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Abstract—Detection of radar signals is the initial step for pas-
sive systems. Since these systems do not have prior information
about received signal, application of matched filter and general
likelihood ratio tests are infeasible. In this paper, we propose a
new method for detecting received pulses automatically with no
restriction of having intentional modulation or pulse on pulse
situation. Our method utilizes a cognitive detector incorporating
bidirectional long-short term memory based deep denoising
autoencoders. Moreover, a novel loss function for detection is
developed. Performance of the proposed method is compared
to two well known detectors, namely: energy detector and time-
frequency domain detector. Qualitative experiments show that the
proposed method is able to detect presence of a signal with low
probability of false alarm and it outperforms the other methods
in all signal-to-noise ratio cases.

Index Terms—passive systems, detection, deep learning, long-
short term memory, autoencoder

I. INTRODUCTION

In an electronic warfare (EW) environment, passive systems,
such as electronic intelligence (ELINT), electronic support
measures (ESM), aim to extract useful information from
received signals. The utilization process in these systems
involves detection of signals first and then analysis of the
detected signals [1]. Since neither the received signal nor its
type is known before interception, application of matched filter
is infeasible. In addition, general likelihood ratio tests are not
also applicable since they require prior knowledge about the
modulation type of the received signal [2].

In contrast to aforementioned methods, energy detector
is practicable in these systems as it does not have any
assumptions about modulation type, signal shape or arrival
time to make a detection. In [3], energy detector is used to
detect spread-spectrum signals. It is utilized to detect optimal
frequency band sensing time for cognitive radios in [4]. As
a drawback, performance of this method gets degraded in
low signal-to-noise ratio (SNR) scenarios. Another detector
type that does not have such assumptions is based on time-
frequency domain analysis. In [5], a detector based on Wigner-
Ville distribution is proposed to detect transient regions of
signals by weighting the test statistics. Compared to the energy
detector, this method suffers from high complexity.

Passive detection of radar signals is a time-series problem.
Special neural network architectures called recurrent neural
networks (RNN), are designed to solve time-series problem
by learning in a recursive manner. They have been success-
fully applied to several signal processing problems of areas
including computer vision, text analysis, acoustic and radar
[6]–[9]. Furthermore, to solve learning of long time series,
[10] proposed a special architecture for RNN, called long-short
term memory (LSTM). Its bidirectional version (BLSTM) has
both forward and backward pass, which leads to deduction of
non-causal information as well [11]. In [12], LSTM networks
are used to detect real-life voice activity. Due to generalization
ability of neural networks, this approach performs well even
in settings where high noise background exists. [13] utilized
stacked LSTM networks to make anomaly/fault detection in
different time series problems including ECG, space shuttle,
power demand and multi-sensor engines. In [14], polyphonic
sound events are detected in real life recording with the usage
of BLSTM and [15] proposed sliding BLSTM to make detec-
tions without prior knowledge of channel state information in
communication systems.

To the best of our knowledge, there exists no work regarding
radar signal detection in passive systems by using a denoising
neural network architecture. To fill the gap in the literature and
to overcome the drawbacks mentioned in the existing state-
of-the-art detectors, an RNN based denoising autoencoder is
proposed in this work. The proposed method uses the last
layer output of BLSTM based deep denoising autoencoder
as a test statistic. To train the network in the sense of
detection, a novel loss function that is based on binary cross
entropy is developed. Conducted experiments show that the
proposed method is capable of detecting radar signal presence
automatically with low probability of false alarm even in low
SNR scenarios, while outperforming the other detectors in all
SNR levels.

The paper is organized as follows: Section II describes
signal model, Section III introduces existing detectors, Section
IV explains the proposed method. Section V demonstrates the
simulation results and the last section is spared for conclu-
sions.978-1-7281-8942-0/20/$31.00 ©2020 IEEE
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II. SIGNAL MODEL

Complex IQ (Inphase / Quadrature) baseband samples of a
radar pulse is defined as:

x(tn) = a(tn)e
jφ(tn) + u(tn) n = 1, 2, ..., N . (1)

Here φ(tn) is the instantaneous phase, u(tn) is the circulary
symmetric complex Gaussian (CSCG) noise with zero mean
and σ2

u variance, tn denotes the sampling instants and N is the
total number of samples. a(tn) is the instantaneous magnitude
of the pulse and it is defined as:

a(tn) =


1, T0 ≤ tn < T0 + Tg

e−(tn−T0)2/σ2
1 , tn < T0

e−(tn−T0−Tg)2/σ2
2 , T0 + Tg ≤ tn

(2)

where T0 is the time of arrival of the pulse, Tg is the pulse
width. Note that, the rising and falling regions of a(tn) are
modeled as a Gaussian functions with σ2

