
Deep Neural Networks for Estimation and Inference: Application to

Causal Effects and Other Semiparametric Estimands∗

Max H. Farrell Tengyuan Liang Sanjog Misra

University of Chicago, Booth School of Business

February 1, 2019

Abstract

We study deep neural networks and their use in semiparametric inference. We prove valid
inference after first-step estimation with deep learning, a result new to the literature. We
provide new rates of convergence for deep feedforward neural nets and, because our rates are
sufficiently fast (in some cases minimax optimal), obtain valid semiparametric inference. Our
estimation rates and semiparametric inference results handle the current standard architecture:
fully connected feedforward neural networks (multi-layer perceptrons), with the now-common
rectified linear unit activation function and a depth explicitly diverging with the sample size.
We discuss other architectures as well, including fixed-width, very deep networks. We establish
nonasymptotic bounds for these deep nets for nonparametric regression, covering the standard
least squares and logistic losses in particular. We then apply our theory to develop semipara-
metric inference, focusing on treatment effects, expected welfare, and decomposition effects for
concreteness. Inference in many other semiparametric contexts can be readily obtained. We
demonstrate the effectiveness of deep learning with a Monte Carlo analysis and an empirical
application to direct mail marketing.

Keywords: Deep Learning, Rectified Linear Unit, Nonasymptotic Bounds, Semiparametric
Inference, Treatment Effects, Program Evaluation, Treatment Targeting.

1 Introduction

Statistical machine learning methods are being rapidly integrated into the social and medical sci-

ences. Economics is no exception, and there has been a recent surge of research that applies and

explores machine learning methods in the context of econometric modeling, particularly in “big

data” settings. Furthermore, theoretical properties of these methods are the subject of intense

recent study. This has netted several breakthroughs both theoretically, such as robust, valid in-

ference following machine learning, and in novel applications and conclusions. Our goal in the

∗We thank Milica Popovic for outstanding research assistance. Liang gratefully acknowledges support from the
George C. Tiao Fellowship. Misra gratefully acknowledges support from the Neubauer Family Foundation. We thank
Alex Belloni, Xiaohong Chen, Denis Chetverikov, Chris Hansen, Whitney Newey, and Andres Santos for thoughtful
comments and suggestions.



present work is to study a particular statistical machine learning technique which is widely popular

in industrial applications, but infrequently used in academic work and largely ignored in recent

theoretical developments on inference: deep neural networks. To our knowledge we provide the

first inference results using deep learning methods.

Neural networks are estimation methods that model the relationship between inputs and out-

puts using layers of connected computational units (neurons), patterned after the biological neural

networks of brains. These computational units sit between the inputs and output and allow data-

driven learning of the appropriate model, in addition to learning the parameters of that model. Put

into more familiar nonparametric terms: neural networks can be thought of as a (complex) type

of sieve estimation where the basis functions are flexibly learned from the data. Neural networks

are perhaps not as familiar to economists as other methods, and indeed, were out of favor in the

machine learning community for several years, returning to prominence only very recently in the

form of deep learning. Deep neural nets contain many hidden layers of neurons between the input

and output layers, and have been found to exhibit superior performance across a variety of con-

texts. Our work aims to bring wider attention to these methods and to take the first step toward

filling the gap in theoretical understanding of inference using deep neural networks. Our results

can be used in many economic contexts, from selection models to games, from consumer surplus to

dynamic discrete choice.

Before the recent surge in attention, neural networks had taken a back seat to other methods

(such as kernel methods or forests) largely because of their modest empirical performance and chal-

lenging optimization. However, the availability of scalable computing and stochastic optimization

techniques (LeCun, Bottou, Bengio, and Haffner, 1998; Kingma and Ba, 2014) and the change from

smooth sigmoid-type activation functions to rectified linear units (ReLU), x 7→ max(x, 0) (Nair and

Hinton, 2010), have seemingly overcome optimization hurdles. Deep learning perform now matches

or sets the state of the art in many prediction contexts (Krizhevsky, Sutskever, and Hinton, 2012;

He, Zhang, Ren, and Sun, 2016). Our results speak directly to this modern implementation. We

explicitly model the depth of the network as diverging with the sample size and focus on the ReLU

activation function.

Further back in history, before falling out of favor, neural networks were widely studied and

applied, particularly in the 1990s. In that time, shallow neural networks were shown to have many

1



good theoretical properties. Intuitively, neural networks are a form of sieve estimation, wherein basis

functions of the original variables are used to approximate unknown nonparametric objects. What

sets neural nets apart is that the basis functions are themselves learned from the data by optimizing

over many flexible combinations of simple functions. It has been known for some time that such

networks yield universal approximations (Hornik, Stinchcombe, and White, 1989). Comprehensive

theoretical treatments are given by White (1992) and Anthony and Bartlett (1999). Of particular

relevance in this strand of theoretical work is Chen and White (1999), where it was shown that

single-layer, sigmoid-based networks could attain sufficiently fast rates for semiparametric inference

(see Chen (2007) for more references).

We explicitly depart from these works by focusing on the modern setting of deep neural networks

with the rectified linear (ReLU) activation function. We briefly review their construction in Section

2; for more see Goodfellow, Bengio, and Courville (2016). We provide nonasymptotic bounds for

nonparametric estimation using deep neural networks, immediately implying convergence rates.

The bounds and convergence rates appear to be new to the literature and are one of the main

theoretical contributions of the paper. We provide results for the two most popular contexts, least

squares and logistic regression, as concrete illustrations. Other nonparametric contexts (hazard

models, generalized linear models) could be handled as well. Our proof strategy is novel: we employ

a localization analysis that uses scale-insensitive measures of complexity, allowing us to consider

richer classes of neural networks. This is in contrast to analyses which restrict the networks to have

bounded parameters for each unit (discussed more below) and to the application of scale sensitive

measures such as metric entropy (used by Chen and White, 1999, for example). These approaches

would not deliver our sharp bounds and fast rates. Recent developments in approximation theory

and complexity for deep ReLU networks are important building blocks for our results.

Our second main results give valid inference on finite-dimensional parameters following first-

step estimation using deep nets. We focus on causal inference for illustration. Program evaluation

with observational data is one of the most common and important inference problems, and has

often been used as a first test case for theoretical study of inference following machine learning

(e.g., Belloni, Chernozhukov, and Hansen, 2014; Farrell, 2015; Belloni, Chernozhukov, Fernández-

Val, and Hansen, 2017; Athey, Imbens, and Wager, 2018). (Causal inference as a whole is a vast

literature; see Imbens and Rubin (2015) for a broad review and Abadie and Cattaneo (2018) for

2



a recent review of program evaluation methods, and further references in both.) We give specific

results for average treatment effects, expected utility/profits from treatment targeting strategies,

and decomposition effects. Our results allow planners (e.g., firms or medical providers) to compare

different strategies, either predetermined or estimated using auxiliary data, and recognizing that

targeting can be costly, decide which strategy to implement. Other estimands are discussed briefly.

Deep neural networks have been argued (experimentally) to outperform the previous state-of-the-

art in causal inference (Westreich, Lessler, and Funk, 2010; Johansson, Shalit, and Sontag, 2016;

Shalit, Johansson, and Sontag, 2017; Hartford, Lewis, Leyton-Brown, and Taddy, 2017). To the

best of our knowledge, ours are among the first theoretical results that explicitly deliver inference

using deep neural networks.

We focus on causal effect type parameters for concreteness and their wide applicability, as

well as to allow direct comparison to the literature above, but our results are not limited to only

these objects. In particular, our results yield inference on essentially any estimand that admits

a locally robust estimator (Chernozhukov, Escanciano, Ichimura, Newey, and Robins, 2018) that

depends only on conditional expectations (under appropriate regularity conditions). Our aim is

not to innovate at the semiparametric step, for example by seeking weaker conditions on the first

stage, but rather, we aim to utilize such results. Prior work has verified the high-level conditions

for other first-stage estimators, such as traditional kernels or series/sieves, lasso methods, sigmoid-

based shallow neural networks, and others (under suitable assumptions for each method). Our work

contributes directly to this area of research by showing that deep nets are a valid and useful first-

step estimator, in particular, attaining a rate of o(n−1/4) under appropriate smoothness conditions.

Using “overfitting” robust inference procedures (Cattaneo, Jansson, and Ma, 2018) may also be

possible following deep learning, but is less obvious at present. Finally, we do not need to rely on

sample splitting or cross fitting.

We numerically illustrate our results, and more generally the utility of deep learning, with a

detailed simulation study and an empirical study of a direct mail marketing campaign. Our data

come from a large US consumer products retailer and consists of close to three hundred thousand

consumers with one hundred fifty covariates. This is the same data that was used by Hitsch and

Misra (2018) to study various estimators, both traditional and modern, of heterogeneous treatment

effects. We refer the reader to that paper for a more complete description of the data as well as

3



results using other estimators (see also Hansen, Kozbur, and Misra (2017)). We study the effect

of catalog mailings on consumer purchases, and moreover, compare different targeting strategies

(i.e. to which consumers catalogs should be mailed). The cost of sending out a single catalog can

be close to one dollar, and with millions being set out, carefully assessing the targeting strategy is

crucial. Our results suggest that deep nets are at least as good as (and sometimes better) that the

best methods found by Hitsch and Misra (2018).

The remainder of the paper proceeds as follows. Next, we briefly review the related theoreti-

cal literature. Section 2 introduces deep ReLU networks and states our main theoretical results:

nonasymptotic bounds and convergence rates for least squares and logistic regression. The semi-

parametric inference problem is set up in Section 3 and asymptotic results are presented in Section

4. The empirical application is presented in Section 5. Results of a simulation study are reported

in Section 6. Section 7 concludes. All proofs are given in the appendix.

