Deep Learning Part 3

Yin Li

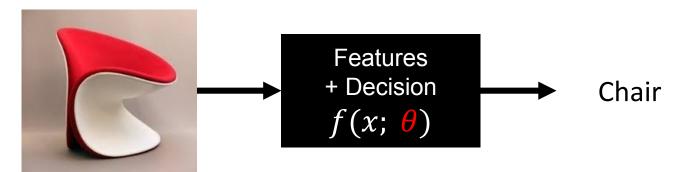
yin.li@wisc.edu University of Wisconsin, Madison

[Some of the slides from Lana Lazebnik, Kaiming He and others]

Deep Learning = Deep Neural Networks

 Deep Learning: Composing a set of (nonlinear) functions g

$$f(\boldsymbol{x};\boldsymbol{\theta}) = g_1(\dots g_{n-1}(g_n(\boldsymbol{x};\boldsymbol{\theta}_n),\boldsymbol{\theta}_{n-1})\dots,\boldsymbol{\theta}_1)$$

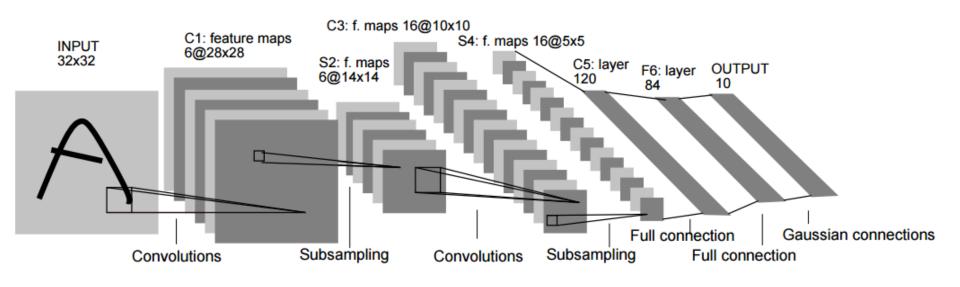


- Each of the function g is represented using a layer of a neural network
- Key element: Linear operations + Nonlinear activations, e.g., $\mathbf{a} = \sigma(\mathbf{W}^T \mathbf{x} + \mathbf{b})$

What we have talked about so far

- The linear functions
 - Fully connected layer: dense W
 - Convolutional layer: sparse and structured W
- The nonlinear activations
 - Sigmoid
 - Rectified linear unit (ReLU)
 - Many others …
- Pooling
- Output normalization
- Loss functions

Case study: LeNet-5 (1998)

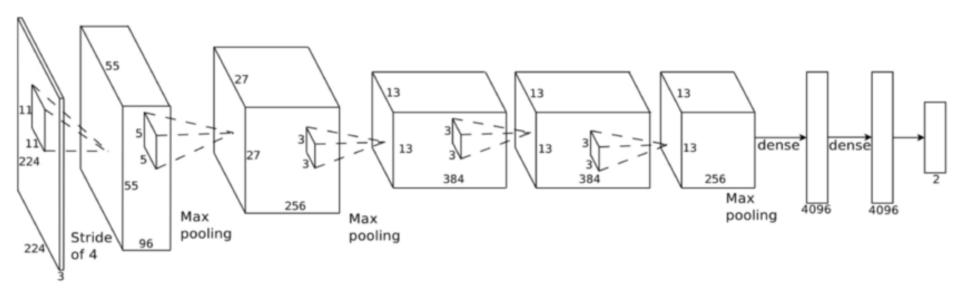


- convolutional layers + fully connected layers
- Sigmoid as the activation function
- [Conv + sigmoid + average pooling] x 2 + fully connected x 3

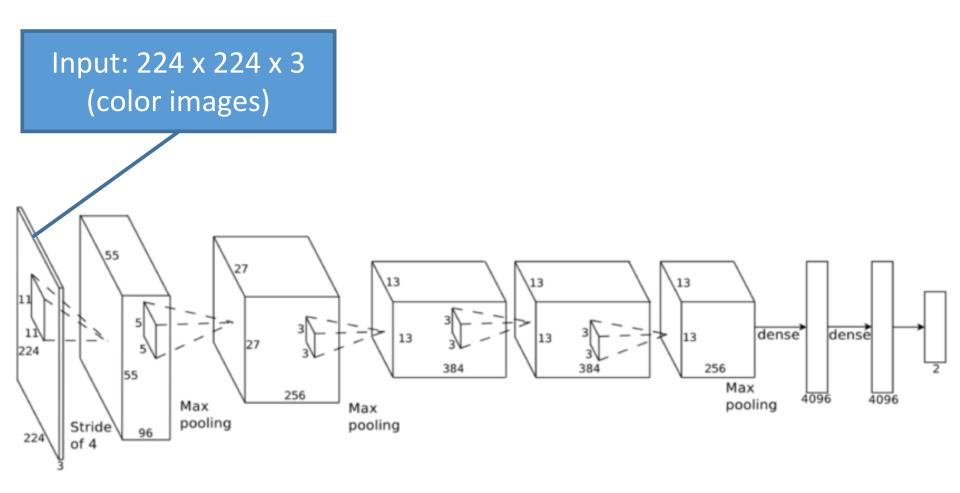
Figure from *Gradient-based learning applied to document recognition,* by Y. LeCun, L. Bottou, Y. Bengio and P. Haffner

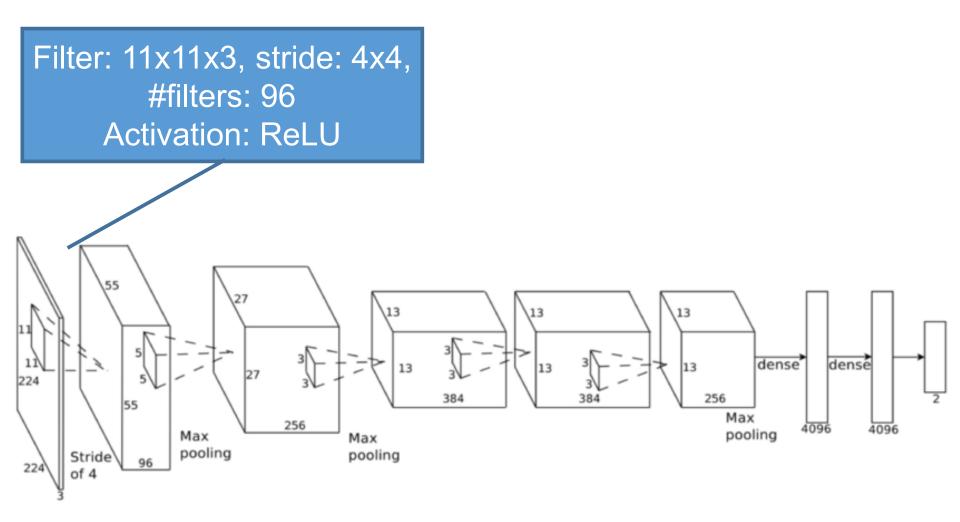
ImageNet challenge (2010-2017)

