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Deep Learning Overview Creating a CNN

Background

Deep learning is a machine learning technique which utilizes
multiple layers of Neural Networks.
The basic Building Blocks are:
o Multiple Layers
@ Bias
Input Weighting (and not the weighting between “Neurons”)
@ Pooling Operation between layers
Pooling together inputs which reduces the size of the input
between layers. Can be overlapped like in the Alex Network
@ RelLUs (Rectified Linear Units)
Modeling a neuron's output and keeping it positive such as
f(x) = max(0, x). Can also be tied to Local Response
Normalization (brightness normalization)
@ Types of Learning
e Stochastic Gradient Decent
o Restricted Boltzmann Machines
e Auto-encoders
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Kinds of Deep Learning Networks

SUPERVISED
Recurrent
Neural Net O
) . Boosting
Convolutional
Neural Net
O
Neural Net Perceptron o
SVM
DEEP SHALLOW
Deep (sparse/denoising) Autoencoder Neural Net
Autoencoder @)
Sparse Coding
SP GMM
O Deep Belief Net Restricted BM @)
o o)
BayesNP
O UNSUPERVISED  Slide: M. Ranzato
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History

T

Fukushima 1980
Neocognitron

Rumelhart, Hinton, Williams 1986
“T” versus “C” problem

LeCun et al. 1989-1998
Hand-written digit reading

“SuperVision” CNN

f) (AVEN RN — —= AT Krizhevksy, Sutskever, Hinton 2012
3 Egi===xn @ - _t ImageNet classification breakthrough
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What is a Convolutional Neuro-Network

* A special type of Neural Net that incorporates priors about continuous signals
o sound / speech (2D signal)
o images (3D signal)
o videos (4D signal)

¢ Parameters sharing and pooling take advantage of local coherence to leam invariant features

¢ Inits simplest form, a ConvNet is just a series of stages of the form:
convolution

bias

non-linearity (ReLu or sigmoid functions)
pooling

o o

convolutians subsampling convolutiens full
connection

[s 3]

¢ Normalization layers (LCN) may be added

output

convolutions  subsampling \_, -
subsampling

[ ] E = = m
1 . B
10x10
2x2 5x5 1x1 1x1

14x14

Eonvolutwon pooling canv conv conv
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Data Augmentation

@ Augmenting data is crucial to avoid overfitting and build
robustness

@ Ideally you want to cover all deformations occurring in target
domain (not more)
translations
scales
rotations
contrast
lighting
colors
flip
© If possible, average or max over these transformations at test
time
© Allows for smaller datasets (Imagenet would be far too small
without this for the Alex Network)
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Mutliscale

@ Skip Connections can improve multiscale detection

Task Single-Stage | Multi-Stage | Improvement %
comoltons subsamsing anvabons W1 e | foatare

Podostrians dotootion 1126% 95 3%
INRIA) [5]

Traffic Signs clasification | 1.80% 085% 5%

1 \_) (GTSRB)
convelutions. subsampling House Numbers classification 5.36% 32%
Convolutional Soft-max
Convolutional layer .
3 layer 2
i
fi 52
EE L
39 3c
0 <8
60 - a® ~+—conventional
P Max-pocling %
1 20 max-pooling Mal’;vp:f'z""g layer 3 = multi-scale
Input layer layer 1 < o
features pateh i

(DeepiD)

Pedestrian detection with unsupervised multi-stage feature learning. Sermanet, P, Kavukouoglu, K., Chintala, ., & LeGun, Y. (2013, June). InComputer Vision and
Pattern Recognition (CVPR), 2013 |EEE Conference on(pp. 3626-3633). |EEE

Traffic sign recognition with multi-scale convolutional networks. Sermanet, Pierre, and Yann LeCun. Neural Networks (IJCNN), The 2011 Internationai Joint
Conference on. IEEE, 2011.

Convolutional neural networks applied to house numbers digit classification. Sermanet, Pierre, Soumith Chintala, and Yann LeCun. Pattern
Recognition (ICPR), 2012 21st International Conference on. IEEE, 2012.

