
Deep Networks for Equalization in Communications

Laura Brink
Anant Sahai, Ed.
John Wawrzynek, Ed.

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2018-177
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-177.html

December 14, 2018



Copyright © 2018, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



Deep Networks for Equalization in Communications

by

Laura Brink

A thesis submitted in partial satisfaction of the

requirements for the degree of

Master’s of Science

in

Electrical Engineering and Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Anant Sahai, Chair
Professor John Wawrzynek

Fall 2018



The thesis of Laura Brink, titled Deep Networks for Equalization in Communications, is
approved:

Chair Date

Date

Date

University of California, Berkeley



Deep Networks for Equalization in Communications

Copyright 2018
by

Laura Brink



1

Abstract

Deep Networks for Equalization in Communications

by

Laura Brink

Master’s of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Anant Sahai, Chair

We apply the techniques from meta-learning and machine learning to the communications
domain. Specifically, we explore how neural networks can learn to equalize new channel
environments without training on them and how neural networks can learn to estimate and
correct carrier frequency offset for new rates of rotation without training on them. We show
that deep neural networks can learn to learn to estimate channel taps for two tap channels.
We also explore how deep recursive neural networks learn to learn to equalize for any given
channel. We demonstrate that neural networks can learn to learn to estimate and correct
carrier frequency offset for new rates of rotation. Crucially, we do all of this without using
backpropagation to re-train the networks for each new set of environmental conditions.



i

Contents

Contents i

List of Figures ii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Inter-symbol Interference and Equalization . . . . . . . . . . . . . . . . . . . 3
Carrier Frequency Offset and Correction . . . . . . . . . . . . . . . . . . . . 6

1.3 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Contributions of this Report . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Deep Networks for Equalization 12
2.1 Channel Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Channel Equalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Learning an inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Learning to multiply two inputs . . . . . . . . . . . . . . . . . . . . . . . . . 14
RNN for Channel Equalization . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Deep Networks for Carrier Frequency Offset 20
3.1 Recurrent Neural Network Follows a Circle . . . . . . . . . . . . . . . . . . . 20

Single Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Different Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Deep Network Carrier Frequency Offset Estimation and Correction . . . . . 22
3.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Conclusion 26

Bibliography 27



ii

List of Figures

1.1 The effects of a two tap channel on the QPSK constellation. . . . . . . . . . . . 4
1.2 The effects of a carrier frequency offset on the QPSK constellation. . . . . . . . 7
1.3 The effects of a two tap channel and a carrier frequency offset on the QPSK

constellation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 The impacts of multipath channels and initial phase offsets on bit error perfor-

mance [17]. Note, the network is not re-trained for each new environment. As
the number of paths and carrier frequency offset increase, the performance of the
CNN decreases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Comparison of a neural network, a K-Nearest-Neighbors, and a least-squares
channel estimators for two tap, real channels. . . . . . . . . . . . . . . . . . . . 13

2.2 Topographical surface representation of the division function; z = x
y
. . . . . . . . 15

2.3 Neural network divsion loss with respect to the lower bound of y. . . . . . . . . 16
2.4 Topographical surface representation of the multiplication function; z = xy. . . . 17
2.5 Neural network multiplication loss with respect to the upper bound of y. . . . . 18
2.6 Comparison of RNN and MMSE equalizers loss over SNR. . . . . . . . . . . . . 18
2.7 What two tap channels does the equalizer get wrong? . . . . . . . . . . . . . . . 19

3.1 Linear neural network: follow a circle for a constant CFO rate, ω = 0.02. The
figure on the left shows the original data of length 100. The figure in the middle
shows the estimated data from the neural network given the starting point from
the left figure. The figure on the right shows the log of the test cost of the neural
network versus traing epoch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Nonlinear neural network: follow a circle for different CFO rates. The figure on
the left shows the original data of length 100 for ω = 0.01063284. The figure in
the middle shows the estimated data from the neural network given the starting
point and rate of rotation from the left figure. The figure on the right shows the
log of the test cost of the neural network versus traing epoch. . . . . . . . . . . 22

3.3 The log BER of received signals passed through a neural network CFO estimator
with a rotation matrix CFO correction and classic demodulator. The log BER of
the same signals passed through just the classic demodulator. . . . . . . . . . . 23



iii

3.4 Nonlinear neural network estimating and correcting CFO for different ω. In this
particular test example, ω = 0.00969545 and SNR= ∞. The figure on the left
shows the constellation of the 100 original data symbols. The figure in the middle
shows the constellation of the original data symbols after CFO. The figure on the
right shows the constellation of the data symbols after the neural network CFO
correction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24



1

Chapter 1

Introduction

Signal processing has long relied on well-defined, structured processes and protocols to func-
tion. However, in order to move towards more robust and adaptive systems, we will need
to overhaul these tightly structured processes. We must design new robust and adaptive
communications systems.

From an academic perspective, the rise of machine learning tools and processing has
allowed us to tackle problems we have not yet been able to, like in image processing. However,
we still do not fully understand the possibilities or the limitations of this technology. Most
applications for machine learning techniques lack good baselines to compare performance.
Applications such as image processing [13], videogame control [16], playing the game Go,
[24], and natural language processing [2], are all missing good baselines to compare against.
In order to study the limitations of machine learning techniques, we must apply them to
spaces that we have studied extensively, like communications, and compare them to the
well-known baselines that are already very good.

Most communications systems have three main processes at the receiver; equalization,
demodulation, and error-correction. While we will need to design robust forms of all of these
processes, we will focus on equalization for the remainder of this report.