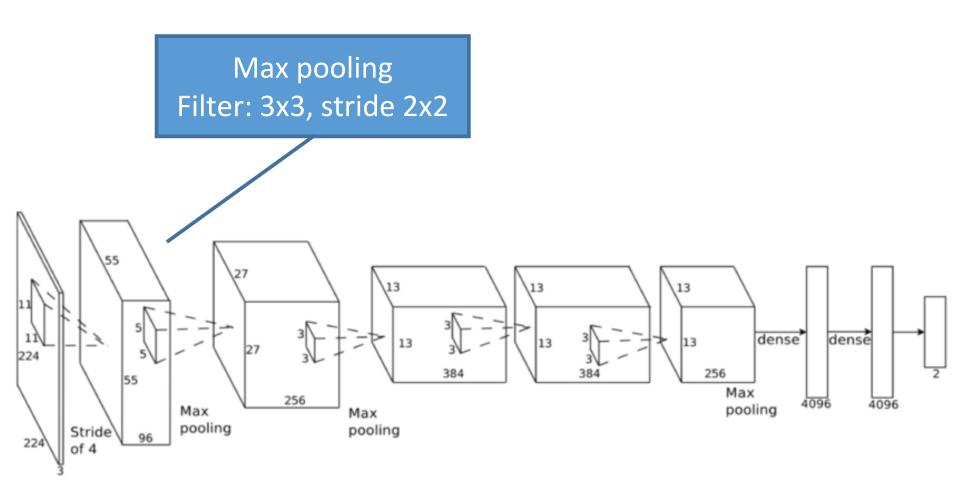
- ~14 million labeled images, 20K classes
- Images gathered from Internet
- Labels provided by humans
- ImageNet Large-Scale Visual Recognition Challenge (ILSVRC):
 - 1.2 million training images, 1000 classes



- A modern deep neural network
- Winner of ImageNet challenge 2012
- +10% better than everything else in 2012!







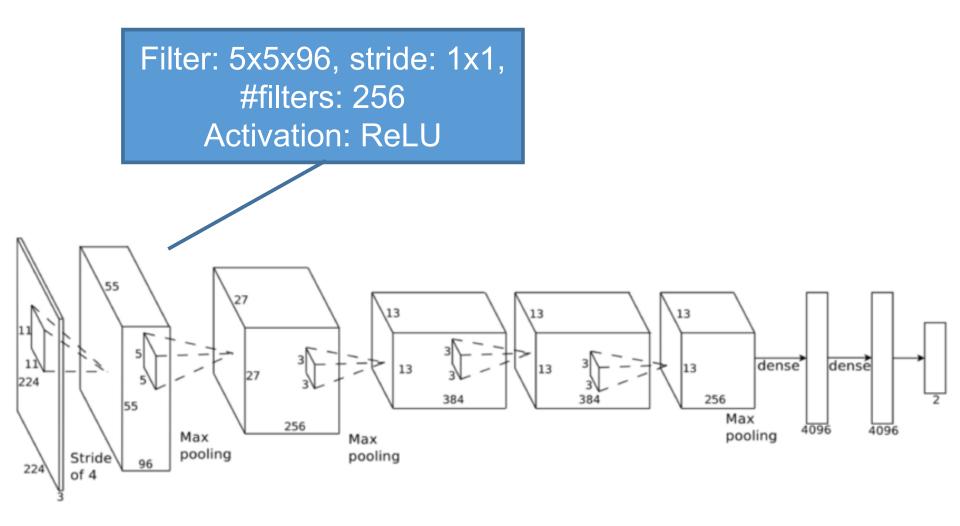


Figure from ImageNet Classification with Deep Convolutional Neural Networks, by A. Krizhevsky, I. Sutskever, and G. Hinton

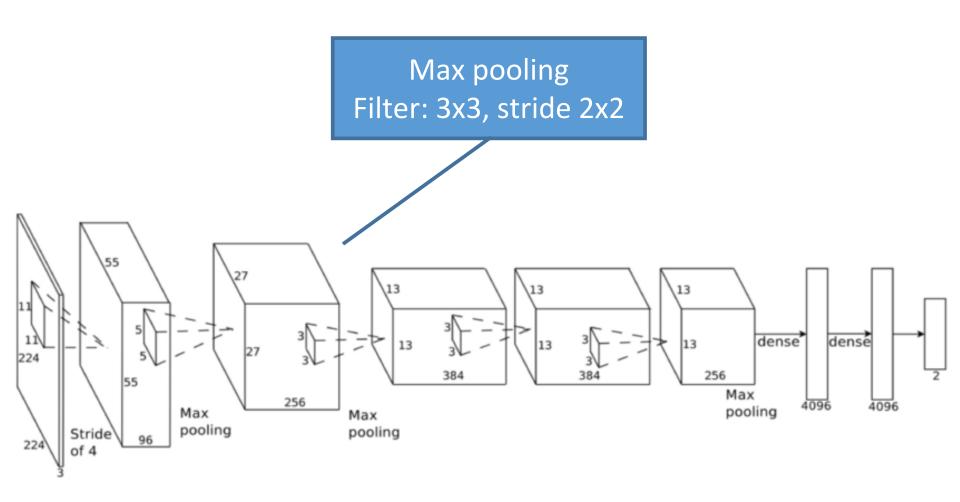
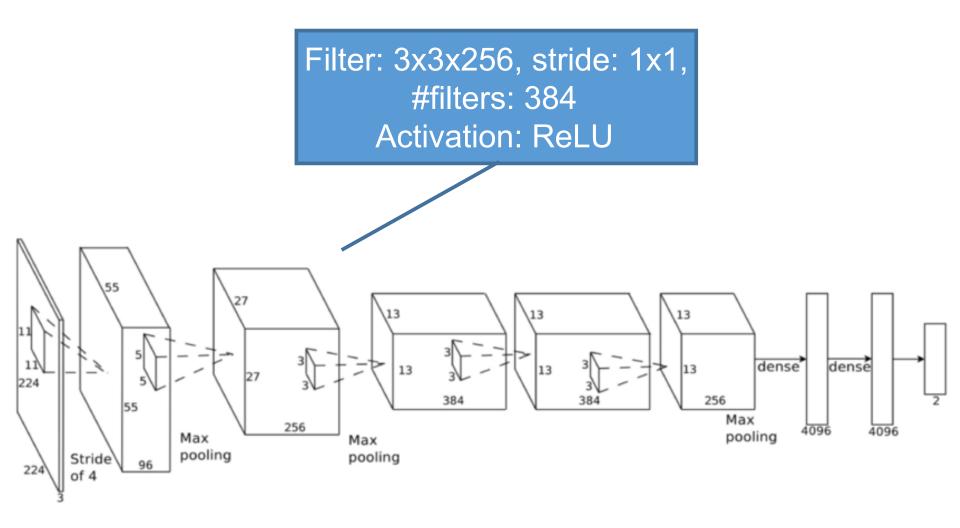
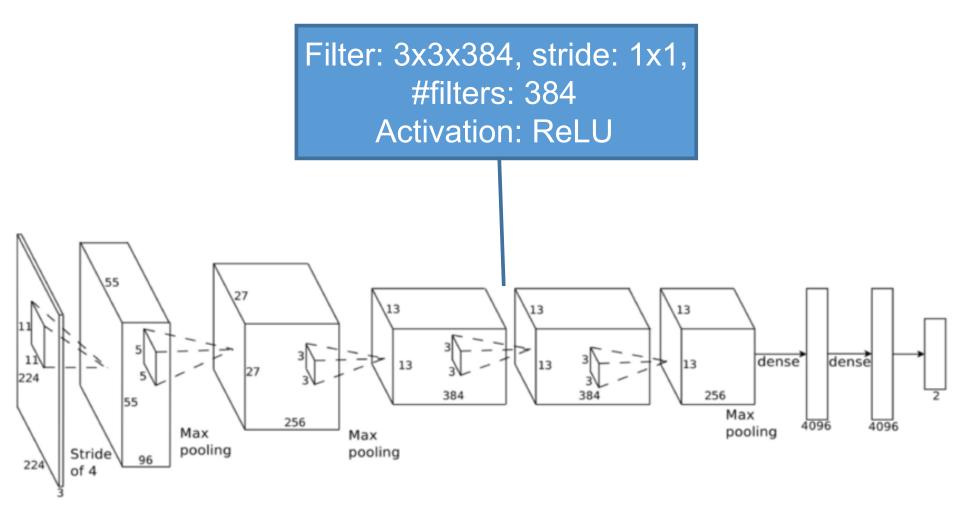
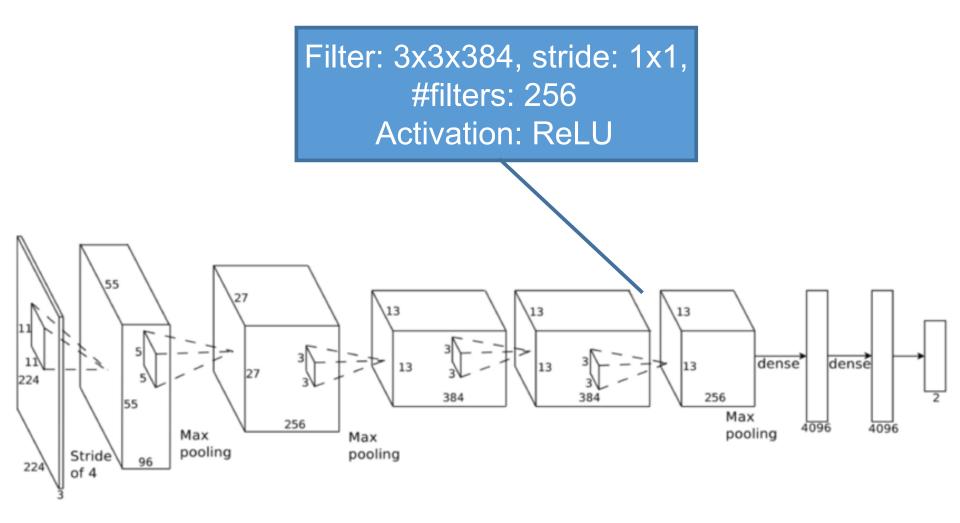


