
Deep Learning for Resource Allocation in Cellular

Wireless Networks

by

Kazi Ishfaq Ahmed

A Thesis submitted to The Faculty of Graduate Studies of

The University of Manitoba

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Electrical and Computer Engineering

University of Manitoba

Winnipeg

May 2019

Copyright © May 2019 by Kazi Ishfaq Ahmed

Abstract

Optimal resource allocation is a fundamental challenge for dense and heterogeneous

wireless networks with massive wireless connections. Traditionally, due to the non-

convex nature of the optimization problem, resource allocation is done using some

heuristic approaches such as exhaustive search, genetic algorithms, combinatorial and

branch and bound techniques. These methods are computationally expensive and

therefore not appealing for large-scale heterogeneous cellular networks with ultra-

dense base station (BS) deployments, massive connections and diverse QoS require-

ments for di↵erent classes of users. As a result, the next generation of wireless net-

works will require a paradigm shift from traditional resource allocation mechanisms.

Deep learning (DL) is a powerful tool where a multi-layer neural network can be

trained to model a resource management algorithm using network data. Therefore,

resource allocation decisions can be obtained without intensive online computations

which would be required otherwise for the solution of resource allocation problems. In

this thesis, I develop a deep learning-based resource allocation framework for multi-

cell wireless networks with an objective to maximizing the total network throughput.

In addition, I explore the deep reinforcement learning (DRL) approach to perform a

near-optimal downlink power allocation for multi-cell wireless networks. Specifically,

I use a deep Q-learning (DQL) strategy to achieve near-optimal power allocation pol-

icy. For benchmarking the proposed approaches, I use a Genetic Algorithm (GA) to

obtain near-optimal resource allocation solution. I compare the proposed power allo-

cation scheme with other traditional power allocation schemes by running numerous

simulations.

i

Table of Contents

List of Figures iii

List of Tables iv

List of Abbreviations v

Publications vii

1 Introduction 1

1.1 Challenges in Optimal Resource Allocation 2
1.2 Motivation . 2
1.3 Deep Learning-Based Wireless Resource Allocation: State-of-the-Art 4

1.3.1 Supervised Learning . 5
1.3.2 Deep Reinforcement Learning (DRL) 6

1.4 Scope and Contributions of the Thesis 8
1.5 Organization of the Thesis . 10

2 Supervised Deep Learning for Radio Resource Allocation in Multi-

Cell Networks 11

2.1 Fundamentals of Deep Learning . 12
2.1.1 Deep Neural Network (DNN) 12
2.1.2 Deep Learning Architectures 13
2.1.3 Data Training Procedure . 17

2.2 Sub-band and Power Allocation in Multi-cell Networks: A Supervised
Deep Learning Approach . 18
2.2.1 Network Model . 19
2.2.2 Supervised Deep Learning Approach 20

2.3 Simulations and Results . 24
2.3.1 Input Data Generation . 24
2.3.2 Training the DNN . 25
2.3.3 Results and Discussions . 27

2.4 Summary . 29

i

Table of Contents

3 A Deep Q-Learning Method for Downlink Power Allocation in

Multi-Cell Networks 30

3.1 Introduction . 30
3.1.1 Overview . 30
3.1.2 Contribution . 31

3.2 Deep Reinforcement Learning (DRL) 32
3.2.1 Deep Reinforcement Learning Architectures 34
3.2.2 Training Procedure of DQL 35

3.3 System Model . 37
3.4 Power Allocation in Multi-cell Networks: A DRL Approach 39

3.4.1 DQL Approach . 39
3.5 Experimental Setup . 43

3.5.1 Training the DQL Model . 44
3.5.2 Testing the DQL Model . 45
3.5.3 Results and Discussions . 45

3.6 Summary . 48

4 Conclusion and Future Directions 49

4.1 Conclusion . 49
4.2 Future Research Directions . 50
References . 52

ii

List of Figures

2.1 A deep neural network with three hidden layers. 12
2.2 Structure of an Auto-encoder. 14
2.3 DNN model for power and sub-band allocation. 24
2.4 Test accuracy vs. number of hidden layers. 27
2.5 Test accuracy vs. number of samples. 28

3.1 Deep reinforcement learning. 32
3.2 Normalized throughput vs. testing samples. 46
3.3 Average normalized throughput vs. number of hidden layers. 47
3.4 Average normalized throughput vs. learning rate. 48

iii

List of Tables

1.1 Summary of existing works on resource allocation using deep learning 7

2.1 Symbols . 18
2.2 Performance comparison between exhaustive search and genetic algo-

rithm . 25
2.3 Training parameters . 26

3.1 Symbols . 33
3.2 Training parameters . 44

iv

List of Abbreviations

5G Fifth Generation

AE Auto-encoder

BER Bit Error Rate

BS Base Station

CNN Convolutional Neural Network

CQI Channel Quality Indicator

CR Cognitive Radio

D2D Device-to-Device

DDPG Deep Deterministic Policy Gradient

DDQN Double Deep Q-Network

DL Deep Learning

DNN Deep Neural Network

DQL Deep Q-Learning

DQN Deep Q-Network

DRL Deep Reinforcement Learning

GA Genetic Algorithm

GPU Graphics Processing Unit

ICI Inter Cell Interference

LSTM Long Short-Time Memory

v

List of Tables

ML Machine Learning

MSE Mean Squared Error

PA Power Allocation

PCA Principal Component Analysis

QoS Quality Of Service

RELU Rectified Linear Unit

RL Reinforcement Learning

RNN Recurrent Neural Network

SAE Stacked Auto-encoder

SBS Small Base Station

SDN Software Defined Network

SFP Sequential Fractional Programming

SINR Signal-to-interference-plus-noise Ratio

UPN Unsupervised Pre-trained Network

V2V Vehicle-to-Vehicle

WMMSE Weighted Minimum Mean Squared Error

vi

Publications

• Magazine Publications:

1. Kazi Ishfaq Ahmed, Hina Tabassum, and Ekram Hossain, ”Deep Learn-

ing for Radio Resource Allocation in Multi-cell Networks,” IEEE Network,

2019

• Conference Publications:

1. Kazi Ishfaq Ahmed, and Ekram Hossain, ”A Deep Q-Learning Method

for Downlink Power Allocation in Multi-Cell Networks,” submitted to the

2019 IEEE Global Communications Conference: Cognitive Radio and AI-

Enabled Network Symposium.

vii

Chapter 1

Introduction

Densification of cellular wireless networks through the deployment of more base sta-

tions [BSs] (or cells) has emerged as a possible technique to meet the communication

requirements for the ever-increasing number of mobile users as well as their demand

for high data rate. This gives rise to the concept of heterogeneous networks (HetNets)

in which traditional high-power macro-cells are underlaid with low-power small-cells

to increase the network capacity. However, the main challenge in a HetNet (especially

in a dense scenario) is e�cient interference management among users by prudent use

of the scarce radio resources such as frequency bandwidth, power and time. Since the

same frequency sub-bands are reused in di↵erent cells, users may experience strong

inter-cell interference (ICI). In an ultra-dense scenario, the interference becomes much

severe as the base stations (e.g. macro-cell and small cell base stations) can be very

close to each other. E�cient resource allocation among the cells and users, which is

often posed as an optimization problem, can minimize this ICI.

1

Chapter 1. Introduction

1.1 Challenges in Optimal Resource Allocation

Optimal radio resource allocation is one of the fundamental challenges for the design

and operation of cellular wireless networks. The resource allocation problems are of-

ten formulated and solved using tools from the optimization theory. These problems

need to be solved for sophisticated network scenarios with complex wireless channels,

new transmitter and receiver architectures, and diverse quality-of-service (QoS) re-

quirements of the users. When the optimization problems are non-convex (which is

often the case in a real-world scenario), the optimal solutions are obtained by apply-

ing exhaustive search methods, genetic algorithms, combinatorial, and branch and

bound techniques which results in high computational complexities. Therefore, these

methods are not appealing for large-scale heterogeneous cellular networks with ultra-

dense base station (BS) deployments, massive connections, and di↵erent resources

(e.g. transmission time, frequency channels, antennas, transmit power) and diverse

QoS requirements for di↵erent classes of users. Sub-optimal solutions based on tech-

niques such as Lagrangian relaxations, iterative distributed optimization, heuristic

algorithms, and auction/game theory may also be computationally intensive and can

be far from optimality. Their convergence and optimality gap could be unknown as

well.

1.2 Motivation

The main motivation of this thesis is to address the challenge of optimal resource allo-

cation for next-generation wireless networks. Compared to the aforementioned tradi-

tional techniques, machine learning (ML) [1] -based resource allocation algorithms can

be implemented online with reduced complexity and can optimize resource allocations

in complicated networks. Based on the type of ML technique, the required informa-

2

Chapter 1. Introduction

tion can be learned directly from the data samples instead of using less tractable

mathematical models. However, significant human intervention may be required to

make accurate inferences and decisions based on the dimensionality of data, which is

referred to as feature engineering.

Deep learning (DL), which is a sub-class of ML, hierarchically extracts high-level

features and correlations from input data without human e↵orts through multiple

layers of nonlinear processing units. DL models enable end-to-end optimization of

a complete communication system having several processing blocks, such as channel

encoding, modulation, and signal detection, instead of optimizing each block sepa-

rately. Note that a communication system su↵ers from a variety of hardware and

transmission channel impairments including inter-modulation and amplifier distor-

tion, quantization loss, quadrature imbalance, multi-path fading, interference, and

path-loss. Furthermore, various kind of resources (or degrees of freedom), such as

antennas, channels, bands, beams, codes, and bandwidths, are available that need to

be e�ciently utilized. The combination of these impairments and degrees of freedom

makes the optimization of a complete communication system using the traditional

techniques exceedingly di�cult. This motivates the use of data-driven optimization

of a communication system using DL techniques.

A trained DL model can thus achieve multiple objectives without the need of

retraining and Graphics Processing Unit (GPU)-based parallel computing enables

DL to make inferences within milliseconds [2, 3]. Along this line, the development of

artificial intelligence-powered devices, such as Intel Movidius Neural Compute Stick,

will also motivate the use of DL for future wireless communications applications.

With the DL approach for radio resource management in a large cellular network, a

multi-layer neural network model can be built to which the relevant training samples

3

Chapter 1. Introduction

can be provided as inputs, and then the resource allocation solution can be obtained as

outputs without intensive computations (as each layer performs simple operations like

matrix-vector multiplications [4]). Furthermore, with the advent of software defined

networking (SDN) [5] and cloud storage technologies, it is possible to deal with the

storage, analysis, and computation of big data as well as training the DL models on

SDN controllers.

On the other hand, Reinforcement Learning (RL) [6] method can obtain the opti-

mal solution of a control problem by interacting with the environment. An agent in

RL interacts with the environment by taking action and then receiving feedback from

the environment in terms of reward. The agent follows a policy to maximize some

notion of discounted cumulative reward through a series of actions. However, the

traditional RL is suitable only for systems with low-dimensional state space and may

not work for systems with high-dimensional state space. This is because, in conven-

tional RL, a policy is stored in tabular form and it is not feasible for massive action

and state space due to the lack of generalization. So, instead of a tabular method, a

function approximation such as a DNN can be used in that case. Recently, DRL [7]

has emerged as a promising technique to handle complicated control problems. By

combining Deep Learning (DL) with Reinforcement Learning (RL), the DRL can ex-

tract useful information from high-dimensional data and can learn the optimal action

policy.