1.1 Related Theoretical Literature

Our paper contributes to several rapidly growing literatures, and we can not hope to do justice to

each here. We give only those citations of particular relevance; more references can be found in

these works. First, there has been much recent theoretical study of the properties of the machine

learning tools, either as an end in itself or with an eye toward use in semiparametric inference. Much

of this work has focused on the lasso and its variants (Bickel, Ritov, and Tsybakov, 2009; Belloni,

Chernozhukov, and Wang, 2011; Belloni, Chen, Chernozhukov, and Hansen, 2012; Farrell, 2015) and

tree/forest based methods (Wager and Athey, 2018), though earlier work studied shallow (typically

with a single hidden layer) neural networks with smooth activation functions (White, 1989, 1992;

Chen and White, 1999). We fill the gap in this literature by studying deep neural networks with

the non-smooth ReLU activation.

A second, intertwined strand of literature focuses on inference following the use of machine

learning methods, often with a focus on causal effects. Initial theoretical results were concerned

obtaining valid inference on a coefficient in a high-dimensional regression, following model selection

or regularization, with particular focus on the lasso (Belloni, Chen, Chernozhukov, and Hansen,

2012; Javanmard and Montanari, 2014; van de Geer, Buhlmann, Ritov, and Dezeure, 2014). In-

tuitively, this is a semiparametric problem, where the coefficient of interest is estimable at the

4



parametric rate, and the remaining coefficients are a nonparametric nuisance parameter estimated

using machine learning methods. Building on this intuition, many have studied the semiparamet-

ric stage directly, such as obtaining novel, weaker conditions easing the application of machine

learning methods (Belloni, Chernozhukov, and Hansen, 2014; Farrell, 2015; Chernozhukov, Escan-

ciano, Ichimura, Newey, and Robins, 2018; Belloni, Chernozhukov, Chetverikov, Hansen, and Kato,

2018, and references therein). Conceptually related to this strand are targeted maximum likelihood

(van der Laan and Rose, 2001) and the higher-order influence functions (Robins, Li, Tchetgen, and

van der Vaart, 2008; Robins, Li, Mukherjee, Tchetgen, and van der Vaart, 2017). Our work builds

on this work, employing conditions therein, and in particular, verifying them for deep ReLU nets.

Finally, our convergence rates build on, and contribute to, the recent theoretical machine learn-

ing literature on deep neural networks. Because of the renaissance in deep learning, a considerable

amount of study has been done in recent years. Of particular relevance to us are Yarotsky (2017,

2018) and Bartlett, Harvey, Liaw, and Mehrabian (2017); a recent textbook treatment, containing

numerous other references, is given by Goodfellow, Bengio, and Courville (2016).

2 Deep Neural Networks

In this section we will give our main theoretical results: nonasymptotic bounds and associated

convergence rates for nonparametric regression using deep neural nets. The utility of these results

for second-step semiparametric causal inference (the downstream task), for which our rates are

sufficiently rapid, is demonstrated in Section 4. We view our results as an initial step in establishing

both the estimation and inference theory for modern deep neural networks, i.e. those built using a

multi-layer perceptron architecture (described below) and the nonsmooth ReLU activation function.

This combination is crucial: it has demonstrated state of the art performance empirically and can be

feasibly optimized. This is in contrast with sigmoid-based networks, either shallow (for which theory

exists, but may not match empirical performance) or deep (which are not feasible to optimize), and

with shallow ReLU networks, which are not known to approximate broad classes functions.

As neural networks are perhaps less familiar to economists and other social scientists, we first

briefly review the construction of deep ReLU nets. Our main focus will be on the fully connected

feedfoward neural network, frequently referred to as a multi-layer perceptron, as this is the most

5



commonly implemented network architecture and we want our results to inform empirical practice.

However, our results are more general, accommodating other architectures provided they are able

to yield a universal approximation (in the appropriate function class), and so we review neural nets

more generally and give concrete examples.

The nonparametric setup we consider is standard. Our goal is to estimate an unknown smooth

function f∗(x), that relates the covariates X ∈ Rd to a scalar outcome Y . We collect these random

variables into the vector Z = (Y,X ′)′ ∈ Rd+1 and let a realization be z = (y,x′)′. Accuracy is

measured by a per-observation loss function denoted by `(f, z). We cover both least squares and

logistic regression as explicit examples. Both play a role in semiparametric inference on causal

effects, in particular corresponding to the outcome and propensity score models, respectively. For

least squares, the target function and loss are

f∗(x) := E[Y |X = x] and ` (f, z) =
1

2
(y − f(x))2, (2.1)

respectively, while for logistic regression these are

f∗(x) := log
E[Y |X = x]

1− E[Y |X = x]
and ` (f, z) = −yf(x) + log

(
1 + ef(x)

)
. (2.2)

Other loss functions (with smoothness and curvature) can be accommodated; our results naturally

extend to cases such as generalized linear models, for example multinomial logistic regression.

2.1 Neural Network Constructions

For either least squares or logistic loss, we estimate the target function using a deep ReLU network.

We will give a brief outline of their construction here, paying closer attention to the details germane

to our theory; complete introductions are given by Anthony and Bartlett (1999) and Goodfellow,

Bengio, and Courville (2016).

The crucial choice is the specific network architecture, or class. In general we will call this

FDNN. From a theoretical point of view, different classes have different complexity and different

approximating power. We give results for several concrete examples below. We will focus on

feedforward neural networks (Anthony and Bartlett, 1999). An example of a feedforward network

6



Figure 1: Illustration of a feedforward neural network with W = 18, L = 2, U = 5, and input
dimension d = 2. The input units are shown in blue at left, the output in red at right, and the
hidden units in grey between them.

Figure 2: Illustration of multi-layer perceptron FMLP with H = 3, L = 2 (U = 6, W = 25), and
input dimension d = 2.

is shown in Figure 1. The network consists of d input units, corresponding to the covariatesX ∈ Rd,

one output unit for the outcome Y . Between these are U hidden units, or computational nodes

or neurons. These are connected by a directed acyclic graph specifying the architecture. The key

graphical feature of a feedforward network is that hidden units are grouped in a sequence of L

layers, the depth of the network, where a node is in layer l = 1, 2, . . . , L, if it has a predecessor in

layer l−1 and no predecessor in any layer l′ ≥ l. The width of the network at a given layer, denoted

Hl, is the number of units in that layer. The network is completed with the choice of an activation

function σ : R 7→ R applied to the output of each node as described below. In this paper, we focus

on the popular ReLU activation function σ(x) = max(x, 0) (see also Remark 3).

An important and widely used subclass is the one that is fully connected between consecutive

layers but has no other connections and each layer has number of hidden units that are of the same

order of magnitude. This architecture is often referred to as a Multi-Layer Perceptron (MLP) and

we denote the class as FMLP. See Figure 2, cf. Figure 1. We will assume that all the width of all

layers share a common asymptotic order H, implying that for this class U � LH.

We will allow for generic feedforward networks in our results, but we present special results for

the MLP case, as it is widely used in empirical practice. As we will see below, the architecture,

through its complexity, and more importantly, approximation power, plays a crucial role in the

7



final convergence rate. In particular, at present we find only a suboptimal rate for the MLP case,

but our upper bound is still sufficient for semiparametric inference. (As a note on exposition, while

our main results are in fact nonasymptotic bounds that hold with high probability, for simplicity

we will refer to our results as “rates” in most discussion.)

To build intuition on the computation, and compare to other nonparametrics methods, let us

for now focus on least squares (2.1) with a continuous outcome using a multilayer perceptron with

constant width H. Each hidden unit u receives an input in the form of a linear combination x̃′w+b,

and then returns σ(x̃′w+ b), where the vector x̃ collects the output of all the units with a directed

edge into u (i.e., from prior layers). The final layer’s output is x̃′w + b. The parameters to be

optimized are the weight vector w and the constant term b, with one set for each node of the

graph. (The constant term is often referred to as the “bias” in the networks literature, but given

the loaded meaning of this term in inference, we will avoid referring to b as a bias.) The collection,

over all nodes, of w and b, constitutes the parameters θ which are optimized in the final estimation.

We denote W as the total number of parameters (both weights and biases) of the network. For the

MLP W = (d+ 1)H + (L− 1)(H2 +H) +H + 1.

Optimization proceeds layer-by-layer using (variants of) stochastic gradient descent, with gra-

dients of the parameters calculated by back-propagation (implementing the chain-rule) induced

by the network structure. To see this, let the output of a node u = (h, l), for h = 1, . . . H,

l = 1, . . . L, be denoted by the scalar x̃h,l. This is computed as x̃h,l = σ(x̃′l−1wh,l−1 + bh,l−1), where

x̃l−1 = (x̃1,l−1, . . . , x̃H,l−1)′. The final output is ŷ = x̃′LwL + bL. Once we recall that x̃L = x̃L(x),

we can view this as a basis function expansion (albeit a complex one) of the original observation x,

and then the form f̂MLP(x) = x̃L(x)′wL + bL is reminiscent of a traditional series (linear sieve) es-

timator. If all layers save the last were fixed, we could simply optimize using least squares directly:

(wL, bL) = arg minw,b ‖yi − x̃′Lw − b‖2n.

The crucial distinction is of course that the set of basis functions x̃L(·) is learned from the data.

The “basis” is x̃L = (x̃1,L, . . . , x̃H,L)′, where each x̃h,L = σ(x̃′L−1wh,L−1 + bh,L−1). Therefore, “be-

fore” we can solve the least squares problem above, we would have to estimate (w′h,L−1, bh,L−1), h =

1, . . . ,H, anticipating the final estimation. These in turn depend on the prior layer, and so forth

back to the original inputs X. Measuring the gradient of the loss with respect to each layer of

parameters uses the chain rule recursively, and is implemented by back propagation. This is sim-

8



ply a sketch of course; for further introduction, see Hastie, Tibshirani, and Friedman (2009) and

Goodfellow, Bengio, and Courville (2016).

To further clarify the use of deep nets, it is useful to make explicit analogies to more classical

nonparametric techniques, leveraging the form f̂MLP(x) = x̃L(x)′wL + bL. For a traditional series

estimator, say smoothing splines, the two choices for the practitioner are the spline basis (the

shape and the degree) and the number of terms (knots), commonly referred to as the smoothing

and tuning parameters, respectively. In kernel regression, these would respectively be the shape of

the kernel (and degree of local polynomial) and the bandwidth(s). For neural networks, the same

phenomena are present: the architecture as a whole (the graph structure and activation function)

are the smoothing parameters while the width and depth play the role of tuning parameters for a

set architecture.