Figure from ImageNet Classification with Deep Convolutional Neural Networks, by A. Krizhevsky, I. Sutskever, and G. Hinton







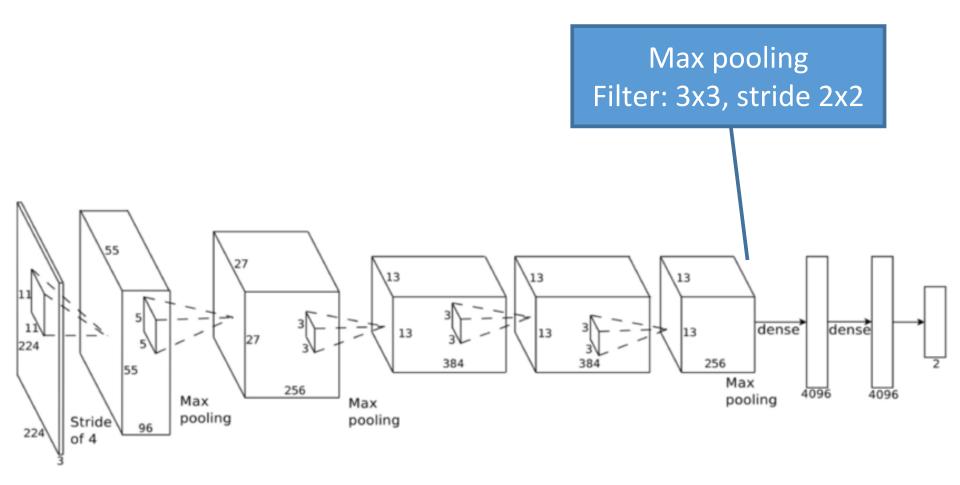


Figure from ImageNet Classification with Deep Convolutional Neural Networks, by A. Krizhevsky, I. Sutskever, and G. Hinton

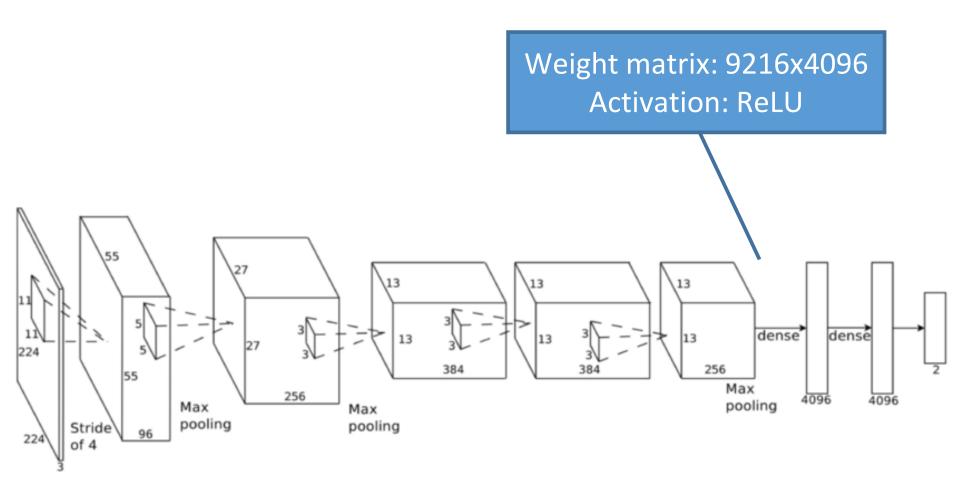


Figure from ImageNet Classification with Deep Convolutional Neural Networks, by A. Krizhevsky, I. Sutskever, and G. Hinton

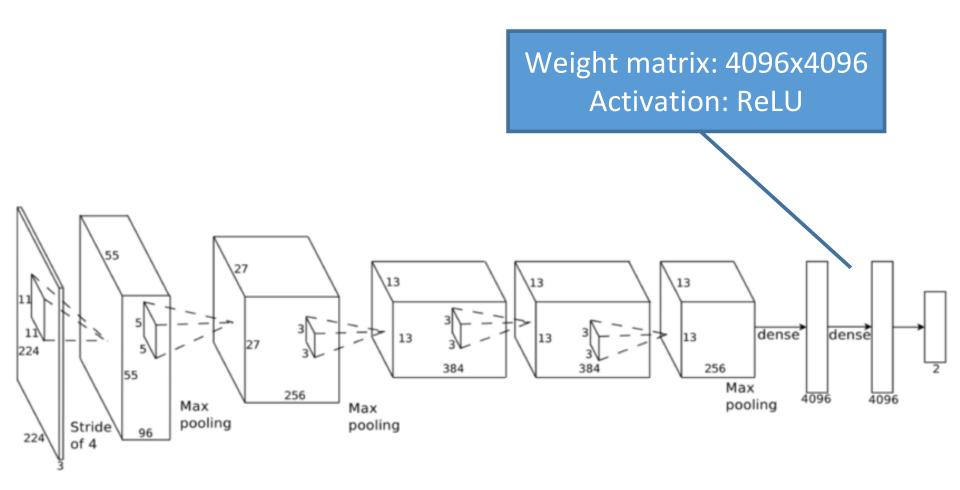


Figure from ImageNet Classification with Deep Convolutional Neural Networks, by A. Krizhevsky, I. Sutskever, and G. Hinton