Deep Learning Face Representation from Predicting 10,000 Classes. Sun, Yi, Xiaogang Wang, and Xiacou Tang
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Spatio-Temporal Features

@ If you know where you need to scale then you can do use
multiple streams

— Pvea styg,,

- Figure 3: Filters learned on first layer of a multiresolution

% network. Left: context stream, Right: fovea stream. No-

. . . . tably, the fovea stream learns grayscale, high-frequency fea-

Figure 2: Multiresolution CNN architecture. Input frames tures while the context stream models lower frequencies and

are fed into two separate streams of processing: a con- colors. GIFs of moving video features can be found on our
text stream that models low-resolution image and a fovea website (linked on first page).

stream that processes high-resolution center crop. Both
streams consist of alternating convolution (red), normaliza-
tion (green) and pooling (blue) layers. Both streams con-
verge to two fully connected layers (yellow).

Karpathy, A, Toderici, G., Shetty, S., Leung, T., Sukthankar, R., & Fei-Fei, L (2014). Large-scale video ification with ional neural
networks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
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Different kinds of Networks

Single Frame Late Fusion Early Fusion  Slow Fusion
i I | I ]
= [——] =) =) =

]l  — | [—)
= c—  E— | ===
= =i = = Z
= [-—] (] == -]
| manm ] | o | — mmmm]
I:l [-—] [—) l:l [ﬁ%
— [y  ——— -
Model | Clip Hit@1 Video Hit@1 Video Hit@5
Feature Histograms + Neural Net - 553 -
Single-Frame 41.1 593 717
Single-Frame + Multires 42.4 60.0 785
Single-Frame Fovea Only 30.0 499 728
Single-Frame Context Only 38.1 56.0 71.2
Early Fusion 38.9 577 76.8
Late Fusion 40.7 59.3 78.7
Slow Fusion 41.9 60.9 80.2
CNN Average (Single+Early+Late+Slow) 414 63.9 82.4
Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., & Fei-Fe, L (2014). Large-scale video classification with ional neural

networks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
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Net pre-training

@ Leveraging Previously Trained datasets (Transfer Learning)

s Labeled data is rare for detection: leverage large classification labeled datasets for pre-
training.

s ImageNet Classification pretraining + fine-tuning on a different task has been shown to
work very well by many people.
o in particular [Razavian'14] took the off-the-shelf convnet OverFeat + SVM classifier on
top and obtained many state-of-the-art or competitive results on 10+ datasets and visual
tasks
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CNN Features off-the-shelf: an ling Baseline for iti Razavian, Ali Sharif, Hossein Azizpour, Josephine Sullivan, and Stefan
Carlsson. arXiv preprint arXiv: 1403.6382 (2014).
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Net pre-training

@ Size of your dataset dictates the number of levels (or at least
the approach)

e Capacity must match the problem at hand
o B0M-parameters model has a capacity designed for ImageNet-scale data
o one cannot train such model on a small dataset: e.g. 6k bird dataset in [Branson’14]
o ImageNet pre-training will ensure general features as a starting point

* Fine-tuning
o requires lowering the learning rate to avoid forgetting pre-training or use different
learning rates for the pre-trained and new layers
o [Branson'14] propose a 2-step fine-tuning method that improves accuracy
i. only train the weights of the new layer(s)
ii. train all weights

Bird Species C ng Pose ized Deep C: ional Nets. Branson, Steve, Grant Van Horn, Serge Belongie, and Pietro Perona.
arXiv preprint arXiv:1406.2952 (zma)
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Why are CNNs so good?

@ Size of your dataset dictates the number of levels (or at least
the approach)

e Sharing parameters is good
o taking advantage of local coherence to learn a more efficient representation:
= no redundancy
= translation invariance
m slight rotation invariance with pooling

e Efficient for detection:
o all computations are shared
o can handle varying input sizes (no need to relearn weights for new sizes)

e ConvNets are convolutional all the way up including fully connected layers

H B | ==l = R - =
H 24 e Ik
| 5x5 2x2 5x5 1x1 1x1
H———

16x16 convolution pooling conv conv conv
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Pedestrian Detection
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Visualizing and Understanding Convolutional Networks

Authors: Matthew D. Zeiler and Rob Fergus.