1.1 Motivation

Meta-learning is the idea that algorithms need to be able to ‘learn to learn’ in order to
generalize to different applications. For example, if a robot is trained to pick up coffee mugs,
then we want that robot to be able to quickly learn how to pick up water bottles without
having to re-train the robot. Meta-learning is inspired by humans ability to generalize how
to learn [14]. Additionally, researchers in neurology have studied how the brain synapses
change over time, suggesting that our algorithms will have to change over time to continue
learning [1]. Our brains know how to update the synapses as we learn new things. This is like
updating the weights of a neural network for new data points. We refer the reader to [15] for
a survey of meta-learning technologies and to [8] for recent developments in meta-learning



CHAPTER 1. INTRODUCTION 2

algorithms.
In this report, we want to understand if our neural network based communication pro-

cesses can learn to learn. As in, can they handle new environments with new data sequeneces
without having to re-train for the new variables. The communications application is arguably
an easier application of meta-learning than others have been exploring, like image classifica-
tion [10]. In order to better understand the possibilities and limitations of meta-learning, we
need to apply it to something simpler, like communications. In this report, we will explore
whether or not we can learn to learn to communicate.

Context

A team at UC Berkeley and Nokia Bell Labs participated in the DARPA Spectrum Collab-
oration Challenge, a competition to build collaborative, intelligent radios1. The challenge
consists of putting multiple radio networks in the same space and bandwidth. Without
having been codesigned, the networks must collaborate and share all of the resources. The
environment was open to all of the teams so there are no rigid bands like we use today.

One of the potential scenarios for this challenge was that networks might have stranded
radios where no radio in their own network can reach them. In this case, that network would
need to rely on another network to relay messages to and from the stranded node. The
challenge is that the relay network must forward along a signal that it cannot fully decode
itself. This requires the network to equalize a signal and correct for CFO and then send
it without using demodulation or error-correction. This challenge is one of the practical
applications for robust and adaptive processes for equalization.

1.2 Background

While we will not be designing new modulation or demodulation processes in this report, we
must introduce some terminology. A constellation is a mapping of bits to complex symbols.
A classic quadrature phase shift keying (QPSK) modulator maps pairs of bits to complex
symbols. For the remainder of the report, when we use a QPSK constellation, we use the
following mapping. 

Bits Complex Symbol
00 −1− 1j
10 1− 1j
01 −1 + 1j
11 1 + 1j


We will also use signal to noise ratio (SNR) to evaluate our models. SNR is the ratio

of the signal power to the noise power. If the SNR is greater than one, then this means

1I was heavily involved with this project and this report grew out of my work on this challenge.



CHAPTER 1. INTRODUCTION 3

that there is more signal than noise. If the SNR is infinity, this means that there is no noise
added. We use SNR = Eb

N0
where Eb is the energy per bit and N0 is the noise power spectral

density. We set the SNR in our simulations by changing the noise power of a Gaussian
random variable.

Inter-symbol Interference and Equalization

Inter-symbol interference occurs when we are transmitting over a channel that has some
echos. These echos cause the receiver to hear a garbled signal instead of the original signal
from the transmitter. This is called inter-symbol interference because the receiver is hearing
a combination of symbols across time.

Let ~x = [x0, x1, . . . xn] be the set of n complex symbols that the transmitter sends over
the channel that connects the transmitter to the receiver. Each channel will have different
characteristics. Some channels may have echos, others may have delays, often channels will
have both. When a channel has echos, this is called a multipath channel because there
are multiple paths to reach the receiver. When a channel is modeled as a delay line, each
multipath signal component at the receiver is modeled as a tap on the delay line. We can
characterize a channel by characterizing the channel taps.

Let ~a = [a0, a1, . . . a`] be the characteristics for a multipath channel that has ` + 1 taps.
When a sequence of symbols like ~x is transmitted over this channel, the channel taps are
convolved over the sequence. Additionally, there is noise in the system denoted by vm.

x̃m =
∑̀
i=0

aixm−i + vm (1.1)

The receiver will hear a signal that is corrupted by inter-symbol interfence and noise;
~̃x = [x̃0, x̃1, . . . x̃n+`]. Receivers must be able to handle garbled signals in order to transmit
data in the real world. The process of removing the inter-symbol interference is called
equalization. The goal of equalization is to take in a garbled signal and output a signal with
minimal inter-symbol interference.

Figure 1.1 demonstrates the effects of two tap channels on a QPSK modulation constel-
lation. We show what the received signal constellations are from a sequence of 100 symbols
modulated in QPSK through different two tap channels. The channel taps are normalized,
||~a||2 = 1. We assume that the channel taps are constant during the transmission of the
signal. We see that under certain channel conditions, like when the two taps are equal, it
is very difficult to distinguish between the four constellations. We also show how the con-
stellations change with lower SNR. When the SNR is infinity, i.e. when no noise is added,
the first and third channel constellations are distinct and clear. However, as we add noise
(lower SNR), the symbol groupings get mixed and there are less clear distinctions between
the symbols. Engineers have built processes to remove inter-symbol interference. First, let’s
go into the case when the channel characteristics are known.



CHAPTER 1. INTRODUCTION 4

Figure 1.1: The effects of a two tap channel on the QPSK constellation.



CHAPTER 1. INTRODUCTION 5

Equalization for a known channel

If the receiver knows the channel characteristics, ~a, perfectly, then there are a few different
methods that can be used. The zero-forcing equalizer applies the inverse of the channel
response to the received signal. It is called zero-forcing because there will be zero inter-
symbol interference if there is no noise. There are some limitations of the zero-forcing
equalizer. First, the impulse response of the equalizer needs to be infinitely long. Second, if
there is a weak signal at a frequency, then the inverse gain is going to be very large. This
will amplify any noise in the system. Third, if there are any zeros in the frequency response,
these cannot be inverted.

Another equalizer, the minimum mean squared error (MMSE) equalizer, handles noise
much better than the zero-forcing equalizer. The MMSE equalizer minimizes the error
between the equalized preamble and the original known preamble by choosing the optimal
inverse of the channel response, W . Let H be the circulant matrix of the channel taps.

~̃xpre = H~xpre + ~v (1.2)

H =



a0 0 · · · 0
a1 a0 0 · · · 0
...