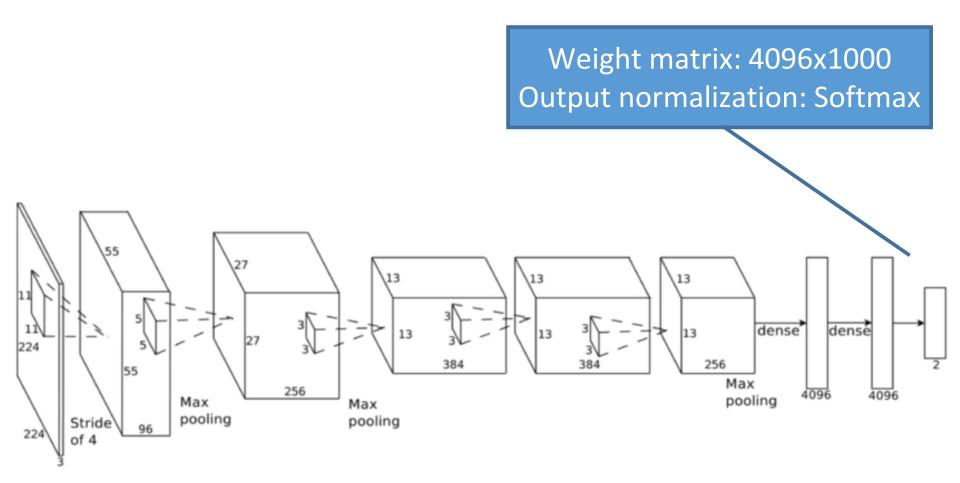
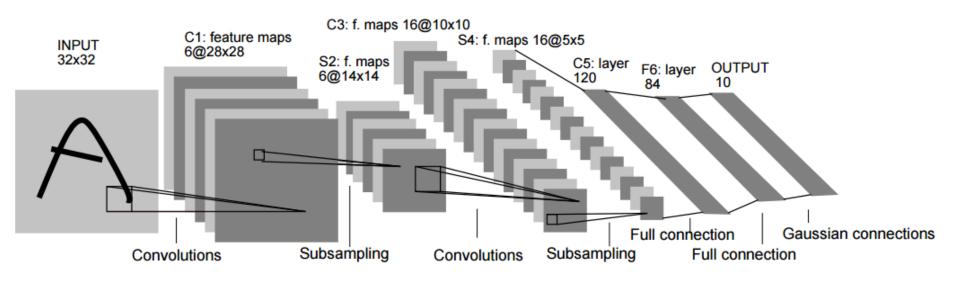


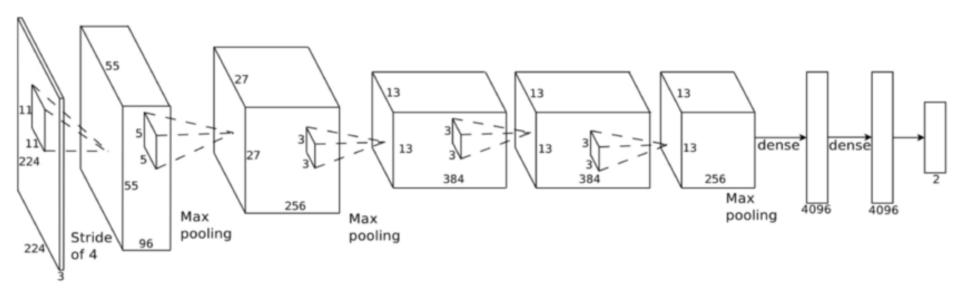
Figure from ImageNet Classification with Deep Convolutional Neural Networks, by A. Krizhevsky, I. Sutskever, and G. Hinton

Case study: LeNet-5 (1998)



- convolutional layers + fully connected layers
- Sigmoid as the activation function
- [Conv + sigmoid + average pooling] x 2 + fully connected x 3
- Trained on MNIST with 60K training samples

Figure from *Gradient-based learning applied to document recognition,* by Y. LeCun, L. Bottou, Y. Bengio and P. Haffner



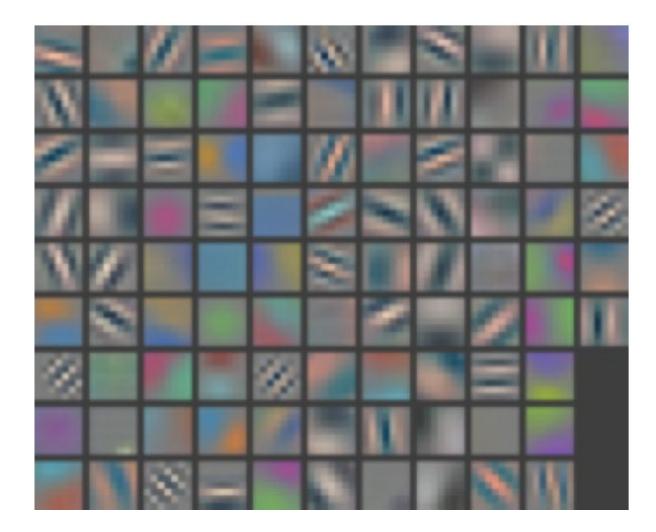
- convolutional layers + fully connected layers
- ReLU as the activation function
- [Conv + ReLU + max pooling] x 5 + fully connected x 3
- Most importantly: 1.2 millions of training images!

Deep convolutional networks: basic design

- [Conv + ReLU] + Pooling
- A few fully connected (FC) layers at the end
- Output normalization + Loss function
- Training: mini-batch stochastic gradient descent
- Inference: use the (normalized) outputs

- What makes deep learning work?
 - A modern design of neural network architectures
 - Large scale training dataset
 - A lot of computing power (GPUs)
- Why does deep learning work so well?
 - Still a mystery to a large extent
 - Intuitively, a deep neural network builds a hierarchical representation of data

