
Deep Learning Notes

Yiqiao YIN
Statistics Department

Columbia University

Notes in LATEX

February 5, 2018

Abstract

This is the lecture notes from a five-course certificate in deep learning developed by
Andrew Ng, professor in Stanford University. After first attempt in Machine Learning
taught by Andrew Ng, I felt the necessity and passion to advance in this field. I have
decided to pursue higher level courses. The materials of this notes are provided from
the five-class sequence by Coursera website. 1

1I want to specially thank Professor Andrew Ng for his teachings. This knowledge provide crucial guidance
for the formulation of my own company, Yin’s Capital, LLC..

1

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §0

This note is dedicated to Professor Andrew Ng and all my friends.

Page 2

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §0

Contents

1 NEURAL NETWORKS AND DEEP LEARNING 5
1.1 Welcome . 5
1.2 Intro to Deep Learning . 5
1.3 Logistic Regression as Neural Network 6

1.3.1 Binary Classification . 6
1.3.2 Logistic Regression . 6
1.3.3 Logistic Regression Cost Function 6
1.3.4 Gradient Descent . 7
1.3.5 Derivatives . 7
1.3.6 Computation Graph . 8

1.4 Vectorization . 9
1.4.1 Explanation of Logistic Cost Function 10

1.5 Shallow Neural Network . 11
1.5.1 Activation Function . 12
1.5.2 Derivative of Activation Functions 13
1.5.3 Gradient Descent for Neural Networks 13

1.6 Deep Neural Network . 15

2 DEEP NEURAL NETWORKS: HYPER-PARAMETER TUNING,
REGULARIZATION AND OPTIMIZATION 17
2.1 Bias-Variance Trade-off . 17
2.2 Regularization . 18

2.2.1 Softmax Function . 19
2.3 Set Up Optimization Problem . 20
2.4 Optimization Algorithms . 21
2.5 Hyperparameter Tuning . 24
2.6 Batch Normalization . 25
2.7 Multi-class Classification . 27

3 STRUCTURING MACHINE LEARNING PROJECT 29
3.1 Orthogonalization . 29
3.2 Set Up . 29
3.3 Compare to Human Level . 29

4 CONVOLUTIONAL NEURAL NETWORKS (CNN) 31
4.1 Convolutional Neural Networks . 31

4.1.1 Filter or Kernel . 31
4.1.2 Padding . 32
4.1.3 Strided Convolutions . 33

4.2 Convolution Over Volume . 34
4.3 Pooling Layers . 34
4.4 CNN Example . 35
4.5 Why Convolution . 35
4.6 LeNet5 . 36
4.7 AlexNet . 37
4.8 VGG-16 . 37
4.9 ResNet . 38
4.10 Networks with One by One Convolution 39
4.11 Inception Network . 39
4.12 A Few Advices . 40
4.13 Detection Algorithm . 40

Page 3

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §0

4.13.1 Object Localization . 40
4.13.2 Landmark Detection . 41
4.13.3 Object Detection . 41
4.13.4 Convolutional Implementation 41
4.13.5 Bounding Box Predictions . 41
4.13.6 Intersection Over Union . 42
4.13.7 Non-max Suppression . 42
4.13.8 Anchor Boxes . 42
4.13.9 YOLO Algorithm . 43

4.14 Face Recognition . 43
4.14.1 Triplet Loss . 43

4.15 Neural Style Transfer . 44
4.15.1 Cost Function . 44

4.16 Style Matrix . 45

5 NATURAL LANGUAGE PROCESSING 46
5.1 Recurrent Neural Network . 46
5.2 Different Types of RNN . 47
5.3 Language Model . 47
5.4 Gated Recurrent Unit (GRU) . 47
5.5 Long Short Term Memory (LSTM) . 48
5.6 Bidirectional RNNs . 49
5.7 Deep RNNs . 49
5.8 Word Embeddings . 50

Page 4

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §1

1 NEURAL NETWORKS AND DEEP
LEARNING

Go back to Table of Contents. Please click TOC

1.1 Welcome

The courses are in this following sequence (a specialization): 1) Neural Networks and
Deep Learning, 2) Improving Deep Neural Networks: Hyperparameter tuning, Regu-
larization and Optimization, 3) Structuring your Machine Learning project, 4) Convo-
lutional Neural Networks (CNN), 5) Natural Language Processing: Building sequence
models (RNN, LSTM)

1.2 Intro to Deep Learning

Suppose the following data set: we have a collection of observations in housing prices.
We have, for each observation, the size of houses and the price of houses. We have a
simple neural network: Size → � → Price, which we can write x → �y. This linear
regression model is called Rectified Linear Unit (ReLU). A larger neural network is
formed by taking a group of single neurons and stacking them together. A larger data
set can have the following structure: size and # bedrooms imply family size, zip code
implies walk-ability, zip code and wealth imply school qualify. Then family size, walk-
ability, and school quality would imply price (or determine price). This will give us a
net-shape structure, with the first layer size, # bedrooms, zip code, and wealth, while
the second layer family size (or instead, the first node of the first layer), the second
node, and the third node. The third layer will give us a price.

There are supervised learning and unsupervised learning. For supervised learning,
we have a given output (y). Such applications have successful results in real estate, on-
line, advertising, photo tagging, speech recognition, machine translation, autonomous
driving. The goal would just to be trying to fit neural networks to these data sets. In
real estate, it is standard neural networks that work out well. For photo tagging, it
is CNN that works well. For sequence data such as speech recognition and language
translation, RNN and improved RNN work out well. Autonomous would work better
with CNN or custom CNN (hybrid CNN).

There could also be the difference of structured and unstructured data. For data set
such as predicting housing price given size, # of bedrooms, etc. variables, these data
sets are structured data because they are well defined in each covariate. Unstructured
data could be audio, images, or texts. These are unstructured data sets. In fact, human
brains have evolved to be good at interpreting unstructured data. Thanks to neural
network, we are able to attempt the field of unstructured data with machines.

Concepts of deep learning have been around for about a hundred years. It only
had been taking off for the past few years. To answer this question, we consider a
graph that takes the following information. The x-axis is mount of data and the y-axis
is the performance, we would see a curve griding up and pretty much go horizontally
with large data. That is, facing large data (especially modern days in digital world),
traditional learning algorithms have been slowly performing worse and worse as we
collect more and more data. This is not the case for neural network. Neural network is
able to train a huge data set and is able to perform well especially with large-scale data
sets. We are going to use m to denote size of data sets. For small training sets, large
neural network is still able to perform better off. The scale, data, computation, and
algorithms, are driving deep learning progress. Using sigmoid functions, the progress
may be extremely slow when it hits the part with small slopes. ReLU functions do

Page 5

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §1

not suffer this problem and can be trained faster, yet ReLU can easily converge to one
because of its linearity and training may not hit optimal point yet. Gradient for ReLU
is much less likely to shrink to zero. Just by switching to sigmoid functions from ReLU
functions, it allows to train neural network at a much larger scale. Idea is written down
in codes. Codes can be trained and tested in experiment. The results of experiments
provide us ideas.

Here we provide an outline of this Course: 1) Introduction, 2) Basics of Neural Net-
work programming (forward propagation and backward propagation), 3) One hidden
layer Neural Networks, 4) Deep Neural Networks.

1.3 Logistic Regression as Neural Network

1.3.1 Binary Classification

Logistic regression is a binary classification model. For example, inputing a cat image,
the output label would be 1 == cat if it is a cast, or 0 == not cat if it is not a cat.
For these pictures, we can take a pixel-format image as one observation. Set the size
as 64 by 64 and in three colors. We could have a total of nx = 64 × 64 × 3 = 12288,
which is the number of pixels.

A single training example is represented as (x, y) while x ∈ Rnx , y ∈ {0, 1}. Then
we have m training examples: {(x(1), y(1)), (x(2), y(2)), ..., (x(m), y(m))}. Say we have m
training samples, then we have mtest = # test examples. Thus, we can put together a
matrix

...
...

...

x(1) x(2) . . . x(m)

...
...

...

nx rows ,m columns

while we have X ∈ Rnx×m. For computation to be easier, we want to stack output
together as well. Set

Y = [y(1), y(2), ..., y(m)]

while Y ∈ R1×m.

1.3.2 Logistic Regression

Given x, we want to output ŷ = P (y = 1|x) the likelihood y = 1 (yes, it is a cat
picture) given x. The parameters ω ∈ Rnx , b ∈ R. The output we would use sigmoid
function, ŷ = σ(ωTx+ b). Let z = ωTx+ b and denote σ(z) = 1

1+exp(−z) . If z is large,

σ(z) ≈ 1/1 = 1. If z is small or negative, then σ(z) = 1/(1 +∞) ≈ 0. We want to keep
ω and b separate, which is different in some conventions.

1.3.3 Logistic Regression Cost Function

Recall output estimators ŷ = σ(ωTx + b), where σ(z) = 1
1+e−z . Given training set

{(x(1), y(1)), ..., (x(m), y(m))}, we want the prediction ŷ(i) ≈ y(i). Define the Loss (error)
function: L(ŷ, y) = 1

2
(ŷ − y)2, a description of how “good” the estimator ŷ is. This is

a convex function that we can use later on to find the optimal point. Then L(ŷ, y) =
−(y log ŷ + (1− y) log(1− ŷ)). If y = 1, then L(ŷ, y) = − log ŷ + 0 = − log ŷ. That is,
we want log ŷ to be large, which means ŷ needs to be large. If y = 0, then L(ŷ, y) =
− log(1− ŷ). That is, we want log 1− ŷ to be large, which means ŷ to be small. There
are many more options for the loss function, but we will justify this point later.

Page 6

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §1

Define cost function (how well the model is doing on entire training set) to be

J(ω, b) =
1

m

m∑
i=1

[
L(ŷ(i), y(i)) = − 1

m

m∑
i=1

y(i) log ŷ(i) + (1− h(i)) log(1− ŷ(i))

]

1.3.4 Gradient Descent

Recall the estimator ŷ = σ(ωTx+b), and sigmoid function σ(z) = 1
1+e−z . Also recall the

Loss function: J(ω, b) = 1
m

∑m
i=1 L(ŷ(i), y(i)) = − 1

m

∑m
i=1 y

(i) log ŷ(i)+(1−y(i)) log(1−
ŷ(i)). The loss function estimates how well the estimator ŷ(i) matches or predicts y(i)

by controlling parameters ω, b. The gradient descent algorithm is on J(ω, b), which is
a convex bowl-shape curve. There could very well by multiple local “bottoms”, i.e.
multiple local optimum. Randomly initialize a point, the gradient descent will take
small steps to hit a global optimum or close to global optimum.

Let us image a one dimensional plot with ω ∈ W and the loss function J(ω), a
convex function. The algorithm goes

Algorithm 1.3.1. Repeat {

ω := ω − αdJ(ω)

dω
while α is the learning rate that controls the size of the step of the gradient descent,

the derivative term is the change of the steps we would use dω to represent this term;
that is, we define ω := ω − αdω.
}
We could have initial point starting from the right side of the local minimum. We

first calculate the derivative which is just the slope of the J(ω) at that point. However,
if ω starts at the left side of the local minimum, the derivative term dJ(ω)/dω < 0;
that is, the subtraction of derivative would move the point ω to the positive side, the
right side point at the local minimum.

From calculus, we can compute dJ(ω)
dω

which represents the slope of the function
and allows us to to know which direction to go. In logistic regression, the cost function
J(ω, b) is shown and we want to update

ω := ω − αdJ(ω, b)

dω

b := b− αdJ(ω, b)

db

Sometimes we also write ∂J(ω,b)
∂ω

as equal as the derivatives above as well, which
notates “partial derivatives” in calculus. They are referring to the same notion. Lower
case “d” and partial derivative symbol ∂ are usages of whether it is in calculus or not.
In coding, we can simply notate “dw” versus “db”.

1.3.5 Derivatives

This small section let us dive in to talk about a few points in calculus. We can consider
a function f(a) = 3a. If a = 2, then we have f(a) = 6. If a = 2.001, then f(a) = 6.003,
which is the change of f as a changes 0.001.Then we are going to say the slope (or
derivative) of f(a) at a = 2 is 3. To see why this is true, we take a look at another
point a = 5 with the value of function f(a) = 15. If we move a 0.001 which means we
set a = 5.001 then the value of the function would be f(a) = 15.003 which is the same
increment changes from before when we move a from 2 to 2.001. We conclude

Page 7

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §1

df(a)

a
= 3 =

d

da
f(a)

for the derivative of the function f(a).
Next, we consider f(a) = a2. Starting from a = 2, we have the value of the

function f(a) = 4. If we move a to a = 2.001, we have f(a) ≈ 4.004. Then the slope
(or derivative) of f(a) at a = 2 is 4. That is,

d

da
f(a) = 4

However, since f(a) is higher power this time it may not have the same slope.
Consider a = 5 with value f(a) = 25. We have value f(a) ≈ 25.010 when a = 5.001.
Then we have

d

da
f(a) = 10 when a = 5

which is larger than before.
Moreover, we have f(a) = loge(a) = ln(a), then d

da
f(a) = 1

a
.

1.3.6 Computation Graph

Let us use a simple example as a start. Consider a function

J(a, b, c) = 3(a+ bc)

while let us write u = bc, v = a+ u, and J = 3v. If we let a = 5, b = 3, and c = 2,
we will have u = bc = 6, v = a + u = 11 and finally we have J = 3v = 33. For the
derivatives, we would have to go backward.

Let us say we want the derivative of J , i.e. d
dv

=?. Consider J = 3v while v = 11.
Then we can compute d

dv
= 3. From same procedure, we can compute dJ

da
= 3. Then

dv
da

= 1, then by chain rule, dJ
dv

dv
da

= 3× 1.
It is the same thing to implement Gradient Descent for Logistic Regression. Let us

say we have the following setup

z = wTx+ b

ŷ = a = σ(z)

L(a, y) = −(y log(a) + (1− y) log(1− a))

Now we are trying to solve z to get a and thus to reduce loss L. In coding, we
would have

da =
dL(a, y)

da
= −y

a
+

1− y
1− a

and also

dz =
dL
dz

=
dL(a, y)

dz
= 1− y =

dL
da
· da

dz︸︷︷︸
a(1−a)↔− y

a
+ 1−y

1−a

Now let us consider m examples for

J(w, b) =
1

m

m∑
i=1

L(a(i), y)

Page 8

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §1

a(i) = ŷ(i) = σ(z(i)) = σ(wTx(i) + b)

with one training example to be (x(i), y(i)). Then the derivative w.r.t. w1 would be

∂

∂w1
J(w, b) =

1

m

m∑
i=1

∂

∂w1
L(a(i), y(i))

Algorithm 1.3.2. Let us initialize J = 0, dw1 = 0, dw2 = 0, db = 0, then
for i = 1 to m:

z(i)wTx(i) + b, a(i) = σ(z(i))

Jt = −[y(i) log a(i) + (1− y(i)) log(1− a(i))]

dz(i) = a(i) − y(i), dw1t = x
(i)
1 , dw2t = x

(i)
2 dz(i), dbt = dz(i)

Then

J/ = m

dw1m; dw2/ = m; db/ = m

Then

dw1 =
∂J

∂w1

and implement

w1 := w1 − αdw1, w2 := w2 − αdw2, b := b− αdb

1.4 Vectorization

The art of getting rid of “for” loop is called vectorization. The reason is to have efficient
algorithm with minimum time wasted for computation.