...
a` a`−1 · · · a0 0 · · · 0
0 a` a`−1 · · · a0 · · · 0
...

...
0 · · · 0 a` a`−1 · · · a0


(1.3)

min
W
||~xpre − ~̂xpre||2 (1.4)

~̂xpre = W (H~xpre + ~v) (1.5)

W ∗ = ~xpre~x
T
preH

T (H~xpre~x
T
preH

T + σ2
vI)−1 (1.6)

The MMSE equalizer works well for known and unknown channels and does not amplify
noise like the zero-forcing equalizer. While it is important to consider how well a receiver
can equalize with a known channel, this is rarely the case. Usually, we do not know the
channel characteristics.

Equalization for an unknown channel

When the receiver does not know the channel characteristics, the process of equalization
essentially has two jobs; first, identify the channel, second, remove the inter-symbol interfer-
ence. If the receiver did not identify the channel first, there would be no way to remove the
effects of it on the received signal.

In order to estimate a channel, most systems require that packets begin with a known
sequence called a preamble. The signal sent is broken into two parts; ~x = [~xpre, ~xdata]. The

signal received on the transmitter is ~̃x = [~̃xpre, ~̃xdata]. The receiver knows what the orginal



CHAPTER 1. INTRODUCTION 6

preamble sequence was, ~xpre, and can use the received preamble sequence, ~̃xpre, to estimate
the behavior of the channel. Once the channel is estimated, the receiver then equalizes the
data, ~̃xdata.

One common method to estimate the channel is to use the least-squares optimization
framework. Let H be the circulant matrix of estimates of the channel taps. The least-
squares channel estimator wants to find H that minimizes the mean squared error between
the received signal, ~̃xpre, and what the predicted received signal would be if the the estimated
channel H were applied to the original preamble, ~xpre.

min
H
||~̃xpre −H~xpre||2 (1.7)

The receiver needs to choose the number of non-zeros in H, representing how many taps
(or echos) there might be in the channel. The number of taps, or non-zeros, in H will be set
based on the environment of the transmitter and receiver. Once the channel response has
been estimated, an equalizer uses that information to remove the inter-symbol interference
from the received signal, like the MMSE equalizer defined above.

Carrier Frequency Offset and Correction

If we were to implement our minimum mean squared error equalizer on a real-world physical
receiver, we would find some problems with our equalization process. Our equalizer will
equalize the first symbols very well. However, as we equalize later parts of our sequence, we
will encounter a physical phenomonen called carrier frequency offset, CFO. Carrier frequency
offset can occur when the transmitter and receiver are at slightly different frequencies. It can
also occur when the transmitter and receiver are moving, causing a sort of Doppler effect.

When there is a significant CFO present, the symbols will gradually rotate. The received
signals will be the original signals rotated at a rate ω. Gaussian noise, vm, is also added.

x̃m = xme
mjω + vm (1.8)

Figure 1.2 demonstrates the effects of pure CFO on a QPSK modulation constellation (no
multipath). We show what the received signal symbols constellations are from a sequence of
100 symbols modulated in QPSK with different CFO rates. We assume that the CFO rate,
ω, is constant during the transmission of the signal. For small CFO rates, the data does not
rotate that much. For larger CFO rates, the data turns more and as we add noise (lower
SNR), the groupings of the symbols become mixed.

There are a few ways to handle CFO, some are more elegant than others. The first
solution is to try to side-step the problem entirely. Since the effects of CFO depend on the
length of a packet, one solution is to make packets so short that the symbols only move a
little bit. In this case, the effects of CFO can be ignored.

Another solution is using a phase-locked loop, which is a control system that outputs a
signal with a phase related to the input signal. A Costas loop is a circuit that implements a



CHAPTER 1. INTRODUCTION 7

Figure 1.2: The effects of a carrier frequency offset on the QPSK constellation.



CHAPTER 1. INTRODUCTION 8

phase-locked loop for CFO correction for continuous time signals by adapting the sampling
rate [4]. However, this requires adjusting the sampling and is implemented in hardware.
This does not allow the robustness and adaptability that we want.

What happens when there is both CFO and inter-symbol interference? The received
signal will have the effects of the channel and CFO as well as the noise.

x̃m = (
∑̀
i=0

aixm−i)e
mjω + vm (1.9)

Figure 1.3 demonstrates the effects of CFO and multi-tap channels on a QPSK mod-
ulation constellation. We show what the received signal symbols constellations are from a
sequence of 100 symbols modulated in QPSK with different CFO rates and two tap channels.
We assume that the CFO rate, ω, and the channel taps are constant during the transmission
of the signal. The channel taps are normalized, ||~a||2 = 1 for each of the channels. We can
see that for certain channel conditions, like for the channel in the third row, that the com-
bination of carrier frequency offset and noise makes grouping these symbols quite difficult.
Modern day receivers have to combine CFO correction, channel estimation, and equalization
processes in order to handle these received signals.

1.3 Related Works

Recently, many researchers have become more interested in applying deep learning tech-
niques to communications systems. We refer the reader to [3][5][25][9][21] for surveys and
motivations of these kind of works. Most of the works that we have found typically only deal
with additive white gaussian noise (AWGN) channels or Rayleigh fading channels.

In [6], Dörner et. al. implemented an end to end transmitter and reciever with neural
networks that allowed gradients to flow all the way back from the receiver during training.
However, they restricted themselves to only sending a certain set of messages, only seeing
AWGN channels, and they did not address CFO.

Other groups have been focusing on decoding with recurrent neural networks (RNNs)
but also only deal with AWGN channels [11][12]. Others have been working with generative
adversarial networks (GANs) to train an end-to-end communication system [26]. However,
they also only consider AWGN channels or Rayleigh fading channels.