1.3 Deep Learning-Based Wireless Resource Allocation:

State-of-the-Art

DL techniques have recently been used in a variety of wireless resource management

problems (e.g. channel and power allocation, throughput maximization, spectrum

4

Chapter 1. Introduction

sharing). We categorize the major works into two groups: supervised DL and DRL.

A summary of these works is provided in Table 1.1 for a qualitative comparison

among these works in terms of the inputs and outputs, data training and generation

method used, radio resources considered, objectives of resource management, and

their limitations.

1.3.1 Supervised Learning

In [8], the authors propose a distributed power control method based on a data-

driven convolutional neural network (CNN) which exploits the spatial features in

channel gain to estimate the transmit power. The main objective is to maximize

throughput through power allocation. However, there is no guarantee that the pro-

posed method can give the centrally optimized solution. In [9], the authors develop

an energy-e�cient power control scheme based on a trained DNN which takes the

communication channels as input and predicts the transmit power. The primary ob-

jective is to maximize the energy e�ciency. In [10], the authors formulate a weighted

throughput maximization problem and solved it using a recurrent DNN architecture.

The model is trained by applying the concept of universal function approximation

of DNN and Lagrangian duality. That is, the non-convex problem is formulated as

a finite-dimensional unconstrained optimization problem in the dual domain with

bounded sub-optimality. Primal-dual descent methods as well their zeroth-ordered

equivalents are used to perform data generation.

In [11], throughput maximization of a device-to-device (D2D) network is consid-

ered with maximum power constraint of a D2D transmitter and maximum interfer-

ence received by cellular BSs. The input data is generated through simulations. The

accuracy/quality of the learning solutions is, however, not described clearly. Also,

5

Chapter 1. Introduction

in [4], a throughput maximization problem is considered with power allocation vari-

ables in interference-limited wireless networks using supervised DL by generating data

through approximate optimal solutions. The model takes the channel coe�cients as

input and allocate power as output.

1.3.2 Deep Reinforcement Learning (DRL)

In [12], the authors use a DQL for power allocation in a cloud-RAN to minimize

the total power consumption while ensuring the demand of each user. The proposed

model takes the demand of the users as input and then allocate powers to the remote

radio heads. The proposed resource allocation scheme is not centrally optimized.

In [13], the authors propose a distributed DRL based resource allocation scheme for

a vehicle-to-vehicle (V2V) communication system. The main objective is to minimize

interference with latency constraints. The model takes the instantaneous channel

as an input and allocates both channel and power. In [14], the authors model the

throughput maximization problem of a small cell network with unlicensed spectrum as

a non-cooperative game and propose a distributed DRL-based solution. The primary

objective is to maximize throughput in each small cell while maintaining fairness

with co-existing networks. The authors use a long short-time memory (LSTM) [20]

network as an agent who takes the unlicensed channel information as an input and

allocates channel in the time domain. In [15], the authors develop a distributed

DQL based spectrum sharing approach for primary and secondary users in a non-

cooperative fashion. The primary users use a fixed power control strategy while the

secondary users learn autonomously to adjust the transmission power to share the

shared spectrum. The model takes the SINR information as input and then allocate

power.

6

Chapter 1. Introduction

Table 1.1: Summary of existing works on resource allocation using deep learning
Publ-

ication

Model Objective Reso-

urces

Input Approach

Sun et al.

[4]
DNN Throughput maximization Power Channel

coe�c-
ients

Centralized

Lee
et al. [8]

CNN Maximize throughput
through power control

Power Norma-
lized
channel

Centralized,
distributed

Zappone
et al. [9]

DNN Maximize the energy
e�ciency through power
control

Power Channel Centralized

Eisen
et al. [10]

RNN Weighted throughput
maximization

Power Channel
gain

Centralized

Kim et al.

[11]
DNN Throughput maximization

with power and
interference constraints

Power Unclear Distributed

Xu et al.

[12]
DQL Minimize the total power

consumption with users’
QoS constraints

Power Demand
of the
users

Centralized

Ye et al.

[13]
DQL Interference minimization

with latency constraints
Channel,
Power

Instanta-
neous
channel

Distributed

Challita
et al. [14]

DQL Maximize throughput
with fairness constraints

Channel,
Time

Unlice-
nsed
channel

Distributed

Li et al.
[15]

DQL Spectrum sharing with
power control at
secondary user

Power SINR Distributed

Zhao
et al. [16]

DQL Maximize the long-term
utility of the network with
users’ QoS constraints

Channel QoS of
the
users

Distributed

Nasir
et al. [17]

DQL Maximize the weighted
sum-rate of the network
through power control

Power CSI Distributed

Meng
et al. [18]

DQL Maximize the overall
sum-rate of the network
through power control

Power Norma-
lized CSI

Distributed

Naparstek
et al. [19]

DQL Maximization of certain
network utility in
distributed manner

Channel Channel
capacity

Distributed

7

Chapter 1. Introduction

In [16], the authors use the DRL approach to perform joint user association and

resource allocation (UARA) in the downlink of the heterogeneous network. Notably,

the authors use Double Deep Q-Network (DDQN) [21] to obtain the optimal policy.

The ultimate goal is to maximize the long-term utility of the network while ensuring

QoS requirements. In [17], the authors use a multi-agent DQL approach to allocate

power in wireless networks. The principal objective is to maximize the weighted sum-

rate of the system. The random variations in CSI, as well as the delays in CSI, are

incorporated in the deep Q-learning model. In [18], the authors propose di↵erent

DRL architectures such as REINFORCE, DQL and deep deterministic policy gradi-

ent (DDPG) [22] for power allocation in multi-user cellular networks. The ultimate

target is to maximize the overall sum-rate of the network. Simulation results show

that the deep Q-learning performs better compared to other DRL approaches. In [19],

the authors use the DRL approach for dynamic spectrum access in wireless networks.

More specifically, the authors use LSTM based deep Q-learning approach. The pri-

mary goal is to maximize each user’s specific network utility in a distributed manner,

i.e. without exchanging information.

1.4 Scope and Contributions of the Thesis

The existing DL-based methods generally focus on single variables only (e.g. power)

and consider heuristic algorithms or simulations to generate the data and train the

model. Therefore, learning solutions are not e�cient solutions. On the other hand,

most of the DRL-based methods focus on power allocation at the small base stations

(SBSs) or cognitive radios (CRs) on a small-scale network set up and take a com-

pletely distributed DRL approach (e.g. the SBSs or the CRs do not cooperate or

exchange information among themselves). Some of the studies perform power allo-

8

Chapter 1. Introduction

cation on multi-cell wireless networks on a large scale but in a distributed manner.

Therefore, the solutions can be very far from the optimal solution. Also, these stud-

ies either consider one user with multiple subbands per cell or multi-user with one

shared frequency band per cell. Therefore, these approaches do not apply to multi-cell

networks with multiple users per cell sharing the same frequency subbands.

The main contributions of this thesis are summarized as follows:

• I provide a brief overview of the DL architectures and the training and testing

procedure of the DL model. I also discuss how the DL model is applicable to

solve a resource allocation problem in a wireless network.

• I formulate the resource allocation problem of a multi-cell network having mul-

tiple users sharing the same frequency subbands. Then, I propose a supervised

DL model to compute optimal sub-band and power allocation solutions for a

multi-cell network with an objective to maximize the total network throughput.

This is a well-known non-convex combinatorial optimization problem. As such,

to generate near-optimal training data for the DL model and to test the DL

model, I utilize a genetic algorithm (GA). I also define the o✏ine training and

online testing procedure of the proposed model.

• I investigate the limitations of the supervised DL approach for resource alloca-

tion in wireless networks. To overcome the limitations, I propose a centralized

DRL-based resource allocation scheme for multi-cell networks. The proposed

scheme is one of the first such schemes to address the power allocation problem

under maximal power constraints in a multi-cell network having multiple users

sharing the same frequency subbands. I define the state space, action space and

the reward function for the DRL agent. I also define the online training proce-

dure of the proposed DRL-based resource allocation scheme. Simulation results

9

Chapter 1. Introduction

with di↵erent network size and training parameters are presented to show the

scalability and robustness of the proposed algorithm.

1.5 Organization of the Thesis

The remainder of the thesis is organized into three chapters as follows:

• Chapter 2 discusses the basic concepts of a DNN, di↵erent deep learning archi-

tectures and the data training procedure. Then the resource allocation problem

of a multi-cell network having multiple users sharing the same frequency sub-

bands is formulated. To this end, a brief a supervised DL model to compute

optimal sub-band and power allocation solutions for a multi-cell network is

proposed. Detailed system model, training data generation process, training

procedure, training parameters and simulation results are also provided.

• Chapter 3 discusses the limitations of the supervised DL approach for resource

allocation in wireless networks. Then a centralized DRL-based resource allo-

cation framework for multi-cell networks is presented. Detailed system model,

online training procedure and simulation results are also presented.

• Chapter 4 provides a summary of the research presented in this thesis along

with the future research directions.

Symbols and notations used throughout the chapters are given in a table at the

beginning of each chapter.

10

Chapter 2

Supervised Deep Learning for

Radio Resource Allocation in

Multi-Cell Networks

In this chapter, I provide an introduction to the deep learning, the deep learning

architectures, and the training procedure. Therein, I specifically focus on Auto-

encoder which belongs to the unsupervised learning category of DL architectures. To

this end, I formulate the resource allocation problem of a multi-cell network having

multiple users sharing the same frequency subbands. Then I develop a supervised

DL model to compute optimal subband and power allocation solutions for a multi-

cell network with an objective to maximizing the total network throughput. More

specifically, I use the Auto-encoder approach to build a DNN and to pre-train the

proposed DL based resource allocation model. Training data generation is the most

crucial part of the proposed resource allocation method. I use a genetic algorithm

(GA) to generate near-optimal training data for the proposed resource allocation

model.

11

Chapter 2. Supervised Deep Learning for Radio Resource Allocation in Multi-Cell

Networks

Figure 2.1: A deep neural network with three hidden layers.

2.1 Fundamentals of Deep Learning

DL is a specific methodology to train and build neural networks. A basic DL model

is a multi-layered feed-forward neural network that enables feature extraction and

transformation of input data. I briefly review the basic composition of deep neural

networks (DNN), relevant DNN architectures and data training procedure with feed-

forward and backpropagation DNN.

