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Abstract—In this paper we take advantage of recent advances
in deep learning techniques focused on image classification to
estimate transforms between consecutive point clouds. A standard
technique for feature learning is to use convolutional neural
networks. Leveraging this technique can help with one of the
biggest challenges in robotic motion planning, real time odometry.
Sensors have advanced in recent years to provide vast amounts
of precise environmental data, but localization methods can have
a difficult time efficiently parsing these large quantities. In order
to address this hurdle we utilize convolution neural networks
for reducing the state space of the laser scan. We implement our
network in the Theano framework with the Keras wrapper. Input
data is collected from a VLP-16 in both small office and large
open environments. We present the results of our experiments on
varying network configurations. Our approach shows promising
results, achieving (per direction) accuracy within 10 cm and an
average network prediction time of 4.58 ms.

I. INTRODUCTION

One of the most difficult problems in robotics is accurate
position estimation. We have sensors capable of providing us
with high fidelity data, however, current processing methods
are unable to take advantage of this in real-time. The Velodyne
VLP-16 Puck (VLP-16) used in this work can output up to
300,000 laser points per second. An example map created with
the VLP-16 can be seen in Figure 1. We propose to leverage
deep learning to capitalize on GPU processing speed, reduce
the state space of the sensor, and predict robot odometry
without loop closure directly from the laser returns of the
VLP-16.

In this project, we leverage the benefits afforded by deep
learning and apply it to the robotic localization domain.
Specifically we apply deep learning to develop a novel tech-
nique for laser-based odometry, the use of a laser scanner to
estimate the change in a robot’s position over time. The work
presented in this paper provides a method that leverages the
benefits of deep learning to estimate odometry directly from
high fidelity sensors. More specifically, we consider state-of-
the-art 2D and 3D feature extraction approaches, such as those
used in image classification, to reduce the state space of the
VLP-16 and deal with the vast amounts of data provided by
these sensors. After the state space has been reduced, we
propose using standard fully connected layers to learn the
odometry estimation from these extracted features.

To implement our approach, we generate a custom data set
for an indoor laboratory and office based environment with

Fig. 1: Map of Oregon State University’s library quad using
the VLP-16. Post processing provided by Real Earth, Inc.
http://www.realearth.us

the VLP-16 sensor using wheel based odometry. We perform a
variety of experiments with this data set on different networks
in order to fine tune and improve our results. We carry out
these experiments in a Python environment using the Theano
framework and Keras wrapper.

The remainder of this paper is organized as follows. We
first discuss related work in image classification domains and
current odometry methods in Section II. Next, we present a
formulation of our proposed method and discuss the different
network structures considered and experimented on in Section
IV. Finally, we discuss the results of our experiments in
Section V and discuss avenues for future work in Section VII.

II. RELATED WORK

In recent years, deep learning research has met with a
remarkable level of success in a variety of applications, most
notably object recognition and classification [8] [9] [17]. This
is in large part due to the fact that deep learning has allowed
training data sets to grow from an order of thousands (e.g.
LabelMe [14]), to tens of thousands (e.g. CIFAR-10/100 [7],
NORB [10]), and even millions of training examples (e.g. Im-
ageNet [3]). Many such networks utilize convolutional neural
networks (CNNs) as they are much easier to train than standard
feedforward neural networks due to fewer connections and
parameters [9], making learning in a deep architecture actually
feasible.



Wheel based odometry utilizes encoders on a robot’s
wheels, factoring wheel rotation into a forward kinematic
model to estimate the motion of the robotic base. This process
is known as dead reckoning, and is known to result in a
diverging estimate of a robot’s position over time due to
the fact that odometry errors are compounded over time. For
this reason, localization methods usually combine odometry
measures with some form of absolute position measure (e.g.
using laser scanner returns to estimate a robot’s position in
a pre-constructed map) to keep errors from diverging. In
addition to wheel encoders, classical odometry measures often
use an IMU, a combination of a three accelerometers and
gyroscopres. Both of these measures are often known to give
noisy estimates however, the most prominent source of which
is wheel slippage.

