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Deep Learning for Single Image Super-Resolution:
A Brief Review

Wenming Yang , Xuechen Zhang , Yapeng Tian, Wei Wang , Jing-Hao Xue , and Qingmin Liao

Abstract—Single image super-resolution (SISR) is a notoriously
challenging ill-posed problem that aims to obtain a high-resolution
output from one of its low-resolution versions. Recently, powerful
deep learning algorithms have been applied to SISR and have
achieved state-of-the-art performance. In this survey, we review
representative deep learning-based SISR methods and group
them into two categories according to their contributions to two
essential aspects of SISR: The exploration of efficient neural
network architectures for SISR and the development of effective
optimization objectives for deep SISR learning. For each category,
a baseline is first established, and several critical limitations
of the baseline are summarized. Then, representative works on
overcoming these limitations are presented based on their original
content, as well as our critical exposition and analyses, and relevant
comparisons are conducted from a variety of perspectives. Finally,
we conclude this review with some current challenges and future
trends in SISR that leverage deep learning algorithms.

Index Terms—Single image super-resolution, deep learning,
neural networks, objective function.

I. INTRODUCTION

D EEP learning (DL) [1] is a branch of machine learning
algorithms that aims at learning the hierarchical represen-

tations of data. Deep learning has shown prominent superiority
over other machine learning algorithms in many artificial in-
telligence domains, such as computer vision [2], speech recog-
nition [3], and natural language processing [4]. Generally, the
strong capacity of DL to address substantial unstructured data is
attributable to two main contributors: the development of effi-
cient computing hardware and the advancement of sophisticated
algorithms.
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Single image super-resolution (SISR) is a notoriously chal-
lenging ill-posed problem because a specific low-resolution
(LR) input can correspond to a crop of possible high-resolution
(HR) images, and the HR space (in most instances, it refers to
the natural image space) that we intend to map the LR input to is
usually intractable [5]. Previous methods for SISR mainly have
two drawbacks: one is the unclear definition of the mapping that
we aim to develop between the LR space and the HR space,
and the other is the inefficiency of establishing a complex high-
dimensional mapping given massive raw data. Benefiting from
the strong capacity of extracting effective high-level abstractions
that bridge the LR and HR space, recent DL-based SISR meth-
ods have achieved significant improvements, both quantitatively
and qualitatively.

In this survey, we attempt to give an overall review of re-
cent DL-based SISR algorithms. We mainly focus on two areas:
efficient neural network architectures designed for SISR and ef-
fective optimization objectives for DL-based SISR learning. The
reason for this taxonomy is that when we apply DL algorithms
to tackle a specified task, it is best for us to consider both the uni-
versal DL strategies and the specific domain knowledge. From
the perspective of DL, although many other techniques such as
data preprocessing [6] and model training techniques are also
quite important [7], [8], the combination of DL and domain
knowledge in SISR is usually the key to success and is often
reflected in the innovations of neural network architectures and
optimization objectives for SISR. In each of these two focused
areas, based on the benchmark, several representative works are
discussed mainly from the perspective of their contributions and
experimental results as well as our comments and views.

The rest of the paper is arranged as follows. In Section II,
we present relevant background concepts of SISR and DL. In
Section III, we survey the literature on exploring efficient neural
network architectures for various SISR tasks. In Section IV, we
survey the studies on proposing effective objective functions for
different purposes. In Section V, we summarize some trends
and challenges for DL-based SISR. We conclude this survey in
Section VI.

II. BACKGROUND

A. Single Image Super-Resolution

Super-resolution (SR) [9] refers to the task of restoring high-
resolution images from one or more low-resolution observations
of the same scene. According to the number of input LR im-
ages, the SR can be classified into single image super-resolution
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Fig. 1. Sketch of the overall framework of SISR.

(SISR) and multi-image super-resolution (MISR). Compared
with MISR, SISR is much more popular because of its high
efficiency. Since an HR image with high perceptual quality has
more valuable details, it is widely used in many areas, such as
medical imaging, satellite imaging and security imaging. In the
typical SISR framework, as depicted in Fig. 1, the LR image y
is modeled as follows:

y = (x⊗ k)↓s + n, (1)

where x⊗ k is the convolution between the blurry kernel k and
the unknown HR image x, ↓s is the downsampling operator with
scale factor s, and n is the independent noise term. Solving (1)
is an extremely ill-posed problem because one LR input may
correspond to many possible HR solutions. To date, mainstream
algorithms of SISR are mainly divided into three categories:
interpolation-based methods, reconstruction-based methods and
learning-based methods.

Interpolation-based SISR methods, such as bicubic inter-
polation [10] and Lanczos resampling [11], are very speedy
and straightforward but suffer from accuracy shortcomings.
Reconstruction-based SR methods [12]–[15] often adopt sophis-
ticated prior knowledge to restrict the possible solution space
with an advantage of generating flexible and sharp details. How-
ever, the performance of many reconstruction-based methods
degrades rapidly when the scale factor increases, and these meth-
ods are usually time-consuming.

Learning-based SISR methods, also known as example-based
methods, are brought into focus because of their fast computa-
tion and outstanding performance. These methods usually uti-
lize machine learning algorithms to analyze statistical relation-
ships between the LR and its corresponding HR counterpart
from substantial training examples. The Markov random field
(MRF) [16] approach was first adopted by Freeman et al. to
exploit the abundant real-world images to synthesize visually
pleasing image textures. Neighbor embedding methods [17] pro-
posed by Chang et al. took advantage of similar local geometry
between LR and HR to restore HR image patches. Inspired by
the sparse signal recovery theory [18], researchers applied sparse
coding methods [19]–[24] to SISR problems. Lately, random for-
est [25] has also been used to achieve improvement in the recon-
struction performance. Meanwhile, many works combined the
merits of reconstruction-based methods with the learning-based
approaches to further reduce artifacts introduced by external
training examples [26]–[29]. Very recently, DL-based SISR al-
gorithms have demonstrated great superiority to reconstruction-
based and other learning-based methods.

B. Deep Learning

Deep learning is a branch of machine learning algorithms
based on directly learning diverse representations of data [30]. In
contrast to traditional task-specific learning algorithms that se-
lect useful handcrafted features with expert domain knowledge,
deep learning algorithms aim to learn informative hierarchical
representations automatically and then leverage them to achieve
the final purpose, where the whole learning process can be seen
as an entirety [31].

Because of the high approximating capacity and hierarchical
property of an artificial neural network (ANN), most modern
deep learning models are based on ANNs [32]. Early ANNs can
be traced back to perceptron algorithms in the 1960s [33]. Then,
in the 1980s, the multilayer perceptron could be trained with the
backpropagation algorithm [34], and the convolutional neural
network (CNN) [35] and recurrent neural network (RNN) [36],
two representative derivatives of the traditional ANN, were in-
troduced to the computer vision and speech recognition fields,
respectively. Despite remarkable progress achieved by ANNs
during that period, there were still many deficiencies handi-
capping ANNs from developing further [37], [38]. Thereafter,
the rebirth of the modern ANN was marked by pretraining the
deep neural network (DNN) with the restricted Boltzmann ma-
chine (RBM) proposed by Hinton in 2006 [39]. Consequently,
benefiting from the boom of computing power and the devel-
opment of advanced algorithms, models based on the DNN
have achieved remarkable performance in various supervised
tasks [2], [40], [41]. Meanwhile, DNN-based unsupervised al-
gorithms such as the deep Boltzmann machine (DBM) [42],
variational autoencoder (VAE) [43], [44] and generative adver-
sarial nets (GAN) [45] have attracted much attention owing to
their potential to address challenging unlabeled data. Readers
can refer to [46] for an extensive analysis of DL.

III. DEEP ARCHITECTURES FOR SISR

In this section, we mainly discuss the efficient architectures
proposed for SISR in recent years. First, we set the network ar-
chitecture of super-resolution CNN (SRCNN) [47], [48] as the
benchmark. When we discuss each related architecture in detail,
we focus on their universal parts that can apply to other tasks and
their specific parts that characterize SISR properties. To mean-
ingfully construct fair comparisons among different models, we
will illustrate the importance of the training dataset and attempt
to compare models with the same training dataset.

A. Benchmark of Deep Architecture for SISR

We select the SRCNN architecture as the benchmark in this
section. The overall architecture of SRCNN is shown in Fig. 2.
As established in many traditional methods, for simplicity, SR-
CNN only implements the luminance components for training.
SRCNN is a three-layer CNN, where the filter sizes of each
layer are 64× 1× 9× 9, 32× 64× 5× 5 and 1× 32× 5× 5.
The functions of these three nonlinear transformations are
patch extraction, nonlinear mapping and reconstruction. The
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Fig. 2. Sketch of the SRCNN architecture.

loss function for optimizing SRCNN is the mean square error
(MSE), which will be discussed in the next section.