2.1.1 Deep Neural Network (DNN)

A DNN consists of an input layer, multiple hidden layers, and the output layer

(Fig. 2.1). Each layer has multiple units commonly known as neurons. Each neuron

performs a non-linear operation on the inputs. A weighted summation of the inputs

is first computed, and then before sending the weighted summation to an activation

function (e.g. a Sigmoid function '(x) = 1
1+e�x), a bias value is added. The activation

function creates a non-linear relationship between the input and the output [2]. The

non-linear representation of a neuron is shown in Fig. 2.1. Every neuron has a vector

12

Chapter 2. Supervised Deep Learning for Radio Resource Allocation in Multi-Cell

Networks

of weights and a bias value. Therefore, for a layer, there will be a weight vector and

a bias vector. If x is the input of hidden layer i, then the output of the hidden layer

i is h(i) = '
(i)(w(i)T

x+ b
(i)), where '

(i) is the activation function, w(i) is the weight

vector, and b
(i) is the bias vector of hidden layer i.

2.1.2 Deep Learning Architectures

DL relies on four primary neural network architectures: unsupervised pre-trained

networks (UPNs), convolutional neural networks (CNNs), recurrent neural networks

(RNN), and recursive neural networks. The DL architectures can be used along

with three learning models: supervised, unsupervised, and reinforcement learning.

In supervised DL, a supervisor helps the model to learn the features from data, i.e.

the model already knows the output of the algorithm before it starts learning it.

Therefore, in supervised learning, the dataset contains the target for each input.

Supervised learning is used in classification and regression problems. In unsupervised

learning, there is no supervisor to provide correct answers. Therefore, in unsupervised

learning, the dataset does not have any target. And the primary goal is to correctly

infer the outputs for a given set of unlabeled input data. In reinforcement learning

(a popular example of which is Q-learning [23]), there is a software agent who learns

by interacting with the environment. The agent senses its current state and the state

of the environment and then choose an action. For every action it takes, there is a

consequence. The agent either receives a reward for a good move or a penalty for

a wrong move. The primary job of the agent is to maximize the cumulative reward

through a series of actions. When a neural network is used as an agent, it is referred

to as deep reinforcement learning (DRL).

13

Chapter 2. Supervised Deep Learning for Radio Resource Allocation in Multi-Cell

Networks

Figure 2.2: Structure of an Auto-encoder.

Auto-encoder: In this chapter, I focus on Auto-encoder (AE) which falls under the

category of UPNs. An AE is an unsupervised learning model [24] which reconstructs

the inputs at the outputs. By doing so, AE learns the feature space of the data set.

It normally consists of an input layer with one or more hidden layers and an output

layer. The number of neurons in the input layer and the output layer should always

be the same. A simple AE is shown in Fig. 2.2.

An AE consists of two parts: an encoder which transforms the input to a hidden

code and a decoder which reconstructs the input from the hidden code. Auto-encoders

and Principle Component Analysis (PCA) [25] are closely related as both of them

try to minimize the same objective function. The only di↵erence is that AE can

perform both linear and non-linear transformation, but PCA can perform the only

linear transformation. AE is also used for reducing the dimensionality of data. There

are various kinds of AE available like denoising AE, stacked AE, sparse AE, and

14

Chapter 2. Supervised Deep Learning for Radio Resource Allocation in Multi-Cell

Networks

variational AE.

Sparse Auto-Encoder: A Sparse Auto-Encoder is an extension of AE which can

learn sparse features of the data set. By adding a sparse penalty into the traditional

AE, the performance of the AE can be significantly improved [26]. In a traditional

AE, the number of hidden units is small compared to the inputs. An AE can still

learn useful features even if the number of hidden units is large. This can be achieved

by adding a sparsity constraint.

A neuron is active if the output is 1 or close to 1 and inactive if the output is

close to 0. I want the neurons to be inactive for most of the time. Let, a(2)j (x) is the

activation of neuron j of layer 2 or the hidden layer when x is given as an input. So,

the average activation of neuron j is

⇢j =
1

m

mX

i=1

⇥
a
(2)
j (x(i))

⇤
. (2.1)

A low activation value means a neuron in the hidden layer activates for a small

number of training examples, i.e. a neuron responds to a particular feature of the

training examples. We add a constraint ⇢j = ⇢ to make the average activation of each

hidden neuron j to be close to zero. Here, ⇢ is called the sparsity parameter.

A penalty term known as sparsity regularization is used in the optimization objec-

tive which will penalize ⇢j for deviating from ⇢. The sparsity regularization ⌦sparsity

defined by the Kullback-Leibler (KL) divergence [27] is

⌦sparsity =
s2X

j=1

KL(⇢k⇢j)

=
s2X

j=1

✓
⇢ log

⇢

⇢j

+ (1� ⇢) log
1� ⇢

1� ⇢j

◆
.

(2.2)

15

Chapter 2. Supervised Deep Learning for Radio Resource Allocation in Multi-Cell

Networks

Here, s2 is the number of neurons in the layer-2 or hidden layer. KL(⇢k⇢j) is

the KL divergence between the Bernoulli random variables of mean ⇢ and ⇢j. The

sparsity regularization has the following properties:

• KL(⇢k⇢j) = 0 if ⇢j = ⇢,

• otherwise, it increases monotonically as ⇢j diverges from ⇢.

On the training process of a sparse auto-encoder, it is possible to make the sparsity

regulariser small by increasing the weights W (1) of the first layer and decreasing the

values of the hidden code h
(1) [28]. A regularization term on the weights to the cost

function prevents it from happening. This is known as L2 regularization defined as,

⌦weights =
1

2

LX

l

nX

j

kX

i

(w(l)
ji)

2
(2.3)

where L is number of hidden layers, n is the number of observations and k is the

number of features in the training data set. The overall cost function or the objective

function of the sparse auto-encoder is

Jsparse(W, b) = J(W, b) + � ⇤ ⌦weights + � ⇤ ⌦sparsity (2.4)

where J(W, b) is the cost function of a traditional AE. � is the coe�cient of L2

regularization term and � is the coe�cient of sparsity regularization term.

Stacked Auto-Encoder (SAE): A Stacked Auto-Encoder is a neural network

which is consist of multiple layers of sparse AE. The output of each layer is connected

to the inputs of the successive layer. Usually, greedy layer-wise training is used for

stacked auto-encoder. We first train the first layer of the SAE with the inputs to get

16

Chapter 2. Supervised Deep Learning for Radio Resource Allocation in Multi-Cell

Networks

the weights and biases of that layer. We use those weights and biases to generate

hidden codes of the first layer. These hidden codes are then used to train the second

layer. The output of one layer is used as an input to train the subsequent layer.

2.1.3 Data Training Procedure

Let us assume that I have to learn a target function y = f
⇤(x). Here, x is the input

vector and y is the output vector. The DL model is therefore y = f(x; ✓), where

✓ denotes the unknown parameters, i.e. weights and biases. The goal is to learn ✓

precisely so that the model can be closer to the original one. Di↵erent algorithms (e.g.

Stochastic Gradient Descent (SGD) [29], Momentum [30], Nesterov Momentum [31],

AdaGrad [32], RMSProp [33], and Adam [34]) can be used to learn ✓.

To learn ✓, a training labeled dataset composed of inputs and outputs is typically

used to train the model. In the training phase, I first initialize the weights and

biases randomly. Then, I feed those inputs to the input layer of the system. The

output of the input layer is used as an input for the hidden layer. In this way, the

data propagates through the hidden layers and finally reaches the output layer. The

propagation of information from the input layer to the output layer is known as the

forward pass. A cost function (e.g. mean squared error [MSE]) is used to measure the

quality of the model by calculating the error between the predicted and the original

value. The resulting error signal is then propagated backward through the hidden

layers and updates the weights and biases of each layer which is known as the backward

pass. This training process continues until the error rate reaches a threshold value.

When training data completes a forward and backward pass, it is called a complete

training cycle or epoch. The training process can also be terminated if it reaches the

maximum number of epochs. Such a neural network is referred to as a feed-forward

17

Chapter 2. Supervised Deep Learning for Radio Resource Allocation in Multi-Cell

Networks

and back-propagation neural network and is used in the proposed DL model.

Table 2.1: Symbols
Symbol Description

K Number of base stations (BSs)
F Number of frequency sub-bands
B Bandwidth of each sub-band in MHz
Pk,f Power allocated by cell k in frequency sub-band f

P
max
k Maximum power of a cell k

Uk Set of users associated with cell k
U Set of all users
Ak Allocation vector of cell k
Ak,f The user assigned to sub-band f in cell k
I(.) Indicator function
SINRu,k,f SINR of user u in cell k over frequency sub-band f

⌘u Receiver noise
Gu,k,f Link gain from cell k to user u over frequency sub-band f

Hu,k,f Rayleigh fading gain of user u from cell k over frequency sub-band f

X↵ Log-normal shadowing
PLu Path-loss of user u
Cu,k CQI vector of a user u of cell k
Vu,k Location indicator of user u of cell k
Ru,k Distance of user u in cell k from the BS
R Cell radius

2.2 Sub-band and Power Allocation in Multi-cell Networks:

A Supervised Deep Learning Approach

In the following, I develop a DL-based resource allocation model with an objective

to maximizing the total network throughput by performing joint resource allocation

(i.e. both power and channel). I use a supervised learning approach to train the

DNN model and obtain the training data by solving the non-convex optimization

problem through a genetic algorithm. I also use the stacked auto-encoder approach

to pre-train the model. I observe that a pre-trained model converges more quickly

18

Chapter 2. Supervised Deep Learning for Radio Resource Allocation in Multi-Cell

Networks

compared to an untrained model and performs better.

2.2.1 Network Model

In order to increase the readability, all the symbols that are used throughout this

chapter are listed in Table 2.1.

I consider a downlink cellular network of K base stations (BSs). Each BS k 2

{1, · · · , K} has F frequency sub-bands. The bandwidth of each sub-band is B MHz.

The power allocated by cell k in frequency sub-band f is Pk,f which is discrete. The

total power of a cell k is limited by a maximum value P
max
k such that

P
f2F Pk,f

P
max
k , 8k 2 {1, · · · , K}. Let Uk denote the set of users who are associated with cell

k, and U is the set of all users in the network. The vector Ak denotes allocation of

sub-bands in cell k, where each element Ak,f is an integer denoting the user who is

assigned sub-band f in cell k.

The corresponding throughput maximization problem is given by

max
X

k2{1,··· ,K}

X

u2Uk

FX

f=1

[I(Ak,f = u)B log (1 + ↵SINRu,k,f)] (2.5)

s.t.
X

f2F

Pk,f P
max
k , 8k 2 {1, · · · , K} (2.6)

where I(.) is an indicator function, ↵ is a constant for a given target Bit Error Rate

(BER) which is defined as ↵ = �1.5/ log(5BER). We assume BER to be 10�6. The

signal-to-interference-plus-noise ratio (SINR) of user u when served by cell k which

transmits over frequency sub-band f is expressed as SINRu,k,f = Pk,fGu,k,f

⌘u+
P

l 6=k Pl,fGu,l,f
.

where ⌘u represents the receiver noise and Gu,k,f denotes the link gain from cell k to

user u over frequency sub-band f defined as Gu,k,f = 10�(PLu+X↵)/10.|Hu,k,f |2, where

Hu,k,f is the Rayleigh fading gain of user u from cell k over frequency sub-band f ,

19

Chapter 2. Supervised Deep Learning for Radio Resource Allocation in Multi-Cell

Networks

X↵ is the log-normal shadowing, and PLu is the path-loss of user u.