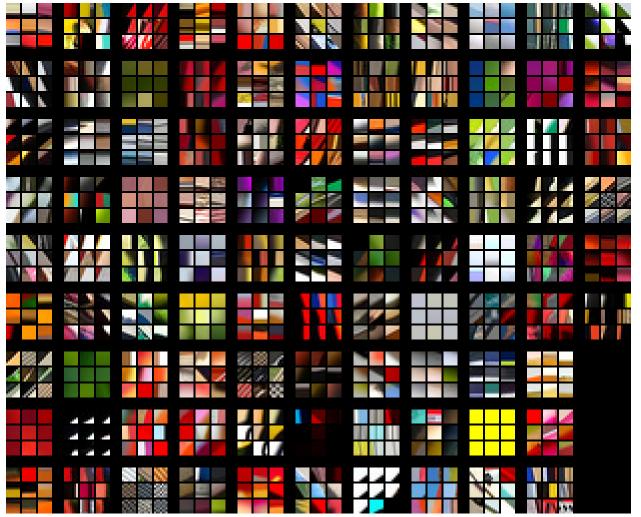
Layer 1 Filters



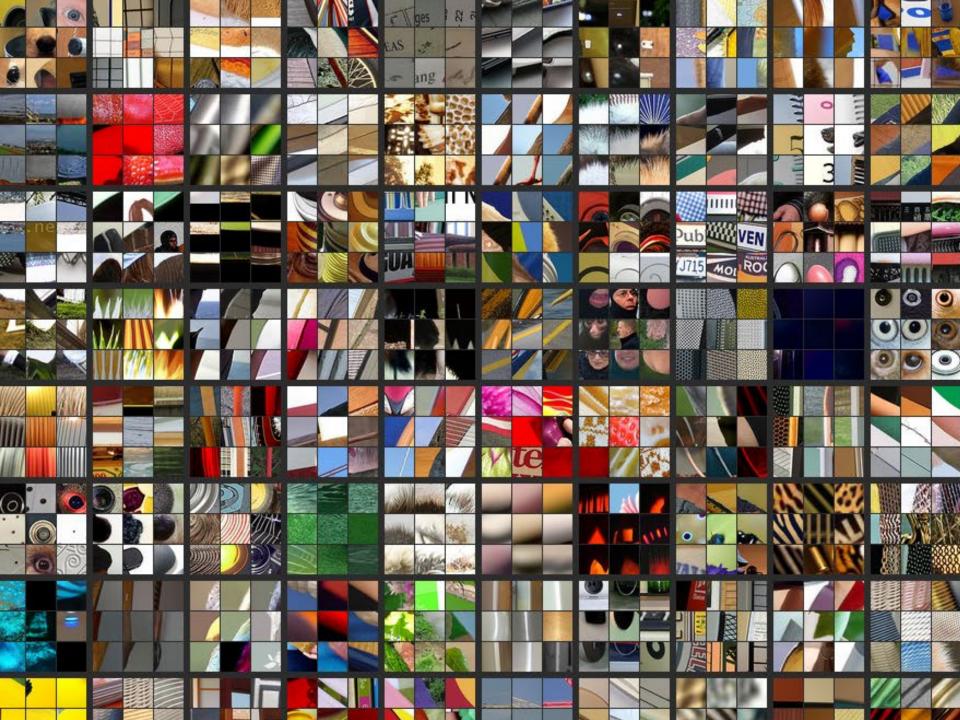
Figures from Visualizing and Understanding Convolutional Networks by *M. Zeiler and R. Fergus*

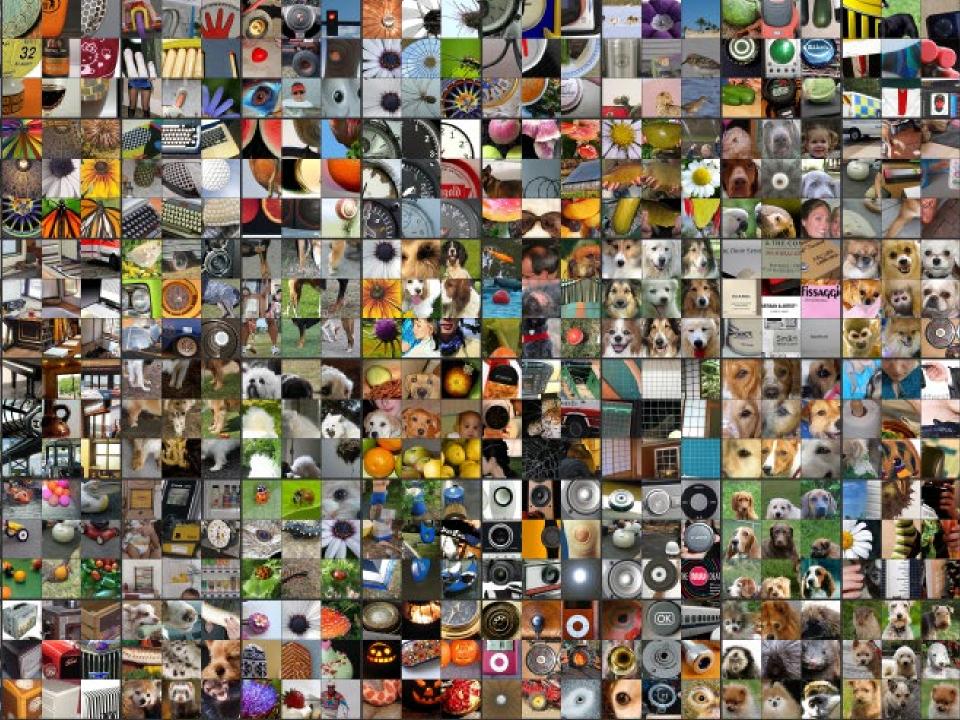
Layer 1: Top-9 Patches

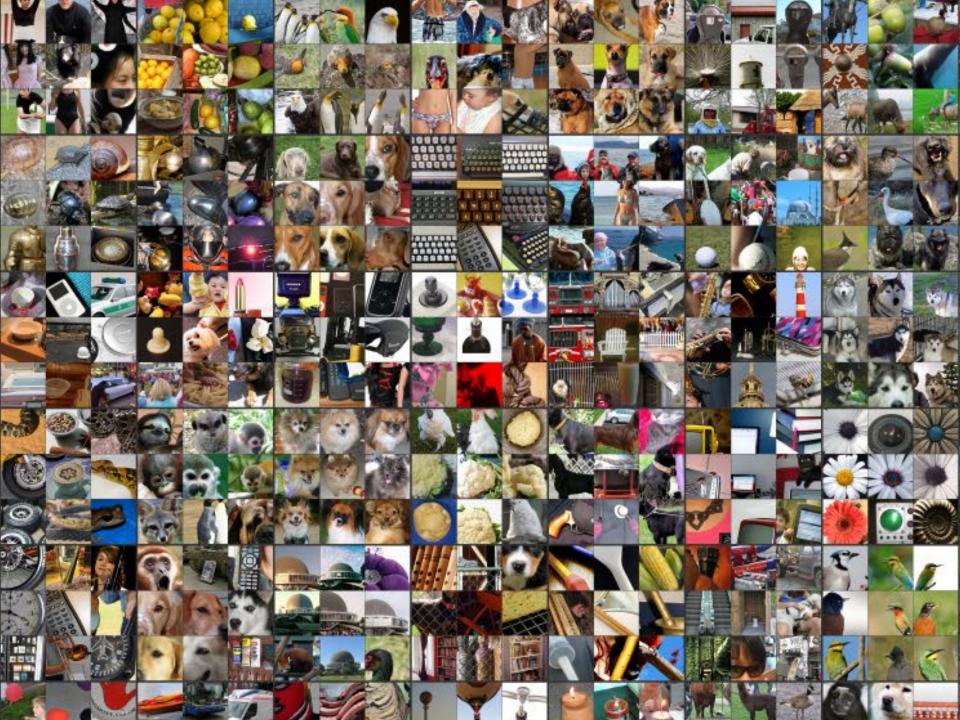
 Select patches on the validation set with maximum activation of a given convolutional filter / kernel



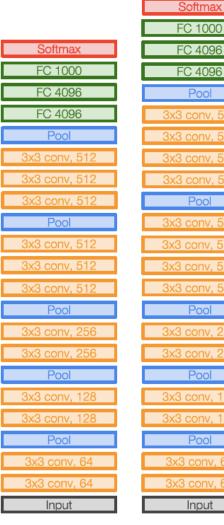
Layer 2 - 5: Top-9 Patches

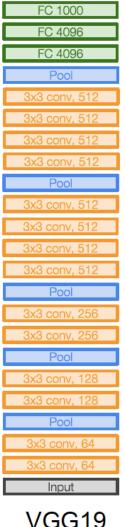






Case study: VGGNet (2014)