In logistic regression, we need z = wTx+ b with w ∈ Rnx and x ∈ Rnx . Hence, for
non-vector: z = 0

for i in range (n− x):

zt = w[i]× x[i]

and finally zt = b While vectorized computation takes the following steps

z = np.dot(w, x)︸ ︷︷ ︸
wT x

+b

which is a faster code. Python Jupiter scripts is actually using CPU. Both GPU
and CPU are SIMO single distinction, which is remarkably good at computing.

That is, whenever possible, try to avoid explicit for-loops. Define µ = Av, µi =∑
j Aijvj , and µ = np.zeros((n, 1))
for i...←
for j...←

µ[i]+ = A[i][j]× v[j]

Page 9

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §1

and, however, µ = np.dot(A, v). Say you need to apply the exponential operation
on every element of a matrix/vector.

ν =

ν1

...
νn

 , µ =

eν1

eν2

...
eνn

µ = np.zeros((n, 1))

for i in range(n):

µ[i] = math.exp(ν[i])

Thus, the next question is how to implicitly use vectorization of entire training set
without using for loop. To achieve this vectorization in logistic regression, recall the
following set up:

z(1) = wTx(1) + b, z(3) = wTx(2) + b, z(3) = wTx(3) + b

while

a(1) = σ(z(1), a(2) = σ(z(2)), a(3) = σ(z(3))

X =

...

...
...

x(1) x(2) . . . x(m)

...
...

...

 while Rnx×m

and we stack them together

[z(1) z(2) . . . z(m)] = wTX + [b . . . b]︸ ︷︷ ︸
all 1×m

= wTx(1) + . . .

and we use z = np.dot(w, T,X) + b in python and this becomes σ(z).
There is this technique called broadcasting in programming and let us illustrate this

with the following example. Consider an example matrix from carbs, Proteins, Fats in
100g of different foods (see python example).

1.4.1 Explanation of Logistic Cost Function

Let us take the following space to explain a little about Logistic regression cost function.
Consider y = 1, p(y|x) = ŷ, if y = 0, p(y|x) = 1− ŷ and these two statements give us
p(y|x). Then we have

p(y|x) = ŷy︸︷︷︸
end up with ŷ

(1− ŷ)(1−y)︸ ︷︷ ︸
(1−ŷ)0

then if y = 1, then we have ŷ, and if y = 0, we would have 1− ŷ. we can also take
log on both sides

log p(y|x) = log ŷy(1− ŷ)(1−y) = y log ŷ + (1− y) log(1− ŷ)

which is the lost function on a single function.What about m examples? We have
the set up

Page 10

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §1

p(labels in training set) = log

m∏
i=1

p(y(i)|x(i))

and

log p(labels in training set) =

m∑
i=1

log p(y(i)|x(i))

Then we compute

log p(labels in training set) =

m∑
i=1

log p(y(i)|x(i))

= −
m∑
i=1

L(ŷ(i), y(i))

⇒ Cost: J(w, b) =
m∑
i=1

L(ŷ(i), y(i))

By minimizing the cost function, we are carrying out maximization problem for this
logistic regression function. This will give us a sense of why we should use the cost
function in the algorithm.

1.5 Shallow Neural Network

We observe samples which become the first layer, the input layer. The second layer
(the first layer of the neural network) would be the hidden layer. In the end there is
an output layer that is observed in training set and is what we want to predict.

Input
layer

Hidden
layer

Ouput
layer

The input layer is denoted by a[0] = x. The hidden layer is denoted by a[1] =
[a

[1]
1 , a

[2]
2 , ..., a

[4]
4], that is,

a[1] =

a

[1]
1

a
[2]
2

...

a
[4]
4

 , ŷ = a

Page 11

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §1

Let us say we observe xi for i ∈ {1, 2, 3}. For one node in a hidden layer, we

compute z
[1]
1 = w

[1]T
1 x+ b

[1]
1 and then a

[1]
1 = σ(z

[1]
1), which finishes up the first node of

the first hidden layer. We repeat the same z
[1]
2 = w

[1]T
2 x + b

[1]
2 and a

[1]
2 = σ(z

[2]
2). We

can go ahead and write out

z
[1]
1 = w

[1]T
1 x+ b

[1]
1 , a

[1]
1 = σ(z

[1]
1)

z
[1]
2 = w

[1]T
2 x+ b

[1]
2 , a

[1]
2 = σ(z

[1]
2)

z
[1]
3 = w

[1]T
3 x+ b

[1]
3 , a

[1]
3 = σ(z

[1]
3)

z
[1]
4 = w

[1]T
4 x+ b

[1]
4 , a

[1]
4 = σ(z

[1]
4)

We count, for one hidden layer, neural network to be a 2-layer neural-networks. We
usually do not count the input layer. From this structure, we are essentially operating
among matrices, that is,

w
[1]T
1

w
[1]T
2

...

w
[1T]
4

size=(4,3)︸ ︷︷ ︸

four rows, each row three weights︸ ︷︷ ︸
which we call z[1], first hidden layer

·

x1

x2

x3

+

b
[1]
1

b
[1]
2

...

b
[4]
4

 =

w

[1]T
1 x+ b

[1]
1

w
[1]T
2 x+ b

[1]
2

...

w
[1]T
4 x+ b

[1]
4

After we have the set up, we notice that the use of sigmoid function can be switched.
Sigmoid function a = 1

1+e−z can be other non-linear function g(zi). It turns out there

could also be a = tanh(z) = ez−e−z

ez+e−z which is just a shifted sigmoid function. Let

g(z[i]) = tanh(z[i])

works almost always better. In practice, programmers mostly likely would use tanh
functions since it is strictly superior than sigmoid function. One could also use ReLU
(recitified linear unit). This function has slope at 0.0000000000... near zero. To correct
this, there is also leaky ReLU that could be used potentially.

1.5.1 Activation Function

Consider the following:

z[1] = W [1]x+ b[1], a[1] = g[1](z[1])︸ ︷︷ ︸
let us write z[1]

z[2] = W [2]x+ b[2], a[2] = g[2](z[2])︸ ︷︷ ︸
let us write z[2]

then we have

a[1] = z[1] = W [1]x+ b[1]

and we plug a[1] in the following equation

a[2] = z[2] = W [2]a[1] + b[2]

Page 12

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §1

Then we have

a[2] = W [2](W [1]x+ b[1]) + b[2]

= (W [2]W [1])x+ (W [2]b[1] + b[2])

If you are using linear activation function than neural network would just output
a linear function. This is only because if the model is trying to predict housing price
which is considered continuous output. In this case, we should use ReLU or tanh and
set the final neuron to be linear instead of non-linear.

1.5.2 Derivative of Activation Functions

Consider a sigmoid activation function g(z) = 1
1+e−z . Then the slope of the function

is d
dz
g(z) from our knowledge in calculus and this is the slope of g(z) at z. Then

d

dz
g(z) = slope of g(x) at z

=
1

1 + e−z
(
1− 1

1 + e−z
)

= g(z)(1− g(z))
= a(1− a), then g′(z) = a(1− a)

Notice that z = 10 → g(z) ≈ 1, and g′(z) ≈ 1(1 − 1) ≈ 0. z = −10 → g(z) ≈ 0,
and g′(z) ≈ 0(1− 0) ≈ 0, z = 0→ g(z) = 1/2 and g′(z) = 1/2(1− 1/2) = 1/4.

Now let us look tanh function. Define g(z) = tanh(z) = ez−e−z

ez+e−z . Then g′(z) =
d
dz
g(z) = slope of g(z) at a = 1− (tanh(z))2. That is, z = 10, tanh(z) ≈ 1, g′(z) ≈ 0;

z = −10, tanh(z) ≈ −1, g′9z) ≈ 0; z = 0, tanh(z) = 0, g′(z) = 1.
Finally, we can discuss a little about ReLU and Leaky ReLU as activation functions.

For ReLU, g(z) = max(0, z), then

g′(z) =

0 if z < 0
1 if z > 0
N/A if z = 0, this is undefined

For advanced readers, g′(z) is called a sub gradient of the activation function g(z)
which why gradient descent still works. One can simply consider that at this point
z → 0 and get infinitely closer so in practice the algorithm still runs.

For Leaky ReLU, denote g(z) = max(0.01z, z) and

g′(z) =

{
0.01 if z < 0
1 if z > 0

technically z is not defined at 0 but one can still consider it as a number very close
to 0.

1.5.3 Gradient Descent for Neural Networks

Consider a neural network with a single hidden layer. There are the following param-
eters w[1], b[1], w[2], b[2] and so for nx = n[0], n[1], n[2]1. Then the matrix w[1] would be
(n[1], n[0]), (n[1], 1), (n[1], n[1]), (n[1], 1). Then the cost function would be

J(w[1], b[1], w[2], b[2]) =
1

m

n∑
i=1

L(ŷ︸︷︷︸
a[2]

, y)

Page 13

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §1

Algorithm 1.5.1. For gradient descent, we repeat
Compute predicts (ŷ(i), i− 1, ...,m)
dw[1] = ∂J

∂wi , db
[1] = ∂J

∂b[1]
; ...

w[1] := w[1] − αdw[1]

b[1] := b[1] − αdb[1]

...

Algorithm 1.5.2. For forward propagation,

z[1] = w[1]x+ b[1],

A[1] = g[1](z[1]),

z[2] = w[2]A[1] + b[2],

A[2] = g[2](z[2]) = σ(z[2]).

For back propagation,

dz[2] = A[2] − Y for Y = [y(1)L, y(2), ..., y(m)],

and

dw[2] =
1

[m]
dz[2]A[1]T ,

db[2] =
1

m
np.sum(dz[2], axis = 1, keepdims = True︸ ︷︷ ︸

to keep dimensions fixed (n[2],1)

)

then

dz[1] = w[2]T dz[2]︸ ︷︷ ︸
(n[1],m)

∗︸︷︷︸
element-wise product

g[1]′(z[1])︸ ︷︷ ︸
(n[1],m)

dw[1] =
1

m
dz[1]xT

db[1] =
1

m
np.sum(dz[1], axis = 1, keepdims = True)

For forward pass, given {x,w, b}, we can feed them into z = wTx+b, then we feed z
into a = σ(z) which finally is used to compute L(a, y). For backward pass, we compute
da and then we compute dz to finally obtain {x,w, b}. Then the loss

L(a, y) = −y log a− (1− y) log(1− a)

then

d

da
L(a, y) = da = −y

a
+

1− y
1− a

and

dz = a− y = da · g′(z) = g(z) = σ(z)

Notice that this is ∂L
∂z

= ∂L
∂a
· da
dz

= d
dz
g(z) = g′(z).

Now we can take a look at two-layer neural network which is just single layer neural
network added one more hidden layer before output.

Page 14

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §1

W [2]

b[2] x

W [1]

b[1]

→ z[1] = W [1]x+ b[1] → a[1] = σ(z[1])

→ z[2] = W [2]a[1] + b[2]

→ a[2] = σ(z[2])→ L(a[2], y)

Then backward propagation would start from the last hidden layer, which in this
case is the second layer, to compute da[2], dz[2], dW [2], db[2], da[1], dz[1], and finally
{x,W [1], b[1]}.

One note deserves attention is the initialization of random weights. Suppose we set
up [

0 0
0 0

]
, b[1] =

[
0
0

]
, then a

[1]
1 = a

[1]
2

From this, when computing backward propagation, then dz
[1]
1 = dz

[1]
2 , which means

then the output weights are identical. Then the hidden units are completely symmetric.
By proof by induction, units are computed the same since[

u v
u v

]
,W [1] = W [1] − αdW

then there is no point computing more than one hidden units (hidden neurons). A
better way is to randomly initialize the parameters:

W [1] = np.random.randn((2, 2)) ∗ 0.01︸︷︷︸
choose something small︸ ︷︷ ︸

to avoid fat part of sigmoid

b[1] = np.zero((2, 1))

and W [2] = np.random.randn((1, 2)) ∗ 0.01 and so on.

1.6 Deep Neural Network

Let us take all the ideas about parameter initialization, vectorization, propagation,
etc. and put all of them together. We have seen logistic regression and neural network
with 1 hidden layer. As a contrast to shallow neural network which is just a simple
neural network, deep neural network usually consists of more than three hidden layers.
Consider z[1] = W [1]x + b[1] and a[1] = g[1](z[1]) for the first layer. Then z[2] =
W [2]a[1] + b[2] and a[2] = g[2](z[2]) for the second layer. This can keep going to say the
fourth layer, which consists of z[4] = W [4]g[3] + b[4] and a[4] = g[4](z[4]) = ŷ. Note that
x in z[1] is also the first layer (observations) which is a[0]. Thus,

z[l] = W [l]a[l−1] + b[l]

a[l] = g[l](z[l])

That is, vertically, we have

z[1] = W [1]X + b[1] while X = A[0]

Z [2] = W [2]A[1] + b[2]

Page 15

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §1

with all the training examples the column vectors. Then, finally, we have predictions

Ŷ = g(Z [4]) = A[4]

which we can convert to a binary form. In this case, a “for loop” is required in the
algorithm and it is okay to have one loop to do that.

Consider the following example, there is a neural network with five hidden layers
and we have the following steps to compute forward propagation

z[1] = W [1]X + b

which gives us the first layer with, for example, say three hidden units. For the five
hidden layers, we have n[1] = 3, n[2] = 5, n[3] = 4, n[4] = 2, and n[5] = 1. Let us say
there are two explanatory variables so we have n[0] = 2. Then we have z[1] has shape
(n[1], 1) = (3, 1). We also have W [1] with shape (n[1], 2) = (3, 2) while x with shape
(n[0], 1) = (2, 1). That is, for W [1] has shape (n[1], n[0]). In general, we have dimensions
of W [l] to be (n[l], n[l−1]). Then we can compute z[2] = w[2] · a[1].

One reason that deep neural networks work well is the following. There are functions
you can compute with a “small” l-layer deep neural network that shallower networks
require exponentially more hidden units to compute.

Now we can take a look at forward and backward functions. For large l, we have
W [l] and b[l]. Then for forward propagation, input a[l−1] and we want output a[l]. In
this case, we have

z[l] := W [l]a[l−1] + b[l], cache z[l]

a[l] := g[l](z[l])

For backward propagation, we want to input da[l], which we cache it, and output
da[l−1]. That is, the basic deep neural network will be as follows:

Forward propagation: a[0] →W [1], b[1]︸ ︷︷ ︸
cache z[1]

↓

a[1]→ W [2], b[2]︸ ︷︷ ︸
z[2]

a[2]→ · · · →W [l], b[l]︸ ︷︷ ︸
z[l]

a[l]→ ŷ

Backward propagation: a[0]︸︷︷︸
no good

←

cache z[1]︷ ︸︸ ︷
W [1], b[1]︸ ︷︷ ︸
dW[1],db[1]

a[1]←

z[2]︷ ︸︸ ︷
W [2], b[2]︸ ︷︷ ︸
dW[2],db[2]

a[2]← · · · ←

z[l]︷ ︸︸ ︷
W [l], b[l]︸ ︷︷ ︸
dW[l],db[l]

a[l]← da[l]

Now we can discuss a few things about parameters and hyperparameters. Param-
eters in the model are W [1], b[1],W [2], b[2], However, there are hyperparameters as
well, leaning rate α, number of iterations n, number of hidden layers l, number of
hidden units n[1], n[2], ..., choice of activation function. Later on we will discuss other
hyperparameters such as momentum, mini-batch size, regularizations, and so on. In
some sense, the application of deep learning is a very empirical process. We test our
ideas with parameters, we code the idea and conduct experiments. Perhaps we ob-
serve some cost function via number of iterations that we like or we do not like. After
certain number of trials, we select the final parameters to try out hyperparameters.
This might be an unsatisfying part of deep learning, but it is also necessary for a lot
of programmers especially good programmers to experience this progress.