The utility of the network which is the total network throughput is defined as

follows:

U =
X

k2{1,··· ,K}

X

u2Uk

FX

f=1

[I(Ak,f = u)B log (1 + ↵SINRu,k,f)] . (2.7)

All users periodically send their channel quality as a channel quality indica-

tor (CQI) to their nearest BS, where Cu,k is the CQI vector of a user u of cell k

over all frequency sub-bands. That is, Cu,k is a vector of discrete values Cu,k :=

(Cu,k,1, Cu,k,2, . . . , Cu,k,F). In LTE, the CQI values range from 1 to 15 [35]. In addition,

users are also classified into cell-center users and cell-edge users depending on the

users’ locations. A location indicator Vu,k is used to indicate whether a user u of cell

k is cell-center user or cell-edge user as follows:

Vu,k =

8
>><

>>:

1 if Ru,k > R/2

0 otherwise

(2.8)

where Ru,k is the distance of user u in cell k from the BS and R is the cell radius.

For each user class, sub-band and power allocations will be learned and predicted

separately.

2.2.2 Supervised Deep Learning Approach

Now I present a deep learning approach that can predict optimal sub-band and power

allocation solutions for multi-cell networks with a certain accuracy. Specifically, this

deep learning model takes Cu,k vector along with Vu,k of all users in a network as input

and predict the power and sub-band allocations as output. That is, for K cells, U

users and F sub-bands, the size of the input data is (K ⇥ U ⇥ (F + 1)). I convert

20

Chapter 2. Supervised Deep Learning for Radio Resource Allocation in Multi-Cell

Networks

the output data from decimal base to n-bit binary and also their complement in the

output. Therefore, for K cells, the size of output data is (2⇥ 2 ⇥ n ⇥K ⇥ F). The

approach proceeds in the following phases:

Data generation: It requires the optimal solution of the sub-band and power allo-

cation problem which is a non-convex combinatorial optimization problem. One way

is to check all possible combinations of power and channel allocation for all the BSs

which is referred to as exhaustive search. For example, with 15 cells, 5 sub-bands, and

5 discrete power levels, then there will be 55 or 3125 possible combinations available

for the power setting of one BS. Therefore, I will need to check 312515 combinations,

which is practically infeasible. As such, to generate data to train and test our DNN

model, I resort to a GA, which is a heuristic searching algorithm inspired by the

theory of natural evolution [36]. That is, first I generate a set of randomly initialized

individuals and calculate a fitness score for every individual. Two individuals are then

selected based on their fitness scores and then a randomly generated crossover point

is used to exchange their genes resulting in a new o↵spring. The new o↵spring is then

added to the population. Some genes of the new o↵spring can be mutated to maintain

diversity within the population. GA continuously generates new o↵springs until the

population becomes converged, i.e. a new o↵spring is not significantly improved from

the previous generation. Then I have a set of solutions for the problem.

Data generation algorithm: The data generation using GA is shown in Algo-

rithm 1.

Step 1: Allocate a random power vector for each cell. After that, I calculate the

CQI value of each sub-band for each user in the network. I also estimate the location

indicator for every user using Eq. 3.8. Note that the CQI values and the location

21

Chapter 2. Supervised Deep Learning for Radio Resource Allocation in Multi-Cell

Networks

Algorithm 1 Data generation using GA
1: Initialize the dataset D to capacity N

2: for sample = 1, · · · , N do

3: Allocate a random power vector for each cell.
4: Calculate the CQI vector as well as the location indicator for every user in the

network.
5: Label the CQI vector and the location indicator as input.
6: Use GA to find the optimal power vector of every BS which maximizes the total

network utility (Eq. 2.7).
7: Allocate random power vectors for every cell to generate initial population of

GA.
8: Calculate the total network utility (Eq. 2.7) as a fitness score for every individ-

ual.
9: repeat

10: Choose two sets of individuals of high fitness score from the population.
11: Choose a random crossover point for each pair and exchange the genes (i.e.

power levels of the power vector) among them.
12: Choose one or more genes of the new o↵spring with a very low mutation

probability and change their values.
13: Check the fitness score of the new o↵spring. If fitness score improved from

their parents, put them on the population.
14: until population has converged.
15: Calculate the sub-band allocation from the optimal power vector.
16: Label the power vector and allocation vector as output.
17: Store the (input, output) pair in D.
18: end for

indicator for every user are the inputs of our DNN model.

Step 2: Find the power vector of every BS which maximizes the total network utility

(Eq. 2.7). I use GA to solve this problem as explained in the following.

Step 2.1: Generate random power vectors for every cell. This is known as the

initial population of GA.

Step 2.2: Using the power vectors, I compute the total network utility (Eq. 2.7),

which refers to a fitness function in a GA. Therefore, for every individual, I have a

fitness score.

Step 2.3: I choose two sets of individuals of high fitness score from the initial

22

Chapter 2. Supervised Deep Learning for Radio Resource Allocation in Multi-Cell

Networks

population.

Step 2.4: I then choose a random crossover point for each pair and exchange the

genes among them. Here, genes are the di↵erent power levels of the power vector.

Step 2.5: With a very low mutation probability, I randomly choose one or more

genes of the new o↵spring and change their values.

Step 2.6: I check the fitness score of the new o↵spring. If the fitness score

improved from their parents, I would put them on the population. I keep repeating

Steps 2.2-2.6 until there is no significant improvement in the fitness scores.

Step 3: Once I find the optimal power vector, I need to calculate the sub-band allo-

cation. A sub-band will be allocated to that user who will maximize the throughput.

The power vector and allocation vector are the outputs.

Step 4: I need to repeat Steps 1-4 until I have a certain amount of data to train

our DNN model.

Once data generation is complete, I train the proposed model with the data. Finally,

I use the pre-trained DNN model to predict sub-band and power allocations for every

BS in the network. This prediction will be performed online.

Training phase: The training labeled dataset consists of labeled input data and

labeled target data or the output data. I use a stacked AE to initialize the weights

and biases for the neurons in the hidden layers. In this way, I pre-train the proposed

model, and then I add a Softmax layer, which assigns probabilities to each class in

such a way that the total probability must be 1.0. Finally, I stack the encoder part

of the AE with the Softmax layer and fine-tune the model with the training labeled

dataset. The complete DNN is shown in Fig. 2.3.

23

Chapter 2. Supervised Deep Learning for Radio Resource Allocation in Multi-Cell

Networks

Figure 2.3: DNN model for power and sub-band allocation.

Testing phase: After training the model, I test the model on a new labeled dataset

and calculate the accuracy of the model. In a practical setting, all users in the network

periodically send their CQI values to their serving BSs, which extract the CQI value

of each sub-band and add a location indicator, i.e. cell-center user or cell-edge user.

Therefore, for every user, there will be a vector of CQI and location indicator. Each

BS then sends the processed information of all users to a central entity (e.g. SDN

controller), which runs the DNN model. The DNN model will generate the allocation

vector and power vector for all the BSs. Once the prediction is made, the controller

will send back the allocation and power vectors to their designated BSs.

2.3 Simulations and Results

I consider a network of K = 5 BSs with a coverage radius R = 500 m, maximum

transmit power = 40 W, directional antennas per cell = 3, number of users per cell

= 5, bandwidth of a sub-band B = 2.88 MHz, white noise power density = �174

dBm/Hz, number of sub-bands = 3, number of power levels = 3, and power levels =

{6.4, 12.8, 19.2} W.

2.3.1 Input Data Generation

First, I generate data for the training of DNN model using the GA approach. To

confirm the accuracy of the solutions obtained from GA, I compare GA with the

24

Chapter 2. Supervised Deep Learning for Radio Resource Allocation in Multi-Cell

Networks

Table 2.2: Performance comparison between exhaustive search and genetic algorithm
Parameter Exhaustive Search Genetic Algorithm

Avg. Execution time 1460.00 sec. 118.76 sec.
Max. Execution time 2247.50 sec. 158.65 sec.
Min. Execution time 1509.00 sec. 95.13 sec.
Accuracy 100% 85.25%

exhaustive search. For this, I first simulate a network of 4 macro-cells where each cell

has 5 users. Then using Step 1, I calculate the CQI values and the location indicator

of each user in the network. For the exhaustive search, instead of Steps 2 and 3, I

perform the exhaustive search to maximize the total network utility, i.e. the optimal

powers. We repeat Steps 1-4 to generate 1000 samples for comparison between the

exhaustive search and GA. The comparisons are shown in Table 2.2.

An exhaustive search takes much longer time compared to GA. This is because,

in an exhaustive search, I need to check the whole solution space whereas GA takes

a much shorter time and generate optimal solutions with a probability of 0.85 (i.e.

prediction accuracy is 85%). For a large scale system, it is not feasible to generate

data using the exhaustive search. Therefore, I use GA to create training and testing

data for the proposed DNN model. I use a network of 5 BSs where the cells are

partially overlapped, and five users are located randomly within each macro-cell. I

apply 3 frequency sub-bands and 3 power levels for each macro-cell. By using Steps

1-4, I produce around 17000 samples for the DNN model. Then I use 80% of this

labeled dataset for training and the remaining 20% for testing purposes.

2.3.2 Training the DNN

After data generation, I train our DNN model with our training labeled dataset. The

training labeled dataset has two parts: input and output. The input data size is

25

Chapter 2. Supervised Deep Learning for Radio Resource Allocation in Multi-Cell

Networks

5⇥ 5⇥ (3 + 1) = 100 and for the output data, I convert the data from decimal base

to 3-bits binary base. I also use their complements in the output, i.e. if the binary

representation 3 is (011)b, then its complement is (100)b. Then, the output data size

becomes 2 ⇥ 2 ⇥ 3 ⇥ 5 ⇥ 3 = 180. I use a stacked AE model for pre-training as well

as to build our DNN model. I first train an AE with our input data. The training

parameters are shown in Table 2.3.

Table 2.3: Training parameters
Parameter Value

Number of Hidden layers 3
Layers {Input, Encoder, Encoder, Encoder,

Softmax}
No. of neurons per layer {100, 1080, 720, 360, 180}
Max. no. of epochs (pre-training)
(AE1, AE2, AE3, Softmax)

(1000, 500, 500, 1000)

Max. no. of epochs (fine-training) 1000
Encoders transfer function sigmoid
SparsityProportion, ⇢
(AE1, AE2, AE3)

(0.15, 0.1, 0.1)

L2WeightRegularization, �
(AE1, AE2, AE3)

(0.004, 0.002, 0.002)

SparsityRegularization, �
(AE1, AE2, AE3)

(4, 4, 4)

Then I generate hidden codes of the first AE by using the input of the training

data as an input of the AE. Then these hidden codes are used to train the second

auto-encoder. Using this approach, we pre-train several AEs, and at the end, I add a

Softmax layer. To pre-train the Softmax layer, I use the hidden codes of the last AE

as the input and output part of the training labeled dataset as target or output.