- 2nd place in ImageNet challenge 2014
- Make the network deeper
 - AlexNet (5 conv + 3 FC)
 - VGGNet (12/14 conv + 3 FC)
- Use smaller filter / kernel size
 - AlexNet (11x11, 5x5, 3x3)
 - VGGNet (3x3)
- Large receptive fields replaced by successive layers of 3x3 convolutions (with ReLU in between)

Image source

VGG16

Case study: GoogLeNet (2014)

- The Inception Module
 - Parallel paths with different receptive field sizes and operations

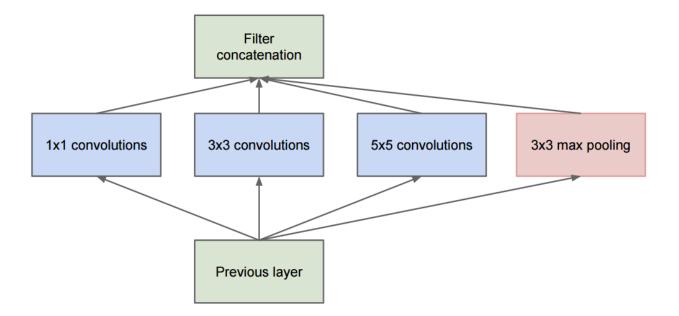


Figure from Going deeper with convolutions by C. Szegedy et al.

Case study: GoogLeNet (2014)

- The Inception Module
 - Parallel paths with different receptive field sizes and operations
 - Use 1x1 convolutions for dimensionality reduction
 before expensive convolutions

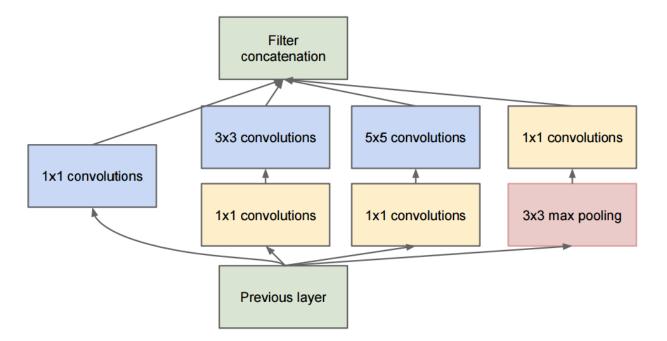
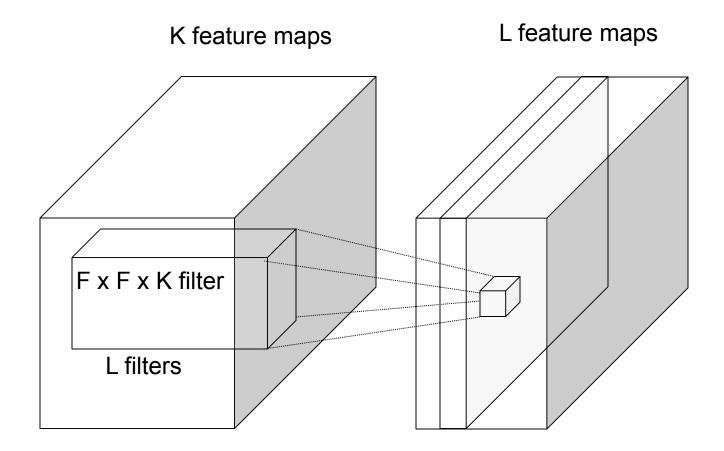


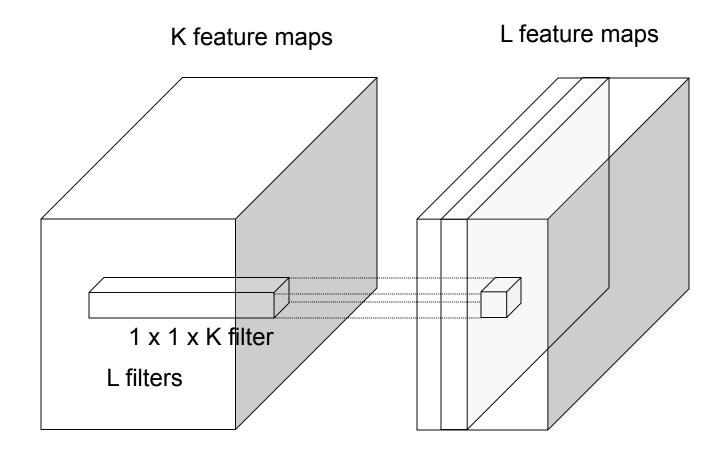
Figure from Going deeper with convolutions by C. Szegedy et al.

FxF convolutions



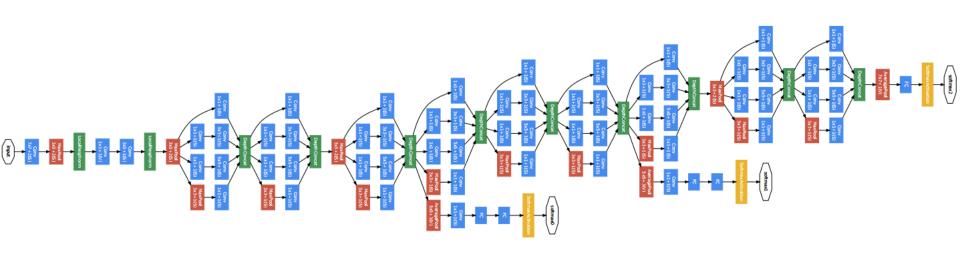
conv layer

1x1 convolutions



1 x 1 conv layer

Case study: GoogLeNet (2014)



Inception module

Figure from Going deeper with convolutions by C. Szegedy et al.

Case study: GoogLeNet (2014)

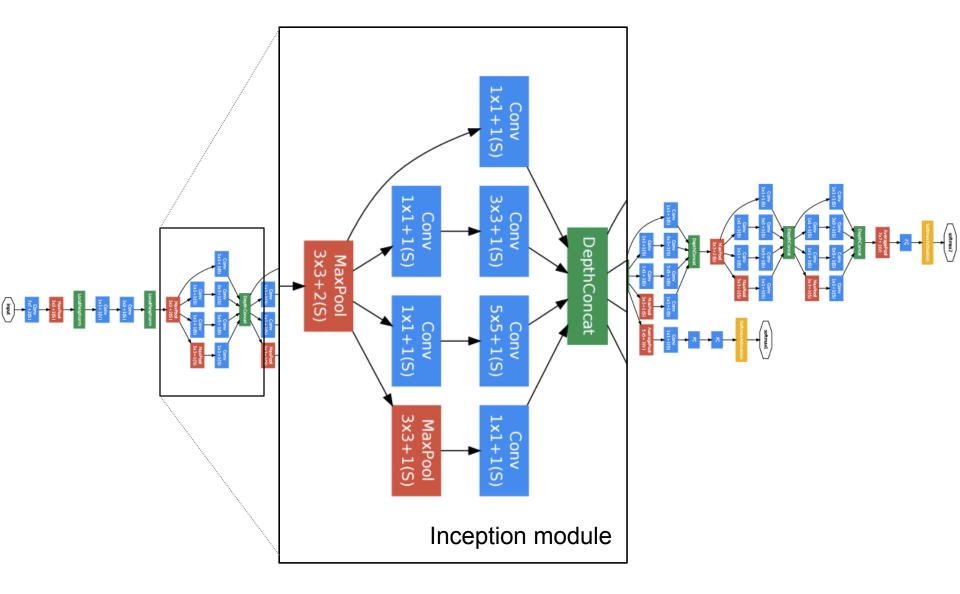


Figure from Going deeper with convolutions by C. Szegedy et al.