The formulation of SRCNN is relatively simple and can be
envisioned as an ordinary CNN that approximates the complex
mapping between the LR and HR spaces in an end-to-end man-
ner. SRCNN reportedly demonstrated vast superiority over con-
current traditional methods, and we argue that its acclaim is
owing to the CNN’s strong capability of learning valid repre-
sentations from big data in an end-to-end manner.

Despite the success of SRCNN, the following problems have
inspired more effective architectures:

1) The input of SRCNN is the bicubic LR, an approxi-
mation of HR. However, these interpolated inputs have
three drawbacks: (a) detail-smoothing effects introduced
by these inputs may lead to further wrong estimations
of the image structure; (b) employing interpolated ver-
sions as input is very time-consuming; and (c) when the
downsampling kernel is unknown, one specific interpo-
lated input as a raw estimation is unreasonable. Therefore,
the first question emerges: can we design CNN architec-
tures that directly implement LR as input to address these
problems?1

2) The SRCNN is just a three-layer architecture. Can more
complex CNN architectures (with different depths, widths
and topologies) achieve better results? If yes, then how can
we design such models of greater complexity?

3) The prior terms in the loss function that reflect properties
of HR images are trivial. Can we integrate any property of
the SISR process into the design of the CNN frame or other
parts in the algorithms for SISR? If yes, then can these deep
architectures with SISR properties be more effective in
addressing some challenging SISR problems, such as the
large scale factor SISR and the unknown downsampling
of SISR?

Based on some solutions to these three questions, recent
studies on deep architectures for SISR will be discussed in
Sections III-B1, III-B2 and III-B3.

B. State-of-the-Art Deep SISR Networks

1) Learning Effective Upsampling With CNN: One solu-
tion to the first question is to design a module in the CNN

1Generally, the first problem can be grouped into the third problem below.
Because the solutions to this problem form the basis of many other models, it is
necessary to introduce this problem separately as the first drawback.

Fig. 3. Sketch of the deconvolution layer used in FSRCNN [48], where �
denotes the convolution operator.

architecture that adaptively increases the resolution. Convolu-
tion with pooling and stride convolution are the common down-
sampling operators in the basic CNN architecture. Naturally,
people can implement the upsampling operation, which is known
as deconvolution [50] or transposed convolution [51]. Given the
upsampling factor, the deconvolution layer is composed of an
arbitrary interpolation operator (usually, we choose the nearest
neighbor interpolation for simplicity) and a following convo-
lution operator with a stride of 1, as shown in Fig. 3. Readers
should be aware that such deconvolution may not completely
recover the information missing from convolution with pooling
or stride convolution. Such a deconvolution layer has been suc-
cessfully adopted in the context of network visualization [52],
semantic segmentation [53] and generative modeling [54]. For a
more detailed illustration of the deconvolution layer, readers can
refer to [55]. To the best of our knowledge, FSRCNN [56] is the
first work using this normal deconvolution layer to reconstruct
HR images from LR feature maps. As mentioned previously, the
usage of the deconvolution layer has two main advantages: one
is that a reduction in computation is achieved because we just
need to increase resolution at the end of the network; the other
is that when the downsampling kernel is unknown, many re-
ports, e.g., [57], have shown that when an inaccurate estimation
is input, there are side effects on the final performance.

Although the normal deconvolution layer, which has al-
ready been involved in popular open source packages such as
Caffe [58] and TensorFlow [59], offers a reasonably good so-
lution to the first question, there is still an underlying problem:
when we use the nearest neighbor interpolation, the points in
the upsampled features are repeated several times in each direc-
tion. This configuration of the upsampled pixels is redundant.
To circumvent this problem, Shi et al. proposed an efficient sub-
pixel convolution layer in [49], known as ESPCN; the structure
of ESPCN is shown in Fig. 4. Rather than increasing resolu-
tion by explicitly enlarging feature maps as the deconvolution
layer does, ESPCN expands the channels of the output features
for storing the extra points to increase resolution and then rear-
ranges these points to obtain the HR output through a specific
mapping criterion. As the expansion is carried out in the channel
dimension, a smaller kernel size is sufficient. [55] further shows
that when the ordinary but redundant nearest neighbor interpo-
lation is replaced with the interpolation that pads the subpixels
with zeroes, the deconvolution layer can be simplified into the
subpixel convolution in ESPCN. Obviously, compared with the
nearest neighbor interpolation, this interpolation is more effi-
cient, which can also verify the effectiveness of ESPCN.
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Fig. 4. Detailed sketch of ESPCN [49]. The top process with the yellow arrow
depicts the ESPCN from the view of zero interpolation, while the bottom process
with the black arrow is the original ESPCN; � denotes the convolution operator.

2) The Deeper, The Better: In the DL research, there is the-
oretical work [60] showing that the solution space of a DNN
can be expanded by increasing its depth or its width. In some
situations, to attain more hierarchical representations more ef-
fectively, many works mainly focus on improvements acquired
by increasing the depth. Recently, various DL-based applica-
tions have also demonstrated the great power of very deep neu-
ral networks despite many training difficulties. VDSR [61] is
the first very deep model used in SISR. As shown in Fig. 5(a),
VDSR is a 20-layer VGG-net [62]. The VGG architecture sets
all kernel sizes as 3× 3 (the kernel size is usually odd and takes
the increase in the receptive field into account, and 3× 3 is the
smallest kernel size). To train this deep model, the authors used
a relatively high initial learning rate to accelerate convergence
and used gradient clipping to prevent the annoying gradient ex-
plosion problem.

In addition to the innovative architecture, VDSR has made
two more contributions. The first one is that a single model is
used for multiple scales since the SISR processes with different
scale factors have a strong relationship with each other. This
fact is the basis of many traditional SISR methods. Similar
to SRCNN, VDSR takes the bicubic of LR as input. During
training, VDSR puts the bicubics of LR of different scale
factors together for training. For larger scale factors (×3,×4),
the mapping for a smaller scale factor (×2) may also be infor-
mative. The second contribution is the residual learning. Unlike
the direct mapping from the bicubic version to HR, VDSR
uses deep CNN to learn the mapping from the bicubic to the
residual between the bicubic and HR. The authors argued that
residual learning could improve performance and accelerate
convergence.

The convolution kernels in the nonlinear mapping part of
VDSR are very similar, and in order to reduce parameters, Kim
et al. further proposed DRCN [63], which utilizes the same con-
volution kernel in the nonlinear mapping part 16 times, as shown
in Fig. 5(b). To overcome the difficulties of training a deep re-
cursive CNN, a multisupervised strategy is applied, and the final

result can be regarded as the fusion of 16 intermediate results.
The coefficients for fusion are a list of trainable positive scalars
with the summation of 1. As they showed, DRCN and VDSR
have a quite similar performance.

Here, we believe that it is necessary to emphasize the impor-
tance of the multisupervised training in DRCN. This strategy
not only creates short paths through which the gradients can
flow more smoothly during backpropagation but also guides all
the intermediate representations to reconstruct raw HR outputs.
Finally, fusing all these raw HR outputs produces a wonderful
result. However, for fusion, this strategy has two flaws: 1) once
the weight scalars are determined in the training process, they
will not change with different inputs; and 2) using a single scalar
to weight HR outputs does not take pixelwise differences into
consideration, that is, it would be better to weight different parts
distinguishingly in an adaptive way.

It is hard to go deeper with a plain architecture such as VGG-
net. Various deep models based on skip-connections can be ex-
tremely deep and have achieved state-of-the-art performance
in many tasks. Among them, ResNet [64], [65], proposed by
He et al., is the most representative model. Readers can refer
to [66], [67] for further discussions on why ResNet works well.
In [68], the authors proposed SRResNet, which is composed of
16 residual units (a residual unit consists of two nonlinear convo-
lutions with residual learning). In each unit, batch normalization
(BN) [69] is used to stabilize the training process. The overall
architecture of SRResNet is shown in Fig. 5(c). Based on the
original residual unit in [65], Tai et al. proposed DRRN [70], in
which basic residual units are rearranged in a recursive topol-
ogy to form a recursive block, as shown in Fig. 5(d). Then, to
accommodate parameter reduction, each block shares the same
parameters and is reused recursively, such as in the single recur-
sive convolution kernel in DRCN.