One method to circumvent these kinds of errors is a process
known as scan-matching (e.g. [11] [18]), which often uses a
technique known as Iterative Closest Point (ICP) [2] to itera-
tively minimize the difference between two clouds of points,
in this case two consecutively laser scans. The estimated
transformation is used to estimate the motion of the robotic
base. Despite popular use and developments in efficiency,
ICP is still expensive to compute and furthermore sensitive
to large differences in the initial point distributions, as the
correct point correspondence is difficult to find. We note recent
success by Zhang and Singh [19] [20] in achieving low-drift,
real-time odometry using scan-matching by simultaneously
running two algorithms - one that runs at a fast rate but
performs only course matching and another that runs an order
of magnitude slower but performs fine grained matching and
point registration. The fidelity achieved in this approach able
to maintain accurate position estimates over time without the
use of external, absolute position measures.

Another technique that has met with success is visual
odometry (e.g. [1], [13]), a process that uses image features
to estimate the ego-motion of a camera. While sensitive to
features used in image processing, recent performance im-
provements on image-based applications (particularly with the

Fig. 2: VLP-16 spinning 16 lasers a full 360◦

use of deep learning) have made this a particularly appealing
approach. Of particular interest is recent work done by Konda
and Memisevic [6] that uses a convolutional neural network to
estimate visual odometry from stereo images, using a softmax
at the final layer to represent discretized direction and velocity
changes.

Similar to Konda and Memisevic’s work, we reduce high-
dimensional point cloud data to a depth image that we can
pass into a CNN to perform motion estimation. Unlike their
approach, we estimate motion from lidar rather than visual
information and estimate motion changes using a regres-
sion rather than discretized/softmax approach. The benefit of
our approach is that it circumvents the high computational
constraints typically associated with scan matching, provides
predictions in continuous space, and requires no hand-tuning
of features for course scan matching.

III. DATA SET

A. Velodyne Puck

The VLP-16 has a range of 100m with an accuracy of
±3cm. The VLP-16 can also provide intensity values, but for
now we ignore this as we are only interested in spatial features.
There are 16 lasers angled from ±15◦. These spin a full 360◦

at up to 20Hz. The VLP-16 communicates data packets over
User Datagram Protocol (UDP), and can be recorded for later
playback as a pcap file. An illustration of the VLP-16 can be
seen in Figure 2.

B. Data Set Generation

We generated our dataset by first mounting the VLP-16
on top of a mobile robotic base and recording both depth
scans from the laser as well as odometry measurements from
the wheeled robot as it was driven manually. Data collection
was performed at 5 Hz and generated roughly 3,300 depth
scans. For input into the network, each scan was first converted

(a) The office
area used
for collecting
training data.

(b) The modified
Turtlebot robot
used for data
collection.

(c) The open
lab area used
for collecting
training data.

Fig. 3: Images of our modified Turtlebot gathering training
data in our various indoor environments.



into a panoramic depth image, before being paired with the
subsequent scan. Each image pairing was annotated with the
recorded, ground truth odometry change. We augmented our
dataset via two methods: First, we additionally paired each
scan with the second and third subsequent scans to create
additional examples. Second, for each set of scan pairings,
we additionally created an example for the reverse ordering.
This gave us a final data set of roughly 16,000 image pairs.
Given our data collection rate and robot movement speed, the
second and third subsequent scans were not too dissimilar for
odometry purposes. Data was collected in both a confined,
indoor office environment as well as a large, open high-bay
lab environment. This can be seen in Figure 3.

IV. PROBLEM FORMULATION

A. Voxel 3D Convolution

A point cloud represents a continuous 3D space. In order
to extract features from this, a standard method is to begin by
discretizing the space. In 3D, this discretization could come
in the form of a voxel grid. With a 3D voxel grid, this would
allow us to perform 3D convolution to leverage the spatial
relationship of the point cloud points in feature extraction.
This has been done in previous work for extracting features
from 3D point clouds for terrain classification [12]. Others
have used voxel grids to extract generic features from point
clouds [5]

However, as always, when discretizing large continuous
spaces, dimensionality becomes an issue. In our case, the
precision and range of the VLP-16 poses a dimensionality
concern. Given the VLP-16’s 100m range and ±15◦ field-
of-view, we would need a voxel grid length/width of 200m.
Assuming the VLP-16 is sitting on a robot 1m off the ground,
on flat terrain, the voxel grid height would need to be 27m.
Given the VLP-16’s 3cm accuracy, this yields a total of
38,811,960,000 voxels. Assuming only 1m discretization (far
too inaccurate), over 1,000,000 voxels would still be required.
As such, it is intractable for us to use a discretized, 3D
convolution approach to this problem.