Any relations between deep learning and human brain? Not a whole lot. The only
analogy is that the construction of artificial nodes in the layers of the neural network
can be (or look like on paper) the actual neurons in human brain. Besides that there
is no real reason of where the name comes from.

Page 16

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §2

2 DEEP NEURAL NETWORKS:
HYPER-PARAMETER TUNING,

REGULARIZATION AND OPTIMIZATION

Go back to Table of Contents. Please click TOC

This is the practical aspects of deep learning. We will start from the practical
aspects first such as hyperparameters, random problems, and so on. When training
neural network, one needs to make a lot of decisions such as 1) number of layers, 2)
number of hidden units, 3) learning rates, 4) activation functions, and so on. One
would always start with an idea (or a particular data set). Then we code the idea and
try some quick results. Based on the outcome, we need to change our ideas to code and
such cycle goes on. Structured data ranges from advertisers to any search bar results
from website online.

A conventional method is to have training set, development set, as well as a testing
set. We use training set to train our machines and we test different parameters on
development set. In the very end, once we are happy with all the parameters we would
finally touch test set for final testing accuracy.

2.1 Bias-Variance Trade-off

An important essence is to understand bias and variance in machine learning. This is
the famous bias-variance trade-off. Let us consider three examples in two-dimensional
plot. The first one is under-fitting, imaging a straight line trying to classify a bunch
of dots. The second one is “just right”, imaging a curve cutting through a bunch of
dots. The third one is over-fitting, imaging a high-dimensional line wiggling through
the dots to try to find the path to fully classify the dots. To understand this, we look
at two key numbers which are training set error and development set error. Suppose
we have 1% for training and 11% for development set. This might be high variance.
Now suppose we have different results 15% for training and 16% for development set
error. This does not look like it will be good models for predictions since human error
is approximately 0% at telling cats and dogs. Then we say this is high bias. Now
suppose we have 15% training set error and we have 30% development set error. This
model is probably worse off than previous two and we say this is high bias and high
variance. Now in end suppose we have 0.5% training set error and 1% development set
error. We say this model has ow bias and low variance.

To illustrate this point strongly, we can look at the math behind this idea. We
consider the decomposition for squared error proceeds as follows. For notational con-
venience, abbreviate f = f(x) and f̂ = f̂(x). First, recall that, by definition, for any
random variable X, we have

Var[X] = E[X2]− E[X]2

and by rearranging equation, we get

E[X2] = Var[X] + E[X]2

Since f is deterministic, then E[f] = f . This, given y = f + ε and E[ε] = 0, implies
E[y] = E[f + ε] = E[f] = f . Also, since Var[ε] = σ2, then

Var[y] = E[(y − E[y])2] = E[(y − f)2] = E(f + ε− f)2] = E[ε2] = Var[ε] + E[ε]2 = σ2

Page 17

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §2

Thus, since ε and f̂ are independent, we can write

E[(y − f̂)2] = E[y2 + f̂2 − 2yf̂]

= E[y2] + E[ŷ]2 − E[2yf̂]

= Var[y] + E[y]2 + Var[f̂] + E[f̂]2 − 2fE[f̂]

= Var[y] + Var[f̂] + (f2 − 2fE[f̂] + E[f̂]2)

= Var[y] + Var[f̂] + (f − E[f̂])2

= σ2 + Var[f̂] + Bias[f̂]2

2.2 Regularization

In practice, we first ask does the algorithm, from training data performance, have high
bias? Then to test this, we can try bigger network, longer network, and so on. Next, we
ask ourselves does the model, from development set performance, have high variance?
We try different sets of parameters such as more data or regularization.

What if we cannot get more data, we need to do a regularization. Consider cost
function

J(w, b) =
1

m

m∑
i=1

L(ŷ(i), y(i)) +
λ

2m
||w|22

while

||w||22 =

nx∑
j=1

w2
j = wTw is L2 regularization

or we could have

J(w, b) =
1

m

m∑
i=1

L(ŷ(i), y(i)) +
λ

2m
||w|22 +

λ

2m
b2︸ ︷︷ ︸

usually omit

or instead we add

λ

2m

nx∑
i=1

|w| = λ

2m
||w||1, which is L1 regularization

Note that λ is the regularization parameter. One can characterize the value and see
which one does the best.

In neural network, we consider

J(w[1], b[1], ..., w[l], b[l]) =
1

m

n∑
i=1

L(ŷ(i), y(i)) +
λ

2m

L∑
l=1

||w[l]||2

while

||w[l]||2 =

n[l−1]∑
i=1

n[l]∑
j=1

(w
[l]
ij)2 while w : (n[l], n[l−1])

In propagation, as shown in previous section, we have dw[l] and w[l] := w[l] − αdw[l].
Now since have the λ term, we would have

dw[l] = (from backprop) +
λ

m

w[l] := w[l] − αdw[l]

then instead we have

w[l] := w[l] − α[(from backprop) +
λ

m
w[l]] = w[l] − αλ

m
w[l] − α(from backprop)

Page 18

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §2

which is why L2 norm propagation is called “weight decay” because of this (1− αλ
m
w[l]

term.
Why does regularization help reducing over-fitting? Let us take a look at the

following. Recall the three examples we discussed above with high bias, “just right”,
and high variance. Recall

J(w[l], b[l]) =
1

m

m∑
i=1

L(h(i), y(i)) +
λ

2m

L∑
l=1

||w[l]||2F

One piece of intuition is if we set λ to be sufficiently large and set w[l] ≈ 0 then we
may be able to single out the impact of a lot of the hidden units. In other words, for
one path in the neural network would have very small effect, and in fact it is almost
like a logistic regression unit.

2.2.1 Softmax Function

Another point is to consider tanh function, g(z) = tanh(z). Then the intuition is if
one use larger regularization terms, the penalized w[l] would be relatively small, and
hence z[l] = w[l]a[l−1] + b[l] would approximately to linear. For implementation, we
take our definition of the cost function J and we actually modify by adding an extra
term. Then one of the steps is actually to plot the cost function and we expect to see
it decrease monotonically.

In addition to L2 regularization, another very powerful regularization techniques is
called ”dropout.” Let us see how that works. Say you train a neural network like the
one on the left and there is over-fitting. Here is what you do with dropout. Consider
a copy of the neural network. With dropout, what we are going to do is go through
each of the layers of the network and set some probability of eliminating a node in
neural network. Say that for each of these layers, we are going to, for each node, toss
a coin and have a 0.5 chance of keeping each node and 0.5 chance of removing each
node. So, after the coin tosses, maybe we will decide to eliminate those nodes, then
what you do is actually remove all the outgoing things from that no as well. So you
end up with a much smaller, really much diminished network. And then you do back
propagation training. There is one example on this much diminished network. And
then on different examples, you would toss a set of coins again and keep a different set
of nodes and then dropout or eliminate different than nodes. And so for each training
example, you would train it using one of these neural based networks. So, maybe it
seems like a slightly crazy technique. They just go around coding those are random,
but this actually works.

Drop out does this seemingly crazy thing of randomly knocking out units on your
network. Why does it work so well with a regularizer? Previously, we discussed this
intuition that drop-out randomly knocks out units in your network. It is as if on every
iteration you are working with a smaller neural network, and so using a smaller neural
network seems like it should have a regularizing effect. Here is a second intuition which
is, let us look at it from the perspective of a single unit.

Let us say the first one in a layer, i.e. some hidden neuron. Now, for this unit to
do his job as for inputs and it needs to generate some meaningful output. Now with
drop out, the inputs can get randomly eliminated. Sometimes those two units will
get eliminated, sometimes a different unit will get eliminated. So, what this means
is that this unit, which is pointed out, it cannot rely on any one feature because any
one feature could go away at random or any one of its own inputs could go away at
random. Some particular would be reluctant to put all of its bets on, say, just this
input, right? The weights, we are reluctant to put too much weight on any one input
because it can go away. This unit will be more motivated to spread out this way and

Page 19

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §2

give you a little bit of weight to each of the four inputs to this unit. By spreading all the
weights, this will tend to have an effect of shrinking the squared norm of the weights.
Hence, similar to what we saw with L2 regularization, the effect of implementing drop
out is that it shrinks the weights and does some of those outer regularization that
helps prevent over-fitting. But it turns out that drop out can formally be shown to
be an adaptive form without a regularization. But L2 penalty on different weights are
different, depending on the size of the activations being multiplied that way.

To summarize, it is possible to show that drop out has a similar effect to L2 regular-
ization. Only to L2 regularization applied to different ways can be a little bit different
and even more adaptive to the scale of different inputs.

In addition to L2 regularization and drop out regularization there are few other
techniques to reducing over-fitting in the neural network. Consider a cat classifier. If
you are over fitting getting more training data can help, but getting more training data
can be expensive. What one can do is augment your training set by taking image and
flipping it horizontally and adding that also with your training set. By flipping the
images horizontally, you could double the size of your training set. Because the training
set is now a bit redundant this is not as good as if you had collected an additional set
of brand new independent examples. Other than that, one can also take a random crop
of the image as a new observation.

2.3 Set Up Optimization Problem

When training a neural network, one of the techniques that will speed up your training
is if you normalize your inputs. Consider a training set with two input features. The
input features X are two dimensional. Normalizing your inputs corresponds to two
steps. The first is to subtract out of to zero out the mean. So you set µ = 1 over m
sum over i of Xi. This is a vector and X gets set as X − µ for every training example.
This means that we move the training set until it has 0 mean. That is,

µ =
1

m

m∑
i=1

x[i]

X := x− µ
Then the second step is to normalize the variances. That is,

σ2 =
1

m

m∑
i=1

x(i)

After this work, we will have moved any scattered plots on the Euclidean graph to
center 0.

Why normalize? Recall J(w, b) = 1
m

∑m
i=1 L(ŷ(i), y(i)). If unnormalized, we could

have a cost function that is like a bowl-shape surface but pointing at any directions, not
necessarily pointing up. However, if normalized, we have a relatively more spherical
surface pointing straight up. This transformation will allow us to have a more efficient
computing process.

One of the problems of training neural network, especially very deep neural net-
works, is data vanishing and exploding gradients. That means when one trains a very
deep network, the derivations or slopes can sometimes get either very big or very small.
This makes the training of neural network difficult. Consider parameters w[1], ..., w[l],
and activation function g(z) = z with bias b[l] = 0. We can show

y = w[l]w[l−1] . . . w[2] w[1]x︸ ︷︷ ︸
z[1]=w[1]x

Page 20

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §2

while a[1]g(z[1]) = z[1] and next a[2] = g(z[2]) = g(w[2]a[2]).
We discussed potential problems such as vanishing and exploding gradients. A

partial solution to this can be better or more careful choice of the random initialization
for your neural network. Let us consider an example of initializing the ways for a
single neuron. Consider i from 1 to 4, then we have X1, X2, X3, X4 and a single neuron
a = g(z) while z = w[1]X1 + · · · + w[n]xn + b. For large n, we would have small wi,
then var(wi) = 1

n
. An approach is to set np.random.rand(shape) ? np.sqrt() in python

to set standard normal weights to create similar variance. We can also use Xavier
initialization

tanh

√
1

n[l−1]

or

tanh

√
2

n[l−1] + n[l]

When you implement back propagation you will find that there is a test called
gradient checking that can really help the implementation of back-propagation to be
correct. Consider function f(θ) and say it is defined as f(θ) = θ3. For θ, we can take
an interval (−ε, ε) for ε > 0. It turns out the height of θ + ε and 2ε will give us better
gradient. For θ + ε we have f(θ + ε). Another point is θ − ε and f(θ − ε. Then

(1/2)(f(θ + ε)− f(θ − ε) ≈ g(θ)
Or (1/2(0.01))((1.01)3 − (0.99)3) = 3.0001

and this can be checked that approximate error will be 0.0001, which gives us a bet-
ter idea of how to check the gradient and slope of the function. For mathematical
expression, we generally write

f ′(θ) = lim
ε→0

f(θ + ε)− f(θ − ε)
2ε

while ε is from notation O(ε2)

To do so, take W [1], b[1], ...,W [l], b[l] and reshape into a big vector θ. Then take
eW [1], db[1], ... and reshape into a big vector dθ. The question would be is this the
gradient of cost function J? Recall J(θ) = J(θl). To implement grad.check, we apply

1. for each i:
Apply dθ[i] = J(θ1,...,θi+ε,...)−J(θ1,...,θi−ε,...)

2ε
≈ dθ[i] = ∂J/∂θi

And output dθ, and check dθ≈ ≈ dθ?
2. Check

||dθ≈ − dθ||2
||dθ≈||2 + ||dθ||2

and typically we use ε = 10−7, which should be the ratio from above equation. If it is
a lot bigger than that, say bigger than 10−5, then perhaps we need to do something
about it. This way we can create a signal for us to go back to check our algorithm and
debug if necessary.

One would notice the following, to implement gradient checking, do not use in
training (only to debug). If algorithm fails gradient checking, look at components to
try identify buy. One would always remember regularization terms. One would also
realize that gradient checking does not work with dropout. One could always run at
random initialization and train a network for a while; and later again run gradient
check.

2.4 Optimization Algorithms

We need to optimize our algorithms to let the code run efficiently. This is where we
can discuss batch vs. mini-batch gradient descent. Vectorization allows you to efficient

Page 21

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §2

compute on m examples
X = [x(1), x(2), . . . , x(m)]

Y = [y(1), y(2), . . . , y(m)]

However, what about m = 5, 000, 000. Let us say you divide your training set into
baby training sets with each of them only 1,000 observations. Then we take the next
1,000 observations as a second mini-batch, and so on. That is, we have

X = [x(1), x(2), ..., x(1000)︸ ︷︷ ︸
x[1]

. . . , ..., ..., x(m)︸ ︷︷ ︸
x(5000)

]

Y = [y(1), y(2), ..., y(1000)︸ ︷︷ ︸
y[1]

. . . , ..., ..., y(m)︸ ︷︷ ︸
y(5000)

]

In algorithm running, we do
for t = 1, ..., 5000, 1 step of grad descent using x(t), y(t)

Forward propagation on x(t), and

z[1] = w[1]x[t] + b[l]

A[1] = g(1)(Z [1])

...
A[l] = g[l](z[l])

which will process 1,000 examples at the same time
Compute cost

J =
1

1000

l∑
i=1

L(ŷ(i), y(i)) +
λ

2× 1000

∑
l

; ||W [l]||2i

Backward propagation to compute gradients cost

J(t) using x(t), y(t)

Update W [l] := W [l] − αdW [l], b[l] := b[l] − αdb[l] while “one epoch” means pass
through training set with 5,000 gradient descent steps. However, in batch gradient
descent, a single pass through the training allows you to take only one gradient descent
step. For mini-batch gradient descent, every iteration the cost function may not neces-
sarily decrease. The overall trend will going down but it will be more noisy than batch
gradient descent. For size of mini-batch to be m, this will be batch gradient descent.
For size of batch to be 1, this will be stochastic gradient descent, it takes a long time
and will never converge. For stochastic gradient descent, you lose the speed-up from
vectorization and the process is time consuming. In practice, we choose something in
between. That is, we conduct mini-batch gradient descent greater than size 1 and less
than size m. In other words, if size of training set is less than 2000, it is fine using batch
gradient descent. Otherwise, it is recommended to use mini-batch size. Usually the
size of mini-batch can be 64, 128, 256, 512, and etc. It is rare to see size of mini-batch
1024, yet it is still possible to occur. One needs to make sure mini-batch, x(t), y(t) fit
in CPU/GP memory. If not, the performance may be worse off.