The architecture plays a crucial role in that it determines the approximation power of the

network, and it is worth noting that because of the relative complexity of neural networks, such

approximations, and comparisons across architectures, are not simple. It is comparatively obvious

that quartic splines are more flexible than cubic splines (for the same number of knots) as is a

higher degree local polynomial (for the same bandwidth). At a glance, it may not be clear what

function class a given network architecture (width, depth, graph structure, and activation function)

can approximate. As we will show below, the MLP architecture is not yet known to yield an optimal

approximation (for a given width and depth) and therefore we are only able to prove a bound with

slower than optimal rate. As a final note, computational considerations are important for deep nets

in a way that is not true conventionally. See Remarks 1, 2, and 3.

Just as for classical nonparametrics, for a fixed architecture, it is the tuning parameter choices

that determine the rate of convergence (for a fixed smoothness of the underlying function). The

new wave of study of neural networks, focusing on depth, is in its infancy theoretically. As such,

there is no understanding yet of optimal architecture(s) or tuning parameters. Choices of both

are quite difficult, and only preliminary research has been done (e.g., Daniely, 2017; Telgarsky,

2016; Safran and Shamir, 2016; Mhaskar and Poggio, 2016a; Raghu, Poole, Kleinberg, Ganguli,

and Sohl-Dickstein, 2017, and references therein). Further exploration of these ideas is beyond the

current scope. It is interesting to note that in some cases, a good approximation can be obtained

even with a fixed width H, provided the network is deep enough, a very particular way of enriching

9



the “sieve space” FDNN. See Corollary 2.

In sum, for a user-chosen architecture FDNN, encompassing the choices σ(·), U , L, W , and the

graph structure, the final estimate is computed using observed samples zi = (yi,x
′
i)
′, i = 1, 2, . . . , n,

of Z, by solving

f̂DNN := arg min
fθ∈FDNN
‖fθ‖∞≤2M

n∑
i=1

` (f, zi) . (2.3)

When (2.3) is restricted to the MLP class we denote the resulting estimator f̂MLP. The choice of

M may be arbitrarily large, and is part of the definition of the class FDNN. This is neither a tuning

parameter nor regularization in the usual sense: it is not assumed to vary with n, and beyond being

finite, no properties of M are required. This is simply a formalization of the requirement that the

optimizer is not allowed to diverge on the function level in the l∞ sense — the weakest form of

constraint. It is important to note that while typically regularization will alter the approximation

power of the class, that is not the case with the choice of M as we will assume that the true function

f∗(x) is bounded, as is standard in nonparametric analysis. With some extra notational burden,

one can make the dependence of the bound on M explicit, though we omit this for clarity as it is

not related to statistical issues.

Remark 1. In applications it is common to apply some form of regularization to the optimization

of (2.3). However, in theory, the role of explicit regularization is unclear and may be unnecessary,

as stochastic gradient descent presents good, if not better, solutions empirically (see Section 6

and Zhang, Bengio, Hardt, Recht, and Vinyals, 2016). Regularization may improve empirical

performance in low signal-to-noise ratio problems. A detailed investigation is beyond the scope of

the current work, though we do investigate this numerically in Sections 5 and 6. There are many

alternative regularization methods, including L1 and L2 (weight decay) penalties, drop out, and

others. y

2.2 Bounds and Convergence Rates for Multi-Layer Perceptrons

We can now state our first theoretical results: bounds and convergence rates for deep ReLU net-

works. All proofs appear in Appendix A. We study neural networks from a nonparametric point

10



of view (e.g., White, 1989, 1992; Schmidt-Hieber, 2017; Liang, 2018; Bauer and Kohler, 2017, in

specific scenarios). Chen and Shen (1998) and Chen and White (1999) share our goal, fast con-

vergence rates for use in semiparametric inference, but focus on shallow, sigmoid-based networks

compared to our deep, ReLU-based networks, though they consider dependent data which we do

not. Our theoretical approach is quite different. In particular, Chen and White (1999) obtain

sufficiently fast rates by following the approach of Barron (1993) in using Maurey’s method (Pisier,

1981) for approximation, but applying the refinement of Makovoz (1996). Our analysis of deep

nets instead employs localization methods (Koltchinskii and Panchenko, 2000; Bartlett, Bousquet,

Mendelson, et al., 2005; Koltchinskii, 2006; Liang, Rakhlin, and Sridharan, 2015), along with the

recent approximation work of Yarotsky (2017, 2018) and complexity results of Bartlett, Harvey,

Liaw, and Mehrabian (2017).

The regularity conditions we require are collected in the following.

Assumption 1. Assume that zi = (yi,x
′
i)
′, 1 ≤ i ≤ n are i.i.d. copies of Z = (Y,X) ∈ Y×[−1, 1]d,

where X is continuously distributed. For an absolute constant M > 0, assume ‖f∗‖∞ ≤ M and

either f∗(x) = E[Y | X = x] and Y = [−M,M ] or f∗(x) = log (E[Y |X = x]/(1− E[Y |X = x]))

and Y = {0, 1}.

This assumption is fairly standard in nonparametrics. The only restriction worth mentioning

is that for least squares regression we assume that the outcome is bounded. In common practice

our restriction is not substantially more limiting than the usual assumption of a model such as

Y = f∗(X) + ε, where X is compact-supported, f∗ is bounded, and the stochastic error ε possesses

many moments. Indeed, in many applications such a structure is only coherent with bounded

outcomes, such as the common practice of including lagged outcomes as predictors. The assumption

of continuously distributed covariates is quite standard. From a theoretical point of view, covariates

taking on only a few values can be conditioned on and then averaged over, and these will, as usual,

not enter into the dimensionality which curses the rates. Discrete covariates taking on many

values may be more realistically thought of as continuous, and it may be more accurate to allow

these to slow the convergence rates. Our focus on L2(X) convergence allows for these essentially

automatically. Finally, from a practical point of view, deep networks handle discrete covariates

seamlessly and have demonstrated excellent empirical performance, which is in contrast to other

11



more classical nonparametric techniques that may require more manual adaptation.

We begin with the most important network architecture, the multi-layer perceptron. This is

the most widely used network architecture in practice and an important contribution of our work

is to cover this directly, along with ReLU activation. MLPs are known now to approximate smooth

functions well, leading to our next assumption: that the target function f∗ lies in a Sobolev ball

with certain smoothness.

Assumption 2. Assume f∗ lies in the Sobolev ball Wβ,∞([−1, 1]d), with smoothness β ∈ N+,

f∗(x) ∈ Wβ,∞([−1, 1]d) :=

{
f : max

α,|α|≤β
ess sup
x∈[−1,1]d

|Dαf(x)| ≤ 1

}
,

where α = (α1, . . . , αd), |α| = α1 + . . .+ αd and Dαf is the weak derivative.

Under Assumptions 1 and 2 we obtain the following result, which, to the best of our knowledge,

is new to the literature. In some sense, this is our main result for deep learning, as it deals with

the most common architecture. We apply this in Sections 4 and 5 for semiparametric inference.

Theorem 1 (Multi-Layer Perceptron). Suppose Assumptions 1 and 2 hold. Let f̂MLP be the deep

ReLU network estimator defined by (2.3), restricted to FMLP, for either least squares (2.1) or

logistic (2.2) loss, with Hn � n
d

2(β+d) log2 n and Ln � log n. Then with probability at least 1 −

exp(−n
d

β+d log8 n),

(a) ‖f̂MLP − f∗‖2L2(X) ≤ C ·
{
n
− β
β+d log8 n+

log log n

n

}
and

(b) En
[
(f̂MLP − f∗)2

]
≤ C ·

{
n
− β
β+d log8 n+

log logn

n

}
,

for a universal constant C > 0 independent of n.

The proof of this result is in the Appendix. However, several aspects warrant discussion. We

build on the recent results of Bartlett, Harvey, Liaw, and Mehrabian (2017), who find nearly-tight

bounds on the Vapnik-Chervonenkis (VC) dimension of deep nets. One contribution of our proof

is to derive a scale sensitive localization theory with scale insensitive measures, such as VC- or

Pseudo-dimension, for deep neural networks. This has two tangible benefits. First, we do not

restrict the class of network architectures to have bounded weights for each unit (scale insensitive),

12



in accordance to standard practice (Zhang, Bengio, Hardt, Recht, and Vinyals, 2016). Moreover,

this allows for a richer set of approximating possibilities, in particular allowing more flexibility

in seeking architectures with specific properties, as we explore in the next subsection. This is in

contrast to the classic sieve analysis with scale sensitive measure such as metric entropy. Second,

from a technical point of view, we are able to attain a faster rate on the second term of the bound,

order n−1 in the sample size, instead of the n−1/2 that would result from a direct application of

uniform deviation bounds. This upper bound informs the trade offs between Hn and Ln, and the

approximation power, and may point toward optimal architectures for statistical inference.

This result gives a nonasymptotic bound that holds with high probability. As mentioned above,

we will generally refer to our results simply as “rates” when this causes no confusion. This result

relies on choosing Hn appropriately given the smoothness β of Assumption 2. Of course, the true

smoothness is unknown and thus in practice the “β” appearing in Hn, and consequently in the

convergence rates, need not match that of Assumption 2. In general, the rate will depend on the

smaller of the two. Most commonly it is assumed that the user-chosen β is fixed and that the truth

is smoother; witness the ubiquity of cubic splines and local linear regression. Rather than spell

out these consequences directly, we will tacitly assume the true smoothness is not less than the β

appearing in Hn (here and below). Adaptive approaches, as in classical nonparametrics, may also

be possible with deep nets, but are beyond the scope of this study.

Even with these choices of Hn and Ln, the bound of Theorem 1 is not optimal (for fixed β,

in the sense of Stone (1982)). We rely on the explicit approximating constructions of Yarotsky

(2017), and it is possible that in the future improved approximation properties of MLPs will be

found, allowing for a sharpening of Theorem 1 without substantive change to the argument. At

present, it is not clear if this rate can be improved, but it is sufficiently fast for valid inference.