For those that do consider more complex channels, most re-train their models for each new
channel seen. Ye et. al. consider OFDM systems where their feedforward neural networks
estimate the channel state information and then train offline for that specific channel [27].
[23] considers nonlinear channels but re-trains the network for each new channel. Note, this
work does not go into detail about the architecture used or how the networks are trained.

Goldsmith and Farsad train a detector for optical and moleculular channels [7]. They
assume a Poisson model for the channel and attempt to predict the probability mass function.



CHAPTER 1. INTRODUCTION 9

Figure 1.3: The effects of a two tap channel and a carrier frequency offset on the QPSK
constellation.



CHAPTER 1. INTRODUCTION 10

Figure 1.4: The impacts of multipath channels and initial phase offsets on bit error perfor-
mance [17]. Note, the network is not re-trained for each new environment. As the number
of paths and carrier frequency offset increase, the performance of the CNN decreases.

However, they assume that they retrain for each Poisson parameter and they do not address
CFO.

Timothy O’Shea’s group has been doing some excellent work in this area. O’Shea’s first
work in this area jointly optimized a transmitter and receiver for a given channel model
(AWGN and Rayleigh fading) but the work does not go into detail about the performance
for various channels [21].

In a subsequent paper, O’Shea et. al. explored how multipath channels and random initial
phase affects the system performance [17]. This is the only work that we know of that does
not re-train for each new multipath channel or carrier frequency offset. Figure 1.4 shows how
the convolutional neural network performance drastically decreased with multipath channels
and for non-zero phase offset. This particularly motivates our work as we hope to increase
performance on learning to learn equalization and CFO.

In [19], they added an attention model to perform synchronization for time, frequency,
phase, and sample timing offset. However, their work showed that the synchronization was
still quite noisy and did not perform much better than without the attention model [17].
Additionally, this work did not consider multipath channels.

O’Shea et. al. have also attempted to use GANs to approxiate the channel response
model for AWGN channels with and without phase noise [18]. The GANs were unable to
find accurate probability density functions to represent the channel response.

In [22], they use convolutional neural networks (CNNs) to estimate, but not correct,
carrier frequency offset and timing offset. However, they only consider AWGN channels
and Rayleigh fading channels. In [20], they explore how unsupervised learning can train
autoencoders for multiple antenna communications. They do re-train for each new channel



CHAPTER 1. INTRODUCTION 11

and use a Rayleigh fading channel model.

1.4 Contributions of this Report

In this report, we show that a channel estimator can learn to learn to estimate two tap, real-
valued channels but that more work is needed for the network to perform comparably to the
baseline, the least-squares channel estimator. We also design an equalizer recursive neural
network that equalizes a stream of data for any two tap, real-valued channel. This equalizer
does not need to re-train for each new channel and performs better than the baseline, the
minimum mean squared error equalizer, for low signal to noise ratios. We also show that the
baseline is much better than the neural network at handling difficult channels, specifically
channels that have approximately equal taps.

This work is novel in this area because all of the other related works have re-trained the
networks for each new channel they encounter. This is the first equalizer that learns to learn
to handle each new channel without having to re-train. Table 1.1 compares our work with
previous works.

Table 1.1: Comparison of our work and related works.

Goldsmith [7] Ye [27] O’Shea [17] Our Work
Types of channels Poisson AWGN AWGN AWGN

considered Multipath Multipath Multipath
Do they address CFO? No No Yes Yes

Do they re-train for No Yes No No
each new enviornment?

Additionally, we design a neural network to estimate and correct carrier frequency offset
that does not need to be retrained for each new carrier frequency offset. This work is novel
in this area because the other related works have re-trained the networks for each new carrier
frequency offset. This is the first carrier frequency offset correction network that learns to
learn to handle each new carrier frequency offset without having to re-train. We also explore
whether recursive neural networks can behave as clocks and show that this is a non-trivial
problem that needs more exploration.



12

Chapter 2

Deep Networks for Equalization
1

The equalization process removes inter-symbol interference caused by the channel from a
sequence of symbols. We will explore how neural networks can both estimate the channel
characteristics and remove the inter-symbol interference. For the remainder of this chapter,
we will assume that all channels only have real parts.

2.1 Channel Estimation

The process of channel estimation tries to identify the coefficients of the channel taps as
best as possible. We want to estimate ~a that minimizes the difference between the estimated
channel taps, ~̂a, and the true channel taps, ~a. We can choose ~̂a to minimize this difference.

In Figure 2.1, we compare the performance of neural network channel estimator, a K-
Nearest-Neighbors (KNN) channel estimator (where K = 15), and the least-squares channel
estimator for two tap real channels. We train the neural network and KNN on 40k data
sequences with random channels. Each data sequence has a preamble length of 100 bits
modulated to 50 QPSK symbols. Each channel tap is a uniform random variable, [−1, 1].
We normalize the channel power such that ||~a||2 = 1.

The neural network channel estimator takes the received preamble, ~̃xpre, and the known
preamble, ~xpre, as inputs. The output of the neural network is the estimate of the channel

taps, ~̂a. We assume that the neural network knows there are only two channel taps and thus,
limit the size of the output to two. The neural network has an architecture that consists
of three dense layers. The first and second layers have 300 nodes with sigmoid activation
functions. The final layer has two nodes with the tanh activation function. The network has
a decaying learning rate that starts at 0.01. The loss function is mean squared error of the
true channel and channel estimates; ||~a− ~̂a||2.

All three channel estimators are tested on 10k data sequences with random channels. The
neural network and the KNN channel estimators are not re-trained for each new channel.

1The contents of this chapter were produced in collaboration with Nipun Ramakrishnan, an undergrad-
uate researcher that I am mentoring.



CHAPTER 2. DEEP NETWORKS FOR EQUALIZATION 13

Figure 2.1: Comparison of a neural network, a K-Nearest-Neighbors, and a least-squares
channel estimators for two tap, real channels.