Now we can discuss exponentially weighted averages, which takes the following form

vt = βvt−1 + (1− β)θt

Page 22

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §2

then in other words, we have, for example, let t = 100, then

v100 = 0.1θ100 + 0.9v99

= 0.1θ100 + 0.9(0.1θ99 + 0.9v98)
= 0.1θ100 + 0.9(0.1θ99 + 0.9(0.1θ98 + 0.9v97))

where v97 can then be written with more summation terms and this is something that
exponentially decay in the end. In general, we observe that 0.910 ≈ e−1. Moreover,
take ε = 0.9, then (1− ε)1/ε ≈ 1/e, and 0.9810 ≈ 1/e.

To implement exponentially weighted averages, consider

v0 = 0
v1 = βv0 + (1− β)θ1

v2 = βv1 + (1− β)θ2

v3 = βv3 + (1− β)θ3

. . .

With this idea in mind, we can write

Vθ := 0
Vθ := βv0 + (1− β)θ1

Vθ := βv1 + (1− β)θ2

Vθ := βv3 + (1− β)θ3

. . .

This, however, brings up concerns for long run. That is, for large t, we may get very
different moving averages. To correct this problem, there is step called bias correction.
That is, we take

vt = βvt−1 + (1− β)θt

and we can modify this formula by

vt =
β

(1− βt)vt−1 +
(1− β)

(1− βt)θt

which becomes the weighted average of exponentially averages.
Using this notion as building blocks, we can establish momentum in gradient de-

scent. This is important because in some occasions the gradient descent, while taking
baby steps towards the local minimum, can oscillate quite a lot to a point where it
can actually diverge. We do not want this to happen. We implement the following
algorithm with the notion of exponentially weighted averages.

Algorithm 2.4.1. On iteration t: (assume initialization vdW = 0, vdb = 0)
Compute dW , db, on the current mini-batch
vdW = βvdW + (1− β)dW
vdb = βvdb + (1− β)db
W = W − avdW , b = b− αvdb
Hyper-parameters: α, β, and choose β = 0.9.

There is another algorithm called Root Mean Square Propagation (RMS-Prop)
that can also speed up gradient descent. In other words, on iteration t, the algorithm
computes dW, db on count mini-batch. Then sdW = βsdW + (1− β)dW 2. Notice that
W 2 is an element-wise multiplication. Next, sdb = βsdb + (1− β)db2. Then we update
w := w − α dw√

sdw
, and b := b− α db√

sdb
. That is, we want to slow down the oscillations

but the b direction we are going fast. This way we will be able to make the algorithm
more efficient. In most cases, we actually combine RMS-Prop with momentum. To
prevent the fraction blow up, we sometimes also add an ε to ensure that the bottom
of the fraction does not approximate to zero. The implementation of RMS-Prop and
momentum will become Adam optimization algorithm.

Page 23

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §2

Algorithm 2.4.2. Set VdW = 0, SdW = 0, Vdb = 0, Sdb = 0:
On each iteration t:
Compute dW, db using mini-batch
vdW = β1VdW + (1− β1)dW, Vdb = β1Vdb + (1− β1)db← “momentum′′β1

SdW = β2VdW + (1− β1)dW 2, Sdb = β2Vdb + (1− β2)db← “RMS-prop′′β2

V Corrected
dW = VdW /(1− βt1), V Corrected

db = Vdb/(1− βt1)
Scorrected
dW = SdW /(1− βt2), SCorrected

db = Sdb/(1− βt2)

while update W := W − α vCorrected
dW√

SCorrrected
db

+ε
, b := b− α V corrected

db√
SCorrected
db

+ε

In this sense, the hyper-parameters choices are: α needs to be tuned, β1 := 0.9 for
dW , β2 := 0.999 for dW 2, and ε := 10−8. The term “Adam” is short for “adaption
moment estimation”.

Consider a mini-batch gradient descent, let us say as we iterate the path oscillates
around the local minimum and is going around it. One way is that we can slowly
decrease α, which is the learning rate, to make the path smaller and smaller to be
closer to the local minimum. To do that, we conduct the following steps. Recall one
epoch is one pass through dart. Set up

α =
1

1 + decay rate× epoch

and this is to say that we can get a path for epoch. For epoch to be one, set α = 0.1.
For epoch to be two, set α = 0.67, For epoch to be three, set α = 0.5 and so on. This
way, we have a descending α as epoch increases. Other than this formula of decay,
we can also consider exponential decay. Set α = 0.95epoch-runα0 which is exponentially
decay. Or we set α = k√

epoch-runα0
or k√

t
α0, which looks like designated staircase. Or

we can simply do manual decay, which is the slowest way but occasionally works.

2.5 Hyperparameter Tuning

We have now seen by now that changing neural nets can involve setting a lot of different
hyperparameters. How do we go about finding a good setting for these hyperparame-
ters? One painful thing about training deepneess is the sheer number of hyperparam-
eters in the model, ranging from the learning rate α which is the momentum term,
or the hyperparameters for the Adam optimization algorithm which are β1, β2, and ε.
Maybe we have to to pick the number of layers, the number of hidden units, or the
size of mini-batch array. In most situations, α, the learning rate is the most important
hyperparameter to tune. Other than α, a few other hyperparameters would be the
next. For example, it could be the momentum term, say 0.9 is a good default value.
One could also tune the mini-batch size to make sure that the algorithm is running
efficiently. Sometimes one could also play around with the hidden units.

Traditionally, people have been working with a grid, such as a lattice with two
hyperparameters. However, this will be computationally costly for large values of
hyperparameters. A better approach can be using random sampling to form a random
plot in the grid instead of using lattice. It turned out sampling at random does not
imply sampling uniformly at random over the range of values. Instead it is important
to pick the appropriate scale on which to explore the hyperparameters. Suppose one
desires to choose a value for hidden units ranging in n[l] = 50, ..., 100. Suppose the
number of layers L would take values from 2 to 4. The number of layers can be uniformly
set randomly, but the number of hidden units one should just pick a few ranges and
start the trial. Consider one desires to search for learning rate α, ranging from 0.0001
to 1. Also consider sampling uniformly at random. This will be computationally costly.

Page 24

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §2

Instead, we can use a log scale to search 0.0001, 0.001, 0.01, 0.1, and 1. Now we have
more resources dedicated to search for these values. In python, we run

r = −4 ∗ np.random.rand()← r ∈ [−4, 0]

α = 10r ← 10−4, . . . , 100

and once we find two values that we desire we can then sample uniformly between these
two values.

Facing all of these hyperparameters, what are some tuning process in practice?
One can always start with just babysitting one model. One train and observe the
path of error rate. As path moves on, one learns about the effect parameters have on
the training error. With human supervising, this is very costly yet can be done more
carefully. However, one can always train many models in parallel. Same time, one can
train multiple models and observe multiple error rate. The human supervising process
is called “panda” approach. The approach one trains multiple models and the name
is “caviar” approach. The names come from the difference where pandas nurture one
kid with great care while fish lay lots of eggs and hope for at least one would work.

2.6 Batch Normalization

In the rise of deep learning, one of the most important ideas has been an algorithm
called batch normalization, created by two researches, Sergey Loffe and Christian
Szegedy. Batch normalization makes your hyperparameter search problem much eas-
ier, makes your neural network much more robust. The choice of hyperparameters is
a much bigger range of hyperparameters that work well, and will also enable you to
much more easily train even every deep networks.

Consider training a logistic regression as the following. We can really normalize the
data set before we feed into the model. Take

µ =
1

m

∑
i

x(i), X = X − µ

σ2 =
1

m

∑
i

x(i), X = X/σ2

Input
layer

Hidden
layer

Output
layer

However, what if we have a more complex model as the following. Opposed as in
logistic shown above, this example, the question is can we normalize a[2] so we can train
w[3], b[3] faster. Technically, we will normalize z[2]. There are debates before activation
or after. In practice, normalize z[2] is done very often.

Page 25

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §2

Input
layer

Hidden
layer

Ouput
layer

Given some intermediate values in neural net, z(1), ..., z(m) while we notate them
z[l](i). One can compute mean

µ =
1

n

∑
i

z(i) and σ2 =
1

m

∑
i

(zi − µ)2

z(i)
norm =

z(i)−µ
√
σ2 + ε

, and z̃(i) = γz(i)
nrom + β

while γ and β are learnable parameters of the model. Notice that the effect of param-
eters allow us to set mean. In fact, γ =

√
σ2 + ε and β = µ will exactly invert the

z-norm equation. In other words, these equations are essentially just computing the
identify function. This way we can assure that the hidden units are all standardized.

How does this fit in training of deep neural network? Consider a hidden units
constructed by z and a (being activation). Ordinarily, we would fit z1 into the activation
function to compute a1, which takes the following form

x→ z[1] by x[1], b[1]

but now we can compute

x
x[1],b[1]→ z[1] Batch norm→ z̃[1] → a[1] = g[1](˜z[1])→ z[2] . . .

In this way, the parameters are W [1], b[1],W [2], b[2], ...,W [l], b[l]. Additionally, we
have β[1], γ[1], β[2], γ[2], ..., β[l], γ[l]. After this update, we can then use gradient descent
and so on. The same idea also for mini-batch gradient descent. One only needs to
notice that the µ and σ2 are computed on the mini-batch the subset of training instead
of the entire training set. Under this construction, every time a new batch is selected
we would compute new µ and σ2. Notice that for mini-batch we are supposed to have
z[l] = W [l]a[l−1] + b[l] but we can update it as z̃[l] = γ[l]z

[l]
norm + β[l], which is different

than before.
Consider a shallow neural network testing cat or non-cat. Suppose we trained with

black cats. However, for color cats later on, it may not do well. This is not surprising
since the distribution may from the same one but they could change their location or
cluster of locations. This will create a covariant shift in the construction of the hidden
layers since these hidden units are changing all the time. What batch norm does is that
it reduces the amount that the distribution of these hidden unit values shifts around.

Page 26

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §2

In other words, in batch norm these values will be more stable than before. Batch norm
has a second effect as regularization. Each mini-batch is scaled by the mean/variance
computed on just that mini-batch. This adds some noise to the values z[l] within that
mini-batch. Similar to dropout, it adds some noise to each hidden layer’s activations.
This has a slight regularization effect. By using large mini-batch size, one can also
reduces the noises in the data set during normalizing.

Batch norm processes data one mini batch at a time, but the test time you might
need to process the examples one at a time. Recall that during training, the equations
you would use to implement batch norm are the following

µ =
1

m

∑
i

z(i)

σ2 =
1

m

∑
i

(z(i) − µ)2

z(i)
norm =

z(i) − µ√
σ2 + ε

z̃(i) = γz(i)
norm + β

To make it concrete, consider layer l. There are mini-batches X{1}, X{2}, ... and we
have µ{1}[l], µ{2}[2], and so on. Just like how we use exponentially weighted average
to compute the mean of θ1 and so on, we use the same notion and that means the
exponentially calculated weighted average would become the mean of z’s hidden layer
and, similarly, you use exponentially weighted average to keep track of these values of
σ2 that you see on the first mini batch in that layer.

2.7 Multi-class Classification

We have discussed the classification with examples using binary classification, where
the labels take two possible values 0 or 1. What if we have multiple possible classes?
There is a generalization of logistic regression called Softmax regression. Consider

example where output 4 values. In the t = ez
[l]

and this case t is a vector with size
(4,1). Then we have

a[l] =
exp(z[l])∑

ti

Now suppose, as an example, z[l] = [5; 2;−1; 3] and

t =

e5

e2

e−1

e3

 =

148.4
7.4
0.4
20.1

 , 4∑
j=1

tj = 176.3

and also

a[l] =
t

176.3
=

e5/176.3 = 0.842
e2/176.3 = 0.042
e−1/176.3 = 0.002
e3/176.3 = 0.114

That is, what Softmax is doing from z[l] to a[l] is to use exponential function to get
temporary variable t and then normalizing with the summation of t. The unusual thing
about this particular activation function is that the process takes a vector and needs
to take the summation to normalize each values in the vector. In great details, let us
consider

z[l] = [5; 2;−1; 3]; t = [e5; e2; e−1; e3]

Page 27

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §2

and activation function

a[l] = g[l](z[l]) =

e5/(e5 + e2 + e−1 + e3)
e2/(e5 + e2 + e−1 + e3)
e−1/(e5 + e2 + e−1 + e3)
e3/(e5 + e2 + e−1 + e3)

 =

0.842
0.042
0.002
0.114

︸ ︷︷ ︸
softmax

The final decision takes the highest value as if the four outputs are assigned the values
as percentages. The take-away is that the softmax function is just a generalization of
logistic regression to more than two classes.

How to train a neural network with softmax function? Consider loss function as
the following

y = [0; 1; 0; 0] to be cat

a[l] = ŷ = [0.3; 0.2; 0.1; 0.4]

Then the loss would be

L(ŷ, y) = −
4∑
j=1

yj log ŷj︸ ︷︷ ︸
left with −y2 log ŷ2=logŷ2

the underbrace in the first term would be a form of maximum likelihood function. Then
we implement

J(w[1], b[1], ...) =
1

m

m∑
i=1

L(ŷ(i), y(i))

Consider response Y and estimator Ŷ , respectively, to be

Y = [y(1), y(2), ..., y(m)]

=

0 0 1...
1 0 0...
0 1 0...
0 0 0...

and

Ŷ = [ŷ(1), ŷ(2), ..., ŷ(m)]

=

0.3 ...
0.2 ...
0.1 ...
0.4 ...

How do we implement gradient descent? Consider the last layer z[l] → a[l] = ŷ →

L(ŷ, y). This is due to backpropagation: dz[l] = ŷ − y, which is a (4,1) table and dz is
∂J

∂z[l]
.

Some famous deep learning frameworks are the following: caffe/caffe2, CNTK,
DL4J, Keras, Lasagne, mxnet, PaddlePaddle, TensorFlow, Theano, and Torch. The
criteria recommended is the following: (1) ease of programming (development and
deployment), (2) running speed, and (3) truly open (open source with governance).
Let us consider tensorflow as a deep learning framework example. Consider

J(w) = w2 − 10w + 2s

as a simple version of cost function whereas in practice we will be face J(w, b).

Page 28

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §3

3 STRUCTURING MACHINE LEARNING
PROJECT

Go back to Table of Contents. Please click TOC

This course is about structure machine learning projects, that is, about machine
learning strategy. This course is intend to train users to learn about how to quickly
and efficiently get machine learning systems working. Consider an example to classify
cats and say we have a machine at 90%. Also say one user or programmer has a bunch
of ideas such as 1) collect more data, 2) collect more diverse training set, 3) train
algorithm longer with gradient descent, 4) try Adam instead of gradient descent, 5)
try bigger network, 6) try smaller network, 7) try dropout, and so on. This course will
also discuss a few secrets about machine learning progress.

3.1 Orthogonalization

One interest thing is that some experienced machine learning programmers are very
clear about what to tune in order to try to achieve one effect. This is a process called
orthogonalization. An intuitive example is to consider an old-school TV with a lot of
knobs while each knob to have its own function. Maybe there is one for horizontal
position and another for width and so on. Another intuitive example can be driving a
car. There are steering, accelerating, and breaking.

With intuitive understanding, one needs to have a chain of assumptions. One should
at least watch that the model fits training set well on cost function. One shall then
hope this model will fit developed set well on cost function, and henceforth test set
well too. Then you have some evidence to hope that this model performs well in real
world.

