
Deep	Learning	for	NLP
Part	2

CS224N
Christopher	Manning

(Many	slides	borrowed	from	ACL	2012/NAACL	2013	
Tutorials	by	me,	Richard	Socher	and	Yoshua	Bengio)

Word Representations
Part	1.3:	The	Basics

2

The standard word representation

The	vast	majority	of	rule-based	and statistical	NLP	work	regards	
words	as	atomic	symbols:	hotel, conference, walk

In	vector	space	terms,	this	is	a	vector	with	one	1	and	a	lot	of	zeroes

[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
Dimensionality:	20K	(speech)	 – 50K	(PTB)	– 500K	(big	vocab)	– 13M	(Google	1T)

We	call	this	a	“one-hot”	representation.	Its	problem:

motel [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0] AND
hotel [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0] = 0

3

Distributional similarity based
representations

You	can	get	a	lot	of	value	by	representing	a	word	by	
means	of	its	neighbors

“You	shall	know	a	word	by	the	company	it	keeps”	
(J.	R.	Firth	1957:	11)

One	of	the	most	successful	ideas	of	modern	statistical	NLP

government debt problems turning into banking crises as has happened in

saying that Europe needs unified banking regulation to replace the hodgepodge

ë These	words	will	represent	banking	ì

4
You	can	vary	whether	you	use	 local	or	large	context	
to	get	a	more	syntactic	or	semantic	 clustering

Distributional word vectors

5

Distributional	counts	give	same	dimension,	denser	representation

motel																			hotel																		bank

debt
crises
unified
Hodgepodge
the
pillow
reception
internet

3
1
0
0

122
21
25
8

9
0
0
1

147
25
37
19

17
11
5
2

183
1
3
8

Two traditional word representations:
Class-based and soft clustering

Class	based	models	learn	word	classes	of	similar	words	based	on	
distributional	information	(~	class	HMM)
• Brown	clustering	(Brown	et	al.	1992,	Liang	2005)
• Exchange	clustering	(Martin	et	al.	1998,	Clark	2003)

1. Clinton,	Jiang,	Bush,	Wilensky,	Suharto,	Reagan,	…
5. also,	still,	already,	currently,	actually,	typically,	 ...
6. recovery,	strength,	expansion,	 freedom,	resistance,	 ...

Soft	clustering	models	learn	for	each	cluster/topic	a	distribution	
over	words	of	how	likely	that	word	is	in	each	cluster
• Latent	Semantic	Analysis	(LSA/LSI),	Random	projections
• Latent	Dirichlet Analysis	(LDA),	HMM	clustering
6

Neural word embeddings
as a distributed representation

Similar	idea:
Word	meaning	is	represented	as	a	
(dense)	vector	– a	point	in	a	
(medium-dimensional)	vector	space

Neural	word	embeddings	combine	
vector	space	semantics	with	the	
prediction	of	probabilistic	models	
(Bengio et	al.	2003,	Collobert &	
Weston	2008,	Huang	et	al.	2012)

linguistics		=

7

0.286
0.792
−0.177
−0.107
0.109
−0.542
0.349
0.271

Neural word embeddings -
visualization

8

Kulkarni, Al-Rfou, Perozzi, & Skiena (2015)

Distributed vs. distributional representations

Distributed: A	concept	is	
represented	as	continuous	
activation	levels	in	a	
number	of	elements
[Contrast:	local]

Distributional:Meaning	is	
represented	by	contexts	of	
use
[Contrast:	denotational]

Advantages of the neural word
embedding approach

11

Compared	to	other	methods,	neural	word	embeddings	
can	become	more	meaningful	through	adding	supervision	
from	one	or	multiple	tasks

For	instance,	sentiment	is	usually	not	captured	in	unsupervised	
word	embeddings	but	can	be	in	neural	word	vectors

We	can	build	compositional	vector	representations	for	
longer	phrases	(next	lecture)

Unsupervised word vector
learning

Part	1.4:	The	Basics

12

The mainstream methods for neural
word vector learning in 2015

1. word2vec
• https://code.google.com/p/word2vec/
• Code	for	two	different	 algorithms	 (Skipgram with	negative	sampling	–

SGNS,	and	Continuous	Bag	of	Words	– CBOW)
• Uses	simple,	 fast	bilinear	models	to	learn	very	good	word	representations
• Mikolov,	Sutskever,	 Chen,	Corrado,	 and	Dean.	NIPS	2013

2. GloVe
• http://nlp.stanford.edu/projects/glove/
• A	non-linear	matrix	factorization:	 Starts	with	count	matrix	and	factorizes	

it	with	an	explicit	loss	function
• Sort	of	similar	to	SGNS,	really,	but	from	Stanford	J
• Pennington,	Socher,	and	Manning.	EMNLP	2014

13

But we won’t look at either, but …
Contrastive Estimation of Word Vectors

A	neural	network	for	learning	word	vectors
(Collobert et	al.	JMLR	2011)

Idea:	A	word	and	its	context	is	a	positive	training	
sample;	a	random	word	in	that	same	context	gives	
a	negative	training	sample:

cat	chills	on a	mat cat	chills	Ohio	a	mat
14

A neural network for learning word
vectors

15

How	do	we		formalize	this	idea? Ask	that
score(cat	chills	on	a	mat)	>	score(cat	chills	Ohio	a	mat)

How	do	we	compute	the	score?