The least-squares estimator consistently outperforms the neural network and KNN channel
estimators, especially for high SNRs. For low SNRs, the least-sqares estimator is better than
the neural network by a factor of about five. For high SNRs, the least-squares estimator is
better than the neural networks by a factor of about thirty. The neural network channel
estimator performs better than the KNN channel estimator for high SNRs by a factor of
about three but worse for low SNRs by a factor of about three.

2.2 Channel Equalization

The process of equalization tries to remove inter-symbol interference from a sequence of
symbols. In a two tap channel, the equalization process is trying to remove the effect from
the second channel tap. Given the received symbol, x̃m, the channel taps, a0, a1, and the
previous symbol, xm−1, we can solve for the best estimate of the orignal symbol.

x̃m = a0xm + a1xm−1 + vm (2.1)

x̂m =
x̃m − a1xm−1

a0
(2.2)



CHAPTER 2. DEEP NETWORKS FOR EQUALIZATION 14

If we want neural networks to perform equalization, they might try to solve for x̂m in this
way. If that is the case, then the neural networks will need to know how to take an input
and divide by it and how to multiply two inputs.

Learning an inverse

We explore whether a neural network can learn to do division. We did not do a thorough
architecture search or train for very long as we wanted an idea of the behavior of the neural
network and will do this in future work. Figure 2.2 shows the topological representation
of the division function, z = x

y
. A neural network that is trained to do division will need

to approximate the surface of this function. When y is close to zero, z goes to infinity or
negative infinity. These large peaks will make it difficult for a neural network to do division.

Figure 2.3 shows the performance of a neural network learning division. The neural
network’s inputs are x and y and the output is ẑ. Both inputs are uniform random variables;
x is drawn uniformly [−1, 1] and y is drawn uniformly [β, 1]. The loss function is the mean
squared error between the estimated division and the true division, ||ẑ−x

y
||2. The architecture

consists of two dense layers with 50 nodes each and sigmoid activiation functions. This feeds
into a linear layer that outputs the scalar estimate of ẑ. The network is re-trained with 10k
data points for different values of β. As β gets close to zero, the error increases dramatically.
This is expected because the closer β is to zero, the stronger the effects are of the infinite
peaks of the division function.

Learning to multiply two inputs

We explore whether a neural network can learn to do multiplication. We did not do a
thorough architecture search or train for very long as we wanted an idea of the behavior
of the neural network and will do this in future work. Figure 2.4 shows the topological
representation of the multiplication function, z = xy. A neural network that is trained to do
multiplication will need to approximate the surface of this function. When x and y are close
to zero, the function is stable. However, as x and y grow, the function becomes unstable
and grows to infinity or negative infinity.

Figure 2.5 shows the performance of a neural network learning multiplication. The neural
network’s inputs are x and y and the output is ẑ. Both inputs are uniform random variables;
x is drawn uniformly [−1, 1] and y is drawn uniformly [0, γ]. The loss function is the mean
squared error between the estimated multiplication and the true multiplication, ||ẑ − xy||2.
The architecture consists of two dense layers with 50 nodes each and sigmoid activiation
functions. This feeds into a linear layer that outputs the scalar estimate of ẑ. The network
is re-trained with 50k data points for different values of γ. As γ increases, the error increases
drastically. This is expected because the larger γ is, the stronger the effects are of the infinite
limits of the multiplication function.



CHAPTER 2. DEEP NETWORKS FOR EQUALIZATION 15

Figure 2.2: Topographical surface representation of the division function; z = x
y
.

RNN for Channel Equalization

We design an RNN to perform channel equalization. The inputs of the RNN are the true
channel taps. We assume a two tap channel, so a0, a1 are inputs to the RNN. Another input
is the received data sequence, ~̃xdata. The output of the RNN is an estimate of the original
data sequence, ~̂xdata. The loss function that the RNN is trained on is the mean squared error
between the original and estimated data sequence, ||~xdata − ~̂xdata||2.

The neural network architecture for our equalizer uses a special type of RNN called a
bidirectional long-short term memory (LSTM) network. A bidirectional RNN connects the
forward and backwards nodes of the RNN, allowing the output to depend on both future
and past states. An RNN that has LSTM units allows the nodes to store memory for a short
period of time. Our network also has time-distributed dense layers which are used after the
LSTMs to flatten the output by applying a fully connected dense layer at each time step.

The inputs to our RNN are the channel taps concatenated with a sequence of 10 of the
data symbols. The inputs are fed into four layers of bidirectional LSTM units. Each layer
has a state size of 90 units for each forward and backward state. The output of the four
bidirectional LSTM layers is 180 units for each of the 10 symbols. This is then fed into two
time-distributed dense layers with 180 nodes and 100 nodes respectively and they each have



CHAPTER 2. DEEP NETWORKS FOR EQUALIZATION 16

Figure 2.3: Neural network divsion loss with respect to the lower bound of y.

Relu activation functions. These time-distributed dense layers bring the output size down
from 180 to 100 to 100. The output is then fed into one final time-distributed dense layer
with 100 nodes and linear activation. The outputs of the RNN are 10 equalized symbols.
For data sequences longer than 10 symbols, the process is repeated for each set of 10.

Figure 2.6 compares the mean squared error loss on test data for the RNN architecture
defined above and the MMSE equalizer defined in the introduction. The RNN is trained on
40k data sequences, with a decaying learning rate starting at 0.01. The RNN and MMSE are
tested on the same 10k data sequences. New data is generated for each SNR and the RNN
is re-trained for each SNR. Each data sequence consits of 60 bits modulated to 30 complex
symbols. We assume that the RNN and MMSE both have access to the true channel taps.

The RNN equalizer performs comparably to the MMSE equalizer for low SNRs and
performs better than MMSE equalizer for medium SNRs. However, the RNN equalizer
performs worse than the MMSE equalizer for high SNRs. We take a closer look at what kind
of channels the RNN equalizer is getting wrong for these high SNRs.



