation on each element of the feature map.
There are many possible activation functions, such as sigmoid
and tanh; we use the Rectified Linear Unit (ReLU), as CNNs
with ReLU train faster compared to alternatives. As shown in
Fig. 4c, ReLU outputs max(zx, 0) for an input z, replacing all
negative values in the feature map by zero.

The convolution layer is generally followed by a pooling
layer. Its functionality is to (a) introduce shift invariance (see
also Sec. V-A3), as well as (b) reduce the dimensionality of
the rectified feature maps of the preceding convolution layer,
while retaining the most important information. We choose
a pooling layer with filters of size 2 x 2 and stride 2, which
downsamples the feature maps by 2 along both the dimensions.
Among different filter operations (such as average, sum), max
pooling gives better performance. As shown in Fig. 4d, max
pooling of size 2x 2 with stride 2 selects the maximum element
in the non-overlapping regions (shown with different colors).
Thus, it reduces the dimensionality of the feature map, which
in turn reduces the number parameters and computations in
the network.

The output of the second pooling layer is provided as input
to the fully connected layer. A fully connected or dense layer
is a traditional Multi Layer Perceptron (MLP), where the
neurons have full connections to all activation steps in the
previous layer, similar to regular neural networks. Its primary
purpose is to perform the classification task on high-level
features extracted from the preceding convolution layers. At
the output layer, a softmax activation function is used. The
classifer with softmax activation function gives probabilities
(e.g. [0.9,0.09,0.01] for three class labels).

Next, we discuss the selection hyperparameters of CNN to
optimize the performance, followed by preprocessing of input
data necessary for proper operation of CNN and finally shift-
invariance property of our classifier.

1) Model Selection: We start with a baseline architecture
consisting of two convolution layers and two dense layers,
then progressively vary the hyperparameters to analyze their
effect on the performance. The first parameter is the number of
filters in the convolution layers. We observed that the number
of filters within a range of (30 — 256) provide reasonably
similar performance. However, since the number of compu-
tations increases with an increase in the number of filters,
we set 50 filters in both convolution layers for balancing
the performance and computational cost. Similarly, we set
1 x 3 and 2 x 3 as the filter size in the first and second
convolution layer respectively, since larger filter size does

Sliding operation

12 ‘ ‘128 129 | - ‘ ‘ ‘ N
\leamplesafterind&
1 ‘ ‘ 128 | 129 ‘ ‘ 256 | - ‘ ‘ M

Figure 5: Sliding procedure

not offer significant performance improvement. Furthermore,
increasing the number of convolution layers from 2 to 4
shows no improvement in the performance, which justifies
continuation with two convolution layers. We then try to
analyze the effect of the number of neurons in the first dense
layer by varying it between 64 to 1024. Interestingly, we
find that increasing the number of neurons beyond 256 does
not improve the performance. Therefore, we set 256 neurons
in the first dense layer. After finalizing the architecture and
parameters of CNN, we carefully select the regularization
parameters as follows: We use a dropout rate of 25% after
first and second convolution layers and dropout of 50% at first
dense layer. In addition, we use an /5 regularization parameter
A = 0.0001 to avoid over-fitting.

2) Preprocessing Data: Our experimental studies con-
ducted on different representative classes of ML algorithms
demonstrate significant performance improvement by choosing
deep CNN. However, to ensure scalable performance over
large number of devices, our CNN architecture needs to be
modified. In addition, our input I/Q sequences, which represent
a time-trace of collected samples, need to be suitably parti-
tioned and augmented beyond a stream of raw I/Q samples.

Our classifiers operate on sequences of I/Q samples of a
fixed length. In general, given sequences of length L, we can
create N = L/{ subsequences of length ¢ by partitioning the
input stream. We thus create L — ¢ subsequences by sliding
a window of length ¢ over the larger sequence (or stream)
of I/Q samples. Training classifiers over small subsequences
leads to more training data points, which in turn yields a low
variance but potentially high bias in the classification result.
Conversely, large sequences may lead to high variance and
low bias. We set 128 as sequence length. From a wireless
communications viewpoint, the channel remains invariant in
smaller durations of time. Hence, the ability to operate on
smaller subsequences carved out of in-order received samples
allows us to estimate the complex coefficients representing the
wireless channel. Thus we train our classifiers over the input
I/Q sequences by treating each real and imaginary part of a
sample as two inputs, leading to a training vector of 2 x /¢
samples for a sequence of length /.