EDSR [71] was proposed by Lee et al. and has currently
achieved state-of-the-art performance. EDSR has mainly made
three improvements on the overall frame: 1) Compared with the
residual unit used in previous work, EDSR removes the usage
of BN, as shown in Fig. 5(e). The original ResNet with BN
was designed for classification, where inner representations are
highly abstract, and these representations can be insensitive to
the shift introduced by BN. Regarding image-to-image tasks
such as SISR, since the input and output are strongly related,
if the convergence of the network is not a problem, then such a
shift may harm the final performance. 2) Except for regular depth
increasing, EDSR also increases the number of output features
of each layer on a large scale. To relinquish the difficulties of
training such a wide ResNet, the residual scaling trick proposed
in [72] is employed. 3) Additionally, inspired by the fact that
the SISR processes with different scale factors have strong rela-
tionships with each other, when training the models for ×3 and
×4 scales, the authors of [71] initialized the parameters with the
pretrained ×2 network. This pretraining strategy accelerates the
training and improves the final performance.

The effectiveness of the pretraining strategy in EDSR implies
that models for different scales may share many intermediate
representations. To explore this idea further, similar to build-
ing a multiscale architecture as VDSR does on the condition of
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Fig. 5. Sketch of several deep architectures for SISR.

bicubic input, the authors of EDSR proposed MDSR to achieve
the multiscale architecture, as shown in Fig. 5(g). In MDSR,
the convolution kernels for nonlinear mapping are shared across
different scales, where only the front convolution kernels for
extracting features and the final subpixel upsampling convolu-
tion are different. At each update during training MDSR, mini-
batches for ×2, ×3 and ×4 are randomly chosen, and only the
corresponding parts of MDSR are updated.

In addition to ResNet, DenseNet [73] is another effective ar-
chitecture based on skip connections. In DenseNet, each layer
is connected with all the preceding representations, and the bot-
tleneck layers are used in units and blocks to reduce the pa-
rameter amounts. In [74], the authors pointed out that ResNet
enables feature re-usage while DenseNet enables new feature
exploration. Based on the basic DenseNet, SRDenseNet [75],
as shown in Fig. 5(f), further concatenates all the features from
different blocks before the deconvolution layer, which is shown
to be effective in improving performance. MemNet [76], pro-
posed by Tai et al., uses the residual unit recursively to replace
the normal convolution in the block of the basic DenseNet and
adds dense connections among different blocks, as shown in
Fig. 5(h). The authors explained that the local connections in
the same block resemble the short-term memory and the connec-
tions with previous blocks resemble the long-term memory [77].

Recently, RDN [78] was proposed by Zhang et al. and uses a
similar structure. In an RDN block, basic convolution units are
densely connected similar to DenseNet, and at the end of an
RDN block, a bottleneck layer is used, following with the resid-
ual learning across the whole block. Before entering the recon-
struction part, features from all previous blocks are fused by the
dense connection and residual learning.

3) Combining Properties of the SISR Process With the De-
sign of the CNN Frame: In this subsection, we discuss some deep
frames whose architectures or procedures are inspired by some
representative methods for SISR. Compared with the abovemen-
tioned NN-oriented methods, these methods can be better inter-
preted, and they sometimes are more sophisticated in addressing
certain challenging cases for SISR.

Combining sparse coding with deep NN: The sparse prior in
nature images and the relationships between the HR and LR
spaces rooted from this prior were widely used for their great
performance and theoretical support. SCN [79] was proposed by
Wang et al. and uses the learned iterative shrinkage and thresh-
olding algorithm (LISTA) [80], which produces an approximate
estimation of sparse coding based on NN, to solve the time-
consuming inference in traditional sparse coding SISR. They
further introduced a cascaded version (CSCN) [81] that em-
ploys multiple SCNs. Previous works such as SRCNN tried to
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explain general CNN architectures with the sparse coding the-
ory, which from today’s view may be somewhat unconvincing.
SCN combines these two important concepts innovatively and
gains both quantitative and qualitative improvements.

Learning to ensemble by NN: Different models specialize in
different image patterns of SISR. From the perspective of en-
semble learning, a better result can be acquired by adaptively
fusing various models with different purposes at the pixel level.
Motivated by this idea, MSCN was proposed by Liu et al. [82]
by developing an extra module in the form of a CNN, taking the
LR as input and outputting several tensors with the same shape
as the HR. These tensors can be viewed as adaptive elementwise
weights for each raw HR output. By selecting NNs as the raw
SR inference modules, the raw estimating parts and the fusing
part can be optimized jointly. However, in MSCN, the summa-
tion of coefficients at each pixel is not 1, which may be slightly
incongruous.

Deep architectures with progressive methodology: Increasing
SISR performance progressively has been extensively studied
previously, and many recent DL-based approaches also exploit
it from various perspectives. Here, we mainly discuss three novel
works within this scope: DEGREE [83], combining the progres-
sive property of ResNet with traditional subband reconstruction;
LapSRN [84], generating SR of different scales progressively;
and PixelSR [85], leveraging conditional autoregressive models
to generate SR pixel-by-pixel.

Compared with other deep architectures, ResNet is intriguing
for its progressive properties. Taking SRResNet for example,
one can observe that directly sending the representations pro-
duced by intermediate residual blocks to the final reconstruction
part will also yield a quite good raw HR estimator. The deeper
these representations are, the better the results that can be ob-
tained. A similar phenomenon of ResNet applied in recognition
is reported in [66]. DEGREE, proposed by Yang et al., combines
this progressive property of ResNet with the subband reconstruc-
tion of traditional SR methods [86]. The residues learned in each
residual block can be used to reconstruct high-frequency details,
resembling the signals from a certain high-frequency band. To
simulate subband reconstruction, a recursive residual block is
used. Compared with the traditional supervised subband recov-
ery methods that need to obtain subband ground truth by diverse
filters, this simulation with recursive ResNet avoids explicitly
estimating intermediate subband components, benefiting from
the end-to-end representation learning.

As mentioned above, models for small scale factors can be
used for a raw estimator of a large scale SISR. In the SISR
community, SISR under large scale factors (e.g.,×8) has been a
challenging problem for a long time. In such situations, plausible
priors are imposed to restrict the solution space. A straightfor-
ward way to address this is to gradually increase resolution by
adding extra supervision on the auxiliary SISR process of the
small scale. Based on this heuristic prior, LapSRN, proposed by
Lai et al., uses the Laplacian pyramid structure to reconstruct
HR outputs. LapSRN has two branches: the feature extraction
branch and the image reconstruction branch, as shown in Fig. 6.
At each scale, the image reconstruction branch estimates a raw
HR output of the present stage, and the feature extraction branch

Fig. 6. LapSRN architecture. Red arrows indicate the convolutional layer;
blue arrows indicate transposed convolutions (upsampling); green arrows denote
elementwise addition operators.

Fig. 7. Sketch of the pixel recursive SR architecture.

outputs a residue between the raw estimator and the correspond-
ing ground truth as well as extracts useful representations for the
next stage.

When faced with large scale factors with a severe loss of nec-
essary details, some researchers suggest that synthesizing ratio-
nal details can achieve better results. In this situation, deep gener-
ative models, which will be discussed in the next sections, could
be good choices. Compared with the traditional independent
point estimation of the lost information, conditional autoregres-
sive generative models using conditional maximum likelihood
estimation in directional graphical models gradually generate
high-resolution images based on the previously generated pixels.
PixelRNN [87] and PixelCNN [88] are recent representative au-
toregressive generative models. The current pixel in PixelRNN
and PixelCNN is explicitly dependent on the left and top pixels
that have already been generated. To implement such opera-
tions, novel network architectures are elaborated. PixelSR was
proposed by Dahl et al. and first applies conditional PixelCNN
to SISR. The overall architecture is shown in Fig. 7. The condi-
tioning CNN takes LR as input, which provides LR-conditional
information to the whole model, and the PixelCNN part is the
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Fig. 8. Sketch of the DBPN architecture.

autoregressive inference part. The current pixel is determined by
these two parts together using the current softmax probability:

P (yi|x, y<i) = softmax(Ai(x) +Bi(y<i)), (2)

where x is the LR input, yi is the current HR pixel to be gener-
ated, y<i are the generated pixels,Ai(·) denotes the conditioning
network predicting a vector of logit values corresponding to the
possible values, and Bi(·) denotes the prior network predicting
a vector of logit values of the ith output pixel. Pixels with the
highest probability are taken as the final output pixel.

Similarly, the whole network is optimized by minimiz-
ing cross-entropy loss (maximizing the corresponding log-
likelihood) between the model’s prediction and the discrete
ground-truth labels.

Deep architectures with backprojection: Iterative backprojec-
tion [89] is an early SR algorithm that iteratively computes the
reconstruction error and then feeds it back to tune the HR re-
sults. Recently, DBPN [90], proposed by Haris et al., uses deep
architectures to simulate iterative backprojection and further
improves performance with dense connections [73], which is
shown to achieve wonderful performance in the ×8 scale. As
shown in Fig. 8, the dense connection and 1× 1 convolution
for reducing the dimension is first applied across different up-
projection (down-projection) units; next, in the tth up-projection
unit, the current LR feature inputL˜t−1 is first deconvoluted to ob-
tain a raw HR featureHt

0, andHt
0 is backprojected to the LR fea-

tureLt
0. The residue between two LR features elt = Lt−1 − Lt−1

0

is then deconvoluted and added to Ht
0 to obtain a finer HR fea-

ture Ht. The down-projection unit is defined very similarly in
an inverse way.