CHAPTER 2. DEEP NETWORKS FOR EQUALIZATION 17

Figure 2.4: Topographical surface representation of the multiplication function; z = xy.


Tap 1 Tap 2 Counts of bad estimates Mean Squared Error
0.707 0.707 14 0.7162
−0.707 0.707 1 0.5236
0.707 −0.707 16 0.8172
−0.707 −0.707 12 0.6492


Figure 2.7 shows which channels the RNN equalizer paired with a classic demodulator get

any bits wrong. There are a total of 50k random channels in the test set with SNR= 100.
Of that set, only 43 channels result in incorrect bits after the RNN equalizer and classic
demodulator. From the figure, it is clear that these difficult channels are clustered into four
regions. All of the four regions are when the first and second tap of the channel are equal
in magnitude; |a0| ≈ |a1|. The mean squared error between the equalized data and the
true data among just the bad channels is 0.7306. The mean squared error among the good
channels is 0.000264. So when the RNN equalizes incorrectly, it gets it very wrong.

We expect these channels to be difficult. Refer to Figure 1.1 to see how the constellations
of two bits fall right on top of each other. Additionally, if we think about these channels in
terms of the infinite impulse response, these channels could result in highly variable inverses.



CHAPTER 2. DEEP NETWORKS FOR EQUALIZATION 18

Figure 2.5: Neural network multiplication loss with respect to the upper bound of y.

Figure 2.6: Comparison of RNN and MMSE equalizers loss over SNR.



CHAPTER 2. DEEP NETWORKS FOR EQUALIZATION 19

Figure 2.7: What two tap channels does the equalizer get wrong?

Because the two channel taps are equal, the infinite impulse response is constantly cancelling
out and everything will have to balance out exactly. This representation means there will be
a lot of variation of the inverse of those channels, causing the system to be almost unstable.

In this chapter, we designed a deep neural network to estimate two tap channels. We
explored the difficulties in learning to divide and learning to multiply with neural networks.
We showed that a deep recursive neural network, with bidirectional LSTM layers, can learn
to learn to equalize for random two tap channels. We also examined when the RNN equalizer
fails.

2.3 Future Work

In the future, we would like to expand our channel estimation networks to handle any
number of channel taps and channel taps that also have imaginary parts. We would also
like to explore how we might be able to learn to estimate the channel even without a shared
preamble. We hope to explore and expand our research on equalization networks. One
first step will be investigating how adding logarithmic layers into the networks affects the
performance. We want to combine the channel estimator and equalizer networks into one
deep network and have gradients flow all the way back. This will take the work one step
further in the direction of learning to learn. We also want to do more thorough architecture
searches and train the networks for longer.



20

Chapter 3

Deep Networks for Carrier Frequency
Offset

1

The carrier frequency offset (CFO) correction process removes the symbol rotation caused
by the non-ideal conditions of the transmitter and receiver environment. We will explore
how neural networks can both estimate the CFO and correct for the rate of rotation without
using backpropagation for each new rate.

3.1 Recurrent Neural Network Follows a Circle

A carrier frequency offset affects the received symbols by slowly rotating them around the
origin. If we want a neural network to be able to correct this, we essentially need it to
act as a clock, following around a circle at a certain rate. We first explore what kind of
architectures are necessary for a recurrent neural network (RNN) to learn how to follow a
circle. We show that a simple, small linear RNN can learn to act as the rotation matrix for
a single rate of rotation around a circle. We also show that in order to have an RNN follow
a circle for different rates of rotation, we need a large non-linear layer. We will then design
a deep neural network to estimate the rate of rotation caused by CFO and correct it.

Single Rate

Figure 3.1 shows a recurrent neural network (RNN) that follows a circle for a single rate
of rotation. The network’s input is the starting point, x0, and it must predict the next 99
points, x1 . . . x99. Point xm is rotated by emjω where ω is the rate of rotation. The RNN
architecture is one linear layer that takes the current point as input, xm, and outputs the
next point, xm+1. We are forcing the state of the RNN to be the estimate of the next point;

1The contents of this chapter were produced in collaboration with Nikhil Shinde, an undergraduate
researcher that I am mentoring.



CHAPTER 3. DEEP NETWORKS FOR CARRIER FREQUENCY OFFSET 21

Figure 3.1: Linear neural network: follow a circle for a constant CFO rate, ω = 0.02. The
figure on the left shows the original data of length 100. The figure in the middle shows the
estimated data from the neural network given the starting point from the left figure. The
figure on the right shows the log of the test cost of the neural network versus traing epoch.

state = x̂m+1. We use a linear layer here because the network essentially has to learn how
to become the rotation matrix which is linear with respect to the input.

R =

[
cos(ω) − sin(ω)
sin(ω) cos(ω)

]
(3.1)

The RNN is trained for a constant rate of rotation, ω, applied to sequences of 100 points.
The network trained for 2k epochs, each with a batch size of 1k data sequences and with
a learning rate of 0.006. The initial starting point, x0 is a uniform random variable drawn
from on the unit circle. The network is tested on 1k new data sequences but with the same
ω. Figure 3.1 shows the results of an RNN trained and tested for ω = 0.02. The network
achieves a loss on the order of 10−13. However, the minimum loss is not very sticky. Notice
that the figure on the right in figure 3.1 shows the network jumping away from this minimum
while training at around 1400 epochs. A more thorough search over learning rate decay is
needed to prevent this jumping from happening.

Different Rates

Figure 3.2 shows a recurrent neural network (RNN) that follows a circle for a given rate of
rotation. The network’s inputs are the starting point, x0 and the rate of rotation, ω. The
RNN must predict the next 99 points, x1 . . . x99. Point xm is rotated by emjω.

We cannot use just linear layers in this case because the RNN must learn to find cos(ω)
and sin(ω) for different ω. Essentially, this RNN needs to approximate the sin, cos functions
and then apply them to the state.