• With	a	neural	network
• Each	word	is	associated	with	an	

n-dimensional	vector

Word embedding matrix

• Initialize	all	word	vectors	randomly to	form	a	word	embedding	
matrix

|V|

L =									 … n

the			cat						mat		…
• These	are	the	word	features	we	want	to	learn
• Also	called	a	look-up	table

• Mathematically	you	get	a	word’s	vector	by	multiplying	L	with	
a	one-hot	vector	e:					x =	Le

[]

16

• score(cat	chills	on	a	mat)	
• To	describe	a	phrase,	retrieve	(via	index)	the	corresponding	

vectors	from	L

cat	chills	on			a			mat

• Then	concatenate	them	to	form	a	5n vector:
• x =[]
• How	do	we	then	compute	score(x)?

Word vectors as input to a neural
network

17

Scoring a Single Layer Neural Network

• A	single	layer	is	a	combination	of	a	linear	layer	
and	a	nonlinearity:

• The	neural	activations	can	then
be	used	to	compute	some	function.

• For	instance,	the	score	we	care	about:

18

Summary: Feed-forward Computation

19

Computing	a	window’s	score	with	a	3-layer	Neural	
Net:	s	=	score(cat	chills	on	a	mat)

cat					chills						on									a							mat

Summary: Feed-forward Computation

• s =	score(cat	chills	on	a	mat)
• sc =	score(cat	chills	Ohio	a	mat)

• Idea	for	training	objective:	make	score	of	true	window	
larger	and	corrupt	window’s	score	lower	(until	they’re	
sufficiently	separated).	Minimize

• This	is	continuous,	can	perform	SGD
• Look	at	a	few	examples,	nudge	weights	to	make	J smaller

20

The Backpropagation Algorithm

• Backpropagation is	a	way	of	computing	gradients	of	expressions	
efficiently through	recursive	application	of chain	rule.
• Either	Rumelhart,	Hinton	&	McClelland	1986	or	Werbos 1974	
or	Linnainmaa1970

• The	derivative	of	a	loss	(an	objective	function)	on	each	variable	
tells	you	the	sensitivity	of	the	loss	to	its	value.

• An	individual	step	of	the	chain	rule	is	local.	It	tells	you	how	the	
sensitivity	of	the	objective	function	is	modulated	by	that	
function	in	the	network
• The	input	changes	at	some	rate	for	a	variable
• The	function	at	the	node	scales	that	rate

21

Training the parameters of the model

If	cost	J is	<	0	(or	=	0!),	the	derivative	is	0.	Do	nothing.
Assuming	cost	J	is	>	0,	it	is	simple	to	see	that	we	can	
compute	the	derivatives	of	s and	sc wrt all	the	involved	
variables:	U,	W,	b,	x.	Then	take	diffences for	J.

22

Training with Backpropagation

• Let’s	consider	the	derivative	of	a	single	weight	Wij

• This	only	appears	inside	ai

• For	example:	W23 is	only	
used	to	compute	a2

x1 x2																	x3 +1

a1 a2

s		 U2

W23

23

Training with Backpropagation

Derivative	of	weight	Wij:

24
x1 x2																	x3 +1

a1 a2

s		 U2

W23

where																																																		for	logistic	 f

Training with Backpropagation

Derivative	of	single	weight	Wij :

Local	error	
signal

Local	input	
signal

25
x1 x2																	x3 +1

a1 a2

s		 U2

W23

• We	want	all	combinations	of
i =	1,	2 and j	=	1,	2,	3

• Solution:	Outer	product:
where																		is	the	
“responsibility”	coming	from	
each	activation	a

Training with Backpropagation

• From	single	weight	Wij to	full	W:

26
x1 x2																	x3 +1

a1 a2

s		 U2

W23

δ1x1 δ1x2 δ1x3
δ2x1 δ2x2 δ2x3

Training with Backpropagation

• For	biases	b,	we	get:

27
x1 x2																	x3 +1

a1 a2

s		 U2

W23

Training with Backpropagation

28

That’s	almost	backpropagation
It’s	simply	taking	derivatives	and	using	the	chain	rule!

Remaining	trick:	Efficiency

we	can	re-use	derivatives	computed	for	higher	layers	in	
computing	derivatives	for	lower	layers

Example:	last	derivatives	of	model,	the	word	vectors	in	x

Training with Backpropagation

• Take	derivative	of	score	with	
respect	to	single	word	vector	
(for	simplicity	a	1d	vector,	
but	same	if	it	were	longer)

• Now,	we	cannot	just	take	
into	consideration	one	ai
because	each	xj is	connected	
to	all	the	neurons	above	and	
hence	xj influences	the	
overall	score	through	all	of	
these,	hence:

Re-used	 part	of	previous	derivative29

Learning word-level classifiers:
POS and NER

Part	1.6:	The	Basics

30

The Model
(Collobert &	Weston	2008;	
Collobert et	al.	2011)