Usage of additional information from LR: Although mod-
ern deep NNs are skillful in extracting various ranges of useful
representations in end-to-end manners, in some cases, it is still
helpful to select some information to process explicitly. For ex-
ample, the DEGREE [83] takes the edge map of LR as another
input. Recent studies tend to use more complex information of
LR directly, two examples of which are the following: SFT-
GAN [91], with extra semantic information of LR for better
perceptual quality, and SRMD [92], incorporating degradation
into input for multiple degradations.

[93] reported that using a semantic prior helps improve the
performance of many SISR algorithms. Leveraging powerful
deep architectures recently designed for segmentation, Wang
et al. [91] used semantic segmentation maps of interpreted LR
as additional input and deliberated the spatial feature transfor-
mation (SFT) layer to handle them. With this extra information
from high-level tasks, the proposed work is more skilled in gen-
erating textual details.

To take degradations of different LRs into account, SRMD
first applied a parametric zero-mean anisotropic Gaussian ker-
nel to stand for the blur kernel and the additive white Gaussian
noise with hyperparameter ρ2 to represent noise. Then, a simple
regression is used to obtain its covariance matrix. These suffi-
cient statistics are dimensionally stretched to concatenate with
LR in the channel dimension, and with such input, a deep model
is trained. Notably, when SRMD is tested with real images, the
needed parameters on the degradation level are obtained by grid
search.

Reconstruction-based frameworks based on priors offered by
deep NN: Sophisticated priors are of key points for efficient
reconstruction-based SISR algorithms to address different cases
flexibly. Recent works showed that deep NNs could provide
well-performing priors mainly from two perspectives: priors in
the deep NN learn from data in advance within a plug-and-play
approach and direct reconstruction of output, leveraging intrigu-
ing but still unclear priors of deep architectures themselves.

Given the degraded version y, the reconstruction-based algo-
rithms aim to obtain the desired result x̂ by solving

x̂ = argmin ||Hx− y||22 +R(x), (3)

where H is the degradation matrix and R(x) is regularization,
also called a prior from the Bayesian view. [94] split (3) into
a data part and a prior part with variable splitting techniques
and then replaced the prior part with efficient denoising algo-
rithms. Regarding different degradation cases, one only needs
to change denoising algorithms for the prior part, behaving in
so-called plug-and-play manners. Recent works [95]–[97] use
deep discriminatively trained NNs under different noise levels
as denoisers in various inverse problems, and IRCNN [96] is
the first one among them to address SISR. In IRCNN, they first
trained a series of CNN-based denoisers with different noise
levels, and took backprojection as the reconstruction part. The
LR is first preceded by several backprojection iterations and
then denoised by CNN denoisers with decreasing noise levels
along with backprojection. The iteration number is empirically
set to 30. In IRCNN, the authors use deep networks to learn a
set of image priors and then plug the priors into the reconstruc-
tion framework; the experimental results in these cases are better
than the contemporary methods that only employ example-based
training.

Recently, Ulyanov et al. showed in [98] that the structure of
deep neural networks could capture a considerable amount of
low-level image statistical priors. They reported that when neu-
ral networks are used to fit images of different statistical proper-
ties, the convergence speed for different kinds of images can also
be different. As shown in Fig. 9, natural-looking images, whose
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Fig. 9. Learning curves for the reconstruction of different kinds of images.
We re-implement the experiment in [98] with the image ‘butterfly’ in Set5.

different parts are highly relevant, will converge much faster. In
contrast, images such as noises and shuffled images, which have
little inner relationship, tend to converge more slowly. Many in-
verse problems such as denoising and super-resolution are mod-
eled as the pixel-wise summation of the original image and the
independent additive noises. Based on the observed prior, when
used to fit these degraded images, the neural networks tend to
fit the natural-looking images first, which can be used to retain
the natural-looking parts as well as to filter the noisy ones. To
illustrate the effectiveness of the proposed prior for SISR, only
given the LR x0, the authors took a fixed random vector z as
input to fit the HR x with a randomly initialized DNN fθ by
optimizing

min
θ

||d(fθ(z))− x0||22, (4)

where d(·) is a common differentiable downsampling opera-
tor. The optimization is terminated in advance for only filtering
noisy parts. Although these totally unsupervised methods are
outperformed by other supervised learning methods, they per-
form considerably better than some other naive methods.

Deep architectures with internal examples: Internal-example
SISR algorithms are based on the recurrence of small pieces
of information across different scales of a single image, which
are shown to be better at addressing specific details rarely ex-
isting in other external images [99]. ZSSR [100], proposed by
Shocher et al., is the first literature combining deep architectures
with internal-example learning. In ZSSR, other than the image
for testing, no extra images are needed, and all the patches for
training are taken from different degraded pairs of the test im-
age. As demonstrated in [101], the visual entropy inside a single
image is much smaller than the large training dataset collected
from wide ranges, so unlike external-example SISR algorithms,
a very small CNN is sufficient. As we mentioned previously for
VDSR, the training data for a small-scale model can also be use-
ful for training large-scale models. Additionally, based on this
trick, ZSSR can be more robust by collecting more internal train-
ing pairs with small scale factors for training large-scale mod-
els. However, this approach will increase runtime immensely.
Notably, when combined with the kernel estimation algorithms
mentioned in [102], ZSSR performs quite well with the unknown
degradation kernels.

Recently, Tirer et al. argued that degradation in LR decreases
the performance of internal-example algorithms [103]. There-
fore, they proposed to use reconstruction-based deep frame
IDBP [97] to obtain an initial SR result and then conduct
internal-example-based network training similar to ZSSR. This
method was believed to combine two successful techniques
that address the mismatch between training and test, and it has
achieved robust performance in these cases.

C. Comparisons Among Different Models and Discussion

In this section, we will summarize recent progress in deep
architectures for SISR from two perspectives: quantitative com-
parisons for those trained by specific blurring, and comparisons
on those models for handling nonspecific blurring.

For the first part, quantitative criteria mainly include the fol-
lowing:

1) PSNR/SSIM [104] for measuring reconstruction quality:
Given two images I and Î both with N pixels, the MSE and
peak signal-to-noise ratio (PSNR) are defined as

MSE =
1

N
||I − Î||2F , (5)

PNSR = 10 log
( L2

MSE )
10 , (6)

where || · ||2F is the Frobenius norm and L is usually 255. The
structural similarity index (SSIM) is defined as

SSIM(I, Î) =
2μIμÎ + k1
μ2
I + μ2

Î
+ k1

· σIÎ + k2
σ2
I + σ2

Î
+ k2

, (7)

where μI and σ2
I is the mean and variance of I , σIÎ is the co-

variance between I and Î , and k1 and k2 are constant relaxation
terms.

2) Number of parameters of NN for measuring storage effi-
ciency (Params):

3) Number of composite multiply-accumulate operations for
measuring computational efficiency (Mult&Adds): Since opera-
tions in NNs for SISR are mainly multiplications with additions,
we use Mult&Adds in CARN [105] to measure computation, as-
suming that the desired SR is 720p.

Notably, it has been shown in [48] and [49] that the training
datasets have a great influence on the final performance, and
usually, more abundant training data will lead to better results.
Generally, these models are trained via three main datasets: 1)
91 images from [19] and 200 images from [106], called the
291 dataset (some models only use 91 images); 2) images de-
rived from ImageNet [107] randomly; and 3) the newly pub-
lished DIV2K dataset [108]. In addition to the different number
of images each dataset contains, the quality of images in each
dataset is also different. Images in the 291 dataset are usually
small (on average, 150× 150), images in ImageNet are much
larger, while images in DIV2K are of very high quality. Because
of the restricted resolution of the images in the 291 dataset,
models on this set have difficulties in obtaining large patches
with large receptive fields. Therefore, models based on the 291
dataset usually take the bicubic of LR as input, which is quite
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TABLE I
COMPARISONS AMONG SOME REPRESENTATIVE DEEP MODELS

Fig. 10. Comparisons of ’monarch’ in Set14 for scale 2 with Gaussian kernel degradation. We can see that, given the degradation mismatch with that of training,
the performance of EDSR decreases drastically.

time-consuming. Table I compares different models on the men-
tioned criteria.

From Table I, we can see that generally as the depth and the
number of parameters grow, the performance improves. How-
ever, the growth rate of performance levels off. Recently, some
works on designing light models [105], [109], [110] and learning
sparse structural NN [111] were proposed to achieve relatively
good performance with less storage and computation, which are
very meaningful in practice.