Dept. of Computer Science, Courant Institute, NYU.

Abstract: Large Convolutional Network models have recently demonstrated
impressive classification performance on the ImageNet benchmark (Krizhevsky
et al., 2012). However there is no clear understanding of why they perform so
well, or how they might be improved. In this paper we address both issues. We
introduce a novel visualization technique that gives insight into the function of
intermediate feature layers and the operation of the classifier. Used in a
diagnostic role, these visualizations allow us to find model architectures that
outperform Krizhevsky et al. on the ImageNet classification benchmark. We
also perform an ablation study to discover the performance contribution from
different model layers. We show our ImageNet model generalizes well to other
datasets: when the softmax classifier is retrained, it convincingly beats the

current state-of-the-art results on Caltech-101 and Caltech-256 datasets.
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Purpose

@ The purpose of the paper is to propose a way of visualizing
the inter workings of the Convolutional Neuro-Networks called
a Deconvolutional Network (deconvnet)

o Understand Deep Learning in general
e Understand how the specific network is working

@ Reverse the flow of the network to visualize the learned
elements. Not a generative projection from the model!

@ They are showing the highest activation levels of the filter
from a validation set
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Basic Opperations

@ Unpooling
The unpooling step is to reverse of the pooling operation
between layers. This normally is a one way function so they
have to include variable (called switches) which represent
which elements the pooling operation is selecting to move to
the next layer.

@ Rectification
This operation makes sure that the output of the reverse
direction is non-negative. This is done in the normal feed
forward network stage as well.

o Filtering
The CNN uses convolution with learned filters at beginning
stage of each layer. To invert this, they use a transpose of the
same filter but apply rectified maps to this element (instead of
a different part of the layer)
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Rectified Linear

Rectified Linear
Function -

Function
| Recified Unpooled Maps | | Feanre Maps
Comvolutional | i Comvolutional
Filtering {F} J Filtering {F}
Layar B dow Pooled Maps

| Racorsruaion

d Megs:

[uulme,

Top: A deconvioet laver (left) attached to a con-
-[\h" ‘]‘\"J[J\'“"[ \\'.lll reconstrict an ilF}-

Figure 1.
vnet layer (right).
FP[‘J.‘i“Iil[l' \"[:ﬂ‘l‘)“ 1)[ [h" convnet F\'il[ll[":'\ &"J“I [l]‘.' lil.\"['
beneath. Bottom: An illustration of the unpooling oper-
ation in the deconvnet, using switches which record the
location of the local max in each pooling region (colored
in the convnet.

zones) during pooling
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The Network

image size 224 . 110
filter size 7
wye
stride 2 C
33 M poo] 409 409, class
stride 2
units| units| | softmax
S l >
2
Input Image E— 256
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer6 Layer7 Output

crop of an image (with 3 color planes) is presented as
~ach of size 7 by 7. using a stride of 2 in both x and v
pooled (max within
» by 55 element feature

Figure 3. Architecture of our 8 layer convoet model. A 224 by
the input. This is convolved with 96 different 1st layer filters {red)
The resulting feature maps are then: (i) passed through a rectified linear function (not shown),
Ax3 regions, using stride 2) and (i) conteast normalized across feature maps to give 96 differen
maps. Similar operations are repeated in layvers .4.5. The last two layers are fully connected,
the top convolutional laver as input in vector form (6 - 6 216 dimensions). The final laver is a Coway softmax

function, " being the mumber of classes. All filters and feature maps are square in shape

wking features from

9
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Training

They use a dense amount of connections for the 3, 4, and 5 layers
unlike the Alex Network which used sparse connections because of
less hardware restrictions

They trained on ImageNet 2012 training set (1.3 Million Images /
1000 different classes)

Image Processing Steps

@ Resize smallest dimension to 256

@ Cropping the Center 256x256 region

@ Subtracting the per-pixel Mean (across all images)
°

10 different sub-crops of size 244x244 (corners + center
with(out) horizontal flips)
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Training Parameters Continued

Learning Parameters

@ Stochastic gradient descent with a mini-batch size of 128 to
update parameters

@ Starting with a learning rate of 1072 and a momentum term
of 0.9

@ They anneal the learning rate throughout training manually
when the validation error plateaus