26

Chapter 2. Supervised Deep Learning for Radio Resource Allocation in Multi-Cell

Networks

2.3.3 Results and Discussions

Impact of the number of hidden layers on prediction accuracy: After pre-

training, I stack all encoders of the AE along with the Softmax layer and fine-tune

network with the training labeled dataset. Once training is completed, I test the

accuracy of our model using the testing labeled dataset. To find the optimal number

of hidden layers for the proposed model, I vary the number of hidden layers, i.e. the

number of stacked auto-encoders and calculate test accuracy. Fig. 2.4 shows the test

accuracy of our DNN model vs. the number of hidden layers. From this figure, I can

see that at first the accuracy increases with the number of hidden layers and then it

starts to decrease. More hidden layers in a neural network mean it can learn more

features. As the number of hidden layer increases, the model also starts to learn the

irrelevant features (noise) of the training data. Then the model is not able to perform

well on the new examples and the test accuracy deteriorates. The model overfits the

training data and this situation is commonly known as overfitting.

2 3 4 5
Number of Hidden Layers

50

55

60

65

70

75

80

85

90

95

100

Te
st

 A
cc

ur
ac

y
(%

)

Test Accuracy Vs. Number of Hidden Layers

Figure 2.4: Test accuracy vs. number of hidden layers.

27

Chapter 2. Supervised Deep Learning for Radio Resource Allocation in Multi-Cell

Networks

4000 6000 8000 10000 12000
Number of Training Samples

50

55

60

65

70

75

80

85

90

95

100

 A
cc

ur
ac

y
(%

)

Accuracy Vs. Number of Training Samples

Training accuracy
Test accuracy

Figure 2.5: Test accuracy vs. number of samples.

I achieve the maximum test accuracy of 86.31% for 4 hidden layers and slightly

less test accuracy of 86.14% for 3 hidden layers. The complete DNN model along

with its number of neurons per layer is shown in Fig. 2.3. Next, I vary the number of

training samples and observe its e↵ects on both training accuracy and test accuracy.

Note that training accuracy refers to the accuracy we observe when we apply the

model to the training data.

Impact of the number of training samples on prediction accuracy: From

Fig. 2.4, I observe that the test accuracy is low for a small number of training samples

and the accuracy increases gradually with the training examples. On the other hand,

the training accuracy is high for a small number, and the accuracy decreases slowly

with the training examples. Initially, for a small number of training examples, the

DNN learns very few distinguishing features and this is enough to express the input-

output relationship of the training data. This is why the training accuracy is high for

28

Chapter 2. Supervised Deep Learning for Radio Resource Allocation in Multi-Cell

Networks

a few training samples. However, for testing, the learned features are not su�cient

enough to predict the output correctly. With the increase of training samples, the

DNN model extracts more abstract features from the data, i.e. the model learns more

about the relationship between the inputs and outputs. The testing accuracy keeps

increasing with the training examples, and after some specific training examples,

it starts to saturate. The reason is that as we continue to increase the training

samples size there are no new distinguishing features to be learned and thus the

prediction accuracy may not increase any further. However, the training accuracy

decreases because the model also learns the common features (noise) of the data

which ultimately degrades the performance of the model. Eventually, with a further

increase in training data, the model starts to overfit the data leading to reduced test

accuracy.

2.4 Summary

I have presented a deep supervised learning approach to solve the sub-band and power

allocation problem in multi-cell networks. Simulation results show that the prediction

accuracy increases with the size of data samples and the number of hidden layers.

However, a continuous increase of the number of hidden layers will not improve the

accuracy significantly and in some cases, the model may even start to learn noisy

features. Obtaining the optimal configuration of the DL model, e.g. number of

hidden layers and the size of input data samples is a fundamental challenge. Also, it

is crucial to develop e�cient o✏ine methods to generate optimal/near-optimal data

samples for training the DNN architectures. Application of deep learning in scenarios

with massive connections and spatiotemporal correlations due to user mobility and

variations in wireless channel fading characteristics would be of immediate relevance.

29

Chapter 3

A Deep Q-Learning Method for

Downlink Power Allocation in

Multi-Cell Networks

3.1 Introduction

3.1.1 Overview

Resource allocation using supervised DL approach is not feasible for large-scale wire-

less systems because the heuristic algorithms (e.g. GA, sequential fractional pro-

gramming (SFP) [37], bisection approach [38], etc.) used to generate training data

are computationally expensive and time-consuming. Therefore, this approach is not

suitable for large-scale systems. On the other hand, RL such as Q-learning [39] is

already applied for cognitive radio applications [40–43]. However, the RL is can only

work on the low dimensional case and therefore not suitable for resource allocation

in large-scale systems. With the advancement of RL, DRL can extract useful in-

30

Chapter 3. A Deep Q-Learning Method for Downlink Power Allocation in

Multi-Cell Networks

formation from the high dimensional data such as image and can learn the optimal

action policy [44]. Power allocation under maximal power constraints in a multi-

cell network (e.g. a cloud-RAN) with an objective to maximize the total network

throughput is a well-known non-convex combinatorial optimization problem and is

NP-hard [45]. Model-based algorithms such as Fractional Programming (FP) [46]

and Weighted Minimum Mean Squared Error (WMMSE) [47] are usually used in

this scenario. But, both the algorithms formulate the power allocation problem as a

convex optimization problem.

3.1.2 Contribution

The contributions of this chapter can be summarized as follows:

• First, I provide a brief overview of DRL, DRL architectures and the training

procedure.

• Then, I propose a centralized downlink power allocation scheme based on DRL

for multi-cell network to maximize the total network throughput. The proposed

scheme is novel and it is one of the first such schemes to address the power

allocation problem under maximal power constraints in a multi-cell network

having multiple users sharing the same frequency subbands.

• I define the state space, action space and the reward function for the DRL agent.

I also define the online training procedure of the proposed DRL based power

allocation scheme.

• Unlike supervised learning approach, there is no need for optimal/ near-optimal

training data. This is why the proposed power allocation scheme is computa-

tionally scalable to large-scale scenarios.

31

Chapter 3. A Deep Q-Learning Method for Downlink Power Allocation in

Multi-Cell Networks

• Simulation results with di↵erent network size and training parameters are pre-

sented to show the scalability and robustness of the algorithm. I also compare

our DRL model with the near-optimal solution derived through a GA. Simula-

tion results show that the proposed DRL based resource allocation model can

perform well in a large-scale scenario.

3.2 Deep Reinforcement Learning (DRL)

In reinforcement learning, there is a software agent who learns by interacting with

the environment. The agent senses its current state and the state of the environment

and then choose an action. For every action it takes, there is a consequence. The

agent either receives a reward for a good move or a penalty for a bad move. The

primary job of the agent is to maximize the cumulative reward through a series of

actions. When a DNN is used as an agent, it is referred to as DRL. Therefore, DRL

is the combination of DNN and RL as shown in Fig. 3.1.

Figure 3.1: Deep reinforcement learning.

32

Chapter 3. A Deep Q-Learning Method for Downlink Power Allocation in

Multi-Cell Networks

Table 3.1: Symbols
Symbol Description

st State at time step t

at Action at time step t

A Action space
rt Reward at time step t

Rt Accumulated reward
� Discount factor
Q Action-value function

Q̂ Target action-value function
y Approximate target values
Li(✓i) Loss function at each iteration i

Vs0 [y] Variance of the target
� Speed of decay
⌧ Total number of steps elapsed
K Number of base stations (BSs)
F Number of frequency sub-bands
B Bandwidth of each sub-band in MHz
Pk,f Power allocated by cell k in frequency sub-band f

P
max
k Maximum power of a cell k

Uk Set of users associated with cell k
U Set of all users
Ak Allocation vector of cell k
Ak,f The user assigned to sub-band f in cell k
I(.) Indicator function
SINRu,k,f SINR of user u in cell k over frequency sub-band f

⌘u Receiver noise
Gu,k,f Link gain from cell k to user u over frequency sub-band f

Hu,k,f Rayleigh fading gain of user u from cell k over frequency sub-band f

X↵ Log-normal shadowing
PLu Path-loss of user u
Cu,k CQI vector of a user u of cell k
Vu,k Location indicator of user u of cell k
Ru,k Distance of user u in cell k from the BS
R Cell radius
Ak Action space for cell k
ak 2 Ak Selected action for cell k

33

Chapter 3. A Deep Q-Learning Method for Downlink Power Allocation in

Multi-Cell Networks

3.2.1 Deep Reinforcement Learning Architectures

In order to increase the readability, all the symbols that are used throughout this

chapter are gathered in Table 3.1.

The deep reinforcement learning (DRL) algorithms can be categorized into three

categories [48]: value-based, policy-based, and actor-critic methods. In value-based

DRL, the agent learns the optimal action from the action-state value function. Deep

Q-learning (DQL) and SARSA [49] are the most popular in value-based DRLmethods.

In a policy-based method such as REINFORCE [49] learning, the agent optimize the

policy directly. In actor-critic methods, the critic updates the action-value function

and the actor update the policy. Deep deterministic policy gradient (DDPG) [22]

algorithm is actor-critic based.

In this chapter, I focus on the deep Q-learning (DQL) which is a value-based DRL.

At time step t, the DQL agent receives state st from a state space S and takes an

action at from an action space A. The agent follows a policy ⇡(at|st) i.e., a mapping

from state st to action at, to choose the action. After executing action at, the agent

receives a reward rt and move to new state st+1. The agent continues the process

until it reaches the terminal state and then it restarts. The goal of the agent is to

maximize the discounted accumulated reward defined as Rt =
P1

k=0 �
k
rt+k. Here,

� 2 (0, 1] is the discount factor which determines the importance of future rewards

compared to current reward. An action-value function Q⇡(s, a) = E[Rt|st = s, at = a]

is the expected return for selecting action a in state s and then follow a policy ⇡. An

optimal action-value function Q
⇤(s, a) = max⇡ Q⇡(s, a) is the maximum action value

achievable by following any policy for state s and action a. The optimal action-value

function can be decomposed into Bellman equation:

34

Chapter 3. A Deep Q-Learning Method for Downlink Power Allocation in

Multi-Cell Networks

Q
⇤(s, a) = Es0 [r + �max

a0
Q

⇤(s
0
, a

0
)|s, a]. (3.1)

In DQL, a neural network is used to approximate the optimal action-value func-

tion, Q(s, a; ✓) ⇡ Q
⇤(s, a). Here, Q(s, a; ✓) is called the Q-network and ✓ is the

parameter of neural network. Iterative update is used to train the Q-network and

thus reduce the mean-squared error of the Bellman equation. For that, the opti-

mal target values r + �maxa0 Q
⇤(s

0
, a

0
) are replaced with approximate target values

y = r + �maxa0 Q(s
0
, a

0
; ✓�i), where ✓

�
i are the parameters of the Q-network from

some previous iteration. The loss function Li(✓i) at each iteration i is

Li(✓i) = Es,a,r[(Es0 [y|s, a]�Q(s, a; ✓i))
2]

= Es,a,r,s0 [(y �Q(s, a; ✓i))
2] + Es,a,r[Vs0 [y]].