3.2 Set Up

First thing is to pick a single number evaluation metric. One can look at F1 score
which takes the formula: 2/(1/p+ 1/r), which is also called “harmonic mean” while p
means precision and r means recall. If, however, the data set is fitted by a few models
and the output is to test each country in a few countries how accurate the model is
at classifying cat or not. In this case, it might make more sense to set up an average
accuracy to create one single number of goal to follow.

It is not always easy to combine all the things one care about into a single row
number evaluation metric. Consider classifier A, B, and C with different accuracies
and different running time. Then perhaps it makes sense to combine cost = accuracy
- 0.5 × running time. In this case, we can consider accuracy an optimizing metric
while running time is a satisfying metric. This would be a reasonable to put trade-off
together that is more acceptable to the programmer. With this setup, it would be more
easier to pick optimal classifier.

Another important step in machine learning before one gets started is to set up
development set and test sets. In earlier ages, we used to sample size of 100, 1000, or
even 10,000. For such sizes, the split of seven-to-three and six-two-two seem reasonable.
For data set with, nowadays, a million sample sizes, it is okay to take a much larger
fraction into the training such as nine-one split.

3.3 Compare to Human Level

A lot more machine learning teams have been talking about comparing the machine
learning systems to human level performance. Why is this? There are two main

Page 29

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §3

reasons. First, it is because of advances in deep learning, machine learning algorithms
are suddenly working much better and so it has become much more feasible in a lot
of application areas for machine learning algorithms to actually become competitive
with human-level performance. Second, it turns out that the workflow of designing
and building a machine learning system is much more efficient when you are trying to
do something that humans can also do.

Consider x-axis as a time and y-axis as accuracy. Also consider an arbitrary dotted
line to be human accuracy. It turns out that machine learning accuracy will increase
drastically before reaching human accuracy and only slowly going up or even plateau
after slightly surpassing human accuracy. Theoretically, there is another dotted line
called the Bayes optimal error, which is the best possible error rate (some arbitrary
level above human level. Then the ascending machine learning accuracy can only go so
far before it plateau in front of Bayes’ optimal accuracy. What does all of this mean?

Consider a medical image classification example with the following assumptions: 1)
typical human performs 3% error, 2) typical doctor performs 1% error, 3) experienced
doctor 0.7% error, and 4) a team of experienced doctors perform 0.5% error. We can
reasonably to assume that the last performance will be a good estimate of Bayes’ error,
and we can say that Bayes’s error is less or equal to 0.5%.

There are two fundamental assumptions of supervised learning. 1) You can fit
the training set pretty well. 2) The training set performance generalizes pretty well
to the development or test set. One can look at the difference between human-level
error and training error, aka the avoidable bias; and also one can look at the difference
between training error and development error, aka the variance. To get rid of avoidable
bias, one can 1) train bigger model, train longer/better optimization algorithms, using
momentum, RMSprop, or Adam, and NN architecture/hyperparameters search, RNN,
or CNN. To get rid of variance, one can 1) obtain more data, 2) regularization, using
L2, dropout, data augmentation, or 3) NN architecture/hyperparameter search.

Page 30

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §4

4 CONVOLUTIONAL NEURAL
NETWORKS (CNN)

Go back to Table of Contents. Please click TOC

4.1 Convolutional Neural Networks

This section is about convolutional networks. Computer vision is one of the areas that
has been advancing rapidly, thanks to deep learning. Deep learning computer vision is
now helping self-driving cars to figure out where are the other cars and the pedestrains
around us so as to avoid them.

4.1.1 Filter or Kernel

One challenge is to detect the edges, horizontal and vertical edges. We create this
notion of a filter (aka, a kernel). Consider an image as the following

3 0 1 2 7 4
1 5 8 9 3 1
2 7 2 5 1 3
0 1 3 1 7 8
4 2 1 6 2 8
2 4 5 2 3 9

and we take a filter (aka, a kernel, in mathematics) which takes the following form,1 0 −1

1 0 −1
1 0 −1

and we apply “convolution” operation, which is the following

3 0 1 2 7 4
1 5 8 9 3 1
2 7 2 5 1 3
0 1 3 1 7 8
4 2 1 6 2 8
2 4 5 2 3 9

 ∗
1 0 −1

1 0 −1
1 0 −1

and the first element would be computed as

3× 1 + 1× 1 + 2× 1 + 0 + 0 + 0 + 1×−1 + 8×−1 + 2×−1 = −5

Shifting the 3 by 3 matrix, which is the filter (aka, kernel), one column to the right,
and we can apply the same operation. For a 6 by 6 matrix, we can shift right 4 times
and shift down 4 times. In the end, we get

3 0 1 2 7 4
1 5 8 9 3 1
2 7 2 5 1 3
0 1 3 1 7 8
4 2 1 6 2 8
2 4 5 2 3 9

 ∗
1 0 −1

1 0 −1
1 0 −1

 =

−5 −4 0 8
−10 −2 2 3

0 −2 −4 −7
−3 −2 −3 −16

Page 31

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §4

One can use tensorflow function, tf.nn.conv2d, or to use python language, conv forward,
as function to implement. Notice that the filter above is for vertical edge detection and
the horizontal edge detection, by the same notion, would be the following1 0 −1

1 0 −1
1 0 −1

 , and

 1 1 1
0 0 0
−1 −1 −1

 , for vertical and horizontal, respectively

In computer vision literature, there is a lot of debates about what filter to use. A
famous one is called Sobel filter, which takes the following form1 0 −1

2 0 −2
1 0 −1

and the advantage of Sobel filter is to put a little bit more weight to the central row.
Another famous filter is called Sharr filter, which is 3 0 −3

10 0 −10
3 0 −3

Hand-picking these parameters in the filter can be problematic and can be very costly
to do so. Why not let the computer to learn these values? That is, we can treat
the nine numbers of this filter matrix as parameters, which you can then learn this
filter automatically and create a filter detection by computer. Other than vertical and
horizontal edges, such computer-generated filter can learn information from any angles
and will be a lot more robust than hand-picking values.

4.1.2 Padding

In order to build deep neural networks, one modification to the basic convolutional
operation that one needs is padding. Consider earlier example,

3 0 1 2 7 4
1 5 8 9 3 1
2 7 2 5 1 3
0 1 3 1 7 8
4 2 1 6 2 8
2 4 5 2 3 9

 ∗
1 0 −1

1 0 −1
1 0 −1

 =

−5 −4 0 8
−10 −2 2 3

0 −2 −4 −7
−3 −2 −3 −16

that is, we take a 6 by 6 matrix and apply a 3 by 3 filter, and we end up with a 4 by
4 matrix. It ends up with a 4 by 4 filter because we can only shift a 3 by 3 matrix
one row up/down or one column left/right once and this will sum up 4 times. That is,
there are 4 by 4 possible positions for a 3 by 3 matrix to appear in a 6 by 6 matrix.
In formula, given an n× n matrix and an f × f matrix, we can generate a matrix by
applying up/down left/right rule and this will matrix will be n−f+1 by n−f+1. The
first problem is that we are always shrinking the size of the matrix as we move along to
apply this computation. In practice, we can only shrink this so big that the image will
get really small. Another problem is that the pixels are not used evenly. This means
that the pixel on the corner of the image and the pixel in the center of the image are
used once and many times, respectively, which is very uneven. This way we will throw
away a lot of information. A solution, which is padding, is to pad the image with an
extra layer (or additional few layers) of outside edges with zero values with p padding
amount. In this case, we have output matrix n+2p−f+1 by n+2p−f+1, which is a

Page 32

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §4

lot bigger. Taking p = 1, we would end up with a 6 by 6 size matrix. We say that the
convolution is “valid” meaning that we start with n×n = 6× 6 and apply convolution
operation on f × f = 3× 3 to obtain 4× 4 matrix. We say that the convolution gives
“same” matrix, meaning that we apply padding and we would end up with matrix that
is the size as the input matrix. We can simply solve

n+ 2p− f + 1 = n
2p− f + 1 = 0

2p = f − 1
p = (f − 1)/2

notice that by this construction we always need f to be odd. Because if f is even,
we would have (f − 1)/2 to be odd which will cause asymmetric information creation.
Moreover, sometimes, especially for odd sized matrix, we would notate the value (or
position) in the very center of the filter to be a center position.

4.1.3 Strided Convolutions

Strided convolutions is another piece of the basic building block of convolutions as used
in convolutional neural networks.

2 3 7 4 6 2 9
6 6 9 8 7 4 3
3 4 8 3 8 9 7
7 8 3 6 6 3 4
4 2 1 8 3 4 6
3 2 4 1 9 8 3
0 1 3 9 2 1 4

∗

 3 4 4
1 0 2
−1 0 3

 =

91 100 83
69 91 127
44 72 74

Using a stride to be two steps, this means that after we finish computation of the first
element in the output matrix we would shift two steps to the right instead of just one.
When we finish the first row, we would do the same applying stride to be two steps.
This means we would shift two rows downward instead of just one. This way, we start
with n × n and apply f × f filter with padding p and stride s. In formula, we have
(n+ 2p− f)/s+ 1 by (n+ 2p− f)/s+ 1 output matrix. Then in the above example we
have (7 + 0− 3)/2 + 1 = 4/2 + 1 = 3. However, if occasionally the formula computes a
non-integer, we have the notation bzc to denote the lower bound by the integer. Thus
we have the size for strided convolutions to be

bn+ 2p− f
s

+ 1c by bn+ 2p− f
s

+ 1c

In conventional math sense, there is a slight difference between between cross-
correlation and convolution. Consider the above example and we want to do a con-
volution via conventional mathematical sense. We would update the filter matrix and
flip it upside down as well as left side right. That means, 3 4 4

1 0 2
−1 0 3

 −→
 7 2 5

9 0 4
−1 1 3

then we apply the same calculation to the target matrix. In conventional literature,
people address this operation as convolution. In signal processing, people also conduct
(A ? B) ? C = A ? (B ? C), but we do not complicate our work by this.

Page 33

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §4

4.2 Convolution Over Volume

Now let us consider a volume which is a colorful image. Images in color are usually
sized in RGB instead of greyscale. Then there are three sizes: height, width, and
number of channels. Suppose target matrix is sized 6 by 6 by 3 and a filter is sized 3
by 3 by 3. We conduct the operations applying the filter to the target matrix one step
by one step. This is to say, we want to detect, using the same filter, the information
in each channel, i.e. each color layer in the images.

On top this, we have edge detector, which we set middle column of filter to be zeros.
We also have options to filter a particular channel we want, simply setting the rest of
the channels zeros. We can also detect pictures with different orientation instead of
just vertical edges. We can detect horizontal edges. This is to say, we take the same
matrix operations and obtain multiple final matrices to stack them together.

In math, let us say we have n×n×n matrices to convolve with f × f ×n. We will
get

bn− f + 1c × bn− f + 1× n′cc
assuming using stride s = 1.

As a summary, we write the following notation. If layer l is a convolution layer, we
have f [l] to be filter size, p[l] is padding, and s[l] is stride. We have input matrix n

[l−1]
H ×

n
[l−1]
W × n[l−1]

c , where H, W , and C denotes, “height”, “width”, and “convolution”,

respectively. The output matrix would be n
[l]
H × n

[l]
W × n

[l]
c where the size is given

n[l] = bn
[l−1] + 2p[l] − f [l]

s[l]
+ 1c for nH , nW , respectively

4.3 Pooling Layers

Other than convlutional layers, ConvNets often use pooling layers to reduce the size of
the representation to speed up the computation as well as to make some of the features
that detects signals more robust.

Suppose you have a 4 × 4 input, and you want to apply a type of pooling called
max pooling. The output of this particular implementation of max pooling will be a
two by two output. Take the 4× 4 input and break it into different regions and let us
color the four regions as follows.

1 3 2 1
2 9 1 1
1 3 2 3
5 6 1 2

 −→ [
9 6
6 3

]

In the output, which is 2 × 2, each of the outputs will just be the max from the
corresponding reshaded region. The upper left, the max of these four numbers, would
be nine. On upper right, the max of the blue numbers is three. To compute each of
the numbers on the right, we take the max over a 2× 2 regions. This is as if you apply
a filter size of two because you are taking a 2 × 2 regions and you are taking a stride
of two. These are actually the hyperparameters of max pooling because we start from
this filter size.

This can be thought of as some kind of features. The activations in some layer of
the neural network, a large number, means that it may be detected a particular feature.
That is, the upper left-hand quadrant has this particular feature. It maybe a vertical
edge. Clearly that feature exists in the upper left-hand quadrant where as this feature,
maybe it is not a cat detector. Where as this feature, it does not really exist in the
upper right-hand quadrant. It then remains preserved in the output of max pooling.

Page 34

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §4

What the max operates to do is really , if these features detected anywhere in this filter
then keep a high number. But if this feature is not detected, maybe this feature does
not exist in the upper right-hand quadrant at all. Then the max of all those numbers
is still itself quite small. There is not any theoretical reason why this approach works
well. It is just a fact that this approach happen to work well in some data set sets.

4.4 CNN Example

Now let us take a look at an example. You have an input as an image which is 32×32×3,
so it is an RGB image and perhaps you are trying to do handwritten digit recognition.
You have a number “7” in a 32× 32 RGB initiate trying to recognize which one of the
10 digits from zero to nine is this. Let us conduct the following

Digit: 7 −→

�� . . .�︸ ︷︷ ︸
32×32×3

f=5
s=1−→

Conv 1︷ ︸︸ ︷
�� . . .�︸ ︷︷ ︸
28×28×6

maxpool
f=2
s=2−→

Pool 1︷ ︸︸ ︷
�� . . .�︸ ︷︷ ︸
14×14×6︸ ︷︷ ︸

layer1

f=5
s=1−→

Conv 2︷ ︸︸ ︷
�� . . .�︸ ︷︷ ︸
10×10×16

maxpool
f=2
s=2−→

Pool 2︷ ︸︸ ︷
�� . . .�︸ ︷︷ ︸

5×5×16︸ ︷︷ ︸
layer2

−→

0
0
...
0

︸︷︷︸

expand 400×1

−→

FC 3︷︸︸︷
0
0
...
0

︸︷︷︸

size 120×400

−→

FC 4︷︸︸︷
0
0
...
0

︸︷︷︸

size 84×400

−→ � : softmax, 10 outputs

and as one can imagine there are two types of conventions to count the number of
layers. One can count conv layer and pooling layer together as one convolution layer.
Alternatively, one can count convolution layer and pooling layer separately as two
layers. In the following discussion, we will count them as one layer.