@ Dropout is used in the fully connected layers (6 and 7) with a
rate of 0.5

o All weights are initialized to 1072

The visualization of the first layers showed that some filters were
becoming too dominate so they renormalized layers with a high
RMS

It took them 12 days of training on a single GPU using 70 epochs
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Final Visualizations Part 1

| | ',,u 'M_
i Lm ..memﬁ
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Final Visualizations Part 2
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Final Visualizations Part 3

Figure 2. Visualization of features in a fully trained model. For layers 2-5 we show the top % activations in a random subset
of feature maps across the validation data, projected down to pixel space using our deconvolutional network approach.
Our reconstructions are not samples from the model: they are reconstructed patterns from the validation set that cause
high activations in a given feature map. For each feature map we also show the corresponding image patches. Note:
(i) the the strong grouping within each feature map, (ii) greater invariance at higher layers and (iii) exaggeration of
discriminative parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in electronic form.

@ |5 rl c2 patches have
little in common but
the background

@ |4 significant variation
but class specific

@ |5 entire obj with
significant pose
variation

@ 13 rl cl complex
invariances capturing
similar textures
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Figure Evolution During Training

Layer 1 S pats Layer 3| : -8 e L 4

Figure 4. Evolution of a randomly chesen subset of model features through training. Each layer's features are displayed
in a different block. Within each block, we show a randomly chosen subset of features at epochs [1,2.5,10,20 30,40 64
The visualization shows the strongest activation (across all training examples) for a given feature map, projected down to
pixel space using our deconvioet approach. Color contrast is artificially enhanced and the figure is best viewed in electronic
form.
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Figure Invariance

Figure 5. Analysis of vertical translation, nd rotation invarianoe w maodel (rows a-c respectively). Col 1: 5
example images undergoing the transformations. Col 2 & 3 Eunclidean distance between feature vectors from the original
and transformed images in layers 1 and 7 respectively. Col 4: the probability of the true label for cach image, as the
image is transformed.
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Architecture Selection

Figure 6. (a): 1st layer features without feature scale clipping, Note that one feature dominates. (b): st layer features
from (Krizhevsky et al., 2012). (c): Our 1st layer features. The smaller stride (2 vs 4) and filter size (7x7 vs 11x11)
results in more distinctive features and fower “dead” features. (d): Visualizations of 2nd layer features from (Krizhovsky
et al., 2012). (e): Visualizations of our 2nd layer features. These are cleancr, with no aliasing artifacts that are visible in

(d).
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Occlusion Sensitivity

1] Layer 5 stongest 1] Clssilies, probabiity ) Classifes, most
a) gt bnage 1] Layes 5, stronge st festure map e sture 1 profections of cormectclas probable class

ecolumn ) and see how the top (layer 5) feature maps ((b) & (¢)) and classifier output ((d) & (e)) changes. (b): for each
position of the gray scale. we record the total activation in one layer 5 feature map (the one with the strongest response
in the unoccluded image). (c¢): a visualization of this feature map projected down into the input image (black square),
along with visualizations of this map from other images. The first row example shows the strongest feature to be the
dog’s face. When this is covered-up the activity in the feature map decreases (blue area in (b)), (d): a map of correct
class probability, as a function of the pesition of the gray square. E.g. when the dog’s face is obscured, the probability
for “pomeranian” drops significantly. (¢): the most probable label as a function of occluder position. E.g. in the 1st row,
for most locations it is “pomeranian”, but if the dog’s face is obscured but not the ball, then it predicts “tennis ball”. In
the 2nd example, text on thy - is the strongest feature in layer 5. but the dassifier is most sensitive to the wheel. The
drd example contains multiple objects. The strongest fo
to the dog (blue region in (d)) multiple feature map

ature in layer 5 picks out the faces, but the classifier is sensitive

nce

L use:
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Correspondence Analysis

Mean Feature | Mean Feature
Sign Change Sign Change

Occlusion Location Laver & Layer 7
"Right Eye 170067 £ 0007 | 0.060 £0.015
Left Eye 0.060 £ 0.007 | 0.068 £0013
Nose 0.079 £ 0.017 | 0.069 £0.011
Random [ 0107 £ 0017 [ 0.073 0014 |