(3.2)

Here, Vs0 [y] is the variance of the targets which is independent of ✓i and therefore

can be ignored. The parameters from the previous iteration ✓
�
i are kept fixed when

optimizing i-th loss function Li(✓i). Gradient Descent algorithm is used to optimize

the loss function.

3.2.2 Training Procedure of DQL

Training procedure of deep Q-network is shown in Algorithm 2. Two separate Q-

network is used for action-value function Q and target action-value function Q̂. The

target Q-network Q̂ is used to generate targets yj in the training process. The agent

either with probability " selects a random action or selects the action of maximum

action-value. This method is known as "-greedy policy. Initially, the agent starts

with a high " value and then, slowly it decreases the value based on the experience.

35

Chapter 3. A Deep Q-Learning Method for Downlink Power Allocation in

Multi-Cell Networks

Algorithm 2 Deep Q-learning with experience replay
1: Initialize replay memory D to capacity N

2: Initialize action-value function Q with random weights ✓
3: Initialize target action-value function Q̂ with weights ✓� = ✓

4: for episode = 1, M do

5: for t = 1, · · · ,1 do

6: With probability " select a random action at

7: Otherwise select at = argmaxaQ(st, a; ✓)
8: Execute action at and observe reward rt and state st+1

9: Store transition (st, at, rt, st+1) in D

10: Sample random minibatch of transitions (sj, aj, rj, sj+1) from D

11: Set yj = rj if if episode terminates at step j + 1
12: Otherwise set yj = rj + �maxa0 Q̂(sj+1, a

0
; ✓�)

13: Perform gradient descent step on (yj �Q(sj, aj; ✓))
2 with respect to the net-

work parameters ✓
14: Every B steps reset Q̂ = Q

15: end for

16: end for

The agent uses the following equation to decrease the value of "

" = "min + ("max � "min)e
��⌧

. (3.3)

Here, � is the speed of decay and ⌧ is the total number of steps elapsed. Expe-

rience Replay [50] is a mechanism where the agent learns from the previous expe-

riences. After executing an action at time step t, the agent stores the experiences

et = (st, at, rt, st+1) in a data set Dt = {e1, e2, · · · , et} which is also known as replay

memory. After executing an action, the agent samples a random minibatch of tran-

sitions (sj, aj, rj, sj+1) of size M from the replay memory D to train the Q-network.

The samples are taken randomly to break the correlations between the consecutive

samples and thus reduces the variance of the updates [7]. The targets yj of the

36

Chapter 3. A Deep Q-Learning Method for Downlink Power Allocation in

Multi-Cell Networks

minibatch are updated according the following equation:

yj =

8
>><

>>:

rj if episode terminates at step j + 1

rj + �maxa0 Q̂(sj+1, a
0
; ✓�) otherwise

. (3.4)

Then, gradient descent step is performed on the loss function (yj �Q(sj, aj; ✓))
2

to update the network parameter ✓. After every B steps, the network parameters

of the Q network is copied to Q̂ network and is used to generate targets yj for the

following B updates.

3.3 System Model

I consider a downlink cellular network of K base stations (BSs). Each BS k 2

{1, · · · , K} has F frequency sub-bands. The bandwidth of each sub-band is B MHz.

The power allocated by cell k in frequency sub-band f is Pk,f which is discrete. The

total power of a cell k is limited by a maximum value P
max
k such that

P
f2F Pk,f

P
max
k , 8k 2 {1, · · · , K}. Let Uk denote the set of users who are associated with cell

k, and U is the set of all users in the network. The vector Ak,f denotes allocation

of sub-band in cell k, where each element Ak,f is an integer denoting the user who is

assigned sub-band f in cell k.

The corresponding throughput maximization problem is given by

max
X

k2{1,··· ,K}

X

u2Uk

FX

f=1

[I(Ak,f = u)B log (1 + ↵SINRu,k,f)] (3.5)

s.t.
X

f2F

Pk,f P
max
k , 8k 2 {1, · · · , K} (3.6)

37

Chapter 3. A Deep Q-Learning Method for Downlink Power Allocation in

Multi-Cell Networks

where ↵ is a constant for a given target Bit Error Rate (BER) which is defined as

↵ = �1.5/ log(5BER). We assume BER to be 10�6. The signal-to-interference-plus-

noise ratio (SINR) of user u when served by cell k which transmits over frequency

sub-band f is expressed as SINRu,k,f = Pk,fGu,k,f

⌘u+
P

l 6=k Pl,fGu,l,f
. where ⌘u represents the

receiver noise and Gu,k,f denotes the link gain from cell k to user u over frequency

sub-band f defined as Gu,k,f = 10�(PLu+X↵)/10.|Hu,k,f |2, where Hu,k,f is the Rayleigh

fading gain of user u from cell k over frequency sub-band f , X↵ is the log-normal

shadowing, and PLu is the path-loss of user u.

The utility of the network which is the total network throughput is defined as

follows:

U =
X

k2{1,··· ,K}

X

u2Uk

FX

f=1

[I(Ak,f = u)B log (1 + ↵SINRu,k,f)] . (3.7)

All users periodically send their channel quality as a channel quality indica-

tor (CQI) to their nearest BS, where Cu,k is the CQI vector of a user u of cell k

over all frequency sub-bands. That is, Cu,k is a vector of discrete values Cu,k :=

(Cu,k,1, Cu,k,2, . . . , Cu,k,F). For example, in LTE, the CQI value ranges from 1 to 15 [51].

In addition, users are also classified into cell-center users and cell-edge users depend-

ing on the users’ locations. A location indicator Vu,k is used to indicate whether a

user u of cell k is cell-center user or cell-edge user as follows:

Vu,k =

8
>><

>>:

1 if Ru,k > R/2

0 otherwise

(3.8)

where Ru,k is the distance of user u in cell k from the BS and R is the cell radius.

Subband f of cell k will be allocated to an user u 2 Uk for which it will maximize

38

Chapter 3. A Deep Q-Learning Method for Downlink Power Allocation in

Multi-Cell Networks

the throughput of subband f in cell k. Therefore, the subbands are allocated based

on the following equation:

Ak,f = argmaxu2Uk
B log (1 + ↵SINRu,k,f) . (3.9)

3.4 Power Allocation in Multi-cell Networks: A DRL Ap-

proach

In the following, I develop a DRL-based resource allocation model for multi-cell net-

works with multiple users per cell sharing the same frequency subbands to maximize

the total network throughput by performing power allocation.

3.4.1 DQL Approach

Now I present a DQL approach that can perform near-optimal power allocation on

multi-cell networks. Specifically, this DQL model uses Cu,k vector along with Vu,k of

all users in a network as state and then takes action. Here, each action corresponds

to a power allocation. That is, for K cells, U users and F sub-bands, the state size is

(K⇥U⇥(F+1)). The total number of actions depends on the number of power levels

we are using. For n number of power levels and F frequency sub-bands, I can have a

maximum n
F power combinations. Some of the combinations will be discarded due

to the maximal power constraint. Let m denote the total number of combinations

possible where each combination corresponds to an action. For each cell, I have m

number of actions. Let Ak denote the action space for k cell and ak 2 Ak is the

selected action for cell k. Therefore, for K number of cells, I have K ⇥m number of

actions. The DQN model has to take action from m number of actions for each cell.

Therefore, in total, the DQN model has to take K number of actions. At time step

39

Chapter 3. A Deep Q-Learning Method for Downlink Power Allocation in

Multi-Cell Networks

t, the selected action at = [a1, a2, · · · , aK]. The approach proceeds in the following

phases:

Problem formulation: First I need to formulate the problem to apply the DQL

approach. The job of the agent is to maximize the total network throughput

(Eq. (2.7)). The episode starts from a initial state and continues as long as

the throughput increases, i.e. current throughput > previous throughput. Here,

current throughput the network throughput achieved by executing the recent actions

and previous throughput is due to the previous actions. The episode ends when it

reaches the terminal state, i.e., the throughput decreases due to the recent actions.

Training Phase: The training process of the proposed DQL based power alloca-

tion is shown in Algorithm 3. I use DQL with experience replay [7] to train the

proposed model. In the proposed model, the specific steps are as follows.

Step 1: Define the Q-Network, i.e. the number of layers and neurons per layer

and the activation functions. I use the input layer size same as the state size and

output layer size as the total number of actions. I initialize two Q-network with

random weights: one is for the action-value function Q and another for target

action-value function Q̂. I also initialize the replay memory D to some capacity

N .

Step 2: Allocate a random power vector for each cell. After that, I calculate the

CQI value of each sub-band for each user in the network. I also estimate the location

indicator for every user using Eq. (3.8). Note that the CQI values and the location

indicator for every user represent the initial state st.

Step 3: Select the action which is consist of minimum power value possible for all the

subbands for each cell. Then, I execute these actions and calculate the total network

40

Chapter 3. A Deep Q-Learning Method for Downlink Power Allocation in

Multi-Cell Networks

Algorithm 3 DQL with experience replay for power allocation
1: Initialize replay memory D to capacity N

2: Initialize action-value function Q with random weights ✓
3: Initialize target action-value function Q̂ with weights ✓� = ✓

4: for episode = 1, · · · ,M do

5: Allocate a random power vector for each cell.
6: for t = 1, · · · ,1 do

7: Calculate the CQI vector as well as the location indicator for every user in
the network.

8: Use the CQI vector and the location indicator as state st.
9: for k = 1, · · · , K do

10: With probability " select a random action ak for cell k
11: Otherwise select ak = argmaxa2Ak

Q(st, a; ✓)
12: end for

13: Execute action at = [a1, a2, · · · , aK] and observe reward rt and state st+1

14: Store transition (st, at, rt, st+1) in D

15: Sample random minibatch of transitions (sj, aj, rj, sj+1) from D

16: Set yj = rj if episode terminates at step j + 1
17: Otherwise set yj = rj + �maxa0 Q̂(sj+1, a

0
; ✓�)

18: Perform gradient descent step on (yj �Q(sj, aj; ✓))
2 with respect to the net-

work parameters ✓
19: Every B steps reset Q̂ = Q

20: end for

21: end for

throughput using Eq. (3.7). Use this throughput as previous throughput for next

step.

Step 4: Use the "-greedy policy to select the actions randomly or use the Q-network

to choose the actions. I use the state st as input to the Q-network to calculate the

action-value for each action as we have m number actions for each cell. Therefore,

for the first cell, select the action which action-value is maximum among the first m

actions. Then, for the remaining cells, select the action consecutively with maximum

action-value from the next m actions and so on.

Step 5: Execute the selected actions, i.e. map the actions with their correspond-

ing power vectors and calculate the new state st+1 in the same way mentioned in

41

Chapter 3. A Deep Q-Learning Method for Downlink Power Allocation in

Multi-Cell Networks

Step 2. The agent then receives a positive reward of rt = +1 I also calculate the

total network throughput using Eq. (3.7) and save the value as current throughput.