2.3 Other Network Architectures

Theorem 1 covers only one specific architecture, albeit the most important one at present. However,

given that this field is rapidly evolving, it is important to consider other possible architectures which

may be beneficial in some cases. To this end, we will state a more generic result and then two

specific examples: one to obtain an faster rate of convergence and one for fixed-width networks.

All of these results are, at present, more of theoretical interest than practical value, as they are

13



either agnostic about the network (thus infeasible) or rely on more limiting assumptions.

In order to be agnostic about the specific architecture of the network we need to be flexible in

the approximation power of the class. To this end, we will replace Assumption 2 with the following

generic assumption, rather more of a definition, regarding the approximation power of the network.

Assumption 3. Let f∗ lie in a class F . For the feedforward network class FDNN, used in (2.3),

the approximation error εDNN is

εDNN := sup
f∗∈F

inf
f∈FDNN
‖f‖∞≤2M

‖f − f∗‖∞ .

It may be possible to require only an approximation in the L2(X) norm, but this assumption

matches the current approximation theory literature and is more comparable with other work in

nonparametrics, and thus we maintain the uniform definition.

Under this condition we obtain our the following generic result.

Theorem 2 (General Feedforward Architecture). Suppose Assumptions 1 and 3 hold. Let f̂DNN

be the deep ReLU network estimator defined by (2.3), for either least squares (2.1) or logistic (2.2)

loss. Then with probability at least 1− e−γ,

(a) ‖f̂DNN − f∗‖2L2(X) ≤ C
(
WnLn logUn

n
log n+

log log n+ γ

n
+ ε2DNN

)
and

(b) En
[
(f̂DNN − f∗)2

]
≤ C

(
WnLn logUn

n
log n+

log log n+ γ

n
+ ε2DNN

)
,

for a universal constant C > 0 independent of n.

This result covers the general deep ReLU network problem defined in (2.3) for general feedfor-

ward architectures. The same comments as were made following Theorem 1 apply here as well:

the same localization argument is used with the same benefits. We explicitly use this in the next

two corollaries, where we exploit the allowed flexibility in controlling εDNN by stating results for

particular architectures. The bound here is not directly applicable without specifying the network

structure, which will determine both the variance portion (through Wn, Ln, and Un) and the ap-

proximation error. With these set, the bound becomes operational upon choosing γ, which can be

optimized as desired, and this will immediately then yield a convergence rate.

14



Turning to special cases, we first show that the optimal rate of Stone (1982) can be attained, up

to log factors. However, this relies on a rather artificial network structure, designated to approxi-

mate functions in a Sobolev space well, but without concern for practical implementation. Thus,

while the following rate improves upon Theorem 1, we view this result as mainly of theoretical

interest: establishing that (certain) deep ReLU networks are able to attain the optimal rate.

Corollary 1 (Optimal Rate). Suppose Assumptions 1 and 2 hold. Let f̂OPT solve (2.3) using

the (deep and wide) network of Yarotsky (2017, Theorem 1), with Wn � Un � n
d

2β+d log n and

Ln � log n, the following hold with probability at least 1− e−γ,

(a) ‖f̂OPT − f∗‖2L2(X) ≤ C ·
{
n
− 2β

2β+d log4 n+
log logn+ γ

n

}
and

(b) En
[
(f̂OPT − f∗)2

]
≤ C ·

{
n
− 2β

2β+d log4 n+
log log n+ γ

n

}
,

for a universal constant C > 0 independent of n.

Next, we turn to very deep networks that are very narrow, which have attracted substantial

recent interest. Theorem 1 and Corollary 1 dealt with networks where the depth and the width

grow with sample size. This matches the most common empirical practice, and is what we use in

Sections 5 and 6. However, it is possible to allow for networks of fixed width, provided the depth is

sufficiently large. Using recent results (Mhaskar and Poggio, 2016b; Hanin, 2017; Yarotsky, 2018)

we can establish the following result for very deep MLPs.

Corollary 2 (Fixed Width Networks). Let the conditions of Theorem 1 hold, with β ≥ 1 in

Assumption 2. Let f̂FW solve (2.3) for an MLP with H = 2d + 10 and L � n
d

2(2+d) . Then with

probability at least 1− e−γ,

(a) ‖f̂FW − f∗‖2L2(X) ≤ C ·
{
n−

2
2+d log2 n+

log log n+ γ

n

}
and

(b) En
[
(f̂FW − f∗)2

]
≤ C ·

{
n−

2
2+d log2 n+

log logn+ γ

n

}
,

for a universal constant C > 0 independent of n.

This result is again mainly of theoretical interest. The class is only able to approximate well

functions with β = 1 (cf. the choice of L) which limits the potential applications of the result

15



because, in practice, d will be large enough to render this rate, unlike those above, too slow for use

in later inference procedures. In particular, if d ≥ 3, the sufficient conditions of Theorem 3 fail.

Remark 2. Although there has been a great deal of work in easing implementation (optimization

and tuning) of deep nets, it still may be a challenge in some settings, particularly when using

non-standard architectures. See also Remark 1. Given the renewed interest in deep networks, this

is an area of study already (Hartford, Lewis, Leyton-Brown, and Taddy, 2017; Polson and Rockova,

2018) and we expect this to continue and that implementations will rapidly evolve. This is perhaps

another reason that Theorem 1 is, at the present time, the most practically useful. y

Remark 3. In principle, similar rates of convergence could be attained for other activation func-

tions, given results on their approximation error. However, it is not clear what practical value

would be offered due to computational issues (in which the activation choice plays a crucial role).

Indeed, the recent switch to ReLU stems not from their greater approximation power, but from the

fact that optimizing a deep net with sigmoid-type activation is unstable or impossible in practice.

Thus, while it is certainly possible that we could complement the single-layer results with rates for

sigmoid-based deep networks, these results would have no consequences for real-world practice. It

is for these reasons that we focus on ReLU networks and also that we present both generic results

and specific corollaries for different architectures.

From a purely practical point of view, several variations of the ReLU activation function have

been proposed recently (including the so-called Leaky ReLU, Randomized ReLU, (Scaled) Exponen-

tial Linear Units, and so forth) and have been found in some experiments to improve optimization

properties. It is not clear what theoretical properties these activation functions have or if the com-

putational benefits persist more generically, though this area is rapidly evolving. We conjecture

that our results could be extended to include these activation functions. y

3 Parameters of Interest

We will use the results above, in particular Theorem 1, coupled with results in the semiparametric

literature, to deliver valid asymptotic inference for causal effects. The novelty of our results is not

in this semiparametric stage per se, but rather in delivering valid inference after relying on deep

16



learning for the first step estimation. In this section we define the parameters of interest, while

asymptotic inference is discussed next.

We will focus, for concreteness, on causal parameters that are of interest across in different

disciplines: average treatment effects, expected utility (or profits) under different targeting policies,

average effects on (non-)treated subpopulations, and decomposition effects. Our focus on causal

inference with observational data is due to the popularity of these estimands both in applications

and in theoretical work, thus allowing our results to be put to immediate use and easily compared to

prior literature. The average treatment effect in particular is often used as a benchmark parameter

for inference inference following machine learning (see Section 1.1). However, armed with our

results for deep neural networks we can cover a great deal more (some discussion is in Section 3.4).

The estimation of average causal effects is a well-studied problem, and we will give only a

brief overview here. Recent reviews and further references are given by Belloni, Chernozhukov,

Fernández-Val, and Hansen (2017); Athey, Imbens, Pham, and Wager (2017); Abadie and Cattaneo

(2018). We consider the standard setup for program evaluation with observational data: we observe

a sample of n units, each exposed to a binary treatment, and for each unit we observe a vector

of pre-treatment covariates, X ∈ Rd, treatment status T ∈ {0, 1}, and a scalar post-treatment

outcome Y . The observed outcome obeys Y = TY (1) + (1− T )Y (0), where Y (t) is the (potential)

outcome under treatment status t ∈ {0, 1}. The “fundamental problem” is that only Y (0) or Y (1)

is observed for each unit, never both.

The crucial identification assumptions, which pertains to all the parameters we consider, are

selection on observables, also known as ignorability, unconfoundedness, missingness at random, or

conditional independence, and overlap, or common support. Let p(x) = P[T = 1|X = x] denote the

propensity score and µt(x) = E[Y (t)|X = x], t ∈ {0, 1} denote the two regression functions. We

then assume the following throughout. Beyond this, we will mostly need only regularity conditions

for inference.

Assumption 4. For t ∈ {0, 1} and almost surely X, E[Y (t)|T,X = x] = E[Y (t)|X = x] and

p̄ ≤ p(x) ≤ 1− p̄ for some p̄ > 0.

It will be useful to divide our discussion between parameters that are fully marginal averages,

such as the average treatment effect, and those which are for specific subpopulations. Here, “sub-

17



populations” refer to the treated or nontreated groups, with corresponding parameters such as

the treatment effect for the treated. Any parameter, in either case, can be studied for a suitable

subpopulation defined by the covariates X, such as a specific demographic group. Though causal

effects as a whole share some structure, there are slight conceptual and notational differences. In

particular, the form of the efficient influence function and doubly robust estimator is different for

the two sets, but common within.

3.1 Full-Population Average Effect Parameters

Here we are interested in averages over the entire population. The prototypical parameter of interest

is the average treatment effect:

τ = E[Y (1)− Y (0)]. (3.1)

In the context of our empirical example, the treatment is being mailed a catalog and the outcome

is either a binary purchase decision or dollars spent. The average treatment effect, also referred to

as “lift” in digital contexts, corresponds to the expected gain in revenue from an average individual

receiving the catalog compared to the same person not receiving the catalog.

A closely related parameter of interest is the average realized outcome, which in general may

be interpreted as the expected utility or welfare from a treatment policy. In the context of our

empirical application this is expected profits; in a medical context it would be the total health

outcome. The question of interest here is whether a change in the treatment policy would be

beneficial in terms of increasing outcomes, and this is judged using observational data. Intuitively,

the average treatment effect is the expected gain from treatment for the “next” person exposed

to treatment, relative to if they had not been exposed. That is, it is the expected change in the

outcome. Expected utility/profit, on the other hand, is concerned with the total outcome, not

the difference in outcomes. In the context of our empirical application, we are interested in the

probability of making a purchase decision or in total sales, rather than the change in each. Our

discussion is grounded in this language for easy comparison.