The deeper you go into neural network, the number of heights and width will drop.
A combination of a few convolution layers and neural network layers can be conventional
model to construct CNN. The example above is a LeNet5. Let us notate all the sizes
down into a table below:

– Activation Shape Activation Size # parameters

Input: (32,32,3) 3072 0
CONV1 (f=5,s=1) (28,28,8) 6272 208

POOL1 (14,14,8) 1568 0
CONV2 (f=5,s=1) (10,10,16) 1600 416

POOL2 (5,5,16) 400 0
FC3 (120,1) 120 48001
FC4 (84,1) 84 10081

Softmax (10,1) 10 841

4.5 Why Convolution

To wrap this section, let us discuss why convolutions are so useful when they are
included in the neural network construction. There are two main advantages of con-
volutional layers over just using fully connected layers: (1) parameter sharing, and (2)
sparsity of connections. Let us illustrate this with an example. Recall the previous
example

Digit: 7 −→

Page 35

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §4

�� . . .�︸ ︷︷ ︸
32×32×3

f=5
s=1−→

Conv 1︷ ︸︸ ︷
�� . . .�︸ ︷︷ ︸
28×28×6

maxpool
f=2
s=2−→

Pool 1︷ ︸︸ ︷
�� . . .�︸ ︷︷ ︸
14×14×6︸ ︷︷ ︸

layer1

f=5
s=1−→

Conv 2︷ ︸︸ ︷
�� . . .�︸ ︷︷ ︸
10×10×16

maxpool
f=2
s=2−→

Pool 2︷ ︸︸ ︷
�� . . .�︸ ︷︷ ︸

5×5×16︸ ︷︷ ︸
layer2

−→

0
0
...
0

︸︷︷︸

expand 400×1

−→

FC 3︷︸︸︷
0
0
...
0

︸︷︷︸

size 120×400

−→

FC 4︷︸︸︷
0
0
...
0

︸︷︷︸

size 84×400

−→ � : softmax, 10 outputs

From the sizes above, we have 32× 32× 3 dimensional image. Using a 5× 5× 6 filter,
we have a 28 × 28 × 6 dimensional output. That is, 32 by 32 by 3 is 3,072 while 28
by 28 by 6 is 4,704. If we were to connect every one of these neurons together, then
the weight matrix, the number of parameters in a weight matrix would be about 14
million. This is a lot of parameters to train. Though today we have large computing
powers to train more than 14 million, we should keep in mind that this is just one small
image. If we were to look at 1000 by 1000 image, then the display matrix will become
invisibly large.

Parameter sharing is a feature detector (such as a vertical edge detector) that is
useful in one part of the image is probability useful in another part of the image.
Sparsity of connections means that, in each layer, each output value depends only a
small number of inputs.

Consider a training set (x(1), y(1)) . . . (x(m), y(m)). In this case, the explanatory
variables can be a bunch of pixels and the response variables can be k classes. The
convolutional layers and the neural network hidden layers will have a variety of param-
eters. With the parameters chosen, we have cost function

Cost: J =
1

m

m∑
i=1

L(ŷ(i), y(i))

To train this neural network, we can use gradient descent, gradient descent with mo-
mentum, or RMS-prop, Adam, and etc..

4.6 LeNet5

First published in LeCun et al., 1998 [9], LetNet5 is structured as the following:

Digit: 7 −→

�� . . .�︸ ︷︷ ︸
32×32×3

f=5
s=1−→

Conv 1︷ ︸︸ ︷
�� . . .�︸ ︷︷ ︸
28×28×6

ave. pool
f=2
s=2−→

Pool 1︷ ︸︸ ︷
�� . . .�︸ ︷︷ ︸
14×14×6︸ ︷︷ ︸

layer1

f=5
s=1−→

Conv 2︷ ︸︸ ︷
�� . . .�︸ ︷︷ ︸
10×10×16

maxpool
f=2
s=2−→

Pool 2︷ ︸︸ ︷
�� . . .�︸ ︷︷ ︸

5×5×16︸ ︷︷ ︸
layer2

−→

0
0
...
0

︸︷︷︸

expand 400×1

−→

FC 3︷︸︸︷
0
0
...
0

︸︷︷︸

size 120×400

−→

FC 4︷︸︸︷
0
0
...
0

︸︷︷︸

size 84×400

−→ � : ŷ softmax, 10 outputs

Page 36

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §4

Based on such structure, this neural network was small by modern standards only with
60,000 parameters. Today people often use neural networks with anywhere from 10
million to 100 million parameters and it is no unusual to see networks that literally
about a thousand times bigger than this network. One trait we observe is that as you
go deeper in a network from left to right, the height and width tend to go down.

From the original paper [9], people use sigmoid/tanh and ReLU mainly.

4.7 AlexNet

The second example of a neural network to be presented is AlexNet, named after Alex
Krizhevsky, who was the first author of the paper describing this work [8]. The other
author’s were Ilya Sutskever and Geoffrey Hinton. The AlexNet input starts with 227
by 227 by 3 images. The paper actually refers to 224 by 224 by 3 images. However, the
instructor just use 224 by 224 by 3 as size. AlexNet also uses a large stride of four, the
dimensions shrinks to 55 by 55, that is doing down by a factor of 4 with max pooling
of a 3 by 3 filter. That way, we have f = 3 and s = 4.

Digit −→

�� . . .�︸ ︷︷ ︸
227×227×3

f=115
s=4−→

Conv 1︷ ︸︸ ︷
�� . . .�︸ ︷︷ ︸
55×55×966

max. pool
f=3
s=2−→

Pool 1︷ ︸︸ ︷
�� . . .�︸ ︷︷ ︸
27×27×96︸ ︷︷ ︸

layer1

f=5
s=1−→

Conv 2︷ ︸︸ ︷
�� . . .�︸ ︷︷ ︸
27×27×256

max. pool
f=3
s=2−→

Pool 2︷ ︸︸ ︷
�� . . .�︸ ︷︷ ︸
13×13×256︸ ︷︷ ︸

layer2

−→
Conv 3︷ ︸︸ ︷

�� . . .�︸ ︷︷ ︸
13×13×384

max. pool
f=3
s=2−→

Pool 3︷ ︸︸ ︷
�� . . .�︸ ︷︷ ︸
13×13×384︸ ︷︷ ︸

layer3

−→
Conv 4︷ ︸︸ ︷

�� . . .�︸ ︷︷ ︸
13×13×256

max. pool
f=3
s=2−→

Pool 4︷ ︸︸ ︷
�� . . .�︸ ︷︷ ︸
6×6×256︸ ︷︷ ︸

layer4

0
0
...
0

︸︷︷︸

expand 9216×1

−→

FC 5︷︸︸︷
0
0
...
0

︸︷︷︸

size 4096

−→

FC 6︷︸︸︷
0
0
...
0

︸︷︷︸

size 1000

−→ � : ŷ softmax, 10 outputs

This structure actually has a lot of similarities with LeNet5. However, this is a much
larger net at around 60 million parameters while LeNet5 only has about 14 million
parameters. A better way is to use ReLU and of course this is open for tuning. Parallel
training can be conducted using two GPUs together.

4.8 VGG-16

A work done by Simonyan & Zissermann 2015 used a filter of 3 by 3 and stride of 1.
They also used max pooling with 2 by 2 and stride of 2. The structure looks like the
following

Digit −→

�� . . .�︸ ︷︷ ︸
224×227×3

[CONV]64
×2−→ 224× 224× 64

POOL−→ 112× 112× 64
[CONV]128
×2−→ 112× 112× 128

POOL−→ 56×56×128
[CONV]256
×3−→ 56×56×256

POOL−→ 28×28×256
[CONV]512
×3−→ 28×28×512

POOL−→ 14×14×512

Page 37

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §4

[CONV]512
×3−→ 14× 14× 512

POOL−→ 7× 7× 512 −→ FC 4096 −→ FC 4096 −→ Softmax 1000

while

[CONV 64]× 2 :=

Conv 1︷ ︸︸ ︷
�� . . .�︸ ︷︷ ︸
55×55×966

max. pool
f=3
s=2−→

Pool 1︷ ︸︸ ︷
�� . . .�︸ ︷︷ ︸
27×27×96︸ ︷︷ ︸

layer1

, and etc..

This is a very large network with 138 million parameters. This network has 16 layers
while sometimes there are people even talking about using VGG-19 which has 19 layers
under above structure. However, VGG-16 does almost as well as VGG-19.

4.9 ResNet

Deep neural networks are difficult to train because of vanishing and exploding gradient
types of problems. Here let us discuss skipping connections which allows you to take
the activation from one layer and suddenly feed it to another layer even much deeper in
the neural network. Using this as a tool, we are able to build networks that enable us
to train very deep structures. Sometimes we can train even over 100 layers. ResNets
[5] are built out of something called a residual block. Let us consider the following
example.

a[l] −→

◦◦
◦

 a[l+1]

−→

◦◦
◦

 a[l+2]

where the step from a[l] to a[l+1] is a linear relationship governed by z[l+1] = W [l+1]a[l]+
b[l+1] and the application of ReLU to step a[l+1] is governed by a[l+1] = g(z[l+1]). This
gives us a[l+1]. To move from a[l+1] to a[l+1], we apply the same procedure but change
our index to l + 1 and l + 2. That is, we have z[l+2] = W [l+2]a[l+1] + b[l+2] while
g[l+2] = g(z[l+2]). That is, we have the following theoretical map:

a[l] −→ Linear: z[l+1] = W [l+1]a[l] + b[l+1] −→ ReLU: a[l+1] = g(z[l+1])

−→ Linear: z[l+2] = W [l+2]a[l+1] + b[l+2] −→ ReLU: g[l+2] = g(z[l+2]) −→ a[l+2]

For ResNets, we are going to make a change to the above map:

a[l] −→ Linear: z[l+1] = W [l+1]a[l] + b[l+1] −→ ReLU: a[l+1] = g(z[l+1])

−→ Linear: z[l+2] = W [l+2]a[l+1] + b[l+2] −→ Short cut: add and storea[l]

−→ ReLU: [g[l+2] = g(z[l+2])︸ ︷︷ ︸
instead of it

] We use: a[l+2] = g(z[l+2] + a[l] −→ a[l+2]

From this construction, we can look at the graphical demonstration, presented in
the beginning of this section with more layers added to it:

X −→

◦◦
◦

 −→
◦◦
◦

 −→
◦◦
◦

 −→
◦◦
◦

 −→
◦◦
◦

 −→
◦◦
◦

 −→
◦◦
◦

 −→
◦◦
◦

 −→
◦◦
◦

 −→
◦◦
◦

 a[l]

which is a conventional neural network with which we can add the constructed short
cuts as designed above. This gives us

X −→

◦◦
◦

 −→
◦◦
◦

↓ short cut

︸ ︷︷ ︸
ResNet: layer 1

−→

◦◦
◦

 −→
◦◦
◦

↓short cut

︸ ︷︷ ︸
ResNet: layer 2

−→

Page 38

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §4

ResNet: layer 3◦◦
◦

 −→
◦◦
◦

↓ short cut

︸ ︷︷ ︸
−→

ResNet: layer 4◦◦
◦

 −→
◦◦
◦

↓ short cut

︸ ︷︷ ︸
−→

ResNet: layer 5◦◦
◦

 −→
◦◦
◦

↓ short cut

︸ ︷︷ ︸
−→ a[l]

which shows five residual blocks stacked together which constructs a residual network.
The training for conventional procedure will give us a descending then ascending train-
ing set error (going down first but then going back up) as we increase number of hidden
layers while the theoretical training error will only get better not worse. However, the
usage of residual building blocks in a network, a ResNet, will not give us such problem.
We observe, even over a thousand layers, descending training set error.

Why do residual networks work well? Consider the following example

X → Big NN→ a[l]

X → Big NN→

◦◦
◦

→
◦◦
◦

 ↓→ a[l+2]

For the sake of argument, say we are using ReLU activation functions. That is, we have
a ≥ 0 with possible exception of input observations. Then a[l+2] = g(z[l+2] + a[l]) =
g(W [l+2]a[l+1]+b[l+2]+a[l]). If you are using L2 regularization as weight decay, this will
tend to shrink the value of W [l+2]. However, if we choose W [l+2] = 0 and b[l+2] = 0,
then we have a[l+2] = g(a[l]) = a[l]. What this means is that the identity function is
easy for residual block to learn. It is easy to get a[l+2] equal to a[l].

4.10 Networks with One by One Convolution

In terms of designing content architectures, one of the ideas that really helps is using
a one by one convolution [10]. How is that helpful? For one by one filter, we can put
in number two there. If you take the six by six image, and convolve it with this one
by one filter, you would end up just taking the image and multiplying it by two. That
is, a one by one filter does not seem particularly useful. However, let us look at a 6
by 6 by 32 filter instead of 1 by 1. The story will be very different. The convolution
will take element-wise product between 32 numbers on the left and 32 numbers in the
filter. Then we apply a ReLU non-linearity to it after that step. One can refer to the
following graphics for illustration:

Image→

[
1 2 3 . . .
...

]
? filter: [2]→

[
2 4 6 . . .
...

]
... not helpful

However, if one choose a 1 by 1 by 32 sized filter, one would obtain

Image→
[
◦ ◦
◦ ◦

]
?filter: [◦][◦]...[◦]1×1×32 →

[
◦ ◦
◦ ◦

] [
◦ ◦
◦ ◦

]
...

[
◦ ◦
◦ ◦

]
6×6×32

very helpful

4.11 Inception Network

When designing a layer for a convolution network, one might have to pick different
and a various of a parameters. One can choose 1 by 3 filter, or 3 by 3, etc. One
can also choose pooling layer. The notion of inception network says why not do them
all [14]. Let us say one has inputted a 28 by 28 by 192 dimensional volume. The
inception network would, instead choosing what filter size to use, choose a group of
filters together. One can use a 1 by 1 convolution and that will output 28 by 28 by

Page 39

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §4

something. One can, in addition, add 28 by 28 by 64 output and he/she would only
need to put the volume next to the above one together as one convolution layer. One
can keep going to select any sizes of filter and any number of filters he/she wants to
construct the layer of convNet.

Image: →
[
◦ ◦
◦ ◦

]
→

(1) : 1× 1 → 28× 28× 64
(2) : 3× 3 → 28× 28× 128
(3) : 5× 5 → 28× 28× 32
(4) : Max-pool → 28× 28× 32

→

�� . . .� 28× 28× 64
�� . . .� 28× 28× 128
�� . . .� 28× 28× 32
�� . . .� 28× 28× 32

−→ �� . . .�
28×28×256 sized convNet, conv layer 1

There is a problem with the construction of inception network, which is computa-
tional cost. What exactly would be the cost? By the above example, there are 5 × 5
same filters chosen for the first convolution layer with each of them 5× 5192. This is a
total of 28×28×32×5×5×192 ≈ 192 million parameters, which is a pretty expensive
computation for just one layer.

How do we reduce this cost? A natural way is to implement one by one convolution.
That is, we will start with inputting observations and apply a conv layer of 1× 1, 16,
and 1×1×192, which will give us 28×28×16 before we apply inception network. In this
case, the cost of the first convolution layer would be 28×28×16 which would be around
2.4 million parameters. The second convolution layer would be 28×28×32×5×5×16
which would be 10 million parameters. This is a total of 12 million parameters, a tenth
of the previous previous procedure.

4.12 A Few Advices

This section we discuss a few advices for doing research and constructing networks.
First of all, one should consider doing is to search for open source implementation.

We can go much faster to use previous scholars’ work and codes.
Continuing from the first point, it may be more efficient to take a previous work and

start building on top of that. This is especially true for tuning and parameters choices.
For example, one wants to build a cat classification. One may have a small training
set. What one can do is to download not just the codes as well as the weights for the
already trained data sets, which usually have a lot more observations and well-tuned
results.

4.13 Detection Algorithm

This section we learn about object detection. This is one of the areas of computer
vision that is really exploding currently.

4.13.1 Object Localization

The problem we learn to build in the network is classification with localization. This
means that not only do we want to label this as some object but the algorithm also
needs to put a bounding box or draw a bounding box around the position in the image.

We are already familiar with image classification problem, in which we input a pic-
ture to ConvNet with multiple layers and the results are several classes. The standard
classification pipeline are pedestrian, car, motorcycle, or background.

What about bounding box? We need to have a bounding frame to define bounding
box. That is, we need a coordinate in the picture. Standard notation writes (0,0) as the
upper-left corner and (1,1) to be the lower-right corner. Then we have (bx, by, bn, bw) as
the bounding box. The numeric output of this vector may look like (0.5, 0.7, 0.3, 0.4).