For the second part, we mainly show that the performance of
the models for some specific degradation dropped drastically
when the true degradation mismatches the one assumed for
training. For example, we use four models, including EDSR
trained with bicubic degradation [71], IRCNN [96], SRMD [92]
and ZSSR [100], to address LRs generated by Gaussian kernel
degradation (kernel size of 7× 7 with bandwidth 1.6), as shown
in Fig. 10, and the performance of EDSR dropped drastically
with obvious blur, while other models for nonspecific degrada-
tion perform quite well. Therefore, to address some longstanding
problems in SISR, such as unknown degradation, the direct
usage of general deep learning techniques may not be sufficient.

More effective solutions can be achieved by combining the
power of DL and the specific properties of the SISR scene.

IV. OPTIMIZATION OBJECTIVES FOR DL-BASED SISR

A. Benchmark of Optimization Objectives for DL-Based SISR

We select the MSE loss used in SRCNN as the benchmark. It
is known that using MSE favors a high PSNR, and PSNR is a
widely used metric for quantitatively evaluating image restora-
tion quality. Optimizing MSE can be viewed as a regression
problem, leading to a point estimation of θ as

min
θ

∑

i

||F (xi; θ)− yi||2, (8)

where (xi, yi) are the ith training examples and F (x; θ) is a
CNN parameterized by θ. Here, (8) can be interpreted in a prob-
abilistic way by assuming Gaussian white noise (N (ε; 0, σ2I))
independent of the image in the regression model, and then, the
conditional probability of y given x becomes a Gaussian distri-
bution with mean F (x; θ) and the diagonal covariance matrix
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σ2I , where I is the identity matrix:

p(y|x) = N (y;F (x; θ), σ2I). (9)

Then, using maximum likelihood estimation (MLE) on the train-
ing examples with (9) will lead to (8).

The Kullback-Leibler divergence (KLD) between the condi-
tional empirical distribution Pdata and the conditional model
distribution Pmodel is defined as

DKL(Pdata||Pmodel) = Ez∼Pdata

[
log

Pdata(z)

Pmodel(z)

]
. (10)

We call (10) the forward KLD, where z = y|x denotes the HR
(SR) conditioned on its LR counterpart,Pdata andPmodel are the
conditional distributions of HR|LR and SR|LR, respectively,
whereEx∼Pdata

[logPdata(z)] is an intrinsic term determined by
the training data regardless of the parameter θ of the model (or
the model distribution Pmodel(x; θ)). Hence, when we use the
training samples to estimate parameter θ, minimizing this KLD
is equivalent to MLE.

Here, we have demonstrated that MSE is a special case of
MLE, and MLE is a special case of KLD. However, we may
conjecture whether the assumptions underlying these specializa-
tions are violated. This consideration has led to some emerging
objective functions from four perspectives:

1) Translating MLE into MSE can be achieved by assuming
Gaussian white noise. Although the Gaussian model is the
most widely used model for its simplicity and technical
support, what if this independent Gaussian noise assump-
tion is violated in a complicated scene such as SISR?

2) To use MLE, we need to assume the parametric form of
the data distribution. What if the parametric form is mis-
specified?

3) Apart from KLD in (10), are there any other distances
between probability measures that we can use as the opti-
mization objectives for SISR?

4) Under specific circumstances, how can we choose the suit-
able objective functions according to their properties?

Based on some solutions to these four questions, recent work
on optimization objectives for DL-based SISR will be discussed
in Sections IV-B, IV-C, IV-D and IV-E, respectively.

B. Objective Functions Based on Non-Gaussian
Additive Noises

The poor perceptual quality of the SISR images obtained by
optimizing MSE directly demonstrates a fact: using Gaussian
additive noise in the HR space is not good enough. To address
this problem, solutions are proposed from two aspects: use other
distributions for this additive noise, or transfer the HR space to
some space where the Gaussian noise is reasonable.

1) Denote Additive Noise With Other Probability Distribu-
tions: In [112], Zhao et al. investigated the difference between
mean absolute error (MAE) and MSE used to it optimize NN in
image processing. Similar to (8), MAE can be written as

min
θ

∑

i

||F (xi; θ)− yi||1. (11)

From the perspective of probability, (11) can be interpreted as
introducing Laplacian white noise, and similar to (9), the con-
ditional probability becomes

p(y|x) = Laplace(y;F (x; θ), bI). (12)

Compared with MSE in regression, MAE is believed to be more
robust against outliers. As reported in [112], when MAE is used
to optimize an NN, the NN tends to converge faster and produce
better results. The authors argued that the reason might be be-
cause MAE could guide NN to reach a better local minimum.
Other similar loss functions in robust statistics can be viewed as
modeling additive noises with other probability distributions.

Although these specific distributions often cannot represent
unknown additive noise very precisely, their corresponding ro-
bust statistical loss functions are used in many DL-based SISR
works for their conciseness and advantages over MSE.

2) Using MSE in a Transformed Space: Alternatively, we
can search for a mapping Ψ to transform the HR space to some
space where Gaussian white noise can be used reasonably. From
this perspective, Bruna et al. [113] proposed so-called percep-
tual loss to leverage deep architectures. In [113], the conditional
probability of the residual r between HR and LR given the LR
x is stimulated by the Gibbs energy model:

p(r|x) = exp(−||Φ(x)−Ψ(r)||2 − logZ), (13)

where Φ and Ψ are two mappings between the original spaces
and the transformed ones, and Z is the partition function. The
features produced by sophisticated supervised deep architec-
tures have been shown to be perceptually stable and discrimina-
tive, denoted by Ψ(r)2. Then, Ψ represents the corresponding
deep architectures. In contrast,Φ is the mapping between the LR
space and the manifold represented by Ψ(r), trained by mini-
mizing the Euclidean distance as

min
Φ

||Φ(x)−Ψ(r)||2. (14)

After Φ is obtained, the final result r can be inferred with SGD
by solving

min
r

||Φ(x)−Ψ(r)||2. (15)

For further improvement, [113] also proposed a fine-tuning
algorithm in whichΦ andΨ can be fine-tuned to the data. Similar
to the alternating updating in GAN, Φ and Ψ are fine-tuned with
SGD based on the current r. However, this fine-tuning will in-
volve calculating the gradient of the partition function Z, which
is a well-known difficult decomposition into the positive phase
and the negative phase of learning. Hence to avoid sampling
within inner loops, a biased estimator of this gradient is chosen
for simplicity.

The inference algorithm in [113] is extremely time-
consuming. To improve efficiency, Johnson et al. utilized this
perceptual loss in an end-to-end training manner [114]. In [114],

2Either the scattering network or VGG can be denoted byΨ. WhenΨ is VGG,
there is no residual learning and fine-tuning.
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the SISR network is directly optimized with SGD by minimiz-
ing the MSE in the feature manifold produced by VGG-16 as
follows:

min
θ

||Ψ(F (x; θ))−Ψ(y)||2, (16)

where Ψ is the mapping represented by VGG-16, F (x; θ) de-
notes the SISR network, and y is the ground truth. Compared
with [113], [114] replaces the nonlinear mapping Φ and the ex-
pensive inference with an end-to-end trained CNN, and their re-
sults show that this change does not affect the restoration quality
but does accelerate the whole process.

Perceptual loss mitigates blurring and leads to more visually-
pleasing results compared with directly optimizing MSE in the
HR space. However, there remains no theoretical analysis on
why this approach works. In [113], the author generally con-
cluded that successful supervised networks used for high-level
tasks could produce very compact and stable features. In these
feature spaces, small pixel-level variation and much other trivial
information can be omitted, making these feature maps mainly
focus on pixels of human interest. At the same time, with the
deep architectures, the most specific and discriminative informa-
tion of the input is shown to be retained in feature spaces because
of the great performance of the models applied in various high-
level tasks. From this perspective, using MSE in these feature
spaces will focus more on the parts that are attractive to human
observers with little loss of original contents, so perceptually
pleasing results can be obtained.