Case study: GoogLeNet (2014)

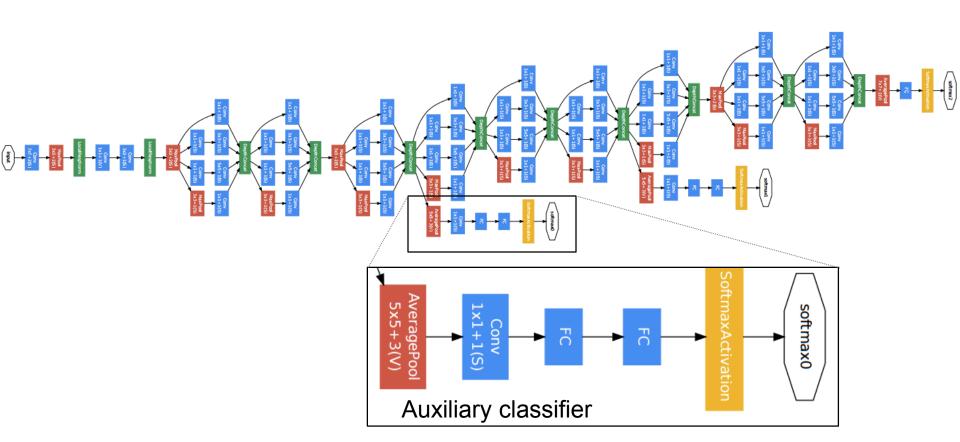


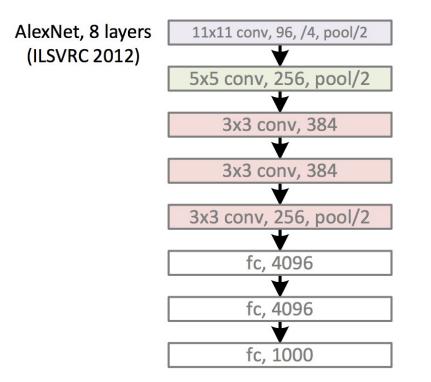
Figure from Going deeper with convolutions by C. Szegedy et al.

ImageNet challenge 2012-2014

Team	Year	Place	Error (top-5)	External data
SuperVision – Toronto (8 layers)	2012	-	16.4%	no
SuperVision	2012	1st	15.3%	ImageNet 22k
Clarifai – NYU (7 layers)	2013	-	11.7%	no
Clarifai	2013	1st	11.2%	ImageNet 22k
VGG – Oxford (16/19 layers)	2014	2nd	7.32%	no
GoogLeNet (22 layers)	2014	1st	6.67%	no
Human expert*			5.1%	

http://karpathy.github.io/2014/09/02/what-i-learned-fromcompeting-against-a-convnet-on-imagenet/

Revolution of Depth

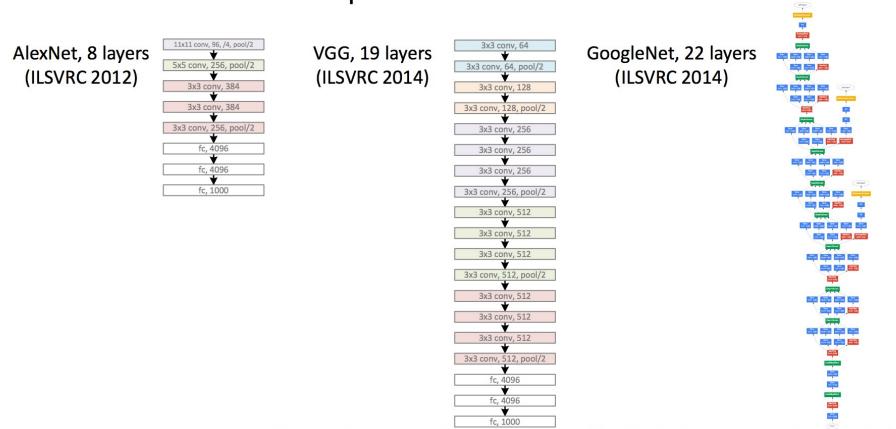


Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015.

Slide Credit: Kaiming He

slide 39

Revolution of Depth



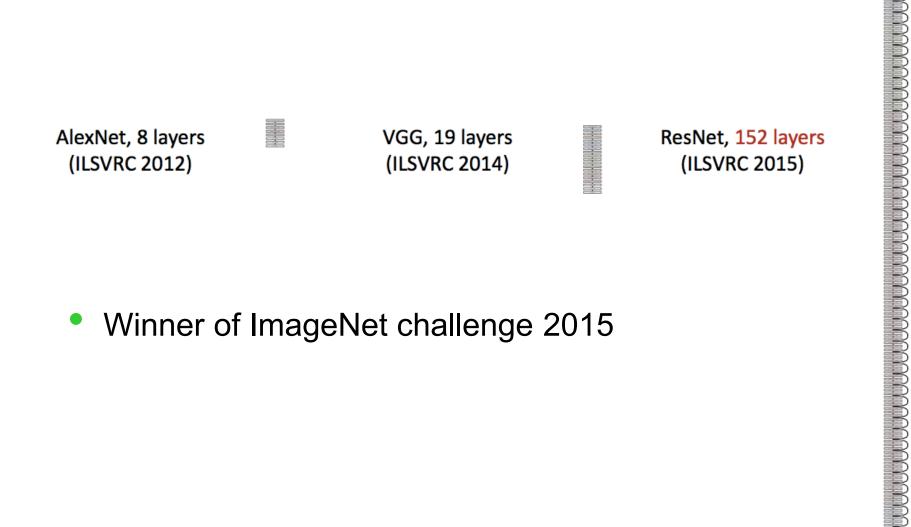
Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015.

Slide Credit: Kaiming He

AlexNet, 8 layers (ILSVRC 2012) VGG, 19 layers (ILSVRC 2014)

	_	_	
	the second se		
	-	_	
	-		
	_		
- 1	-		
	-		
	-	_	
	-		

Slide Credit: Kaiming He



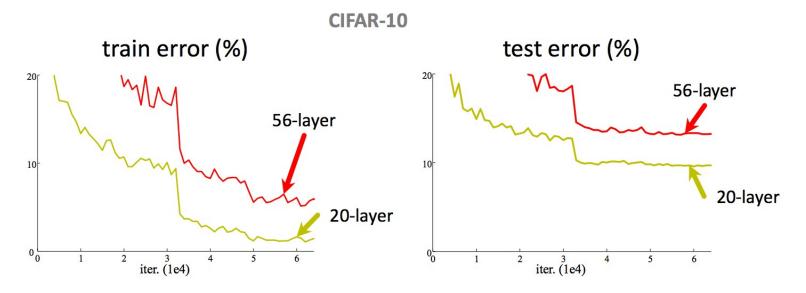
Winner of ImageNet challenge 2015

Slide Credit: Kaiming He

Source (?)

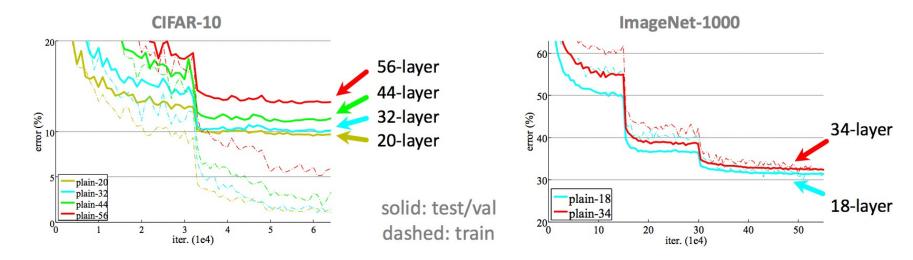
slide 43

Simply stacking layers?