The parameter depends on a hypothetical treatment targeting strategy, which is often the object

of evaluation. This is simply a rule that assigns a given set of characteristics (e.g. a consumer

profile), determined by the covariates X, to treatment status: that is, a known function (which

18



may include randomization but is not estimated from the sample) s(x) : supp{X} 7→ {0, 1}. Note

well that this is not necessarily the observed treatment: s(xi) 6= ti. The policy maker may wish to

evaluate the gain from targeting only a certain subset of customers, a price discrimination strategy,

or comparisons of different such policies.

The parameter of interest is then then expected utility, or profit, from a fixed policy, given by

π(s) = E
[
s(X)Y (1) + (1− s(X))Y (0)

]
, (3.2)

where we make explicit the dependence on the policy s(·). Compare to Equation (3.1) and recall

that the observed outcome obeys Y = TY (1) + (1−T )Y (0). Whereas τ is the gain in assigning the

next person to treatment and is given by the difference in potential outcomes, π(s) is the expected

outcome that would be observed for the next person if the treatment rule were s(x).

A natural question is whether a candidate targeting strategy, say s′(x), is superior to baseline

or status quo policy, s0(x). This amounts to testing the hypothesis H0 : π(s′) ≥ π(s0). To evaluate

this, we can study the difference in expected profits, which amounts to

π(s′, s0) = π(s′)− π(s0) = E
[
(s′(X)− s0(X))Y (1) +

(
s0(X)− s′(X)

)
Y (0)

]
. (3.3)

Assumption 4 provides identification for π(s) and π(s′, s0), arguing analogously as for τ . Moreover,

notice that π(s′, s0) = E[(s′(X)− s0(X))(Y (1)− Y (0))] = E[(s′(X)− s0(X))τ(X)], where τ(x) =

E[Y (1) − Y (0) | X = x] is the conditional average treatment effect. The latter form makes clear

that only those differently treated, of course, impact the evaluation of s′ compared to s0. The

strategy s′ will be superior if, on average, it targets those with a higher individual treatment effect,

τ(x). Estimating the optimal treatment policy from the data is discussed briefly in Section 3.3.

The common structure of these parameters is that they all involve full-population averages of

the potential outcomes, possibly scaled by a known function. For these parameters, the influence

function is known from Hahn (1998), and estimators based on the influence function are doubly

robust, as they remain consistent if either the regression functions or the propensity score are

correctly specified (Robins, Rotnitzky, and Zhao, 1994, 1995). With a slight abuse of terminology

(since we are omitting the centering), the influence function for a single average potential outcome,

19



t ∈ {0, 1}, is given by, for z = (y, t,x′)′,

ψt(z) =
1{T = t}(y − µt(x))

P[T = t |X = x]
+ µt(x). (3.4)

Our estimation of τ , π(s), and π(s′, s0) will utilize sample averages of this function, with unknown

objects replaced by estimators. Our use of influence functions here follows the recent literature in

econometrics showing that the double robustness implies valid inference under weaker conditions on

the first step nonparametric estimates (Farrell, 2015; Chernozhukov, Chetverikov, Demirer, Duflo,

Hansen, Newey, and Robins, 2018).

3.2 Subpopulation Effect Parameters

The second type of causal effects of interest are based on potential outcomes averaged over only a

specific treatment group. A single such average, for t, t′ ∈ {0, 1}, is denoted by

ρt,t′ = E[Y (t) | T = t′]. (3.5)

Many interesting parameters are linear combinations of these for different t and t′. We focus on

two for concreteness. (We could also consider averages restricted by targeting-type functions, as in

expected utility/profit, but for brevity we omit this.) The most well-studied of these parameters is

the treatment effect on the treated, given by

τ1,0 = E[Y (1)− Y (0) | T = 1] = ρ1,1 − ρ0,1. (3.6)

To appreciate the breadth of this framework, and the applicability of our causal inference re-

sults, we also consider a decomposition parameter, a semiparametric analogue of Oaxaca-Blinder

(Kitagawa, 1955; Oaxaca, 1973; Blinder, 1973). In this context, the “treatment” variable T is typ-

ically not a treatment assignment per se, but rather an exogenous covariate such as a demographic

indicator, perhaps most commonly a male/female indicator. See Fortin, Lemieux, and Firpo (2011)

for a complete discussion and further references. The parameter of interest in this case is the decom-

position of ∆ = E[Y (1) | T = 1]−E[Y (0) | T = 0], into the difference in the covariate distributions

and the difference in expected outcomes. These can be written as functions of different ρt,t′ . For

20



example, ∆X = E[Y (1)|T = 1] − E[Y (1)|T = 0] = E[µ1(X)|T = 1] − E[µ1(X)|T = 0] = ρ1,1 − ρ1,0.

We are in general interested in

∆ = ∆X + ∆µ, ∆X = ρ1,1 − ρ1,0, and ∆µ = ρ1,0 − ρ0,0. (3.7)

Just as in the case of full-population averages, the influence function is known and leads to a

doubly robust estimator. For a single ρt,t′ , the (uncentered) influence function is (cf. (3.4)):

ψt,t′(z) =
P[T = t′ |X = x]

P[T = t′]

1{T = t}(y − µt(x))

P[T = t |X = x]
+
1{T = t′}µt(x)

P[T = t′]
. (3.8)

Estimation and inference requires, as above, estimation of the propensity scores and regression func-

tions, depending on the exact choices of t and t′, and here we also require the marginal probability

of treatments.

3.3 Optimal Policies

Moving beyond inference on a fixed parameter, our results on deep neural networks can be used to

address optimal targeting. In the notation of Section 3.1, this amounts to finding a policy, say s?(x),

that maximizes a given measure of utility stemming from treatment, generally the expected gain

relative to a baseline policy. In Section 3.1 we considered inference on the utility (or profit) difference

between two given strategies, a candidate s′(x) and a baseline s0(x). Now, we turn from inference

to using the data to find the s?(x) which maximizes this gain. This problem has been widely

studied in econometrics and statistics; for detailed discussion and numerous references see Manski

(2004), Hirano and Porter (2009), Kitagawa and Tetenov (2018), and Athey and Wager (2018). In

particular, the latter noticed using the locally robust framework allows policy optimization under

nearly the same conditions as inference and proved fast convergence rates of the estimated policy

in terms of regret.

More formally, we want to find the optimal choice s?(x) in some policy/action space S. The

policy space, and thus its complexity, is user determined. Simple examples include simple deci-

sion trees or univariate-based strategies; more can be found in the references above. Recall that

π(s′, s0) = E[Y (s′)]− E[Y (s0)] = E[(s′(X)− s0(X))τ(X)], where τ(x) = E[Y (1)− Y (0) | X = x]

21



is the conditional average treatment effect. Given a space S, we wish to find the policy s?(x) ∈ S

which solves maxs′∈S π(s′, s0). The main result of Athey and Wager (2018) is that replacing π

with the doubly-robust π̂ of Equation (4.3), and minimizing the empirical analogue of regret, one

obtains an estimator ŝ(x) of the optimal policy that obeys the regret bound π(s?, s0)− π(ŝ, s0) =

OP (
√

VC(S)/n) (a formal statement would be notationally burdensome). The complexity of the

user-chosen policy space enters the bound through its VC dimension. Simple, interpretable policy

classes often have bounded or slowly-growing dimension, implying rapid convergence. Beyond the

optimal policy itself, the target for inference would be π(ŝ, s0) or π(s?, s0), which is to say that the

parameter of interest is itself learned from the data, in contrast to the above.

3.4 Other Estimands

There are of course many other contexts where first-step deep learning is useful. Only trivial

extensions to the above would be required for other causal effects, such as multi-valued treatments

(reviewed by Lechner, 2001; Cattaneo, 2010) and others with doubly-robust estimators (Sloczynski

and Wooldridge, 2018). Further, under selection on observables, treatment effects, missing data,

measurement error, and data combination are equivalent, and thus all our results apply immediately

to those contexts. For reviews of these and Assumption 4 more broadly, see Chen, Hong, and Tarozzi

(2004); Tsiatis (2006); Heckman and Vytlacil (2007); Imbens and Wooldridge (2009).

Beyond causal effects, any estimand with a locally/doubly robust estimator depending only on

conditional expectations can be covered using the results of Section 2. (Estimands requiring density

estimation require further study; see Liang (2018) for recent results.) Our results can be used as an

ingredient in verifying the conditions of Chernozhukov, Escanciano, Ichimura, Newey, and Robins

(2018, Section 7), who treat more general semiparametric estimands using local robustness, some-

times relying on sample splitting or cross fitting. Our results can thus be used in IV models (Bel-

loni, Chen, Chernozhukov, and Hansen, 2012), partial linear models (Belloni, Chernozhukov, and

Hansen, 2014), games (Chernozhukov, Escanciano, Ichimura, Newey, and Robins, 2018), differences-

in-differences (Sant’Anna and Zhao, 2018), and other areas (Belloni, Chernozhukov, Chetverikov,

Hansen, and Kato, 2018). The formal theorems would be very similar to results below, and we

defer to these works for precise statements.

More broadly, the learning of features using deep neural networks is becoming increasingly

22



popular and our results speak to this context directly. To illustrate, consider the simple example

of a linear model where some predictors are features learned from independent data. Here, the

object of interest is the fixed-dimension coefficient vector λ, which we assume can be partitioned

as λ = (λ′1,λ
′
2)′ according to the model Y = f(X)′λ1 + W ′λ2 + ε. The features f(X), often a

“score” of some type, are generally learned from auxiliary (and independent) data. For a recent

example, see Liu, Lee, and Srinivasan (2017). In such cases, inference on λ can proceed directly,

as long as care is taken to interpret the results. See Section 4.2.

4 Asymptotic Inference

We now turn to asymptotic inference for the causal parameters discussed above. We first define

the estimators, which are based on sample averages of the (uncentered) influence functions (3.4)

and (3.8). We then give generic for single averages which can then be combined for inference on

a given parameter of interest. Below we discuss inference under randomized treatment and using

sample splitting.