The RNN architecture consists of one non-linear layer, with 100 nodes and Relu activation
functions, and a linear layer at the output with 2 nodes. The inputs to the RNN are the



CHAPTER 3. DEEP NETWORKS FOR CARRIER FREQUENCY OFFSET 22

Figure 3.2: Nonlinear neural network: follow a circle for different CFO rates. The figure
on the left shows the original data of length 100 for ω = 0.01063284. The figure in the
middle shows the estimated data from the neural network given the starting point and rate
of rotation from the left figure. The figure on the right shows the log of the test cost of the
neural network versus traing epoch.

estimated current point, x̂m, and the rate of rotation, ω. The RNN outputs the estimate of
the next point, x̂m+1. We are forcing the state of the RNN to be the estimate of the next
point concatenated with the rate of rotation; state = [x̂m+1, ω] so that state then becomes
the input to the next run of the RNN.

The RNN is trained for different rates of rotation, ω, applied to sequences of 100 points.
The rate of rotation is a uniform random variable [0, 1

50
]. We use mean squared error of the

true data sequence and the estimated data sequence for the loss function; ||~x − ~̂x||2. The
network is trained for 10k epochs, each with a batch size of 1k data sequences and with
a learning rate of 0.01. The initial starting point, x0 is a uniform random variable drawn
from on the unit circle. The network is tested on 100k new data sequences with random
ω. Figure 3.2 shows the results of an RNN trained and tested for 10k epochs. The network
achieves a loss on the order of 10−5 but is still data hungry and should be trained for more
epochs.

3.2 Deep Network Carrier Frequency Offset

Estimation and Correction

We explore estimating carrier frequency offset and correction with neural networks. One of
the challenges with CFO is that it cannot be directly measured in the real world. Therefore,
all of the loss functions will not depend on ω. Again, we want a neural network that does
not need to update its weights every time it encounters a new rate of rotation.

The inputs of the neural network are the known preamble, ~xpre, and the received pream-

ble, ~̃xpre. The neural network outputs the estimated preamble symbols, ~̂xpre. The loss



CHAPTER 3. DEEP NETWORKS FOR CARRIER FREQUENCY OFFSET 23

Figure 3.3: The log BER of received signals passed through a neural network CFO estimator
with a rotation matrix CFO correction and classic demodulator. The log BER of the same
signals passed through just the classic demodulator.

function is the mean squared error between the original preamble and the estimated pream-
ble, ||~xpre − ~̂xpre||2. The neural network architecture consists of two non-linear layers, each
with 10 nodes and sigmoid activations. This then feeds into a linear layer that outputs a
scalar, treated as the estimate for the rate of rotation, ω̂. The received preamble is then
rotated using a special layer with the function e−mjω̂ that is differentiable and can pass
gradients.

Figure 3.3 compares the performance of the neural network correcting CFO versus no
CFO correction. The training and testing data are solely for a one tap channel and have
varying values of ω. The preamble length is kept constant at 100 symbols in QPSK. The
neural network is trained for 15k epochs with batch size of 100 sequences and with a learning
rate of 0.001. The neural network and no CFO correction are tested on 10k sequences with
different rates of rotation, ω. The rate of rotation, ω, is a uniform random variable, [0, 1

100
].

The training and testing process is repeated for each SNR. Note, we re-train the network
for each SNR. We compare the bit error rate of the neural network and classic demodulator
versus the bit error rate of just the classic demodulator without any CFO correction.

For SNR above 25, the neural network does not have any incorrect bits in the 10k data
sequences each with 100 symbols, or 200 bits. The neural network consistently performs
better than just the classic demodulator for all SNR. Although, the performance is similar
for SNR= 1. Figure 3.4 shows one example of a data sequence passed through the neural



CHAPTER 3. DEEP NETWORKS FOR CARRIER FREQUENCY OFFSET 24

Figure 3.4: Nonlinear neural network estimating and correcting CFO for different ω. In
this particular test example, ω = 0.00969545 and SNR= ∞. The figure on the left shows
the constellation of the 100 original data symbols. The figure in the middle shows the
constellation of the original data symbols after CFO. The figure on the right shows the
constellation of the data symbols after the neural network CFO correction.

network described above. The neural network is trained for SNR=∞ with the same training
sequence as described above. The estimated data constellation plot has removed most of the
effects of the CFO and looks quite similar to the original data constellation plot.

In this chapter, we demonstrated that recursive neural networks can act like clocks; they
can follow a circle for a given rate of rotation. They can learn to learn to follow a circle
for a given rate. We have also demonstrated that a neural network can learn to learn how
to estimate CFO and correct for it. All of the simulations in this chapter were for single
tap channels. We attempted to learn how to estimate CFO and correct for it when there
were random two tap channels. However, the results were not promising and will need to be
explored more in future work.

3.3 Future Work

In addition to the future work described in Chapter 2, we want to expand our CFO estimation
and correction work. We want to estimate CFO even in the presence of mullti-tap channels
and when the channels have complex taps. We also want to explore replacing the rotation
layer that does the CFO correction with the RNN that follows a circle. Then the entire
process will be based in neural networks without much structure. We also want to combine
all of the aspects in this report to create one deep equalizer network that corrects for CFO
and equalizes the channel. We may not explicitly need networks that do the estimation but
it is a good place to start.

In general, this report was more of an exploration into how neural networks can learn
to learn to communicate for equalization and CFO correction. We would like to do a more



CHAPTER 3. DEEP NETWORKS FOR CARRIER FREQUENCY OFFSET 25

thorough architecture search and longer training runs. We also hope to to verify the ideas
presented in this report by training on real radio data instead of simulated data.



26

Chapter 4

Conclusion

In this report, we reviewed the current literature on machine learning systems for com-
muncations systems; specifically equalization and carrier frequency offset. We also discussed
the value of robustness and adaptability in future communications systems requiring an in-
vestigation of meta-learning. We demonstrated that neural networks can learn to learn to
estimate channel characteristics for two tap channels. We explored using deep recursive neu-
ral networks to learn to learn to equalize. We also used recursive neural networks to learn
to learn to be a clock by rotating in a circle at different rates. Lastly, we used deep neural
networks to estimate the rate of carrier frequency offset and correct it.