3) Shift Invariance: Another prominent characteristic of
our CNN classifier both with respect to our final goal of
identifying the transmitting device, but also in terms of feature
extraction, is shift invariance. In short, all events described in
Section III can occur at an arbitrary position in a given 1/Q
sequence. A classifier should be able to detect a device-specific
impairment irrespectively of whether it occurs at e.g., the 1-st

T
IjSVM [MLogistic Regression [_JCNN ‘
100+ — — _ |
90 4
:\3 80 4
> 701 4
© 60 4
3 50 1
o
< 40 4
30 4
20 4
10r 4
0
3 4 5
Number of transmitters
100 —v
95 -
90
;\3 85
z
8 80 - -
5
8 751
<<
70 - 1
9-Accuracy (%) * 415
65 - * Observed SNR in dB
Analytical SNR in dB * 110

60 I I I I I I I I I I I 5
0 2 6 10 14 18 22 26 30 34 38 42 46 50

Distance (ft)
(b)
1.0 A
0.8 F
-]
&
o 0.6
2
=]
%]
&
° 0.4
2
=
—— SDR #1 (area = 0.96402)
0.21 SDR #2 (area = 0.93601)
—— SDR #3 (area = 1.00000)
0.0 - —— SDR #4 (area = 0.99461)
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
©

Figure 6: a) The accuracy comparison of SVM, logistic
regression and CNN for 2 — 5 devices using 5-fold cross-
validation b) The plot of accuracy obtained using CNN for
4 devices over different distances between transmitter and
receiver ¢) ROC curves for 4 devices under CNN classification

or 15-th position of an I/Q sequence. Convolved weights in
each layer detect signals in arbitrary positions in the sequence,
and a max-pool layer passes the presence of a signal to a
higher layer irrespectively of where it occurs. To enhance the
shift-invariance property of our classifier during training, we
train it over sliding windows of length ¢ as shown in Fig. 5,
rather than partitioned windows: this further biases the trained
classifiers to shift-invariant configurations.

VI. RESULTS AND PERFORMANCE EVALUATION

We implement our CNN training and classifier in Keras
running on top of TensorFlow on an NVIDIA Cuda enabled

Tesla K40m GPU. We evaluate the performance of our CNN
classifier using 5-fold Cross Validation technique. We use
StratifiedKFold class from the scikit-learn Python machine
learning library to split up the training dataset into 5 folds. Our
training set consists of ~ 720K training examples and ~ 80K
examples for validation. We use another 200K examples for
testing the performance of our trained model. Thus, we are
able to obtain less biased estimate of the performance of our
model. It took ~ 43min to train our model. Performance
evaluation on hold out dataset of 200K examples took only
~ 3min. The classifier output performance is measured using
metrics such as accuracy and Area Under the Curve (AUC),
the latter evaluated on the Receiver Operating Characteristic
(ROC) curve comprising true positive rate on the Y-axis and
false positive rate on the X-axis.

1) CNN vs. conventional algorithms: We first measure the
performance of our dataset using SVM and logistic regression
for the classification of nominally similar devices. We extract
several features such as amplitude, phase and FFT values
from the raw I/Q samples and built a rich set of features to
train the classifiers. We obtain the classification accuracy for
identification among 2, 3, 4 and 5 devices. As seen in Fig. 6a,
accuracy measure with SVM and logistic regression algorithms
for 2 devices is ~ 55% and it decreases further as the number
of devices increases. The performance deterioration can be
clearly seen in the Fig. 6a. We then train our CNN classifier
using raw data to classify the same set of devices. With our
deep CNN network, we are able to achieve accuracy 98% for
five devices, as opposed to less than = 33% for the shallow
learning SVM and logistic regression algorithms.

2) Impact of distance on radio fingerprinting: We run
experiments to collect data over a distance ranging between 2-
50 ft over steps of 4 ft, to evaluate the impact of distance (and
possible multipath effect owing to reflections) on classification
accuracy. Fig. 6b demonstrates the accuracy measure for the
classification of 4 devices using CNN. It achieves classification
accuracy greater than 95% up to the distance of 34ft. In
addition, the observed SNR and analytical SNR (calculated
using free-space path model) are shown in the same plot
to elucidate the effect of received SNR on the classification
accuracy. It is evident that the classification is robust against
the fluctuations in SNR occurred due to path loss and multipath
fading up to the distance of 34ft.

3) Receiver Operating Characteristics for radio fingerprint-
ing: We obtained false positive rate and true positive rate
to measure AUC. Fig. 6¢ shows the ROC curve for four
similar WiFi devices. We can see that the CNN model works
extremely well, as AUC ranges between 0.93 and 1. The
AUC attained for each device is 0.964, 0.936, 1, and 0.994,
respectively. This demonstrates CNN is the effective model for
radio fingerprinting. Additionally, training our CNN network
over a large dataset with Keras takes significantly lower time
compared to any other aforementioned algorithms.