Table 1. Measure of correspondence for different object
parts in 5 different dog images. The lower scores for the
eyes and nose (compared to random object parts) show the
Figure 8. Images used for correspondence experiments. model implicitly establishing some form of correspondence
Col 1: Original image. Col 2.3.4: Occlusion of the vight of parts at layer 5 in the model. At layer 7, the scores
eve, left ove, and nose respect

v. Other columns show are more similar, perhaps due to upper layers trying to
examples of random ocelusions diseriminate between the different breeds of dog,
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Results

Vel

1 1o

0.7
381

. 1 eanvnel

o First they Replicated the
Alex Network results, than
surpassed the best with
error rate of 14.8% inlicnios el that were tained o b, Tnagebet 2011

and 2012 training sets.

@ Then they played around T [T
with tweaking the network

Ta]
but with
aps — (b) | 37.5 16.401 16.1

el 36.0 a7 148

2012), 1 convnet 35.1 1.5 I 18.1

. L 331

(results bottom right) AT
5

1

@ Convolutional Part is
important for best results

Our Model Tas

36.5 16.9

121024512 maps

Table 3. ImageNet 2012 classification error rates with var-
ious architectural changes to the tmn]\l of (Krizhevsky

et al., 2012) and our model (see Fi
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Results Generalizaed on Caltech-101/256

@ Training on 15 or 30
randomly selected images

per class and test on 50 per . .
Ace W Ace T
# Train 15/ class 30 felass
Class (Jiwﬂ al., 2013 814 =033
|'Jl wnchao et al., 2009) 3.2 843
o The reSU|tS ShOWGd hOW Non-pretrained convnet [228£15 [45£1T |
t . . | TmageNet-pretrained convoet | 83.8 & ) 5[ 865505 |
pre_ ralnlng on a arge Table 4. Caltech-101 classification accuracy for our con-
dataset increase accura Cy viet models, against two leading alternate approaches.
Acc % Acc % Acce % Ace %
4 Train 15/class |30 class lass |60/ class
tremendOUS|y ([Sohn et al., 20117351 2.1 7.0
(Boetal, 2013) |405 £04 [48.0£0.2 [F1LO9E 0.2 [55.2£0.3
o JUSt need 6 Caltech-256 Non-pretr 0.0= 1.4 0.7 [31.2 0.5 [38.5= 1.4
TmageNet-pretr. 65.7 202|706 =0.2|72.7 = 0.4/7T4.2 = 0.3

training images to beat the Table 5. Caltoch 256 classification accuracies.
next best which needs 10
times as many
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Results Generalizaed on Pascal 2012

@ They could not beat the
state of the art here overall
(but they did for some

YT TAT
Dinlng tab | 5.2

classes)
e Might be because of the : '
difference in the datasets Table 6. PASCAL 2012 dassification results, comparing
our Imagenet-pretrained convnet against the leading two
0 methods ([A]= (Sande et al., 2012) and [B] = {Yan et al..
@ 3.2% from best reported metho

result but who's counting
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Feature Analysis

256
ass) | (60 cl
246+ 0.4

Cal-101 Cal

@ They add an SVM or e
softmax classifier at the end
of each layer of the
Imagenet-pretrained models

@ They show how well each b 7 Avai L :
able 7. Analysis of the discriminative information con-
add|t|0na| |ayer does at tained in each layer of feature maps within our ImageNet-

pretrained convnet. We train either a linear SVM ar soft-
11 H max on features from different 1:
CIaSSIfylng the Image ets) from the convnet. Higher
more discriminative features.

|862 =08 |6 0.3
855 £04|TLT =02
2HE 04 [66.7 £ 0.0
854 £04|726£0.1

Softmax (7)

as indicated in brack-
vers generally produce
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Discussion

Features are far from randomize

Increasing Invariance while ascending through the levels
Can use this to debug problems

Occlusion can be use to localization of objects in the image

The increase in classification is cause by holistic elements of
the model and no specific aspect
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