Then, I check whether the new step is a terminal state or not using the following con-

dition: current throughput > previous throughput. Finally, I store the transitions

(st, at, rt, st+1) in replay memory D.

Step 6: Perform experience replay on the Q-network. The experience replay mech-

anism has the following steps.

Step 6.1: Sample a minibatch of transitions of size M randomly from the replay

memory D.

Step 6.2: Use Eq. (3.4) to update the targets yj of that minibatch. I use the target

action-value Q̂ network to generate the targets.

Step 6.3: Perform a gradient descent step on the loss function (Eq. (3.2)) to update

the action-value Q-network parameters.

Step 6.4: Clone the action-value functionQ parameters to get the target action-value

function Q̂ at every B updates.

Step 7: Repeat Steps 5-6 until the agent reaches the terminal state.

Step 8: Repeat Steps 2-7 to train the Q-network for certain amount of time.

Testing Phase: After training our model, I need to test how close the model can

predict compared to the optimal one in terms of total network throughput. I use GA

to find a near-optimal solution.

For testing, the following steps are added to the training steps:

Step 9: Repeat Steps 2-7 and save the second last action and the network through-

put for that action. Therefore, if st+1 is the terminal state and at is the action for

which the agent reaches the terminal state, then I need to save the action at�1 and

the network throughput for that action. Here, the action at�1 is considered to be the

42

Chapter 3. A Deep Q-Learning Method for Downlink Power Allocation in

Multi-Cell Networks

optimal action.

Step 10: Find the power vector of every BS which maximizes the total network

utility (Eq. (3.7)). I use GA to solve this problem.

Step 11: Apply the optimal power vector solution to Eq. (3.7) to calculate the total

network throughput. I also save the optimal solution and network throughput.

Step 12: Keep repeating the steps until I have a certain amount of testing data.

All the training and testing will be performed online. In a practical setting, all

users in the network periodically send their CQI values to their serving BSs, which

extract the CQI value of each sub-band and add a location indicator, i.e. cell-centre

user or cell-edge user. Therefore, for every user, there will be a vector of CQI and

location indicator. Each BS then sends the processed information of all users to a

central entity (e.g. SDN controller), which runs the DQL model. The DQL agent

selects the power vector for all the BSs as an action. Once the agent chooses the

action, the controller will send back the power vectors to their designated BSs. The

BSs then allocate the power accordingly.

3.5 Experimental Setup

I present the simulation settings of the proposed DQL based power allocation scheme.

I implement the proposed algorithm using Tensorflow [52]. I consider three di↵erent

simulation scenarios: Scenario 1 with K = 5 BSs, Scenario 2 with K = 10 BSs,

Scenario 3 withK = 15 BSs, cell coverage radiusR = 500m, maximum transmit power

= 40W, directional antenna per cell = 3, number of users per cell = 5, bandwidth of a

sub-band B = 2.88MHz, white noise power density = �174dBm/Hz, number of sub-

bands = 3, number of power levels = 5, and power levels = {6.4, 9.6, 12.8, 16, 19.2}W.

43

Chapter 3. A Deep Q-Learning Method for Downlink Power Allocation in

Multi-Cell Networks

3.5.1 Training the DQL Model

First I need to define the DQN. I use a deep neural network of one hidden layer as our

DQN. I use Rectified Linear Unit (ReLU) as an activation function for the hidden

layer. The state size, i.e. the input layer size of the Q-network for three di↵erent

scenario is 5 ⇥ 5 ⇥ (3 + 1) = 100, 10 ⇥ 5 ⇥ (3 + 1) = 200, 15 ⇥ 5 ⇥ (3 + 1) = 300.

For each cell, the total number of power combinations possible for 5 power levels is

53 = 125. Some of the power combinations will be discarded due to the maximal

power constraint. After applying the limitation, I have 72 power combinations for

each cell. So, the total number of actions, i.e. the output layer size of the DQN for

three di↵erent scenario is 5⇥ 72 = 360, 10⇥ 72 = 720, 15⇥ 72 = 1, 080. The training

parameters of the DQN are shown in Table 3.2.

Table 3.2: Training parameters
Parameter Value

Number of hidden layers 1
Layers { Input, Hidden Layer, Output }
No. of neurons per layer Scenario 1 : {100, 720, 360}

Scenario 2 : {200, 1440, 720}
Scenario 3 : {300, 2160, 1080}

Replay memory size 80, 000
Batch size 64
Update target frequency, B 1000
Learning rate 0.00025
Loss function MSE
Optimizer RMSprop
Maximum value of ", "max 1
Minimum value of ", "min 0.01
Speed of decay, � 0.001
No. of epochs per training 1

44

Chapter 3. A Deep Q-Learning Method for Downlink Power Allocation in

Multi-Cell Networks

3.5.2 Testing the DQL Model

After training the DQL model for about 80 hrs, I compare our model with the optimal

power allocation. I use the GA approach to find near-optimal power allocation. I also

compare our power allocation (PA) model with other power allocation models such as

WMMSE [47], maximum power allocation (PA), and random power allocation model.

I use 12.8 W power for each subband for maximum power allocation.

3.5.3 Results and Discussions

For comparison purpose, I calculate the total network throughput for the power allo-

cation solution achieved through di↵erent PA model as well as for the near-optimal PA

solution derived through GA. Then I calculate the normalized total network through-

put of di↵erent PA models by dividing it with the total network throughput of the

GA solution. Fig. 3.2 shows the normalized throughput of di↵erent PA models vs.

testing samples for di↵erent network scenarios. From the figure, it is evident that the

proposed DRL-based PA model performs better than other PA models.

Impact of the wireless network size on the DRL performance: The average

normalized throughput from our proposed DRL based PA model for scenario-1 is

0.99276, scenario-2 is 0.99157 and scenario-3 is 0.99109. From Fig. 3.2, it is also

evident that with the increase of the wireless network size (i.e. the number of cells),

the performance of the proposed DRL-based PA model decreases gradually. The

average normalized network throughput decreases with the increase of the wireless

network size. This is because, with the increase of the wireless network size, the state

space and the action space also increases. As a result, the DQN needs to explore more

state-action space to find the optimal action policy. Therefore, more exploration is

45

Chapter 3. A Deep Q-Learning Method for Downlink Power Allocation in

Multi-Cell Networks

(a) Scenario 1: 5 cells (b) Scenario 2: 10 cells

(c) Scenario 3: 15 cells

Figure 3.2: Normalized throughput vs. testing samples.

required for large state-action space. This is why the performance of our DRL model

degrades gradually with the increase of wireless network size.

Impact of the hidden layer size of the DQN on the DRL performance:

The number of hidden layers of the DQN is an important parameter as the DQN

approximate the action-value function (Q). The DQN approximates the state-action

relationship by extracting useful information from the sate. More hidden layers in

DQN means it can learn more features. I vary the hidden layer size of the DQN

46

Chapter 3. A Deep Q-Learning Method for Downlink Power Allocation in

Multi-Cell Networks

and repeat the simulations. Fig. 3.3 shows the average normalized throughput of the

proposed model vs. the number of hidden layers for di↵erent network scenarios. It is

apparent that the performance of the DRL model slightly degrades with the increase

of the hidden layer size of the DQN. This is because with the increase of more hidden

layers, the DQN learns irrelevant features (noise) and as a result of that overfitting

occurs which eventually degrades the performance of the DQN.

Figure 3.3: Average normalized throughput vs. number of hidden layers.

Impact of the learning rate on the DRL performance: The learning rate is

an important hyperparameter that controls the amount of change in weights of the

DQN during the training procedure. It controls how quickly or slowly a DQN learns

from data. Finding the optimal learning rate is challenging since a small learning

rate may result in larger training time and a large learning rate may result in an

unstable training process. Next, I vary the learning the rate of the DRL keeping other

parameters fixed. Fig. 3.4 shows the average normalized throughput of the proposed

model vs. learning rate for di↵erent network scenarios. The optimal learning rate for

scenario-1 is 0.0025 and for scenario-2 and scenario-3 is 0.025.

47

Chapter 3. A Deep Q-Learning Method for Downlink Power Allocation in

Multi-Cell Networks

Figure 3.4: Average normalized throughput vs. learning rate.

3.6 Summary

I have presented a novel DRL-based method for power allocation in multi-cell net-

works. Specifically, I have used DQL with experience replay for the proposed method.

Simulation results show that the DQN with one hidden layer is enough to approxi-

mate the action-value function for our case. The learning rate is the most important

hyperparameter in DRL and finding optimal learning is challenging. To find the opti-

mal learning rate for di↵erent network scenarios, we have varied the learning rate and

observed the performance of the proposed model. I have evaluated the performance

of the proposed DRL-based power allocation method with other power allocation

methods such as WMMSE, maximum power allocation, and random power allocation

for di↵erent network scenarios. Simulation results show that the proposed method is

scalable to large-scale scenarios and it performs better compared to other PA models.

48

Chapter 4

Conclusion and Future Directions

4.1 Conclusion

In this thesis, I have provided a brief tutorial on deep learning, di↵erent deep learning

architectures, the training procedure and the applicability of deep learning as a tool

to model the resource allocation problem of the multi-cell wireless network. As its

main contributions, this thesis provided optimal/ near optimal resource allocation

solution for a multi-cell wireless network.

A centralized resource allocation scheme using supervised deep learning has been

developed to perform sub-channel and power allocation for multi-cell wireless net-

works. The main objective is to maximize the total network throughput. The pro-

posed model takes the CQI values of all the users in a multi-cell network as input

and allocates resources (i.e. both sub-band and power) for each cell. The proposed

deep learning-based resource algorithm framework needs only onetime o✏ine train-

ing. After training, it can perform resource allocation in an online fashion. I have

used GA to generate optimal/ near optimal training and testing data. Finding the

optimal configuration of the DL model e.g. number of hidden layers and the training

49

Chapter 4. Conclusion and Future Directions

data size is challenging. For those reasons, I have varied the number of hidden layers

and the number of training samples and observed the performance of the proposed

algorithm.

The challenging part of the supervised DL-based resource allocation is the gen-

eration of training data. For a large-scale network, generating the optimal training

data is computationally expensive and time-consuming. Therefore, the supervised DL

approach is not feasible for a large-scale network. Therefore, I use the DRL approach

for a large-scale network. Unlike the supervised DL approach, the DRL approach

does not require any optimal/ near-optimal data for training. I have developed a

centralized DRL based resource allocation framework for a multi-cell network. I have

defined the state space, action space and the reward function of the DRL agent. I

have also described the online training procedure of the proposed DRL model. I have

simulated the proposed DRL based resource allocation scheme on di↵erent network

scenario of a di↵erent network to show the scalability and robustness of the algorithm.

Finding the optimal learning rate and the number of hidden layers is also challenging

for DRL model. Numerous simulation results with di↵erent training parameters have

been presented to show their e↵ect on the performance of the proposed model. Simu-

lation results indicate the proposed DRL-based resource allocation scheme is scalable

to large-scale scenarios.