All of this was achieved without using backpropagation when faced with new environ-
ments. From here, we plan to continue developing our work and design an end-to-end
receiver, including demodulation and error correction, in neural networks that can adapt to
new multipath channels and carrier frequency offsets. Communications is a perfect appli-
cation to explore the possibilities and limitations of the current meta-learning and machine
learning frameworks.



27

Bibliography

[1] Yoshua Bengio, Samy Bengio, and Jocelyn Cloutier. “Learning a synaptic learning
rule”. In: Technical Report 751, Départment d’Informatique et de Recherche Opérationelle,
Université de Montréal, Canada (1990).

[2] Yoshua Bengio et al. “A Neural Probabilistic Language Model”. In: Neural Information
Processing Systems. Vol. 13. 2001, pp. 932–938.

[3] Corina Botoca, Georgeta Budura, and Miclau Nicolae. “Nonlinear Channel Equal-
ization Using Complex Neural Networks”. In: Seria Electronică Şi Telecommuncaţii,
Transactions on Electronics and Communications (2004), pp. 227–231.

[4] John P. Costas. “Synchronous Communications”. In: Proceedings of the IRE. Vol. 44.
12. IEEE, 1956, pp. 1713–1718.

[5] Theo Diamandis. “Survey on Deep Learning Techniques for Wireless Communica-
tions”. In: Departement of Electrical Engineering, Stanford University (2017).

[6] Sebastian Dörner et al. “Deep Learning-Based Communication Over the Air”. In: arXiv
preprint arxiv:1707.03384 (2017).

[7] Nariman Farsad and Andrea Goldsmith. “Neural Network Detection of Data Sequences
in Communication Systems”. In: IEEE Transactions on Signal Processing PP (2018).

[8] Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-agnostic meta-learning for
fast adaptation of deep networks”. In: International Conference on Machine Learning
(2017).

[9] Hengtao He et al. “Model-Driven Deep Learning for Physical Layer Communications”.
In: arXiv preprint arxiv:1809.06059 (2018).

[10] Siavash Khodadadeh, Ladislau Bölöni, and Mubarak Shah. “Unsupervised Meta-Learning
For Few-Shot Image and Video Classification”. In: arXiv preprint arxiv:1811.11819
(2018).

[11] Hyeji Kim et al. “Communication Algorithms via Deep Learning”. In: International
Conference on Learning Representations (2018).

[12] Hyeji Kim et al. “Deepcode: Feedback Codes via Deep Learning”. In: 2018.



BIBLIOGRAPHY 28

[13] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet Classification
with Deep Convolutional Neural Networks”. In: Neural Information Processing Sys-
tems. 2012, pp. 1106–1114.

[14] Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B. Tenenbaum. “Human-level
concept learning through probabilistic program induction”. In: Science. Vol. 350. 6266.
2015, pp. 1332–1338.

[15] Christiane Lemke, Marcin Budka, and Bogdan Gabrys. “Metalearning: a survey of
trends and technologies”. In: Artificial Intelligence Review. Springer, 2015, pp. 117–
130.

[16] Volodymyr Mnih et al. “Human-level control through deep reinforcement learning”.
In: Nature. Vol. 518. 2015, pp. 529–533.

[17] Timothy J. O’Shea, Kiran Karra, and T. Charles Clancy. “Learning to Communicate:
Channel Auto-encoders, Domain Specific Regularizers, and Attention”. In: IEEE Inter-
national Symposium on Signal Processing and Information Technology. 2016, pp. 223–
228.

[18] Timothy J. O’Shea, Tamoghna Roy, and Nathan West. “Approximating the Void:
Learning Stochastic Channel Models from Observation with Variational Generative
Adversarial Networks”. In: arXiv preprint arxiv:1805.06350 (2018).

[19] Timothy J. O’Shea et al. “Radio Transformer Networks: Attention Models for Learning
to Synchronize in Wireless Systems”. In: arXiv preprint arxiv:1605.00716 (2016).

[20] Timothy O’Shea, Tugba Erpek, and T. Charles Clancy. “Deep Learning-Based MIMO
Communications”. In: arXiv preprint arXiv:1707.07980 (2017).

[21] Timothy O’Shea and Jakob Hoydis. “An Introduction to Deep Learning for the Phys-
ical Layer”. In: IEEE Transactions on Cognitive Communications and Networking.
Vol. 3. 4. 2017, pp. 563–575.

[22] Timothy O’Shea, Kiran Karra, and T. Charles Clancy. “Learning Approximate Neural
Estimators for Wireless Channel State Information”. In: arXiv preprint arXiv:1707.06260
(2017).

[23] K. T. Raghavendra and Amiya K. Tripathy. “An Efficient Channel Equalizer Using
Artificial Neural Networks”. In: Neural Network World 16 (2006), pp. 357–368.

[24] David Silver et al. “Mastering the game of Go with deep neural networks and tree
search”. In: Nature. Vol. 529. 2016, pp. 484–489.

[25] Tianqi Wang et al. “Deep Learning for Wireless Physical Layer: Opportunities and
Challenges”. In: China Communications 14.11 (2017), pp. 92–111.

[26] Hao Ye, Geoffrey Ye Li, and Biing-Hwang Juang. “Channel Agnostic End-to-End
Learning based Communication Systems with Conditional GAN”. In: IEEE Global
Communications Conference. 2018.



BIBLIOGRAPHY 29

[27] Hao Ye, Geoffrey Ye Li, and Biing-Hwang Juang. “Power of Deep Learning for Channel
Estimation and Signal Detection in OFDM Systems”. In: IEEE Wireless Communica-
tions Letters. 2018, pp. 114–117.