Page 40

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §4

In this case, the loss function would be

L(ŷ, y) =

{
(ŷ1 − y1)2 + (ŷ2 − y2)2 + · · ·+ (ŷj − yj)2 if y1 = 1
(ŷ1 − y1)2 if y1 = 1

which describes loss function depending on the output of y1. That is, if there is target
object detected, then we want to output the coordinate. If there is not any detected,
then we simply care about the neural network training.

4.13.2 Landmark Detection

Neural network can output just the important coordinates, called landmarks, in the
picture. For example, we want the results to be a car or someone’s right eye. That is,
we only want the coordinates of the targeted object or objects. That is, consider the
following illustration:

Image −→ ConvNet −→

◦◦
◦

Output: face,l1x, l1y, ..., l64x, l64y

︸ ︷︷ ︸
total of 129 outputs

To do this, programmer (or someone) would have to go through all the landmarks in
the algorithm in terms of coding purpose (this is still a supervised learning project).

4.13.3 Object Detection

Here we learn object detection by learning sliding windows detection algorithm.
Starting with an arbitrary window size, we input the sub-picture into already-

trained ConvNet to detect objects. Then we shift the detection window right with one
step and feed the observations into ConvNet. We need to go through every region so
the stride would need to be small for the detection algorithm to run smoothly. One
can even change (this can be tuned) the size of the detection window so that we can
detection different sizes of the picture. However, the sliding windows object detection
algorithm using a ConvNet is heavy computationally costly.

4.13.4 Convolutional Implementation

We learned that the sliding window object detection algorithm is very costly to be
done. Fortunately, there is a solution to implement that algorithm convolutionally.
That is, instead of choosing a smaller picture and feed that picture into ConvNet, we
convolutionally run algorithm to output what we want and finish every output each
convolution sub-picture within the ConvNet. This way we do not need to do run
convolution step twice for all the strides.

4.13.5 Bounding Box Predictions

We have discussed how to use a convolutional implementation of sliding windows,
which is more computationally efficient. However, it still has a problem of not quite
outputting the most accurate bounding boxes. Let us see how we can get the bounding
box predictions to be more accurate.

The problem is that sliding windows may or may not exactly crop the exact image
just right. For an example, say we want to detect a car in the picture. The sliding
windows (since we initially set the sizes and we did not know how big the car is) may
crop half of the car. In some cases, the car may look like a rectangle instead of square.

Page 41

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §4

To solve this problem, we can use YOLO algorithm (YOLO stands for “you only
look once”) [11]. For example, let us say we have a picture with two cars in it. Let us
use a grid for 3 by 3. For each grid cell, we want to label y = [pc; bx; by; bh; bw; c1; c2; c3].
First we run algorithm through the first grid and we would output no cars. We keep
going until we hit a grid that crops a car or part of a car. Once a car is detected we
set the grid to the car. This will give us a target output of 3 × 3 × 8 tube. Now we
have a neural network such as

Image︸ ︷︷ ︸
size: 100×100×3

−→ CONV −→ MAXPOOL −→ · · · −→ �� . . .�︸ ︷︷ ︸
size: 3×3×8

Another advantage is that this is a convolution implementation so this algorithm
actually runs very fast.

4.13.6 Intersection Over Union

How do we tell if the object detection algorithm is working well? Here we discuss
a notion called “intersection over union” . In object detection task, we expect to
localize the object as well. The intersection over union function (IOU) computes the
intersection over union of these two bounding boxes. The union of these two bounding
boxes is the pixels that belong to the first union or the second unions. We include all of
these pixels together as a set to be the union. Intersection would be the pixels in both
pixels. Taking the ratio of these two sets, we are able to judge whether the prediction
of bounded boxes is satisfied. Conventionally, we use 0.5 as cut-off to measure the
accuracy of whether such algorithm detects localization correctly. That being said, 0.5
is just chosen arbitrarily. Sometimes people use 0.6 or 0.7 for higher accuracy, but
rarely drops below 0.5.

4.13.7 Non-max Suppression

Non-max suppression needs us to put a grid on top of the picture. Since we are
running image classification on each grid cell and since we are using a finer grid, it is
possible that we will end up with multiple detection. Non-max suppression will clean
up these detections according to the probabilities associated with these detections. The
algorithm will take the largest one and hide that detection temporarily. The rest of
the detections with high IOU will then get suppressed. We apply the same process for
the rest of the detections. After this is done, we get rid of all the non-max detection
and release the one with the highest probability. The threshold we can use to discard
detections with pc ≤ 0.6. While there are any remaining boxes: (1) pick the box with
the largest pc output that as a prediction. and (2) discard any remaining box with
IOU ≥ 0.5 with the box output in the previous step.

4.13.8 Anchor Boxes

One of the problems with object detection is that each of the grid cells can detect only
one object. What if a grid cell wants to detect multiple objects? One of the ideas is
to use anchor boxes . An anchor box is a pre-defined shape so that we are able to
associate the box with a particular prediction. In general, we may be using multiple
anchor boxes. For example, let us say out output has classes human and car. Anchor
box for human may be a vertical rectangle while that for car may be a horizontal
rectangle. Thus, we may label

y = [pc; bx; by; bh; bw; c1; c2; c3︸ ︷︷ ︸
anchor box 1

; pc; bx; by; bh; bw; c1; c2; c3︸ ︷︷ ︸
anchor box 2

]

Page 42

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §4

Previously, each object in training image is assigned to grid cell that contains that
object’s midpoint. Now with two anchor boxes, each object in training image is assigned
to grid cell that contains object’s midpoint and anchor box for the grid cell with the
highest IOU.

4.13.9 YOLO Algorithm

Suppose we want to train algorithm to detect 1 == pedestrian, 2 == car, and 3 ==
motorcycle. We define the following label

y = [pc; bx; by; bh; bw; c1; c2; c3︸ ︷︷ ︸
anchor box 1

; pc; bx; by; bh; bw; c1; c2; c3︸ ︷︷ ︸
anchor box 2

]

while we can set size of y to be 3×32×8 = 3×3×16. That means, for grid that there
is nothing in it, we have output of

y = [0; ?; ?; ?; ?; ?; ?; ?︸ ︷︷ ︸
anchor box 1

; 0; ?; ?; ?; ?; ?; ?; ?︸ ︷︷ ︸
anchor box 2

]

while for anchor box with objects in it, say a car (anchor box 2), the output would be

y = [0; ?; ?; ?; ?; ?; ?; ?︸ ︷︷ ︸
anchor box 1

; pc; bx; by; bh; bw; 0; 1; 0︸ ︷︷ ︸
anchor box 2

]

4.14 Face Recognition

Face recognition problems commonly fall into two categories: (1) Face Verification - is
this the claimed person? or (2) Face Recognition - who is this person?

In face verification, we are given two images and we need to train a machine to tell if
they are of the same person. The easy way is to compare the two images pixel-by-pixel.
If the distance between the raw images are less than a chosen threshold, it may be the
same person. Of course such algorithm performs very poorly since the pixel values
change dramatically due to variations in lighting, orientation of the person’s face, even
minor changes in head position, and so on.

A solution is to use FaceNet model that takes a lot of data and long time to train.
Such architecture is proposed following the inception model by [14].

4.14.1 Triplet Loss

For an image x, we denote its encoding f(x), where f is the function computed by the
neural network.

x = image −→ Inception model −→ f(x) =

0.931
0.433
0.331

...
0.942
0.158
0.039

Training will use triplets of images (A,P,N) while A is an “Anchor” image – a picture
of a person, P is a “Positive” image – a picture of the same person as the Anchor
image, and N is a “Negative” image – a picture of a different person than the Anchor
image.

Page 43

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §4

These triplets are picked from our training dataset. We will write (A(i), P (i), N (i))
to denote the i-th training example. We need to make sure that an image A(i) of an
individual is closer to the Positive P (i) than to the Negative image N (i)) by at least a
margin α:

||f(A(i))− f(P (i))||22 + α < ||f(A(i))− f(N (i))||22
This becomes an optimization problem and we need to minimize the following “triplet
cost”:

J =

m∑
i=1

[||f(A(i))− f(P (i))||22︸ ︷︷ ︸
(1)

− ||f(A(i))− f(N (i))||22︸ ︷︷ ︸
(2)

+α]+

To implement the triplet loss as defined by the above formula. Here are 4 steps:
1. Compute the distance between the encodings of ”anchor” and ”positive”: ||

f(A(i))− f(P (i)) ||22
2. Compute the distance between the encodings of ”anchor” and ”negative”: ||

f(A(i))− f(N (i)) ||22
3. Compute the formula per training example: || f(A(i))− f(P (i)) | − || f(A(i))−

f(N (i)) ||22 +α
4. Compute the full formula by taking the max with zero and summing over the

training examples:

J =

m∑
i=1

[|| f(A(i))− f(P (i)) ||22 − || f(A(i))− f(N (i)) ||22 +α]

Useful functions: ‘tf.reduce sum()‘, ‘tf.square()‘, ‘tf.subtract()‘, ‘tf.add()‘, ‘tf.maximum()‘.
For steps 1 and 2, you will need to sum over the entries of || f(A(i))− f(P (i)) ||22 and
|| f(A(i))−f(N (i)) ||22 while for step 4 you will need to sum over the training examples.

4.15 Neural Style Transfer

Neural Style Transfer (NST) is one of the most fun techniques in deep learning. As seen
before, we can take a content image and a style image to merge two images together
to become a generated image. Namely, we have C + S = G.

Neural Style Transfer (NST) uses a previously trained convolutional network and
builds on top of that. The idea of using a network trained on a different task and
applying it to a new task is called transfer learning . Following Gatys et al. (2015)
[4], the algorithm take VGG model, speicially VGG-10, a 19-layer version of the VGG
network and start building on top of that.

4.15.1 Cost Function

As we saw in lecture, the earlier (shallower) layers of a ConvNet tend to detect lower-
level features such as edges and simple textures, and the later (deeper) layers tend to
detect higher-level features such as more complex textures as well as object classes.

We would like the ”generated” image G to have similar content as the input image
C. Suppose you have chosen some layer’s activations to represent the content of an
image. In practice, you’ll get the most visually pleasing results if you choose a layer in
the middle of the network–neither too shallow nor too deep. (After you have finished
this exercise, feel free to come back and experiment with using different layers, to see
how the results vary.)

Suppose you have picked one particular hidden layer to use. Now, set the image
C as the input to the pre-trained VGG network, and run forward propagation. Let
a(C) be the hidden layer activations in the layer you had chosen. (In lecture, we had

Page 44

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §4

written this as a[l](C), but here we will drop the superscript [l] to simplify the notation.)
This will be a nH × nW × nC tensor. Repeat this process with the image G: Set G as
the input, and run forward propagation. Let a(G) be the corresponding hidden layer
activation. We will define as the content cost function as:

Jcontent(C,G) =
1

4× nH × nW × nC

∑
all entries

(a(C) − a(G))2

Here, nH , nW and nC are the height, width and number of channels of the hidden
layer you have chosen, and appear in a normalization term in the cost. For clarity,
note that a(C) and a(G) are the volumes corresponding to a hidden layer’s activations.
In order to compute the cost Jcontent(C,G), it might also be convenient to unroll these
3D volumes into a 2D matrix, as shown below. (Technically this unrolling step isn’t
needed to compute Jcontent, but it will be good practice for when you do need to carry
out a similar operation later for computing the style constant Jstyle.)

�� . . .�︸ ︷︷ ︸
nC×nW×nH︸ ︷︷ ︸

Convolution layer: each color represents the act. of a filter

−→ · · · −→

−→

◦ ◦ ◦ ◦ . . . ◦
◦ ◦ ◦ ◦ . . . ◦
◦ ◦ ◦ ◦ . . . ◦
...

...
...

...
...

...
◦ ◦ ◦ ◦ . . . ◦
◦ ◦ ◦ ◦ . . . ◦

︸ ︷︷ ︸

nH×nW×nC︸ ︷︷ ︸
Unrolled Version: each row represents the activations of a filter

4.16 Style Matrix

The style matrix is also called a “Gram matrix” . In linear algebra, the Gram matrix G
is a set of vectors (v1, ..., vn) is the matrix of dot products, whose entries are Gijv

T
i vj =

np.dot(vi, vj). In other words, Gij compares how similar vi is to vj : if they are highly
similar, you would expect them to have a large dot product, and thus for Gij to be
large.

Note that there is an unfortunate collision in the variable names used here. We are
following common terminology used in the literature, but G is used to denote the Style
matrix (or Gram matrix) as well as to denote the generated image G. We will try to
make sure which G we are referring to is always clear from the context.

The result is a matrix of dimension (nC , nC) where nC is the number of filters. The
value Gij measures how similar the activations of filter i are to the activations of filter
j.

One important part of the gram matrix is that the diagonal elements such as Gii
also measures how active filter i is. For example, suppose filter i is detecting vertical
textures in the image. Then Gii measures how common vertical textures are in the
image as a whole: If Gii is large, this means that the image has a lot of vertical texture.

By capturing the prevalence of different types of features (Gii), as well as how
much different features occur together (Gij), the Style matrix G measures the style of
an image.

Page 45

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §5

5 NATURAL LANGUAGE PROCESSING

Go back to Table of Contents. Please click TOC

This is the fifth course on deep learning. In this course, we discuss about sequence
models, one of the most exciting areas in deep learning. Models like recurrent neural
networks or RNNs have transformed speech recognition, natural language processing
and other areas. Moreover, in this course, you learn how to build these models for
yourself. Let us start by looking at a few examples of where sequence models can be
useful. In speech recognition you are given an input audio clip X and asked to map it
to a text transcript Y . Both the input and the output here are sequence data, because
X is an audio clip and so that plays out over time and Y , the output, is a sequence of
words. So sequence models such as a recurrent neural networks and other variations,
you will learn about in a little bit have been very useful for speech recognition. Music
generation is another example of a problem with sequence data. In this case, only the
output Y is a sequence, the input can be the empty set, or it can be a single integer,
maybe referring to the genre of music you want to generate or maybe the first few
notes of the piece of music you want. But here X can be nothing or maybe just an
integer and output Y is a sequence. Some other examples can be DNA sequence data,
machine translation, video activity recognition, and so on.

Let us discuss some notations. Let X be “Harry Potter and Hermionie Granger
invented a spell”. The Y can be (110110000). Each word from X can be x<1>, ...,
x<n>, etc. Say Harry can be x<1> in the X. We use TX and TY to denote the length
of the vectors. In this case, TX = 9. Then let us check the dictionary. We observe the
following index order, (a, aaron, ..., and, ..., harry, ..., potter, ..., zulu), which gives us
indexed order for each word, i.e. (1, 2, ..., 367, ..., 4075, ..., 6830, ..., 10,000).

A natural way is to throw these variables into neural network and observe the
outcome. It turns out this performs poorly. There are the following reasons: (1) input
and output have different lengths; (2) a naive neural network does not share features
learned across different positions of text.