• Similar	to	word	vector	learning	
but	replaces	the	single	scalar	
score	with	a	Softmax/Maxent
classifier

• Training	is	again	done	via	
backpropagation	which	gives	an	
error	similar	to	(but	not	the	same	
as!)	the	score	in	the	unsupervised	
word	vector	learning	model

31

x1 x2																x3 +1

a1 a2

s		 U2

W23

The Model - Training

• We	already	know	softmax/MaxEnt and	how	to	optimize	it
• The	interesting	twist	in	deep	learning	is	that	the	input	features	

are	also	learned,	similar	to	learning	word	vectors	with	a	score:

S
c1 c2 c3

x1 x2																x3 +1

a1 a2

s		 U2

W23

x1 x2																x3 +1

a1 a2

32

Training with Backpropagation:
softmax

33

What	is	the	major	benefit	of	learned	word	vectors?

Ability	to	also	propagate	labeled	information	into	them,	
via	softmax/maxent and	hidden	layer:

S
c1 c2 c3

x1 x2																x3 +1

a1 a2
P(c | d,λ) = eλ

T f (c,d)

eλ
T f (!c ,d)

!c∑

POS
WSJ (acc.)

NER
CoNLL (F1)

State-of-the-art* 97.24 89.31
Supervised	 NN 96.37 81.47
Unsupervised	 pre-training	
followed	by	supervised	 NN**

97.20 88.87

+	hand-crafted	 features*** 97.29 89.59
*	Results	used	in	Collobert &	Weston	(2011).
Representative	 systems:	POS:	(Toutanova	 et	al.	2003),	NER: (Ando	&	Zhang	2005)
**	130,000-word	embedding	 trained	on	Wikipedia	and	Reuters	 with	11	word	
window,	100	unit	hidden	layer	– for	7	weeks! – then	supervised	 task	training
***Features	 are	character	 suffixes	 for	POS	and	a	gazetteer	 for	NER

For small supervised data sets,
unsupervised pre-training helps a lot

34

POS
WSJ (acc.)

NER
CoNLL (F1)

Supervised	NN 96.37 81.47
NN	with	Brown	clusters 96.92 87.15
Fixed	embeddings* 97.10 88.87
C&W 2011** 97.29 89.59

*	Same	architecture	 as	C&W	2011,	but	word	embeddings	 are	kept	constant	
during	the	supervised	 training	phase
**	C&W	is	unsupervised	 pre-train	 +	supervised	 NN	+	features	 model	of	last	slide

Supervised refinement of the
unsupervised word representation helps

35

Backpropagation Training
Part	1.5:	The	Basics

36

Back-Prop

• Compute	gradient	of	example-wise	loss	wrt
parameters	

• Simply	applying	the	derivative	chain	rule	wisely

• If	computing	the	loss(example,	parameters)	is	O(n)	
computation,	then	so	is	computing	the	gradient

37

Simple Chain Rule

38

Multiple Paths Chain Rule

39

Multiple Paths Chain Rule - General

…

40

Chain Rule in Flow Graph

…

…

…

Flow	graph:	any	directed	acyclic	graph
node	=	computation	result
arc	=	computation	dependency

=	successors	 of	

41

Back-Prop in Multi-Layer Net

…

…

42

h = sigmoid(Vx)

Back-Prop in General Flow Graph

…

…

…

=	successors	 of	

1. Fprop:	visit	nodes	 in	topo-sort	order	
- Compute	value	of	node	given	predecessors

2. Bprop:
- initialize	 output	gradient	=	1	
- visit	nodes	 in	reverse	order:

Compute	gradient	wrt each	node	using	
gradient	wrt successors

Single	scalar	output

43

Automatic Differentiation

• The	gradient	computation	can	
be	automatically	inferred	from	
the	symbolic	expression	of	the	
fprop.

• Each	node	type	needs	to	know	
how	to	compute	its	output	and	
how	to	compute	the	gradient	
wrt its	inputs	given	the	
gradient	wrt its	output.

• Easy	and	fast	prototyping
• See	Theano (Python)

44

Sharing statistical strength
Part	1.7

45

Sharing Statistical Strength

• Besides	very	fast	prediction,	the	main	advantage	of	
deep	learning	is	statistical

• Potential	to	learn	from	less	labeled	examples	because	
of	sharing	of	statistical	strength:
• Unsupervised	pre-training	&	Multi-task	learning
• Semi-supervised	learning	à

46

Semi-Supervised Learning

• Hypothesis:	P(c|x)	can	be	more	accurately	computed	using	
shared	structure	with	P(x)	

purely	
supervised

47

Semi-Supervised Learning

• Hypothesis:	P(c|x)	can	be	more	accurately	computed	using	
shared	structure	with	P(x)	

semi-
supervised

48

Multi-Task Learning

• Generalizing	better	to	new	
tasks	is	crucial	to	approach	
AI

• Deep	architectures	learn	
good	intermediate	
representations	that	can	be	
shared	across	tasks

• Good	representations	make	
sense	for	many	tasks

raw input x

task 1
output y1

task 3
output y3

task 2
output y2

shared
intermediate
representation h

49