4.2 Future Research Directions

The resource allocation problem is a fundamental problem in wireless networks. Some

of the possible future extensions of the work presented in this thesis are as follows:

• In this work, I have not considered uncertainty in the channel state information.

This work can be extended by incorporating the uncertainty in the wireless

50

Chapter 4. Conclusion and Future Directions

propagation environment.

• In this work, I have not considered the users’ mobility. But in a dense and

heavily-loaded network, a considerable number of users can be mobile and they

may frequently change their associations with the cells. Therfore, one possible

future extension can be incorporate mobility into the resource allocation model.

• This work only focuses on maximizing the total network throughput. This

work can be extended by incorporating fairness or users’ QoS requirement (e.g.

minimum rate guarantee for each user) in the resource allocation model.

• Recently, generative adversarial network (GAN) has emerged as a promising

technique to create synthetic data from noise. A GAN has two components: a

generator which tries to generate data from a latent space as close to real data

distribution and a discriminator which attempts to distinguish the actual data

distribution from the fake one. The generator and the discriminator compete

with others by playing a min-max game. As a result of the min-max game,

the generator generates data with the same distribution as the real data and

therefore the discriminator cannot identify the di↵erence between the actual

data and the fake data. Therefore, a GAN can be used to generate synthetic

training data for DL based resource allocation scheme.

• One major drawback of DRL is that it can end up having a local optimum

instead of a global optimum. On the contrary, GAN is well known for reaching

global optimum because of its loss function (i.e. binary cross entropy) used in

training. Therefore, by combining GAN with RL, a GAN-RL might perform

better compared to DRL. A GAN-RL based resource allocation framework can

be developed for multi-cell wireless networks.

51

Bibliography

[1] C. M. Bishop, Pattern recognition and machine learning. springer, 2006.

[2] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learning. MIT press

Cambridge, 2016, vol. 1.

[3] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with

neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

[4] H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, and N. D. Sidiropoulos, “Learning to op-

timize: Training deep neural networks for wireless resource management,” in IEEE

Workshop on Signal Processing Advances in Wireless Communications (SPAWC),

2017, pp. 1–6.

[5] N. McKeown, “Software-defined networking,” INFOCOM keynote talk, vol. 17, no. 2,

pp. 30–32, 2009.

[6] R. S. Sutton and A. G. Barto, “Reinforcement learning: an introduction mit press,”

Cambridge, MA, 1998.

[7] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al., “Human-level con-

trol through deep reinforcement learning,” Nature, vol. 518, no. 7540, p. 529, 2015.

52

Bibliography

[8] W. Lee, M. Kim, and D.-H. Cho, “Deep power control: Transmit power control scheme

based on convolutional neural network,” IEEE Communications Letters, vol. 22, no. 6,

pp. 1276–1279, 2018.

[9] A. Zappone, M. Debbah, and Z. Altman, “Online energy-e�cient power control in

wireless networks by deep neural networks,” IEEE Workshop on Signal Processing

Advances in Wireless Communications (SPAWC), 2018.

[10] M. Eisen, C. Zhang, L. Chamon, D. D. Lee, and A. Ribeiro, “Learning optimal resource

allocations in wireless systems,” arXiv:1807.08088, 2018.

[11] J. Kim, J. Park, J. Noh, and S. Cho, “Completely distributed power allocation

using deep neural network for device to device communication underlaying LTE,”

arXiv:1802.02736, 2018.

[12] Z. Xu, Y. Wang, J. Tang, J. Wang, and M. C. Gursoy, “A deep reinforcement learn-

ing based framework for power-e�cient resource allocation in cloud RANs,” in IEEE

International Conference on Communications (ICC), 2017, pp. 1–6.

[13] H. Ye, Y. G. Li, and B.-H. F. Juang, “Deep reinforcement learning for resource allo-

cation in v2v communications,” IEEE Transactions on Vehicular Technology, 2019.

[14] U. Challita, L. Dong, and W. Saad, “Proactive resource management in LTE-U sys-

tems: A deep learning perspective,” arXiv preprint arXiv:1702.07031, 2017.

[15] X. Li, J. Fang, W. Cheng, H. Duan, Z. Chen, and H. Li, “Intelligent power control for

spectrum sharing in cognitive radios: A deep reinforcement learning approach,” IEEE

Access, vol. 6, pp. 25 463–25 473, 2018.

[16] N. Zhao, Y.-C. Liang, D. Niyato, Y. Pei, and Y. Jiang, “Deep reinforcement learning

for user association and resource allocation in heterogeneous networks,” in 2018 IEEE

Global Communications Conference (GLOBECOM). IEEE, 2018, pp. 1–6.

53

Bibliography

[17] Y. S. Nasir and D. Guo, “Deep reinforcement learning for distributed dynamic power

allocation in wireless networks,” arXiv preprint arXiv:1808.00490, 2018.

[18] F. Meng, P. Chen, L. Wu, and J. Cheng, “Power allocation in multi-user cellular

networks: Deep reinforcement learning approaches,” arXiv preprint arXiv:1901.07159,

2019.

[19] O. Naparstek and K. Cohen, “Deep multi-user reinforcement learning for distributed

dynamic spectrum access,” IEEE Transactions on Wireless Communications, vol. 18,

no. 1, pp. 310–323, 2019.

[20] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,

vol. 9, no. 8, pp. 1735–1780, 1997.

[21] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double

q-learning,” in Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[22] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and

D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv preprint

arXiv:1509.02971, 2015.

[23] C. Watkins and P. Dayan, “gtechnical note: Q-learning, h machine learning, vol. 8,”

1992.

[24] P. Baldi, “Autoencoders, unsupervised learning, and deep architectures,” in Proceed-

ings of ICML workshop on unsupervised and transfer learning, 2012, pp. 37–49.

[25] I. Jolli↵e, Principal component analysis. Springer, 2011.

[26] W. Sun, S. Shao, R. Zhao, R. Yan, X. Zhang, and X. Chen, “A sparse auto-encoder-

based deep neural network approach for induction motor faults classification,” Mea-

surement, vol. 89, pp. 171–178, 2016.

54

Bibliography

[27] Q. V. Le, J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, and A. Y. Ng, “On optimization

methods for deep learning,” in Proceedings of the 28th International Conference on

International Conference on Machine Learning. Omnipress, 2011, pp. 265–272.

[28] B. A. Olshausen and D. J. Field, “Sparse coding with an overcomplete basis set: A

strategy employed by v1?” Vision Research, vol. 37, no. 23, pp. 3311–3325, 1997.

[29] L. Bottou, “Large-scale machine learning with stochastic gradient descent,” in Pro-

ceedings of COMPSTAT’2010. Springer, 2010, pp. 177–186.

[30] B. T. Polyak and A. B. Juditsky, “Acceleration of stochastic approximation by av-

eraging,” SIAM Journal on Control and Optimization, vol. 30, no. 4, pp. 838–855,

1992.

[31] Y. E. NESTEROV, “A method for solving the convex programming problem with

convergence rate o(1/k2),” Dokl. Akad. Nauk SSSR, vol. 269, pp. 543–547, 1983.

[32] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning

and stochastic optimization,” J. Mach. Learn. Res., vol. 12, pp. 2121–2159, Jul. 2011.

[Online]. Available: http://dl.acm.org/citation.cfm?id=1953048.2021068

[33] G. Hinton, N. Srivastava, and K. Swersky, “Neural networks for machine learning,”

Coursera, video lectures, vol. 264, 2012.

[34] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv

preprint arXiv:1412.6980, 2014.

[35] “Lte evolved universal terrestrial radio access (e-utra): Physical layer procedures (3gpp

ts 36.213 version 8.8.0 release 8),” ETSU TS 136 213 V8.8.0 Technical Specification,

2009-10.

[36] S. Sivanandam and S. Deepa, “Genetic algorithm optimization problems,” in Introduc-

tion to Genetic Algorithms. Springer, 2008, pp. 165–209.

55

Bibliography

[37] A. Zappone, E. Björnson, L. Sanguinetti, and E. Jorswieck, “Globally optimal energy-

e�cient power control and receiver design in wireless networks,” IEEE Transactions

on Signal Processing, vol. 65, no. 11, pp. 2844–2859, 2017.

[38] S. Boyd, V. Balakrishnan, and P. Kabamba, “A bisection method for computing the h

norm of a transfer matrix and related problems,” Mathematics of Control, Signals and

Systems, vol. 2, no. 3, pp. 207–219, 1989.

[39] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4, pp. 279–

292, 1992.

[40] M. Bennis and D. Niyato, “A q-learning based approach to interference avoidance in

self-organized femtocell networks,” in 2010 IEEE Globecom Workshops. IEEE, 2010,

pp. 706–710.

[41] H. Li, “Multiagent-learning for aloha-like spectrum access in cognitive radio systems,”

EURASIP Journal on Wireless Communications and Networking, vol. 2010, no. 1, p.

876216, 2010.

[42] J. Lundén, V. Koivunen, S. R. Kulkarni, and H. V. Poor, “Reinforcement learning

based distributed multiagent sensing policy for cognitive radio networks,” in 2011

IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN).

IEEE, 2011, pp. 642–646.

[43] A. Alsarhan and A. Agarwal, “Spectrum sharing in multi-service cognitive network us-

ing reinforcement learning,” in 2009 First UK-India International Workshop on Cog-

nitive Wireless Systems (UKIWCWS). IEEE, 2009, pp. 1–5.

[44] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrit-

twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot et al., “Mastering the game of

go with deep neural networks and tree search,” nature, vol. 529, no. 7587, p. 484, 2016.

56

Bibliography

[45] Z.-Q. Luo and S. Zhang, “Dynamic spectrum management: Complexity and duality,”

IEEE journal of selected topics in signal processing, vol. 2, no. 1, pp. 57–73, 2008.

[46] K. Shen and W. Yu, “Fractional programming for communication systemspart i: Power

control and beamforming,” IEEE Transactions on Signal Processing, vol. 66, no. 10,

pp. 2616–2630, 2018.

[47] Q. Shi, M. Razaviyayn, Z.-Q. Luo, and C. He, “An iteratively weighted mmse approach

to distributed sum-utility maximization for a mimo interfering broadcast channel,”

IEEE Transactions on Signal Processing, vol. 59, no. 9, pp. 4331–4340, 2011.

[48] Y. Li, “Deep reinforcement learning: An overview,” arXiv preprint arXiv:1701.07274,

2017.

[49] R. S. Sutton and A. G. Barto, “Reinforcement learning: An introduction (2nd edition,

in preparation),” 2017.

[50] L.-J. Lin, “Reinforcement learning for robots using neural networks,” CARNEGIE-

MELLON UNIV PITTSBURGH PA SCHOOL OF COMPUTER SCIENCE, Tech.

Rep., 1993.

[51] “Lte evolved universal terrestrial radio access (e-utra): Physical layer procedures (3gpp

ts 36.213 version 8.4.0 release 8),” in ETSI TS 136 213 V8.8.0 Technical Specification,

2009-10.

[52] M. A. et al., “Tensorflow: A system for large-scale machine learning,” in 12th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 16), 2016, pp.

265–283.

57