C. Optimizing Forward KLD With Nonparametric Estimation

Parametric estimation methods such as MLE need to specify
in advance the parametric form the distribution of data, which
suffers from model misspecification. Different from parametric
estimation, nonparametric estimation methods such as kernel
distribution estimation (KDE) fit the data without distributional
assumptions, which are robust when the real distributional form
is unknown. Based on nonparametric estimation, recently, the
contextual loss [115], [116] was proposed by Mechrez et al.
to maintain natural image statistics. In the contextual loss, a
Gaussian kernel function is applied:

K(x, y) = exp(−dist(x, y)/h− logZ), (17)

where dist(x, y) can be any symmetric distance between x
and y, h is the bandwidth, and the partition function Z =∫
exp(−dist(x, y)/h)dy. Then, Pdata and Pmodel are

Pdata(z) =
∑

zi∼Pdata

K(z, zi),

Pmodel(z) =
∑

wj∼Pmodel

K(z, wj), (18)

and (10) can be rewritten as

DKL(Pdata||Pmodel) =
1

N

∑

k

⎡

⎣log
∑

zi∼Pdata

K(zk, zi)− log
∑

wj∼Pmodel

K(zk, wj)

⎤

⎦ . (19)

The first log term in (19) is a constant with respect to the model
parameters. Let us denote the kernel K(zk, wj) in the second
log term by Akj . Then, the optimization objective in (19) can be
rewritten as

− 1

N

∑

k

log
∑

j

Akj . (20)

With the Jensen inequality, we can obtain a lower bound of (20):

− 1

N

∑

k

log
∑

j

Akj ≥ − log
1

N

∑

k

∑

j

Akj ≥ 0. (21)

The first equality holds if and only if∀k, k′,∑j Akj =
∑

j Ak′j .
Both equalities hold if and only if ∀k, ∑j Akj = 0. When (20)
reaches 0, the given lower bound also reaches 0. Therefore, we
can take this lower bound as the optimization objective alterna-
tively.

We can further simplify the lower bound in (21). The lower
bound can be rewritten as

− log
1

N

∑

j

||Aj ||1, (22)

where Aj = (A1j , · · · , Akj)
T , and ‖ · ‖1 is the �1 norm. When

the bandwidth h → 0, the affinity Akj will degrade into the
indicator function, which means ifxk = yj ,Akj ≈ 1; otherwise,
Akj ≈ 0. In this case, the �1 norm can be approximated well by
the �∞ norm, which returns the maximum element of the vector.
Thus, (22) can degenerate into the contextual loss in [115], [116]:

− log
1

N

∑

j

max
k

Akj . (23)

Recently, implicit likelihood estimation (IMLE) [117] was
proposed and its conditional version was applied to SISR [118].
Here, we will briefly show that minimizing IMLE equals mini-
mizing an upper bound of the forward KLD with KDE. Let us
use a Gaussian kernel as

K(x, y) =
1√
2πh

exp

(
−‖x− y‖22

2h2

)
. (24)

As with (20), the optimization objective can be rewritten as

− 1

N

∑

k

log
∑

j

e−
‖zk−wj ‖22

2h2 . (25)

With {wj}mj=1 and {zk}Nk=1, we can obtain a simple upper bound
of (25) as

− 1

N

∑

k

log

(
mmin

j
e−

‖zk−wj ‖22
2h2

)

=
1

N

∑

k

(
min
j

||zk − wj ||22
2h2

− logm

)
. (26)
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Fig. 11. A toy example to illustrate the difference between the forward KLD
and the backward KLD.

Minimizing (26) equals minimizing
∑

k

min
j

‖zk − wj‖22, (27)

which is the core of the optimization objective of IMLE.
As above, the recently proposed contextual loss and IMLE

are illustrated via nonparametric estimation and KLD. Visu-
ally pleasing results were reported using the contextual loss
and IMLE. However, as KDE is generally very time-consuming,
several reasonable approximations along with acceleration algo-
rithms were applied.

D. Other Distances Between Probability Measures Used
in SISR

As KLD is an asymmetric (pseudo) distance for measuring
similarity between two distributions, in this subsection, we begin
with the inverse form of forward KLD, namely, backward KLD.
The backward KLD is defined as

DKL(Pmodel||Pdata) = Ez∼Pmodel

[
log

Pmodel(z)

Pdata(z)

]
. (28)

When Pmodel = Pdata, both KLDs reach the minimum of 0.
However, when the solution is inadequate, these two KLDs will
lead to quite different results. Here, we use a toy example to
illustrate a simple case of inadequate solutions, as shown in
Fig. 11.

The unknown wanted distribution is a Gaussian mixture
model (GMM) with two modes, denoted as P (x), and we model
it by a single Gaussian distribution. We can easily see that op-
timizing the forward KLD results in a solution locating at the
middle areas of two modes, while optimizing the backward KLD
makes the result close to the most prominent mode.

From Fig. 11 we can see that, under inadequate solutions, opti-
mizing the forward KLD will lead to the well-known regression-
to-the-mean problem, while optimizing the backward KLD only
concentrates on the main modality. The former is one of the rea-
sons for blurring, and some researchers [119] argued that the
latter improves the visual quality but makes the results collapse
to some patterns.

Different distances may lead to different results under an in-
adequate solution. Readers can refer to [120] for further under-
standing. In most low-level computer vision tasks, Pdata is an
empirical distribution and Pmodel is an intractable distribution.

For this reason, the backward KLD is unpractical for optimizing
deep architectures. To relieve optimizing difficulties, we replace
the asymmetric KLD with the symmetric Jensen-Shannon diver-
gence (JSD) as follows:

JS(Pdata||Pmodel) =
1

2
KL

[
Pdata||Pdata + Pmodel

2

]

+
1

2
KL

[
Pmodel||Pdata + Pmodel

2

]
.

(29)

Optimizing (29) explicitly is also very difficult. Generative
adversarial nets (GANs) proposed by Goodfellow et al. use the
objective function below to implicitly address this problem in
a game theory scenario, successfully avoiding the troubling ap-
proximate inference and approximation of the partition function
gradient:

min
G

max
D

[Ez∼Pdata
logD(z) + Ez∼Pmodel

log(1−D(z))],

(30)
where G is the main part called the generator supervised by
an auxiliary part D called the discriminator. The two parts up-
date alternatively, and when the discriminator cannot give use-
ful information to the generator anymore, in other words, the
outputs of the generator totally confuse the discriminator, the
optimization procedure is completed. For the detailed discus-
sion on GANs, readers can refer to [45]. Recent works have
shown that sophisticated architectures and suitable hyperparam-
eters can help GANs perform excellently. The representative
works on GAN-based SISR are [68] and [121]. In [68], the gen-
erator of the GAN is the SRResNet mentioned previously, and
the discriminator refers to the design criterion of DCGAN [54].
In the context of GANs, a recent work [121] follows a simi-
lar path except with a different architecture. Very recently, by
leveraging the extension of the basic GAN framework [122],
[123] was proposed as an unsupervised SR algorithm. Fig. 12
shows the results of the GAN and MSE with the same architec-
ture; despite the lower PSNR due to artifacts, the visual quality
improves by using the GAN for SISR.

Generally, GANs offer an implicit optimization strategy in an
adversarial training way by using deep neural networks. Based
on this, more rational but complicated measures such as Wasser-
stein distances [124], f -divergence [125]3 and maximum mean
discrepancy (MMD) [126] are taken as alternatives to JSD for
training GANs.

E. Characters of Different Objective Functions

Now, we can see that those losses mentioned in Section IV-B
explicitly model the relation between LR and its HR counterpart.
Here, we follow the methodology of [127] and call the losses
that were based on measuring the dissimilarity between training
pairs the distortion-aimed losses. When the training data are not
sufficient, distortion losses usually ignore the particularity of

3Forward KLD, backward KLD and JSD can all be regarded as the special
cases of f -divergence.
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Fig. 12. Visual comparisons between the MSE, MSE + GAN and MAE +GAN + Contextual Loss (The authors of [68] and [116] released their results.) We can
see that the perceptual loss leads to a lower PSNR/SSIM but a better visual quality.

Fig. 13. (a) The perception-distortion space is divided by the perception-distortion curve, where an area cannot be attained. (b) Use of the nonreference metric
proposed by [95] and RMSE to perform quantitative comparisons from the perception and distortion views; the included methods are [47], [61], [68], [71], [84],
[114], [116], [121].

data and appear ineffective to measure the similarity between
the source and target distributions.

The losses mentioned in Sections IV-C and IV-D are rooted
from measuring the similarity between distributions, which is
thought to measure the perceptual quality. Here, we call them
perception-aimed losses. Recently, Blau et al. [127] discussed
the inherent trade-off between the two kinds of losses. Their
discussion can be simplified into an optimization problem:

P (D) = min
PŶ |X

d(PY , PŶ ) s.t. E[Δ(Y, Ŷ )] ≤ D. (31)

Δ(·, ·) is distortion-aimed loss, and d(·, ·) is the (pseudo) dis-
tance between distributions. Furthermore, the author also proved
that if d(·, ·) is convex in its second argument, then the P (D)
is monotonically nonincreasing and convex. From this property,
we can draw the curve of P (D) and easily see this trade-off,
as shown in Fig. 13(a), such that improving one must be at the
expense of the other. However, as shown in Section IV-B, using
MSE in the VGG feature space achieves a better quality, and
choosing suitable Δ and d may ease this trade-off.