B. Image Based 2D Convolution

A simple approach to using point clouds for odometry is to
revert back to standard image classification techniques. To do
this we can modify our point cloud into a 2D projection of
the environment; that is, a panoramic depth image. We do this
by binning the raw VLP-16 scans into pixel representations.
Using this depth image and a standard 2D convolutional neural
network, we can extract spatial features of the environment.

By inputting consecutive VLP-16 scans into the network, it
allows us to find feature locations in both projections. By using
additional fully-connected layers in our network, the network
can learn the patterns in these feature movements to provide
odometry estimates.

C. Experiments

As previously discussed, since 3D, voxel based, convolution
is not feasible for our problem, we based our network structure

on that of standard 2D convolution based image networks.
That is, in general, our network begins with a series of 2D
convolutional and max pooling layers for feature extraction.
It then contains several different sized fully-connected layers,
before finally outputting the estimated odometry values. An
example network structure can be seen in Figure 4.

More specifically, we experimented with a variety of net-
work parameters and structures to find the one that worked
best for our problem. For all network structures, the “Mean
Squared Error” loss function was used. The following network
changes were experimented with:

• Pre-training the convolution filters
• Varying the colvolution filter sizes
• Varying the number and ordering of convolution and

pooling layers
• Varying the fully connected layer sizes
• Varying the number of fully connected layers
• Varying the type/amount of regularization on layers
• Varying the training method
For all experiments, the Theano framework with Keras

wrappers were used in a Python environment. Training was
done on a dedicated, high end PC. The dedicated PC is a quad-
core, i7 machine with 16GB RAM and an Nvidia GeForce
GTX TITAN Z GPU. The TITAN Z has 12GB of total RAM
with 5760 CUDA cores, allowing for fast parallelization in
deep learning training.

V. RESULTS AND DISCUSSION

A. Pre-training the Convolution Filters

The first set of network variations tested was the impact of
pre-training the convolution filters. Pre-training refers to using
autoencoder based, unsupervised training on the input depth
images to learn good features. The results of the unsupervised
training are then used to initialize the convolution layers in
the full network before the supervised training begins.

In tests both with and without pre-training, we observed
that pre-training the weights results in better performance.
Without pre-training, the learning both takes longer and does
not perform as well. This could be due to several reasons:
First, when learning from scratch, the network learns noisier
features that do not represent the data as well. Second, learning
from scratch results in different features being learned for the
two separate inputs. Depending on what is learned, the same
features may not be tracked in each. By utilizing pre-training,
the convolution filters for both inputs can be initialized to with
the same features.

B. Convolution/Pooling Layer Variations

Next, experiments were performed to investigate the effect
of different convolution/pooling structures, with motivation
taken from the work of Simonyan and Zisserman [15]. In these
experiments, different combinations of convolutions sized 3x3
and 5x5 and filter bank sizes of 32, 64, and 128 were
tested. Additionally, the number of convolution layers between
each pooling layer was varied. The full set of combinations



Fig. 4: An example network structure used in this work. In this network, the subsequent depth image inputs go through two
sets of convolution/pooling layers before being fed into a series of three fully connected layers to estimate the odometry. In
this network, the convolution was of size 3x3 with filter banks sized 32 and 64, respectively. The fully connected layers were
of sizes 256, 128, and 32.

tested were as follows (notation: “conv{filter size}-{filter bank
size}”):

• conv3-32, pool, conv3-32, pool
• conv5-32, pool, conv3-32, pool
• conv3-32, pool, conv3-64, pool
• conv3-32, conv3-32, pool, conv3-32, conv3-32, pool
• conv5-32, conv5-32, pool, conv3-32, conv3-32, pool
• conv3-32, conv3-32, pool, conv3-64, conv3-64, pool
• conv5-32, conv5-32, pool, conv3-64, conv3-64, pool
• conv3-32, conv3-32, pool, conv3-64, conv3-64, pool,

conv3-64, conv3-64, pool
• conv3-32, conv3-32, pool, conv3-64, conv3-64, pool,

conv3-128, conv3-128, pool
• conv3-32, conv3-32, conv3-32, pool, conv3-64, conv3-64,

pool
• conv3-32, conv3-32, conv3-32, pool, conv3-64, conv3-64,

conv3-64, pool

For these architectures, the results matched those reported
by Simonyan and Zisserman. Using multiple, small convolu-
tion filter sizes achieved better results than that of a single,
larger filter size. Additionally, increasing the filter bank size
after pooling layers also achieved better results.