Throughout, we assume we have a sample {zi = (yi, ti,x
′
i)
′}ni=1 from Z = (Y, T,X ′)′. We then

form

ψ̂t(zi) =
1{ti = t}(yi − µ̂t(xi))
P̂[T = t |X = xi]

+ µ̂t(xi), (4.1)

where P̂[T = t |X = xi] = p̂(xi) for t = 1 and 1− p̂(xi) for t = 0, and similarly we obtain ψ̂t,t′(zi).

ψ̂t,t′(zi) =
P̂[T = t′ |X = xi]

P̂[T = t′]

1{ti = t}(yi − µ̂t(xi))
P̂[T = t |X = xi]

+
1{ti = t′}µ̂t(xi)

P̂[T = t′]
, (4.2)

where P̂[T = t′] is simply the sample frequency En[1{ti = t′}].

For the first stage estimates appearing in (4.1) and (4.2) we use our results on deep nets,

and Theorem 1 in particular. Specifically, the estimated propensity score, p̂(x), is the estimate

that results from solving (2.3), with the MLP architecture, for the logistic loss (2.2) with T

as the outcome. Similarly, for each status t ∈ {0, 1}, let µ̂t(x) be the deep-MLP estimate of

f∗(x) = E[Y |T = t,X = x], solving (2.3) for least squares loss, (2.1), with outcome Y , using

only observations with ti = t. In the case of binary outcomes, the latter are replaced by logistic

regressions.

23



We then obtain inference using the following results, essentially taken from Farrell (2015).

Similar results are given by Belloni, Chernozhukov, and Hansen (2014); Belloni, Chernozhukov,

Fernández-Val, and Hansen (2017); Belloni, Chernozhukov, Chetverikov, Hansen, and Kato (2018).

All of these provide high-level conditions for valid inference, and none verify these for deep nets as

we do here.

Theorem 3. Suppose that {zi = (yi, ti,x
′
i)
′}ni=1 are i.i.d. obeying Assumption 4 and the conditions

Theorem 1 hold with β > d. Further assume that, for t ∈ {0, 1}, E[(s(X)ψt(Z))2|X] is bounded

away from zero and E[(s(X)ψt(Z))4+δ|X] is bounded from some δ > 0. Then the deep ReLU

network estimators defined above obey the following, for t ∈ {0, 1},

(a) En[(p̂(xi)− p(xi))2] = oP (1) and En
[
(µ̂t(xi)− µt(xi))2

]
= oP (1),

(b) En[(µ̂t(xi)− µt(xi))2]1/2En[(p̂(xi)− p(xi))2]1/2 = oP (n−1/2), and

(c) En[(µ̂t(xi)− µt(xi))(1− 1{ti = t}/P[T = t|X = xi])] = oP (n−1/2),

and therefore, if p̂(xi) is bounded inside (0, 1), for a given s(x) and t ∈ {0, 1}, we have

√
nEn

[
s(xi)ψ̂t(zi)− s(xi)ψt(zi)

]
= oP (1) and

En[(s(xi)ψ̂t(zi))
2]

En[(s(xi)ψt(zi))2]
= oP (1).

Further,
√
nEn

[
ψ̂t,t′(zi)− ψt,t′(zi)

]
= oP (1) and

En[ψ̂t,t′(zi)
2]

En[ψt,t′(zi)2]
= oP (1).

This result, our main inference contribution, shows exactly how deep learning delivers valid

asymptotic inference for our parameters of interest. Theorem 1 (a generic result using Theorem 2

could be stated) proves that the nonparametric estimates converge sufficiently fast, as formalized

by conditions (a), (b) and (c), enabling feasible semiparametric efficient inference. In general, these

are implied by, but may be weaker than, the requirement of that the first step estimates converge

faster than n−1/4, which our results yield for deep ReLU nets. The first is a mild consistency

requirement. The second requires a rate, but on the product of the two estimates, which can be

satisfied under weaker conditions. Finally, the third condition is the strongest. Intuitively, this

condition arises from a “leave-in” type remainder, and as such, it can be weakened using cross

splitting Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins (2018); Newey

24



and Robins (2018). We opt to maintain (c) exactly because deep nets are not amenable to either

simple leave-one-out forms (as are, e.g., classical kernel regression) or to sample splitting, being a

data hungry method the gain in rate requirements may not be worth the price paid in constants.

We use our localization approach to verify (c), see Lemma 11, we may also be of interest in future

applications of second-step inference using machine learning methods.

From this result we immediately obtain inference for all the causal parameters discussed above.

For the full-population averages, for example, we would form

τ̂ = En
[
ψ̂1(zi)− ψ̂0(zi)

]
,

π̂(s) = En
[
s(xi)ψ̂1(zi) + (1− s(xi))ψ̂0(zi)

]
,

π̂(s′, s0) = En
[
[s′(xi)− s0(xi)]ψ̂1(zi)− [s′(xi)− s0(xi)]ψ̂0(zi)

]
.

(4.3)

The estimator τ̂ is exactly the doubly/locally robust estimator of the average treatment effect that

is standard in the literature. The estimators for profits can be thought of as the doubly robust

version of the constructs described in Hitsch and Misra (2018). Furthermore, to add a per-unit

cost of treatment/targeting c and a margin m, simply replace ψ1 with mψ1 − c and ψ0 with mψ0.

Similarly, τ̂1,0, ∆̂X , and ∆̂µ would be linear combinations of different ρ̂t,t′ = En[ψ̂t,t′(zi)].

It is immediate from Theorem 3 that all such estimators are asymptotically Normal. The

asymptotic variance can be estimated by simply replacing the sample first moments of (4.3) with

second moments. That is, looking at π̂(s) to fix ideas,

√
nΣ̂−1/2 (π̂(s)− π(s))

d→ N (0, 1), with Σ̂ = En
[(
s(xi)ψ̂1(zi) + (1− s(xi))ψ̂0(zi)

)2
]
− π̂(s)2.

The others are similar. Furthermore, Theorem 3 can be generalized straightforwardly to provide in-

ference that is uniformly valid over the classes data-generating processes for which our assumptions

hold uniformly, following the approach of Romano (2004), exactly as in Belloni, Chernozhukov, and

Hansen (2014) or Farrell (2015). It may also be possible to employ recently developed extensions

to doubly robust estimation (Tan, 2018) and inverse weighting (Ma and Wang, 2018), which may

be beneficial in applications.

25



4.1 Inference Under Randomization

Our analysis thus far has focused on observational data, but it is worth spelling out results for

randomized experiments. This is particularly important in the Internet age, where experimentation

is common, vast amounts of data are available, and effects are often small in magnitude (Taddy,

Gardner, Chen, and Draper, 2015). Indeed, our empirical illustration, detailed in the next section,

stems from an experiment with 300,000 units and hundreds of covariates. When treatment is

randomized, inference can be done directly using the mean outcomes in the treatment and control

groups, such as the difference for the average treatment effect or the corresponding weighted sum

for profit. However, pre-treatment covariates can be used to increase efficiency (Hahn, 2004).

We will focus on the simple situation of a purely randomized binary treatment, but our results

can be extended naturally to other randomization schemes. We formalize this with the following.

Assumption 5 (Randomized Treatment). T is independent of Y (0), Y (1), and X, and is dis-

tributed Bernoulli with parameter p∗, such that p̄ ≤ p∗ ≤ 1− p̄ for some p̄ > 0.

Under this assumption, the obvious simplification is that the propensity score need not be

estimated using the covariates, but can be replaced with the (still nonparametric) sample frequency:

p̂(xi) ≡ p̂ = En[ti]. This is plugged into Equation (4.3) and estimation and inference proceeds as

above. Only rate conditions on the regression functions µ̂t(x) are needed. Further, conditions (a)

and (b) of Theorem 3 collapse, as p̂ is root-n consistent, leaving only condition (c) to be verified.

We collect this into the following result, which is a trivial corollary of Theorem 3.

Corollary 3. Let the conditions of Theorem 3 hold with Assumption 5 in place of Assumption 4.

Then deep ReLU network estimators obey

(a′) En
[
(µ̂t(xi)− µt(xi))2

]
= oP (1) and

(c′) En[(µ̂t(xi)− µt(xi))(1− 1{ti = t}/p∗)] = oP (n−1/2)

and the conclusions of Theorem 3 hold.

4.2 Sample Splitting

Sample splitting may be used to obtain valid inference in cases, unlike those above, where the

parameter of interest itself is learned from the data. For the causal estimands above, the regression

26



functions and propensity score must be estimated, but these are nuisance functions. This is not

true in the inference after policy or feature learning (Sections 3.3 and 3.4). For policy learning,

our results can be used to verify the high-level conditions of Athey and Wager (2018), though

they require the additional condition of uniform consistency of the first stage estimators, and for

machine learning estimators this is not clearly innocuous. However, this gives only estimation of

the target parameter.

Sample splitting is used in the obvious way: the first subsample, or more generally, indepen-

dent auxiliary data, is used to learn the features or optimal policy, and then Theorem 3 or other

appropriate result is applied in the second subsample, conditional on the results of the first. For

policy learning this delivers valid inference on π(ŝ) or π(ŝ, s0), while for the simple example of

feature learning in a linear model we obtain inference on the parameters defined by the “model”

Y = f(X)′λ1 + W ′λ2 + ε, where f(X) is estimated from auxiliary data. Care must be taken in

these case to interpret the results. The results of the first-subsample estimation are effectively con-

ditioned upon in the inference stage, redefining the target parameter to be in terms of the learned

object. In many contexts this may be sufficient (Chernozhukov, Demirer, Duflo, and Fernandez-

Val, 2018), but further assumptions will generally be needed to assume that the first subsample has

recovered the true population object. To fix ideas, consider policy learning: inference on π(ŝ, s0),

conditional on the learned map ŝ(x), is immediate and requires no assumptions, but inference on

π(s?, s0) is not obvious without further conditions.

5 Empirical Application

To illustrate our results, Theorems 1 and 3 in particular, we study, from a marketing point of

view, a randomized experiment from a large US retailer of consumer products. The outcome of

interest is consumer spending and the treatment is a catalog mailing. The firm sells directly to

the customer (as opposed to via retailers) using a variety of channels such as the web and mail.