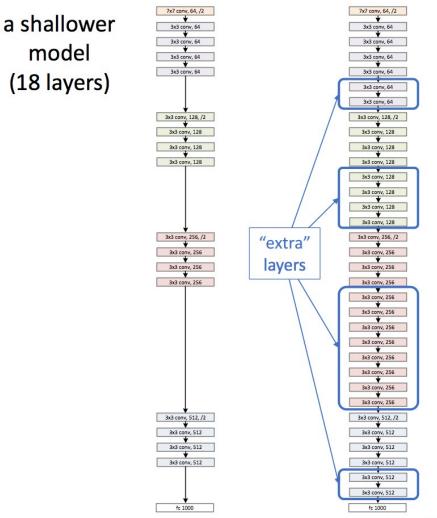


- *Plain* nets: stacking 3x3 conv layers...
- 56-layer net has higher training error and test error than 20-layer net

Simply stacking layers?



- "Overly deep" plain nets have higher training error
- A general phenomenon, observed in many datasets



a deeper counterpart (34 layers)

- A deeper model should not have higher training error
- A solution by construction:
 - original layers: copied from a learned shallower model
 - extra layers: set as identity
 - at least the same training error
- Optimization difficulties: solvers cannot find the solution when going deeper... e.g., Gradient vanishing?

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015.

- The residual module
 - Introduce skip or shortcut connections (existing before in various forms in literature)
 - Make it easy for network layers to represent the identity mapping
 - Also produce better gradients during training

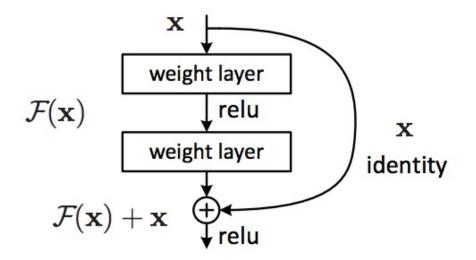


Figure from Deep Residual Learning for Image Recognition by *K. He, X. Zhang, S. Ren, and J. Sun*

Architectures for ImageNet:

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer	
conv1	112×112	7×7, 64, stride 2					
		3×3 max pool, stride 2					
conv2_x	56×56	$\left[\begin{array}{c} 3\times3, 64\\ 3\times3, 64 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3, 64\\ 3\times3, 64 \end{array}\right]\times3$	[1×1,64]	[1×1,64]	[1×1,64]	
				3×3, 64 ×3	3×3, 64 ×3	3×3, 64 ×3	
				[1×1, 256]	[1×1, 256]	[1×1, 256]	
conv3_x	28×28	$\begin{bmatrix} 3\times3, 128\\ 3\times3, 128 \end{bmatrix} \times 2 \begin{bmatrix} 2\\ 2\\ 3\end{bmatrix}$	[2.42 100]	[1×1, 128]	[1×1, 128]	[1×1, 128]	
			$\begin{vmatrix} 3 \times 3, 120 \\ 2 \times 3, 128 \end{vmatrix} \times 4$	3×3, 128 ×4	3×3, 128 ×4	3×3, 128 ×8	
				[1×1, 512]	[1×1, 512]	[1×1, 512]	
	14×14	$14 \times 14 \begin{bmatrix} 3 \times 3, 256 \\ 3 \times 3, 256 \end{bmatrix} \times 2$	$\begin{bmatrix} 3 \times 3, 256 \\ 2 \times 2, 256 \end{bmatrix} \times 6$	[1×1, 256]	[1×1, 256]	[1×1, 256]	
conv4_x				3×3, 256 ×6	3×3, 256 ×23	3×3, 256 ×36	
		[3×3, 230]		↓ 1×1, 1024	L 1×1, 1024 」	↓ 1×1, 1024	
	7×7	7×7 $\begin{bmatrix} 3\times3,512\\ 3\times3,512 \end{bmatrix} \times 2 \begin{bmatrix} 3\times3,512\\ 3\times3,512 \end{bmatrix} \times 3$		[1×1,512]	[1×1, 512]	[1×1,512]	
conv5_x			$\begin{vmatrix} 3 \times 3, 512 \\ 2 \times 2, 512 \end{vmatrix} \times 3$	3×3, 512 ×3	3×3, 512 ×3	3×3, 512 ×3	
			1×1, 2048	L 1×1, 2048 」	↓ 1×1, 2048		
	1×1	average pool, 1000-d fc, softmax					
FLOPs		1.8×10^9	3.6×10 ⁹	3.8×10^9 7.6×10^9 11.3		11.3×10^9	
				A			

Figure from Deep Residual Learning for Image Recognition by *K. He, X. Zhang, S. Ren, and J. Sun*

ImageNet challenge 2012-2016

Team	Year	Place	Error (top-5)	External data
SuperVision – Toronto (AlexNet, 8 layers)	2012	-	16.4%	no
SuperVision	2012	1st	15.3%	ImageNet 22k
Clarifai – NYU (7 layers)	2013	-	11.7%	no
Clarifai	2013	1st	11.2%	ImageNet 22k
VGG – Oxford (16/19 layers)	2014	2nd	7.32%	no
GoogLeNet (22 layers)	2014	1st	6.67%	no
ResNet (152 layers)	2015	1st	3.57%	
Human expert*			5.1%	

http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/

Summary: Deep Convolutional Networks

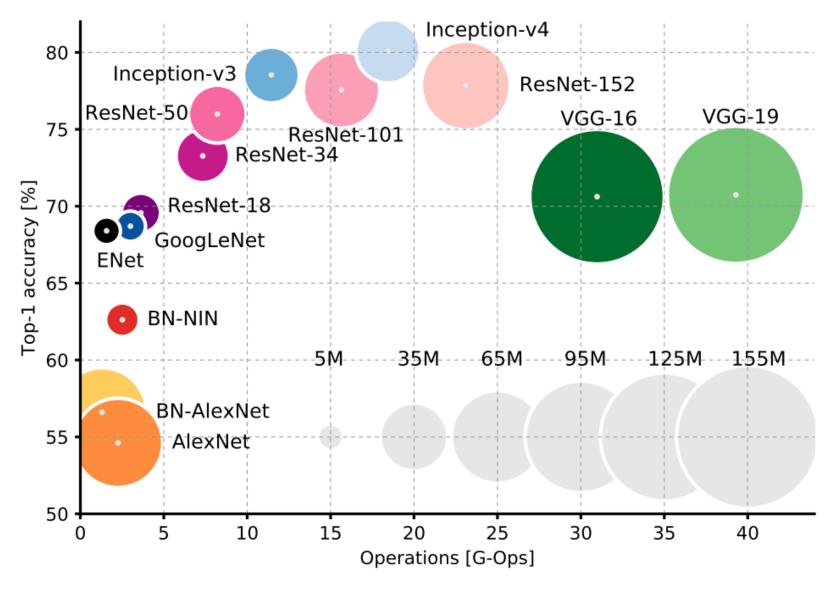


Figure from An Analysis of Deep Neural Network Models for Practical Applications by A. Canziani, A. Paszke, E. Culurciello