1 and σ2
2 variances,

respectively [16].
If the pulse has phase hoppings, which is called phase

modulation on pulse (PMOP), instantaneous phase can be
expressed as:

φ(tn) =



2πfctn + φ0, tn < tφ1

2πfctn + φ0 + φ∆1 , tφ1 < tn < t0 + tφ2

...
2πfctn + φ0 +

∑K−1
k=1 φ∆k

, tφK−1
< tn < tφK

2πfctn + φ0 +
∑K
k=1 φ∆k

, tn > tφK .

(3)

Here, fc is the initial center frequency, tφk is the time where
k-th phase hopping occurs, φ0 is the initial phase in radian,
φ∆k

is the amount of phase hopping. Similarly, intentional
frequency changes in a pulse, which is called frequency
modulation on pulse (FMOP), can be defined as:

φ(tn) =



2πfctn + φ0, tn < tf1
2π(fc + f∆1

)tn + φ0, tf1 < tn < t0 + tf2
...

2π(fc +
∑L−1
l=1 f∆k

)tn + φ0, tfL−1
< tn < tfL

2π(fc +
∑L
l=1 f∆k

)tn + φ0, tn > tfL
(4)

where tfk is the time where k-th frequency hopping occurs
and f∆k

is the amount of frequency hopping.
Two probabilities are of interest for detecting a radar pulse.

Probability of detection, which is the probability of making
a detection when the signal is present (H1 hypothesis), and
probability of false alarm, which is making a detection in the
absence of the signal (H0 hypothesis). In the next section, a
brief review of the state-of-the-art detectors will be given.

III. EXISTING METHODS

In this paper, energy detector and time-frequency domain
detector are considered for comparison.

A. Energy Detector (ED)

The test statistic for energy detector is:

T (x) =
1

N

N∑
n=1

|x(tn)|2 , (5)

where N is the window length. Under hypothesis H0, magni-
tude square of the received signal: sn = |x(tn)|2 = xI(tn)

2+
xQ(tn)

2 is chi-square distributed, and its probability density
function is calculated as [17]:

p(s|H0) =

{
1

2
ν
2 Γ( ν2 )

s
ν
2−1e−

s
2 , s ≥ 0

0, s < 0
(6)

where ν = 2 indicates the degree of freedom. Probability of
false alarm is then formulized as [18]:

PFA =

∫ ∞
γ

p(s|H0)ds

= e−
γ

σ2

N−1∑
k=0

( γσ2 )
k

k!
(7)

where γ is the detection threshold. Here, N must be carefully
chosen in order not to miss signals with minimum pulse width
that is required to be detected. Assuming that minimum pulse
width to be detected is PWmin, then N should be selected as
the maximum integer not greater than PWminfs where fs is
the sampling frequency.

B. Time-Frequency Domain Detector (TFDD)

TFDD transforms received signal to complex valued time-
frequency images and make detections over these 2D images.
There are several time-frequency distribution functions, such
as wavelet, Wigner-Ville and short-time Fourier transform
(STFT). Among various time-frequency distributions, STFT
has no cross terms and lowest complexity which is highly
demanded in real hardware applications, for instance ELINT
receivers [19]. Therefore, for performance comparisons in
the extended simulations we conducted, the detection rule
proposed in [5] is adapted to the detector scheme using
STFT, which is abbreviated as STFTD. For a window with
N samples, the test statistic is described as:

T =
N∑
n=1

K∑
k=1

ek(n)pk(n) (8)

where pk(n) is the energy of n-th transformed signal sample
at k-th frequency subband of total K subbands. The corre-
sponding weight ek(n) is defined as:

ek(n) =

∑
n pk(n)∑

k

∑
n pk(n)

. (9)

This choice of weight function puts emphasis on subbands
with higher energy content. Therefore, (8) behaves as a fre-
quency domain matched filter.
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Finally, both of the detectors make detections by comparing
the test statistics to the threshold γ:{

H0, T < γ

H1, T ≥ γ .