The data consists of nearly three hundred thousand (292,657) consumers chosen at random from

the retailer’s database. Of these, 2/3 were randomly chosen to receive a catalog, and in addition

to treatment status, we observe roughly one hundred fifty covariates, including demographics, past

purchase behaviors, interactions with the firm, and other relevant information. For more detail

27



on this data, as well as a complete discussion of the decision making issues, we refer the reader

to Hitsch and Misra (2018) (we use the 2015 sample). That paper studied various estimators,

both traditional and modern, of average and heterogeneous causal effects. Importantly, they did

not consider neural networks. Our results suggest that deep nets are at least as good as (and

sometimes better) that the best methods found by Hitsch and Misra (2018).

In general, a key element of a firm’s toolkit is the design and implementation of targeted mar-

keting instruments. These instruments, aiming to induce demand, often contain advertising and

informational content about the firms offerings. The targeting aspect thus boils down to the selec-

tion of which particular customers should be sent the material. This is a particularly important

decision since the costs of creation and dissemination the material can accumulate rapidly, partic-

ularly over a large customer base. For a typical retailer engaging in direct marketing the costs of

sending out a catalog can be cost close to a dollar per targeted customer. With millions of catalogs

being sent out, the cost of a typical campaign is quite high.

Given these expenses an important problem for firms is ascertaining the causal effects of such

targeted mailing, and then using these effects to evaluate potential targeting strategies. At a high

level, this approach is very similar to modern personalized medicine where treatments have to be

targeted. In these contexts, both the treatment and the targeting can be extremely costly, and

thus careful assessment of π(s) (interpreted as welfare) is crucial for decision making.

The outcome of interest for the firm is customer spending. This is the total amount of money

that a given customer spends on purchases of the firm’s products, within a specified time window.

For the experiment in question the firm used a window of three months, and aggregated sales from

all available purchase channels including phone, mail, and the web. In our data 6.2% of customers

made a purchase. Overall mean spending is $7.31; average spending conditional on buying is

$117.7, with a standard deviation of $132.44. Figure 3 displays the complete density of spending

conditional on a purchase, which is quite skewed. The idea then is to examine the incremental

effect that the catalog had on this spending metric. Table 1 presents summary statistics for the

outcome and treatment.

28



Spend conditional on purchase

F
re

qu
en

cy

0 200 400 600 800 1000

0
50

0
10

00
15

00
20

00
25

00
30

00

Figure 3: Spend Conditional on Purchase

5.1 Implementation Details

We estimated deep neural nets under a variety of architecture choices. In what follows we present

eight examples and focus on one particular architecture to compute various statistics and tests to

illustrate the use of the theory developed above. All computation was done using TensorFlowTM.

For treatment effect and profit estimation we follow Equations (4.1) and (4.3). Because treat-

ment is randomized, we apply Corollary 3, and thus, only require estimates of the regression

functions µt(x) = E[Y (t)|X = x], t ∈ {0, 1}. An important implementation detail, from a com-

putation point of view (recall Remark 2) is that we will estimate µ0 and µ1 jointly (results from

Table 1: Summary Statistics

Mean SD N

Purchase 0.062 0.24 292657

Spend 7.311 43.55 292657

Spend Conditional on Purchase 117.730 132.44 18174

Treatment 0.669 0.47 292657

29



separate estimation are available). To be precise, recalling Equations (2.1) and (2.3), we solve

 µ̂0(x)

τ̂(x) = µ̂1(x)− µ̂0(x)

 := arg min
µ̃0,τ̃

n∑
i=1

1

2

(
yi − µ̃0(xi)− τ̃(xi)ti

)2

where the minimization is over the relevant network architecture. In the context of our empirical

example yi is the costumer’s spending, xi are her characteristics, and ti indicates receipt of a cat-

alog. In this format, µ0(xi) reflects base spending and τ(x) = µ1(xi) − µ0(xi) is the conditional

average treatment effect of the catalog mailing. In our application, this joint estimation outper-

forms separately estimating each µt(x) on the respective samples (though these two approaches are

equivalent theoretically).

The details of the eight deep net architectures are presented in Table 2. See Section 2.1 for an

introduction to the terminology and network construction. Most yielded similar results, both in

terms of fit and final estimates. A key measure of fit reported in the final column of the table is the

portion of τ̂(xi) that were negative. As argued by Hitsch and Misra (2018), it is implausible under

standard marketing or economic theory that receipt of a catalog causes lower purchasing. On this

metric of fit, deep nets perform as well as, and sometimes better than, the best methods found

by Hitsch and Misra (2018): Causal KNN with Treatment Effect Projections (detailed therein) or

Causal Forests (Wager and Athey, 2018). Figure 4 shows the distribution of τ̂(xi) across customers

for each of the eight architectures. While there are differences in the shapes of the densities, the

mean and variance estimates are nonetheless quite similar.

5.2 Results

We present results for treatment effects, utility/profits, and targeting policy evaluations. Table 3

shows the estimates of the average treatment effect from the eight network architectures along with

their respective 95% confidence intervals. These results are constructed following Section 4, using

Equations (4.1) and (4.3) in particular, and valid by Corollary 3. All eight specifications yield

quite similar results. Furthermore, because this is an experiment, we can compare to the standard

unadjusted difference in means, which yields an average treatment effect of 2.632.

Turning to expected profits, we estimate π(s) = E
[
s(X)(mY (1) − c) + (1− s(X))mY (0)

]
,

30



Table 2: Deep Network Architectures

Learning Widths Dropout Total Validation Training

Architecture Rate [H1, H2, ...] [H1, H2, ...] Parameters Loss Loss Pn[τ̂(xi) < 0]

1 0.0003 [60] [0.5] 8702 1405.62 1748.91 0.0014

2 0.0003 [100] [0.5] 14502 1406.48 1751.87 0.0251

3 0.0001 [30, 20] [0.5, 0] 4952 1408.22 1751.20 0.0072

4 0.0009 [30, 10] [0.3, 0.1] 4622 1408.56 1751.62 0.0138

5 0.0003 [30, 30] [0, 0] 5282 1403.57 1738.59 0.0226

6 0.0003 [30, 30] [0.5, 0] 5282 1408.57 1755.28 0.0066

7 0.0003 [100, 30, 20] [0.5, 0.5, 0] 17992 1408.62 1751.52 0.0103

8 0.00005 [80, 30, 20] [0.5, 0.5, 0] 14532 1413.70 1756.93 0.0002

Notes: All networks use the ReLU activation function. The width of each layer is shown, e.g. Architecture 3 consists
of two layers, with 30 and 20 hidden units respectively. The final column shows the portion of estimated individual
treatment effects below zero.

Figure 4: Conditional Average Treatment Effects Across Architectures

−5 0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Conditional Average Treatment Effect

D
en

si
ty

adding a profit margin m and a mailing cost c to (3.2) (our NDA with the firm forbids revealing

m and c). We consider three different counterfactual policies s(x): (i) never treat, s(x) ≡ 0; (ii) a

blanket treatment, s(x) ≡ 1; (iii) a loyalty policy, s(xi) = 1 only for those who had purchased in

31



Table 3: Average Treatment Effect Estimates and 95% Confidence Intervals

Average Treatment 95% Confidence
Architecture Effect (τ̂) Interval

1 2.606 [2.273 , 2.932]
2 2.577 [2.252 , 2.901]
3 2.547 [2.223 , 2.872]
4 2.488 [2.160 , 2.817]
5 2.459 [2.127 , 2.791]
6 2.430 [2.093 , 2.767]
7 2.400 [2.057 , 2.744]
8 2.371 [2.021 , 2.721]

Table 4: Counterfactual Profits from Three Targeting Strategies

Never Treat Blanket Treatment Loyalty Policy
Architecture π̂(s) 95% CI π̂(s) 95% CI π̂(s) 95% CI

1 2.016 [1.923 , 2.110] 2.234 [2.162 , 2.306] 2.367 [2.292 , 2.443]
2 2.022 [1.929 , 2.114] 2.229 [2.157 , 2.301] 2.363 [2.288 , 2.438]
3 2.027 [1.934 , 2.120] 2.224 [2.152 , 2.296] 2.358 [2.283 , 2.434]
4 2.037 [1.944 , 2.130] 2.213 [2.140 , 2.286] 2.350 [2.274 , 2.425]
5 2.043 [1.950 , 2.136] 2.208 [2.135 , 2.281] 2.345 [2.269 , 2.422]
6 2.048 [1.954 , 2.142] 2.202 [2.128 , 2.277] 2.341 [2.263 , 2.418]
7 2.053 [1.959 , 2.148] 2.197 [2.122 , 2.272] 2.336 [2.258 , 2.414]
8 2.059 [1.963 , 2.154] 2.192 [2.116 , 2.268] 2.332 [2.253 , 2.411]

the prior calendar year. Results are shown in Table 4. There is close agreement among the eight

architectures both numerically and substantially: it is clear that profits from the three policies are

ordered as π(never) < π(blanket) < π(loyalty).

5.2.1 Optimal Targeting

To explore further, we focus on architecture #3 and study subpopulation treatment targeting

strategies following the ideas of Section 3.3. (The other architectures yield similar results, so

we omit them.) Architecture #3 has depth L = 2 with widths H1 = 30 and H2 = 20. The

learning rate was set at 0.0001 and the specification had a total of 4,952 parameters. For this

architecture, recalling Remark 1, we added dropout for the second layer with a fixed probability

of 1/2. Using this architecture, we compare the blanket strategy (so s0(x) = 1) to targeting

customers with spend of at least ȳ dollars in the prior calendar year (prior spending is one of the

covariates), in $50 increments to $1200. The policy class is therefore S = {s(x) = 1(prior spend >

32



Figure 5: Expected Profits from Threshold Targeting Based on Prior Year Spend

0 200 400 600 800 1000 1200

−
0.

05
0.

00
0.

05
0.

10
0.

15
0.

20
0.