For the perception-aimed losses mentioned in Sections IV-C
and IV-D, up to now, there has been no rigorous analysis on their

differences. Here, we apply the nonreference quality assessment
proposed by Ma et al. [95] with RMSE to conduct quantitative
comparisons, and the representative qualitative comparisons are
depicted in Fig. 13(b). To summarize, we should be aware that
there is no one-fits-all objective function, and we should choose
one that is suitable to the context of an application.

V. TRENDS AND CHALLENGES

Along with the promising performance that DL algorithms
have achieved in SISR, there remain several important chal-
lenges and inherent trends as follows.

1) Lighter Deep Architectures for Efficient SISR: Although
the high accuracy of advanced deep models has been achieved
for SISR, it is still difficult to deploy these models to real-world
scenarios, which is mainly due to massive parameters and com-
putation. To address this issue, we need to design light deep
models or slim the existing deep models for SISR with fewer
parameters and computation at the expense of little or no per-
formance degradation. Hence, in the future, researchers are ex-
pected to focus more on reducing the size of NNs for speeding
up the SISR process.
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2) More Effective DL Algorithms for Large-Scale SISR and
SISR With Unknown Corruption: Generally, DL algorithms pro-
posed in recent years have improved the performance of tradi-
tional SISR tasks by a large margin. However, the large scale
of SISR and the SISR with unknown corruption, the two major
challenges in the SR community, are still lacking very effective
remedies. DL algorithms are thought to be skilled at address-
ing many inferences or unsupervised problems, which is of key
importance to address these two challenges. Therefore, by lever-
aging the great power of DL, more effective solutions to these
two demanding problems are expected.

3) Theoretical Understanding of Deep Models for SISR: The
success of deep learning is said to be attributed to learning pow-
erful representations. However, to date, we still cannot under-
stand these representations very well, and the deep architectures
are treated as a black box. For DL-based SISR, the deep ar-
chitectures are often viewed as a universal approximation, and
the learned representations are often omitted for simplicity. This
behavior is not beneficial for further exploration. Therefore, we
should not only focus on whether a deep model works but also
concentrate on why and how it works. That is, more theoretical
explorations are needed.

4) More Rational Assessment Criteria for SISR in Different
Applications: In many applications, we need to design the de-
sired objective function for a specific application. However, in
most cases, we cannot give an explicit and precise definition
to assess the requirement for the application, which leads to the
vagueness of the optimization objectives. Many works, although
for different purposes, simply employ MSE as the assessment
criterion, which has been shown as a poor criterion in many
cases. In the future, we think that it is of great necessity to make
clear definitions for assessments in various applications. Based
on these criteria, we can design better targeted optimization ob-
jectives and compare algorithms in the same context more ratio-
nally.

VI. CONCLUSION

This paper presents a brief review of recent deep learning
algorithms on SISR. It divides the recent works into two cat-
egories: the deep architectures for simulating the SISR pro-
cess and the optimization objectives for optimizing the whole
process. Despite the promising results reported so far, there are
still many underlying problems. We summarize the main chal-
lenges into three aspects: the acceleration of deep models, the
extensive comprehension of deep models and the criteria for
designing and evaluating the objective functions. Along with
these challenges, several directions may be further explored in
the future.
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[41] D. CireşAn, U. Meier, J. Masci, and J. Schmidhuber, “Multi-column
deep neural network for traffic sign classification,” Neural Netw., vol. 32,
pp. 333–338, 2012.

[42] R. Salakhutdinov and H. Larochelle, “Efficient learning of deep Boltz-
mann machines,” in Proc. 13th Int. Conf. Artif. Intell. Statist., 2010,
pp. 693–700.

[43] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[44] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backprop-
agation and approximate inference in deep generative models,” arXiv
preprint arXiv:1401.4082, 2014.

[45] I. Goodfellow et al., “Generative adversarial nets,” in Proc. Advances
Neural Inf. Process. Syst., 2014, pp. 2672–2680.

[46] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learning.
Cambridge, MA, USA: MIT Press, 2016, vol. 1.

[47] C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convolutional
network for image super-resolution,” in Proc. Eur. Conf. Comput. Vis.,
2014, pp. 184–199.

[48] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using
deep convolutional networks,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 38, no. 2, pp. 295–307, Feb. 2016.

[49] W. Shi et al., “Real-time single image and video super-resolution using
an efficient sub-pixel convolutional neural network,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2016, pp. 1874–1883.

[50] M. D. Zeiler, G. W. Taylor, and R. Fergus, “Adaptive deconvolutional
networks for mid and high level feature learning,” in Proc. IEEE Int.
Conf. Comput. Vis., 2011, pp. 2018–2025.

[51] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep
learning,” arXiv preprint arXiv:1603.07285, 2016.

[52] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional
networks,” in Proc. Eur. Conf. Comput. Vis., 2014, pp. 818–833.

[53] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2015, pp. 3431–3440.

[54] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” arXiv
preprint arXiv:1511.06434, 2015.

[55] W. Shi et al., “Is the deconvolution layer the same as a convolutional
layer?” arXiv preprint arXiv:1609.07009, 2016.

[56] C. Dong, C. C. Loy, and X. Tang, “Accelerating the super-resolution
convolutional neural network,” in Proc. Eur. Conf. Comput. Vis., 2016,
pp. 391–407.

[57] N. Efrat, D. Glasner, A. Apartsin, B. Nadler, and A. Levin, “Accurate
blur models vs. image priors in single image super-resolution,” in Proc.
IEEE Int. Conf. Comput. Vis., 2013, pp. 2832–2839.

[58] Y. Jia et al., “Caffe: Convolutional architecture for fast feature embed-
ding,” in Proc. 22nd ACM Int. Conf. Multimedia, 2014, pp. 675–678.

[59] M. Abadi et al., “TensorFlow: A system for large-scale machine learn-
ing,” in Proc. 12th USENIX Conf. Operating Syst. Des. Implementation,
2016, vol. 16, pp. 265–283.

[60] G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio, “On the number of
linear regions of deep neural networks,” in Proc. Adv. Neural Inf. Process.
Syst., 2014, pp. 2924–2932.

[61] J. Kim, J. Kwon Lee, and K. Mu Lee, “Accurate image super-resolution
using very deep convolutional networks,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2016, pp. 1646–1654.

[62] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[63] J. Kim, J. Kwon Lee, and K. Mu Lee, “Deeply-recursive convolutional
network for image super-resolution,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2016, pp. 1637–1645.

[64] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[65] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual
networks,” in Proc. Eur. Conf. Comput. Vis., 2016, pp. 630–645.

[66] A. Veit, M. J. Wilber, and S. Belongie, “Residual networks behave like
ensembles of relatively shallow networks,” in Proc. Adv. Neural Inf. Pro-
cess. Syst., 2016, pp. 550–558.

[67] D. Balduzzi et al., “The shattered gradients problem: If resnets are the
answer, then what is the question?” in Proc. Int. Conf. Mach. Learn.,
2017, pp. 342–350.

[68] C. Ledig et al., “Photo-realistic single image super-resolution using a
generative adversarial network,” in Proc. IEEE Conf. Comput. Vis. Pat-
tern Recognit., 2017, pp. 4681–4690.

[69] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift,” in Proc. Int. Conf.
Mach. Learn., 2015, pp. 448–456.

[70] Y. Tai, J. Yang, and X. Liu, “Image super-resolution via deep recursive
residual network,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2017, pp. 3147–3155.

[71] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, “Enhanced deep resid-
ual networks for single image super-resolution,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. Workshops, 2017, pp. 136–144.

[72] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,” in
Proc. Assoc. Adv. Artif. Intell., 2017, pp. 4278–4284.

[73] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten, “Densely
connected convolutional networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2017, vol. 1, no. 2, p. 3.

[74] Y. Chen et al., “Dual path networks,” in Proc. Adv. Neural Inform. Pro-
cess. Syst., 2017, pp. 4470–4478.

[75] T. Tong, G. Li, X. Liu, and Q. Gao, “Image super-resolution using
dense skip connections,” in Proc. IEEE Int. Conf. Comput. Vis., 2017,
pp. 4809–4817.

[76] Y. Tai, J. Yang, X. Liu, and C. Xu, “MemNet: A persistent memory
network for image restoration,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2017, pp. 4539–4547.

[77] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[78] Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and Y. Fu, “Residual dense network
for image super-resolution,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2018, pp. 2472–2481.

[79] Z. Wang, D. Liu, J. Yang, W. Han, and T. Huang, “Deep networks for im-
age super-resolution with sparse prior,” in Proc. IEEE Int. Conf. Comput.
Vis., 2015, pp. 370–378.