IV. PROPOSED METHOD (BLSTMD)

The proposed method uses denoising autoencoder output
as a test statistic, which is then compared to a predefined
threshold for detection. Denoising autoencoders are used for
fitting a noisy version of data by learning a nonlinear function
[20]. They consist of two parts: encoder and decoder. Assume
that f(.) is the encoding function of noisy input data x̃, and
h is the encoded data, i.e. h = f(x̃), then the decoder output
can be described as y = g(f(x̃)) where g(.) is the decoding
function. They minimize L(x, y), where x is the noiseless
input data and L is a loss function such as the `2 norm of their
difference. In the proposed method, BLSTM is utilized as both
the encoding and decoding mechanisms for the autoencoder.
BLSTM is acyclic, meaning that forward and backward layers
are independent. The input sequence is given to the forward
layer and its reversed version is given to the backward layer.
Resulting outputs are concatenated and given to the next layer
as input. An LSTM unit includes four gates having different
purposes and operates by making the following computations:

gti = σ(bgi +
∑
j

W g
i,js

t
j +

∑
j

Ugi,ja
t−1
j ) (10)

f ti = σ(bfi +
∑
j

W f
i,js

t
j +

∑
j

Ufi,ja
t−1
j ) (11)

c̃ti = tanh(bci +
∑
j

W c
i,js

t
j +

∑
j

U ci,ja
t−1
j ) (12)

cti = f ti · ct−1
i + gti · tanh(c̃ti) (13)

qti = σ(bqi +
∑
j

W q
i,js

t
j +

∑
j

Uqi,ja
t−1
j ) (14)

ati = qti · tanh(cti) . (15)

Here g, f , c, and q denote the results of update, forget, cell
and output gates, respectively. c̃ is an intermediate step variable
called candidate cell and a is the activation value of the unit.
Wi,j denotes the LSTM kernel parameter for i-th unit j-th
feature, which is multiplied with j-th feature of input data: stj .
In our case, the input data stj for the first layer corresponds to
|x(tn)| in (5), which is the magnitude of pulse amplitude. Ui,j
is the recurrent kernel which is multiplied with the previous
activation value at−1

j .
Fig. 1 shows the proposed model for denoising and detection

of the received signals. The encoder part learns time series
features, while the decoder part deduces information from
the encoded signal so that the noisy signal is mapped to
the desired signal that enables cognitive detection. The last
layer, LSTM, is used to reduce the output feature number
to one so that fitting is possible to the label, which is a
binary indicator for signal presence. Therefore, different from
the regular denoising autoencoders, the proposed network

Fig. 1. Proposed denoising network scheme is shown. The numbers below
the layers indicate unit sizes.

minimizes L(xo, y), where xo denotes the binary label. Note
that the network can input dynamic size data, which means
that it does not include a weight matrix depending on input
size. Hence, using recurrent layers makes the network to be
more generalizing and to be easily implementable in a real
hardware.

V. RESULTS AND ANALYSIS

BLSTMD, ED and STFTD performances are evaluated
on synthetic radar signals by receiver-operating characteristic
(ROC) analysis for varying SNR values. Modulation types
used in [21] are considered. There are 23 different modulation
types in our dataset, which are shown in Table I.

TABLE I
MODULATION TYPES USED IN SIMULATION RESULT SETS

23 class set

SCM 8-PSK
+Ramp FM 16-PSK
-Ramp FM Frank Code

Sinusoidal FM P1 Code
Triangular FM P2 Code
Costas-5 FM P3 Code
Costas-7 FM P4 Code

Costas-10 FM T1 Code
Barker-3 PM T2 Code
Barker-7 PM T3 Code
Barker-13 PM T4 Code

QPSK

In order to train the autoencoder network, 100000 synthetic
multi pulses sampled at 100 MHz with different pulse widths
from the interval [0.04, 1000] µs are created and concatenated.
This causes window length of the ED to obey N ≤ 4.
The best option N = 4 case is chosen for comparison.
Rising and falling region durations of the pulses are randomly
selected from the interval [0, 0.2] µs. The proposed model is
created and trained in TensorFlow/Python. Labels given to the
autoencoder depend on whether the sample amplitude is larger
than -3 dB or not. If the sample amplitude is above -3 dB, it
is labeled as 1; it is labeled as 0 otherwise. ADAM optimizer,
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Fig. 2. Test statistics of the detectors at 5 dB SNR. Blue: received noisy signal (input), red: test statistic of BLSTMD, black: test statistic of ED, yellow: test
statistic of STFTD.

which is highly used in optimization of deep neural networks
[22], is preferred for training of the proposed model. Since
sharp notches and peaks in the test statistic result in estimating
multi-pulses out of a single pulse (in other words, cracks),
we propose a new loss function that is specially designed for
detection purposes. The loss function is an updated version of
binary cross entropy, which is defined as:

L =
N−1∑
n=0

(
− xon log(yn)− (1− xon) log(1− yn)

+ max(0, |2yn − yn−1 − yn+1| − 1)
)

(16)

where yn is the output of the network (test statistic) for n-th
sample of the received signal, and xon is the corresponding
label. The custom term in the proposed loss function includes
max(.) operation, which penalizes certain combinations of
the three sequantial outputs of the network. Table II demon-
strates all of the combinations for the three samples and
the corresponding values of the custom term in L, which
is called Lcustom. As seen, only two combinations (0, 1, 0)
and (1, 0, 1), which are related to undesired sharp peaks and
notches in the test statistic, exhibit additional cost. Hence, the
proposed loss function targets to create a Markov model-like
transition matrix behaviour in a way that certain transitions are
penalized. Note that, the test statistic values yn are not actually
binary due to the non-linear layers of the network. However, it
is aimed to keep them close to 0 and 1 by training with binary
labels. The proposed loss function penalizes sharp changes in
the test statistic and makes thresholding more accurate. Lastly,
batch size is chosen as 32. 80, 10 and 10 percent of 100000
data is used for training, validation and test, respectively.

TABLE II
CUSTOM LOSS VALUES FOR DIFFERENT COMBINATIONS OF SAMPLES

yn−1 yn yn+1 Lcustom

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

Fig. 3. STFT of the input data at 5 dB SNR.
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Fig. 4. ROC analysis of the detection methods at -5 dB SNR.

In Fig. 2, we examine amplitude of the received noisy
synthetic input data, whose STFT is demonstrated in Fig.
3, and test statistics of three detectors at 5 dB SNR. The
best performing STFT window length and intersection ratios
are selected for STFTD to have a fair comparison. The data
includes different types of modulations. In Fig. 3, triangular
and half sinusoidal shapes indicate pulses with FMOP, straight
lines indicate pulses with constant frequencies. Also, pulse
on pulse (POP) situation can be seen between 2000-th and
2800-th samples. As observed, frequency bands with higher
energy contents results in higher test statistic for STFTD,
which makes detection easier. This can be seen from Fig.
2. Notice that STFTD test statistic does not drop much
just after the instant where POP situation happens. This is
because pulses with constant frequencies have larger weighted
energies as explained in (9). ED has a test statistic that is
highly variational due to small window length. Lastly, the
proposed BLSTMD correctly fits signal presence and absence
to 1 and 0, respectively. Therefore, it can be seen that the
proposed detector is able to denoise data without depending
on frequency domain analysis or POP situation.

Fig. 4 shows ROC analysis of the detectors at -5 dB SNR.
This is a very low SNR level since ELINT/ESM systems
generally work around 10 dB SNR. As observed, BLSTMD
clearly outperforms ED and STFTD by having the highest
probability of detection at all probability of false alarm levels.
The denoising feature of autoencoders provides the network
a desired test statistic, resulting in easier seperation of sig-
nal presence and absence regions while test statistic of ED
causes incorrect thresholding. Similarly, STFTD performs also
well because it includes Fourier transform operation, which
increases SNR as in the case of matched filter.

Fig. 5, 6 and 7 show ROC performance of the detectors at
0, 5 and 10 dB SNR. To focus on the methods’ low probability
of false alarm performances, the figures are zoomed in x-
axis where probability of false alarm is below 0.1. It is
observed that the performance difference between the detectors
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Fig. 5. ROC analysis of the detection methods at 0 dB SNR.
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Fig. 6. ROC analysis of the detection methods at 5 dB SNR.
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Fig. 7. ROC analysis of the detection methods at 10 dB SNR.
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reduces as SNR increases. STFTD performs similar to the
proposed method in all scenarios, while ED performance
gets dramatically degraded as SNR decreases. Overall, the
proposed method shows the best performance in all SNR
levels.

VI. CONCLUSION

This work focuses on the detection of radar signals in
electronic warfare systems. A novel detection method utilizing
bidirectional long-short term memory based deep denoising
autoencoder is proposed. Moreover, to train the network, a
loss function that is specially designed for detection purposes
is proposed. Qualitative experiments show that the proposed
method outperforms energy detector and short-time Fourier
transform detector according to receiver-operating character-
istic analysis in different signal-to-noise ratio (SNR) level
scenarios. It is also observed that denoising neural networks
are highly capable of behaving like matched filters in terms
of SNR maximization.
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