In our experiments, both of these factors appeared to have a
saturation point after which no additional benefit was gained.
For us, adding more than three convolution layers between
pooling, and increasing the filter bank size above 64, gave
no additional benefit. The highest accuracy architecture tested
was conv3-32, conv3-32, pool, conv3-64, conv3-64, pool.

C. Fully Connected Layer Variations

For these tests, the number of fully connected layers, and
their sizes, were varied in the overall network. The number of
layers was varied between two and four, with the number of
hidden nodes ranging from 16 to 1024.

In our experiments, we found that steadily decreasing the
size of the fully connected layers achieved better results. In
general, we achieved better results, and faster learning, with
more, smaller sized layers. That is, an architecture of (notation:
“fc{number of hidden nodes}”) fc128, fc64 was more desirable
than fc256. The highest accuracy architecture tested was fc128,
fc64, fc16.

D. Regularization and Training Variations

The last set of experiments we performed was in changing
the amount of regularization used, and the training method
employed. Dropout layers of different amounts were experi-
mented with. Additionally, maxnorm constraints were tested
on the convolution layers, and L1/L2 regularization was tested
on the fully connected layers. The various training optimiza-
tions used were: RMSProp, Adagrad, Adadelta, and Adam.

Similar to Srivastava et al. [16], we found that adding
dropout layers to our architectures increased performance. In
our experiments, increasing the dropout beyond 25% began to
lower performance. Additionally, adding a maxnorm constraint
to the convolution layers helped to reduce overfitting in the
unsupervised pre-training stage. Both L1 and L2 regularization
aided in reducing overfitting for the overall network, with
L2 providing the best performance. The combination that
provided the best performance was using dropout layers of
10%, a maxnorm constraint of 4, and L2 regularization penalty
of 0.01.

For the different training optimizers used, no significant
difference in performance was noticed. All of the optimizers
converged to similar performance. The only difference of note
was that the Adam optimizer tended to converge more quickly
than the rest.

E. Full Network

Overall, the most accurate network architecture tested was:
conv3-32, conv3-32, pool, conv3-64, conv3-64, pool for the



feature extraction stage and fc128, fc64, fc16 for the fully
connected stage. The network used dropout layers of 10%, a
maxnorm constraint of 4 on the convolution layers, and an L2
regularization penalty of 0.01 on the fully connected layers.
Additionally, it took advantage of unsupervised pre-training to
seed the convolution filters in the full network.

For the test data set, this network architecture achieved an
average odometry estimate error of 0.0763 m, or 7.63 cm. This
represented a roughly 30% error in the estimate. Across the
test set, the largest error measured was 0.611 m, or 61.1 cm.
On average, the network took 4.58 ms to provide an estimate.

VI. CONCLUSION

While the preliminary results presented here are not able
to compete with state-of-the-art scan matching techniques, we
can conclude that the architecture presented is able to provide
reasonable odometry estimates from large scale lidar data.
While the current results have room for improvement, the per
scan pair estimate time of the network is promising. We believe
that this work is a step towards leveraging deep learning for
efficient use of high fidelity sensor data.

VII. FUTURE WORK

Moving forward, the authors have several avenues they
would like to pursue as future work. These avenues address
the challenges of increasing the accuracy of these results, and
realizing this work on actual robots in the field.

The first avenue involves exploring additional network struc-
tures/parameters to increase prediction accuracy. One possibil-
ity is to discretize the predictions and formulate the network
as a classifier. To address the loss of precision, classification
ranges could be intelligently chosen based on the spread of
values represented in the data set. In this case, a separate
network for each degree of freedom could be trained, similar to
Konda and Memisevic [6]. Additionally, exploring the addition
of LSTMs into the network architecture may allow for a more
intelligent prediction. LSTMs may allow for the network to
learn information about the robot’s dynamics, resulting in a
more accurate odometry prediction when given a sequence of
lidar scans.

Next, the authors are interested in creating a method that
allows us to do 3D, spatial feature extraction directly on point
cloud data. This directly addresses the issues we encountered
with creating voxel grids of the entire space spanned by the
VLP-16 while allowing for the true 3D spatial relationships
to be leveraged rather than projected into 2D. In addressing
this issue, the authors propose implementing 3D convolutional
and pooling layers using nearest-neighbors and clustering
techniques.

Lastly, we wish to create a more robust, and realistic, data
set. The authors propose attaching the VLP-16 to DJI Matrice
quadcopters [4]. This would allow for the collection of data in
a full 6 degrees of freedom. Additionally, data can be collected
in a wider variety of environments and features can be viewed
from a larger variety of angles.
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