5.1 Recurrent Neural Network

Let us say we are reading a sentence. We read the sentence word by word. that is, the
store information of the first word we read and this is taken into consideration when
we read the second word. In graphical analysis, we present the following flow chart

ŷ<1>

↑◦◦
◦

↑

x<1>

a<1>

−→

ŷ<1>

↑◦◦
◦

↑

x<1>

a<2>

−→

ŷ<1>

↑◦◦
◦

↑

x<1>

a<3>

−→

each step we also compute the weights that govern the predictions, which allow us to
implement the above flow chart as the following

a<0>

−→
Waa

ŷ<1>

↑Wya◦◦
◦

↑Wax
x<1>

a<1>

−→
Waa

ŷ<1>

↑Wya◦◦
◦

↑Wax
x<1>

a<2>

−→
Waa

ŷ<1>

↑Wya◦◦
◦

↑Wax
x<1>

a<3>

−→ . . .
a<n>

−→

ŷ
Ty

↑Wya◦◦
◦

↑Wax
x<Tx>

Page 46

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §5

5.2 Different Types of RNN

The input X and Y can be of many types and they do not have to be of the same
lengths. Let us recall the structure of recurrent neural network, which is a many-to-
many architecture

a<0>

−→
Waa

ŷ<1>

↑Wya◦◦
◦

↑Wax
x<1>

a<1>

−→
Waa

ŷ<1>

↑Wya◦◦
◦

↑Wax
x<1>

a<2>

−→
Waa

ŷ<1>

↑Wya◦◦
◦

↑Wax
x<1>

a<3>

−→ . . .
a<n>

−→

ŷ
Ty

↑Wya◦◦
◦

↑Wax
x<Tx>

Alternatively, we can have a data set that is a sentiment analysis. The data set
records people’s preferences about movies. Another example can be that we are trying
to recognize music segments. The vanilla RNN simply consists of a architecture such
that the size (i.e. length) of the input and output variables are the same. However,
depending on different sizes, we have ourselves one-to-many, many-to-one, and many-
to-many types of RNN.

5.3 Language Model

Formal languages, like programming languages, can be fully specified. All the reserved
words can be defined and the valid ways that they can be used can be precisely defined.
We cannot do this with natural language. Natural languages are not designed; they
emerge, and therefore there is no formal specification. There may be formal rules for
parts of the language, and heuristics, but natural language that does not confirm is
often used. Natural languages involve vast numbers of terms that can be used in ways
that introduce all kinds of ambiguities, yet can still be understood by other humans.

Further, languages change, word usages change: it is a moving target. Nevertheless,
linguists try to specify the language with formal grammars and structures. It can be
done, but it is very difficult and the results can be fragile. An alternative approach to
specifying the model of the language is to learn it from examples.

Recently, the use of neural networks in the development of language models has
become very popular, to the point that it may now be the preferred approach. The use
of neural networks in language modeling is often called Neural Language Modeling, or
NLM for short. Neural network approaches are achieving better results than classical
methods both on standalone language models and when models are incorporated into
larger models on challenging tasks like speech recognition and machine translation.

Let us consider an example. For each RNN project, we want to first identify a
corpus of text as the training set. One can take the text, “cats average 15 hours of
sleep a day”. We can also add “EOS”, meaning end of sentence, to indicate to us that
the sentence ends.

5.4 Gated Recurrent Unit (GRU)

Recall that a<t> = g(Wa[a<t−1>, x<t>] + ba) while g(·) is a tanh function. The earlier
scholarly papers such as [2] and [3] provided thorough ideas in this realm. They raised
the notion of a memory cell, namely C. At time t, the memory would have content
C<t>, which is equal to a<t>. This will give us

C̃<t> = tanh(Wc[c
<t−1>, x<t> + bc]

Page 47

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §5

which will be a candidate to replace C<t>. We call the gate Γu = σ(Wu[c<t−1>, x<t>]+
bu). To compute the actual value of GRU, we use

C<t> = Γu ? C̃
<t> + (1− Γu) ? C<t−1>

In other words, we have the following flow chart

C<t−1> = a<t−1> −→

C<t> ←
↑ C̃<t> ↑ Γu

tanh σ
↑ ↑

X<t> →

 −→ C<t> = a<t−1>

which can be helpful for vanishing gradient problem.

5.5 Long Short Term Memory (LSTM)

Long short-term memory (LSTM) units (or blocks) are a building unit for layers of a
recurrent neural network (RNN). A RNN composed of LSTM units is often called an
LSTM network. A common LSTM unit is composed of a cell, an input gate, an output
gate and a forget gate. The cell is responsible for “remembering” values over arbitrary
time intervals; hence the word “memory” in LSTM. Each of the three gates can be
thought of as a “conventional” artificial neuron, as in a multi-layer (or feed-forward)
neural network: that is, they compute an activation (using an activation function) of a
weighted sum. Intuitively, they can be thought as regulators of the flow of values that
goes through the connections of the LSTM; hence the denotation “gate”. There are
connections between these gates and the cell.

The work for Long Short Term Memory (LSTM) is published first by [7]. Recall
GRU takes the following path

c̃<t> = tanh(Wc[Γr ? c
<t−1>, x<t>] + bc)

Γu = σ(Wu[c<t−1>, x<t>] + bu)

Γu = σ(Wr[c
<t−1>, x<t>] + br)

c<t> = Γu ? c̃
<t> + (1− Γu) ? c<t−1>

a<t> = c<t>

while LSTM takes the following path

c̃<t> = tanh(Wc[a
<t−1>, x<t>] + bc)

update: Γu = σ(Wu[a<t−1>, x<t>] + bu)

forget: Γf = σ(Wf [a<t−1>, x<t>] + bf)

output: Γo = σ(Wo[a
<t−1>, x<t>] + bo)

c<t> = Γu ? c̃
<t> + Γf ? c

<t−1>

There are several architectures of LSTM units. A common architecture is composed
of a memory cell, an input gate, an output gate and a forget gate.

An LSTM (memory) cell stores a value (or state), for either long or short time
periods. This is achieved by using an identity (or no) activation function for the
memory cell. In this way, when an LSTM network (that is an RNN composed of
LSTM units) is trained with backpropagation through time, the gradient does not
tend to vanish.

Page 48

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §5

The LSTM gates compute an activation, often using the logistic function. Intu-
itively, the input gate controls the extent to which a new value flows into the cell, the
forget gate controls the extent to which a value remains in the cell and the output
gate controls the extent to which the value in the cell is used to compute the output
activation of the LSTM unit.

There are connections into and out of these gates. A few connections are recurrent.
The weights of these connections, which need to be learned during training, of an
LSTM unit are used to direct the operation of the gates. Each of the gates has its own
parameters, that is weights and biases, from possibly other units outside the LSTM
unit.

5.6 Bidirectional RNNs

Bidirectional Recurrent Neural Networks (BRNN) were invented in 1997 by Schuster
and Paliwal [12]. BRNNs were introduced to increase the amount of input information
available to the network. For example, multilayer perceptron (MLPs) and time delay
neural network (TDNNs) have limitations on the input data flexibility, as they require
their input data to be fixed. Standard recurrent neural network (RNNs) also have
restrictions as the future input information cannot be reached from the current state.
On the contrary, BRNNs do not require their input data to be fixed. Moreover, their
future input information is reachable from the current state. The basic idea of BRNNs
is to connect two hidden layers of opposite directions to the same output. By this
structure, the output layer can get information from past and future states.

BRNN are especially useful when the context of the input is needed. For example,
in handwriting recognition, the performance can be enhanced by knowledge of the
letters located before and after the current letter.

The principle of BRNN is to split the neurons of a regular RNN into two directions,
one for positive time direction (forward states), and another for negative time direction
(backward states). Those two states’ output are not connected to inputs of the opposite
direction states. The general structure of RNN and BRNN can be depicted in the right
diagram. By using two time directions, input information from the past and future of
the current time frame can be used unlike standard RNN which requires the delays for
including future information.

5.7 Deep RNNs

A more sophisticated graphical illustration can be the following.

Page 49

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §5

h1
t−1

hn−mt−1

hnt−1

yt−1

vt−1

h1
t−1(1)

hn−mt−1(1)

hnt−1(1)

h1
t−1(2)

hn−mt−1(2)

hnt−1(2)

h1
t

hn−mt

hnt

yt

vt

h1
t(1)

hn−mt(1)

hnt(1)

h1
t(2)

hn−mt(2)

hnt(2)

h1
t+1

hn−mt+1

hnt+1

yt+1

vt+1

.

Alternatively, we can use the following graph.

Input
layer

Hidden
layer

Output
layer

5.8 Word Embeddings

The historical representation is to present words as an index from a dictionary. Given a
10,000 words dictionary v and a word “man” indexed to be the 5391th word, we simply
code the word “man” as [0,0, ..., 1, ..., 0] with 1 at the 5391th place and 0s elsewhere.
A problem is due to the randomness of dictionary and our day-to-day conversation.
We can say “I want a glass of orange juice” or we can say “I want a glass of apple
juice”. However, the indexed order for “apple” and “juice” are nowhere close to each
other. This causes a potential problem.

t-distributed stochastic neighbor embedding (t-SNE) is a machine learning algo-
rithm for dimensionality reduction developed by Geoffrey Hinton and Laurens van der

Page 50

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §5

Maaten [6], which can then be visualized in a scatter plot. Specifically, it models each
high-dimensional object by a two- or three-dimensional point in such a way that similar
objects are modeled by nearby points and dissimilar objects are modeled by distant
points.

The t-SNE algorithm comprises two main stages. First, t-SNE constructs a prob-
ability distribution over pairs of high-dimensional objects in such a way that similar
objects have a high probability of being picked, whilst dissimilar points have an ex-
tremely small probability of being picked. Second, t-SNE defines a similar probability
distribution over the points in the low-dimensional map, and it minimizes the Kull-
back–Leibler divergence between the two distributions with respect to the locations
of the points in the map. Note that whilst the original algorithm uses the Euclidean
distance between objects as the base of its similarity metric, this should be changed as
appropriate.

t-SNE has been used in a wide range of applications, including computer security
research, music analysis, cancer research, bioinformatics[15], and biomedical signal
processing. It is often used to visualize high-level representations learned by an artificial
neural network.

Page 51

Index

activation function: linear, 13
activation function: nonlinear, 13
activation function: ReLU, 13
activation function: sigmoid, 13
activation function: tanh, 13
Adam optimization algorithm, 23
AlexNet, 37
anchor boxes, 42

backward propagation, 15
batch gradient descent, 21
batch normalization, 25
bias-variance trade-off, 17
bounding box, 40
broadcasting, 10

content image, 44
convolution implementation, 41
convolution operation, 31
convolution over volume, 34
convolutional networks, 31
cost function, 7

deep neural network, 15
dropout, 19

edges, 31
edges: horizontal, 31
edges: vertical, 31
exponentially weighted averages, 22

face verification, 43
filter (aka, a kernel), 31
forward propagation, 14
fundamental assumptions, 30

gate, 48
generated image, 44
gradient check, 21
gradient descent algorithm, 7
Gram matrix, 45
GRU, 48

hyperparameter tuning, 24
hyperparameters, 17

inception network, 39
intersection over union, 42

landmarks, 41

leaky ReLU, 12
LeNet5, 35
LetNet5, 36
linear activation function, 13
localization, 40
Logistic regression, 6
Long short-term memory, 48
LSTM gates, 49

many-to-many architecture, 47
max pooling, 34
memory cell, 47
mini-batch gradient descent, 21, 24
minimizing the cost function, 11
momentum, 23

neural style transfer, 44
non-max suppression, 42

object detection, 40
one by one convolution, 39
orthogonalization, 29
over-fitting, 17

padding, 32
parameter sharing, 35, 36
partial derivative symbol, 7
pooling layers, 34

recurrent neural network, 48
regularization, 18
regularization parameter, 18
ReLU, 13
ReLU (recitified linear unit), 12
remembering, 48
ResNet, 39
ResNets, 38
Root Mean Square Propagation

(RMS-Prop), 23

sequence models, 46
Shallow Neural Network, 11
Sharr filter, 32
short cuts, 38
sliding windows detection algorithm,

41
Sobel filter, 32
softmax regression, 27
sparsity of connections, 35, 36
speech recognition, 46

52

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §5

strided convolutions, 33
style image, 44
style matrix, 45
supervised learning, 5

t-distributed stochastic neighbor
embedding, 50

tanh, 13, 19
transfer learning, 44
tuning: caviar, 25

tuning: panda, 25

unsupervised learning, 5

vanishing and exploding gradients, 20
vanishing gradient problem, 48
vectorization, 9

YOLO algorithm, 42

Page 53

Notes in Deep Learning [Notes by Yiqiao Yin] [Instructor: Andrew Ng] §5

References

[1] Ng, Andrew, Coursera Deep Neural Network 5-Sequence Lecture.

[2] Cho et al, 2014, “On the Properties of Machine Learning Translation: Encoder-
decode Approaches”.

[3] Chung et al 2014, “Empirical Evaluation of Gated Recurrent Neural Networks on
Sequence Modeling”.

[4] Gatys et al., 2015, “A Neural Algorithm of Artistic Style”.

[5] He et al., 2015, “Deep residual networks for image recognition”.

[6] van der Maaten, L.J.P.; Hinton, G.E. (Nov 2008). “Visualizing High-Dimensional
Data Using t-SNE” (PDF). Journal of Machine Learning Research. 9: 2579–2605.

[7] Hochreiter Schmidhuber 1997, “Long short-term Memory”.

[8] Krizhevsky et al., 2012, “ImageNet classification with deep convolutional neural
networks”.

[9] LeCun et al., 1998, “Gradient-based learning applied to document recognition”.

[10] Lin et al., 2013, “Network in Network”.

[11] Redmon et al, 2015, “You Only Look Once: Unified, Real-Time Object Detection”.

[12] Schuster, Mike, and Kuldip K. Paliwal, 1997, “Bidirectional recurrent neural net-
work”.

[13] Simonya, Zisserman, 2015. “Very deep convolutional networks for large-scale image
recognition”.

[14] Szegedy et al 2014, “Going deeper with Convolutions”.

[15] Wallach, I.; Liliean, R. (2009). ”The Protein-Small-Molecule Database, A Non-
Redundant Structural Resource for the Analysis of Protein-Ligand Binding”. Bioin-
formatics. 25 (5): 615–620.

Page 54

	NEURAL NETWORKS AND DEEP LEARNING
	Welcome
	Intro to Deep Learning
	Logistic Regression as Neural Network
	Binary Classification
	Logistic Regression
	Logistic Regression Cost Function
	Gradient Descent
	Derivatives
	Computation Graph

	Vectorization
	Explanation of Logistic Cost Function

	Shallow Neural Network
	Activation Function
	Derivative of Activation Functions
	Gradient Descent for Neural Networks

	Deep Neural Network

	DEEP NEURAL NETWORKS: HYPER-PARAMETER TUNING, REGULARIZATION AND OPTIMIZATION
	Bias-Variance Trade-off
	Regularization
	Softmax Function

	Set Up Optimization Problem
	Optimization Algorithms
	Hyperparameter Tuning
	Batch Normalization
	Multi-class Classification

	STRUCTURING MACHINE LEARNING PROJECT
	Orthogonalization
	Set Up
	Compare to Human Level

	CONVOLUTIONAL NEURAL NETWORKS (CNN)
	Convolutional Neural Networks
	Filter or Kernel
	Padding
	Strided Convolutions

	Convolution Over Volume
	Pooling Layers
	CNN Example
	Why Convolution
	LeNet5
	AlexNet
	VGG-16
	ResNet
	Networks with One by One Convolution
	Inception Network
	A Few Advices
	Detection Algorithm
	Object Localization
	Landmark Detection
	Object Detection
	Convolutional Implementation
	Bounding Box Predictions
	Intersection Over Union
	Non-max Suppression
	Anchor Boxes
	YOLO Algorithm

	Face Recognition
	Triplet Loss

	Neural Style Transfer
	Cost Function

	Style Matrix

	NATURAL LANGUAGE PROCESSING
	Recurrent Neural Network
	Different Types of RNN
	Language Model
	Gated Recurrent Unit (GRU)
	Long Short Term Memory (LSTM)
	Bidirectional RNNs
	Deep RNNs
	Word Embeddings