VII. RESEARCH CHALLENGES

We now discuss the challenges associated with the imple-
mentation of CNNs for radio fingerprinting. In our experi-
ments, we set the partition length as 128 through a rectangular

windowing process. However, identifying the optimal length
is a critical research objective and should be dependent on the
channel coherence time. Varied CNN architectures may lead to
significantly different results. Finding an optimal architecture
which enhances device classification is an open research issue.
A related challenge is obtaining the right balance between
training time and the classification accuracy. Increasing the
depth of the CNN beyond a point may not help the classifi-
cation; in fact there are risks of overfitting the training set,
as we found in some of our early experiments. Our work
focuses on training the model with actual experimental data
while a large body of earlier works attempt to solve a similar
problem using synthetic data. There exists no standard dataset
to benchmark the performance of our classifier, and releasing
all datasets in widely accepted formats is essential for correct
replication of experiments. Finally, as a future objective, our
goal is to validate the performance of our classifier to identify
large number of devices at distances of 100-200 ft. This may
also require us to effect major changes in the architecture and
find new optimum parameters.

VIII. CONCLUSION

We propose a radio fingerprinting approach based on
deep learning CNN architecture to train using I/Q sequence
examples. Our design enables learning features embedded
in the signal transformations of wireless transmitters, and
identifies specific devices. Furthermore, we have shown that
our approach of device identification with CNN outperforms
alternate ML techniques such as SVM, logistic regression for
the identification of five nominally similar devices. Finally,
we experimentally validate the performance of our design on
a dataset collected over range of distances, 2 ft to 50 ft.
We observe that detection accuracy decreases as the distance
between transmitter and receiver increases and how compu-
tational resources such as Keras running with GPU support
speed up the training time. Our future work involves increasing
the robustness of the CNN architecture to allow scaling up to
correct identification of 1000s of similar radios.

ACKNOWLEDGMENT

This work is supported by DARPA under the Young Faculty
Award grant N66001-17-1-4042. We are grateful to Dr. Tom
Rondeau, program manager at DARPA, for his insightful
comments and suggestions that significantly improved the
quality of the work.

REFERENCES

[1] T. O’Shea, J. Corgan, and T. Charles Clancy, “Convolutional radio
modulation recognition networks,” 02 2016.

[2] Q. Xu, R. Zheng, W. Saad, and Z. Han, “Device fingerprinting in wire-
less networks: Challenges and opportunities,” IEEE Communications
Surveys Tutorials, vol. 18, no. 1, pp. 94-104, Firstquarter 2016.

[3] J. Franklin, D. McCoy, P. Tabriz, V. Neagoe, J. Van Randwyk,
and D. Sicker, “Passive data link layer 802.11 wireless device
driver fingerprinting,” in Proceedings of the 15th Conference on
USENIX Security Symposium - Volume 15, ser. USENIX-SS’06.
Berkeley, CA, USA: USENIX Association, 2006. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1267336.1267348

[4]

[5]

[6]

[7

—

[8]

[10]

[11]

K. Gao, C. Corbett, and R. Beyah, “A passive approach to wireless
device fingerprinting,” in 2010 IEEE/IFIP International Conference on
Dependable Systems Networks (DSN), June 2010, pp. 383-392.

I. O. Kennedy, P. Scanlon, F. J. Mullany, M. M. Buddhikot, K. E. Nolan,
and T. W. Rondeau, “Radio transmitter fingerprinting: A steady state
frequency domain approach,” in 2008 IEEE 68th Vehicular Technology
Conference, Sept 2008, pp. 1-5.

V. Brik, S. Banerjee, M. Gruteser, and S. Oh, “Wireless device
identification with radiometric signatures,” in Proceedings of the 14th
ACM International Conference on Mobile Computing and Networking,
ser. MobiCom ’08. New York, NY, USA: ACM, 2008, pp. 116-127.
[Online]. Available: http://doi.acm.org/10.1145/1409944.1409959

S. V. Radhakrishnan, A. S. Uluagac, and R. Beyah, “Gtid: A technique
for physical device and device type fingerprinting,” IEEE Transactions
on Dependable and Secure Computing, vol. 12, no. 5, pp. 519-532, Sept
2015.

T. J. O’Shea and J. Hoydis, “An introduction to machine learning
communications systems,” CoRR, vol. abs/1702.00832, 2017. [Online].
Available: http://arxiv.org/abs/1702.00832

F. Chen, Q. Yan, C. Shahriar, C. Lu, W. Lou, and T. C. Clancy,
“On passive wireless device fingerprinting using infinite hidden markov
random field,” submitted for publication.

N. T. Nguyen, G. Zheng, Z. Han, and R. Zheng, “Device fingerprinting
to enhance wireless security using nonparametric bayesian method,” in
2011 Proceedings IEEE INFOCOM, April 2011, pp. 1404-1412.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification ~with deep convolutional neural networks,” in
Proceedings of the 25th International Conference on Neural
Information Processing Systems - Volume 1, ser. NIPS’12. USA:
Curran Associates Inc., 2012, pp. 1097-1105. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2999134.2999257