[80] K. Gregor and Y. LeCun, “Learning fast approximations of sparse
coding,” in Proc. 27th Int. Conf. Int. Conf. Mach. Learn., 2010,
pp. 399–406.

https://ieeexplore.ieee.org/document/5264952


YANG et al.: DEEP LEARNING FOR SINGLE IMAGE SUPER-RESOLUTION: A BRIEF REVIEW 3121

[81] D. Liu et al., “Robust single image super-resolution via deep networks
with sparse prior,” IEEE Trans. Image Process., vol. 25, no. 7, pp. 3194–
3207, Jul. 2016.

[82] D. Liu, Z. Wang, N. Nasrabadi, and T. Huang, “Learning a mixture of
deep networks for single image super-resolution,” in Proc. Asian Conf.
Comput. Vis., 2016, pp. 145–156.

[83] W. Yang et al., “Deep edge guided recurrent residual learning for image
super-resolution,” IEEE Trans. Image Process., vol. 26, no. 12, pp. 5895–
5907, Dec. 2017.

[84] W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang, “Deep Laplacian
pyramid networks for fast and accurate super-resolution,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2017, pp. 624–632.

[85] R. Dahl, M. Norouzi, and J. Shlens, “Pixel recursive super resolution,”
in Proc. IEEE Int. Conf. Comput. Vis., 2017, pp. 5439–5448.

[86] A. Singh and N. Ahuja, “Super-resolution using sub-band self-similarity,”
in Proc. Asian Conf. Comput. Vis., 2014, pp. 552–568.

[87] A. van den Oord, N. Kalchbrenner, and K. Kavukcuoglu, “Pixel recurrent
neural networks,” in Proc. Int. Conf. Mach. Learn., 2016, pp. 1747–
1756.

[88] A. van den Oord et al., “Conditional image generation with PixelCNN
decoders,” in Proc. Adv. Neural Inf. Process. Syst., 2016, pp. 4790–4798.

[89] M. Irani and S. Peleg, “Improving resolution by image registration,”
CVGIP, Graphical Models Image Process., vol. 53, no. 3, pp. 231–239,
1991.

[90] M. Haris, G. Shakhnarovich, and N. Ukita, “Deep backprojection net-
works for super-resolution,” in Proc. Conf. Comput. Vis. Pattern Recog-
nit., 2018, pp. 1664–1673.

[91] X. Wang, K. Yu, C. Dong, and C. Change Loy, “Recovering realistic
texture in image super-resolution by deep spatial feature transform,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 606–615.

[92] K. Zhang, W. Zuo, and L. Zhang, “Learning a single convolutional super-
resolution network for multiple degradations,” in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit., 2018, pp. 3262–3271.

[93] R. Timofte, V. De Smet, and L. Van Gool, “Semantic super-resolution:
When and where is it useful?” Comput. Vis. Image Understanding, vol.
142, pp. 1–12, 2016.

[94] S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg, “Plug-and-play
priors for model based reconstruction,” in Proc. IEEE Global Conf. Signal
Inf. Process., 2013, pp. 945–948.

[95] T. Meinhardt, M. Moller, C. Hazirbas, and D. Cremers, “Learning proxi-
mal operators: Using denoising networks for regularizing inverse imaging
problems,” in Proc. IEEE Int. Conf. Comput. Vis., 2017, pp. 1781–1790.

[96] K. Zhang, W. Zuo, S. Gu, and L. Zhang, “Learning deep CNN denoiser
prior for image restoration,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2017, pp. 3929–3938.

[97] T. Tirer and R. Giryes, “Image restoration by iterative denoising and
backward projections,” IEEE Trans. Image Process., vol. 28, no. 3,
pp. 1220–1234, Mar. 2019.

[98] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Deep image prior,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 9446–9454.

[99] K. Zhang, X. Gao, D. Tao, and X. Li, “Single image super-resolution with
multiscale similarity learning,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 24, no. 10, pp. 1648–1659, Oct. 2013.

[100] A. Shocher, N. Cohen, and M. Irani, “Zero-shot super-resolution using
deep internal learning,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2018, pp. 3118–3126.

[101] M. Zontak and M. Irani, “Internal statistics of a single natural image,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2011, pp. 977–984.

[102] T. Michaeli and M. Irani, “Nonparametric blind super-resolution,” in
Proc. IEEE Int. Conf. Comput. Vis, 2013, pp. 945–952.

[103] T. Tirer and R. Giryes, “Super-resolution based on image-adapted CNN
denoisers: Incorporating generalization of training data and internal
learning in test time,” arXiv preprint arXiv:1811.12866, 2018.

[104] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality
assessment: From error visibility to structural similarity,” IEEE Trans.
Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[105] N. Ahn, B. Kang, and K.-A. Sohn, “Fast, accurate, and, lightweight super-
resolution with cascading residual network,” in Proc. Eur. Conf. Comput.
Vis., 2018, pp. 252–268.

[106] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human
segmented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics,” in Proc. 8th IEEE Int.
Conf. Comput. Vis., 2001, vol. 2, pp. 416–423.

[107] J. Deng et al., “ImageNet: A large-scale hierarchical image database,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2009, pp. 248–255.

[108] E. Agustsson and R. Timofte, “NTIRE 2017 challenge on single image
super-resolution: Dataset and study,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. Workshops, 2017, pp. 126–135.

[109] Z. Yang, K. Zhang, Y. Liang, and J. Wang, “Single image super-resolution
with a parameter economic residual-like convolutional neural network,”
in Proc. Int. Conf. Multimedia Model., 2017, pp. 353–364.

[110] Z. Hui, X. Wang, and X. Gao, “Fast and accurate single image super-
resolution via information distillation network,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2018, pp. 723–731.

[111] X. Fan, Y. Yang, C. Deng, J. Xu, and X. Gao, “Compressed multi-scale
feature fusion network for single image super-resolution,” Signal Pro-
cess., vol. 146, pp. 50–60, 2018.

[112] H. Zhao, O. Gallo, I. Frosio, and J. Kautz, “Loss functions for neural
networks for image processing,” IEEE Trans. Comput. Imaging, vol. 3,
no. 1, pp. 47–51, Mar. 2017.

[113] J. Bruna, P. Sprechmann, and Y. LeCun, “Super-resolution with deep con-
volutional sufficient statistics,” arXiv preprint arXiv:1511.05666, 2015.

[114] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style
transfer and super-resolution,” in Proc. Eur. Conf. Comput. Vis., 2016,
pp. 694–711.

[115] R. Mechrez, I. Talmi, F. Shama, and L. Zelnik-Manor, “Learning to main-
tain natural image statistics,” arXiv preprint arXiv:1803.04626, 2018.

[116] R. Mechrez, I. Talmi, and L. Zelnik-Manor, “The contextual loss for
image transformation with non-aligned data,” in Proc. Eur. Conf. Comput.
Vis., 2018, pp. 768–783.

[117] K. Li and J. Malik, “Implicit maximum likelihood estimation,” arXiv
preprint arXiv:1809.09087, 2018.

[118] K. Li, S. Peng, and J. Malik, “Super-resolution via conditional implicit
maximum likelihood estimation,” arXiv preprint arXiv:1810.01406,
2018.

[119] F. Huszár, “How (not) to train your generative model: Scheduled sam-
pling, likelihood, adversary?” arXiv preprint arXiv:1511.05101, 2015.

[120] L. Theis, A. v. d. Oord, and M. Bethge, “A note on the evaluation of
generative models,” arXiv preprint arXiv:1511.01844, 2015.

[121] M. S. Sajjadi, B. Schölkopf, and M. Hirsch, “EnhanceNet: Single image
super-resolution through automated texture synthesis,” in Proc. IEEE Int.
Conf. Comput. Vis., 2017, pp. 4501–4510.

[122] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in Proc. IEEE
Int. Conf. Comput. Vis., 2017, pp. 2223–2232.

[123] Y. Yuan et al., “Unsupervised image super-resolution using cycle-in-
cycle generative adversarial networks,” in Proc. IEEE/CVF Conf. Com-
put. Vis. Pattern Recognit. Workshops, 2018, pp. 814–823.

[124] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adver-
sarial networks,” in Proc. Int. Conf. Mach. Learn., 2017, pp. 214–223.

[125] S. Nowozin, B. Cseke, and R. Tomioka, “f-GAN: Training generative
neural samplers using variational divergence minimization,” in Proc. Adv.
Neural Inform. Process. Syst., 2016, pp. 271–279.

[126] D. J. Sutherland et al., “Generative models and model criticism via opti-
mized maximum mean discrepancy,” arXiv preprint arXiv:1611.04488,
2016.

[127] Y. Blau and T. Michaeli, “The perception-distortion tradeoff,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 6228–6237.

Authors’ photographs and biographies not available at the time of publication.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