25

Spend

P
ro

fit
 D

iff
er

en
ce

ȳ), ȳ = 0, 50, 100, . . . , 1150, 1200}. Figure 5 presents the results. The black dots show the difference{
π(spend > ȳ) − π(blanket)

}
and the shaded region gives a pointwise 95% confidence band (to

ease presentation, sample splitting is not used). We see that there is a significant different between

various choices of ȳ. Initially, targeting customers with higher spend yields higher profits, as would

be expected, but this effect diminishes beyond a certain ȳ, roughly $500, as fewer and fewer are

targeted. The optimal policy estimate is ŝ(x) = 1(prior spend > 400). In general, simpler policy

classes may yield better decisions, but it is certainly possible to expand our search to different S

by considering further covariates and/or transformations.

6 Monte Carlo Analysis

We conducted a set of Monte Carlo experiments to evaluate our theoretical results. We will study

inference on the average treatment effect, τ of (3.1), under different data generating processes

(DGPs). In each DGP we take n = 10, 000 i.i.d. samples and use 1,000 replications. For either

33



d = 20 or 100, X includes a constant term and d−1 independent U(0, 1). Treatment assignment is

Bernoulli with probability p(x), where p(x) is the propensity score. We consider both (i) random-

ized treatments with p(x) = 0.5 and (ii) observational data with p(x) = (1 + exp(−α′px))−1, where

αp,1 = 0.09 and the remainder are drawn as U(−0.55, 0.55), and then fixed for the simulations.

For d = 100, we maintain ‖αp‖0 = 20 for the simplicity. These generate propensities with an

interquartile range of approximately (0.30, .0.75) and mean roughly 0.52.

Given covariates and treatment assignment, the outcomes are generated according

yi = µ0(xi) + τ(xi)ti + εi, µ0(x) = α′µx+ β′µϕ(x), τ (xi) = α′τx+ β′τϕ(x),

where εi ∼ N (0, 1) and ϕ(x) are second-degree polynomials including pairwise interactions. For

µ0(x) and τ(x) we consider two cases, linear and nonlinear models. In both cases the intercepts

are αµ,1 = 0.09 and ατ,1 = −0.05 and slopes are drawn (once) as αµ,k ∼ N (0.3, 0.49) and ατ,k ∼

U(0.1, 0.22), k = 2, . . . , d. The linear models set βµ = βτ = 0 while the nonlinear models take

βµ,k ∼ N (0.01, 0.09) and βτ,k ∼ U(−0.05, 0.06). Altogether, this yields eight designs: d = 20 or

100, p(x) constant or not, and outcome models linear or nonlinear.

We consider two different network architectures for estimation. Both are ReLU-based MLPs,

but the first has three layers, with widths 60, 30, and 20, while the second has five layers, with widths

20,15,15,10,10, and 5. Table 5 shows the results for all eight DGPs: panel (a) shows randomized

treatment while panel (b) shows results mimicking observational data. Overall, the results reported

show excellent performance of deep learning based semiparametric inference. The bias is minimal

and the coverage is quite accurate, while the interval length is under control. Notice that the

two architectures yield similar results, neither dominates the other, but that the more complex

architecture does not suffer from length inflation.

Neither architecture used regularization. In our empirical application, most architectures em-

ployed dropout, a common method of regularization; see Remark 1. However, results without

dropout were no worse (see Architecture 5 in Tables 3 and 4). As is typical, regularization can

introduce bias problems. To explore this, we added regularization to architecture 1 and reran the

simulations. The corresponding results are shown in Table 6. In some, not all, cases the coverage

remains accurate, but with greatly increased bias and interval length compared to Table 5. The

34



Table 5: Simulation Results

(a) Constant Propensity Score

20 Covariates 100 Covariates

Model Architecture Bias IL Coverage Bias IL Coverage

Linear
1 -0.00001 0.079 0.946 -0.00029 0.080 0.940

2 0.00065 0.079 0.942 0.00024 0.081 0.949

Nonlinear
1 0.00027 0.079 0.945 0.00125 0.147 0.912

2 -0.00025 0.081 0.939 0.00030 0.164 0.959

(b) Nonconstant Propensity Score

20 Covariates 100 Covariates

Model Architecture Bias IL Coverage Bias IL Coverage

Linear
1 -0.00027 0.080 0.942 0.00025 0.081 0.928

2 -0.00100 0.079 0.960 -0.00080 0.081 0.949

Nonlinear
1 -0.00116 0.080 0.950 -0.00117 0.159 0.949

2 -0.00155 0.081 0.953 -0.00015 0.165 0.856

Table 6: Adding Dropout to Architecture 1

Propensity Outcome 20 Covariates 100 Covariates

Score Model Bias IL Coverage Bias IL Coverage

Constant
Linear 0.0004 0.098 0.955 -0.0005 0.199 0.978

Nonlinear 0.0018 0.133 0.979 -0.0019 0.420 0.974

Nonconstant
Linear -0.0098 0.099 0.942 0.0008 0.191 0.964

Nonlinear -0.0087 0.123 0.748 -0.0599 0.445 0.960

results preach caution when applying regularization in applications.

7 Conclusion

The utility of deep learning in social science applications is still a subject of interest and debate.

While there is an acknowledgment of its predictive power, there has been limited adoption of

deep learning in social sciences such as Economics. Some part of the reluctance to adopting these

methods stems from the lack of theory facilitating use and interpretation. We have shown, both

theoretically as well as empirically, that these methods can offer excellent performance.

In this paper, we have given a formal proof that inference can be valid after using deep learning

methods for first-step estimation. To the best of our knowledge, ours is the first inference result

using deep nets. Our results thus contribute directly to the recent explosion in both theoretical

35



and applied research using machine learning methods in economics, and to the recent adoption of

deep learning in empirical settings. We obtained novel bounds for deep neural networks, speaking

directly to the modern (and empirically successful) practice of using fully-connected feedfoward

networks. Our results allow for different network architectures, including fixed width, very deep

networks. To obtain these rates we have used a novel proof strategy, departing from past analyses

of neural networks in the sieve estimation literature. Our results cover nonparametric conditional

expectations, and we gave concrete rates for least squares and logistic loss, thus covering most

nonparametric practice. We used our bounds to deliver fast convergence rates allowing for second-

stage inference on a finite-dimensional parameter of interest.

There are practical implications of the theory presented in this paper. We focused on semipara-

metric causal effects as a concrete illustration, but deep learning is a potentially valuable tool in

many diverse economic settings. Our results allow researchers to embed deep learning into stan-

dard econometric models such as linear regressions, generalized linear models, and other forms of

limited dependent variables models (e.g. censored regression). These results can also be used as a

starting point for constructing deep learning implementations of two-step estimators in the context

of selection models, dynamic discrete choice, and the estimation of games.

To be clear, we see our paper as a first step in the exploration of deep learning as a tool for

economic applications. There are a number of opportunities, questions, and challenges that remain.

For example, factor models in finance might benefit from the use of auto-encoders and recurrent

neural nets may have applications in time series. For some estimands, it may be crucial to estimate

the density as well, and this problem can be challenging in high dimensions. Deep nets, in the

form of Generative Adversarial Networks are a promising tool for density estimation. There are

also interesting questions remaining as to an optimal network architecture, and if this can be itself

learned from the data, as well as computational and optimization guidance. Research into these

further applications and structures is underway.

8 References

Abadie, A., and M. D. Cattaneo (2018): “Econometric Methods for Program Evaluation,”
Annual Review of Economics, 10, 465–503.

36



Anthony, M., and P. L. Bartlett (1999): Neural Network Learning: Theoretical Foundations.
Campbridge University Press.

Athey, S., G. Imbens, T. Pham, and S. Wager (2017): “Estimating average treatment ef-
fects: Supplementary analyses and remaining challenges,” American Economic Review: Papers
& Proceeding, 107(5), 278–81.

Athey, S., G. W. Imbens, and S. Wager (2018): “Approximate residual balancing: debiased
inference of average treatment effects in high dimensions,” Journal of the Royal Statistical Society,
Series B, 80(4), 597–623.

Athey, S., and S. Wager (2018): “Efficient Policy Learning,” arXiv preprint arXiv:1702.02896.

Barron, A. R. (1993): “Universal approximation bounds for superpositions of a sigmoidal func-
tion,” IEEE Transactions on Information theory, 39(3), 930–945.

Bartlett, P. L., O. Bousquet, S. Mendelson, et al. (2005): “Local rademacher complexi-
ties,” The Annals of Statistics, 33(4), 1497–1537.

Bartlett, P. L., N. Harvey, C. Liaw, and A. Mehrabian (2017): “Nearly-tight VC-
dimension bounds for piecewise linear neural networks,” in Proceedings of the 22nd Annual
Conference on Learning Theory (COLT 2017).

Bauer, B., and M. Kohler (2017): “On Deep Learning as a remedy for the curse of dimension-
ality in nonparametric regression,” Discussion paper, Technical report.

Belloni, A., D. Chen, V. Chernozhukov, and C. Hansen (2012): “Sparse models and
methods for optimal instruments with an application to eminent domain,” Econometrica, 80(6),
2369–2429.

Belloni, A., V. Chernozhukov, D. Chetverikov, C. Hansen, and K. Kato (2018): “High-
Dimensional Econometrics and Generalized GMM,” arXiv preprint arXiv:1806.01888.

Belloni, A., V. Chernozhukov, I. Fernández-Val, and C. Hansen (2017): “Program Eval-
uation and Causal Inference With High-Dimensional Data,” Econometrica, 85(1), 233–298.

Belloni, A., V. Chernozhukov, and C. Hansen (2014): “Inference on Treatment Effects after
Selection Amongst High-Dimensional Controls,” Review of Economic Studies, 81, 608–650.

Belloni, A., V. Chernozhukov, and L. Wang (2011): “Square-root lasso: pivotal recovery of
sparse signals via conic programming,” Biometrika, 98(4), 791–806.

Bickel, P. J., Y. Ritov, and A. B. Tsybakov (2009): “Simultaneous Analysis of LASSO and
Dantzig Selector,” The Annals of Statistics, 37(4), 1705–1732.

Blinder, A. (1973): “Wage Discrimination: Reduced Form and Structural Estimates,” Journal
of Human Resources, 8(4), 436–455.

Cattaneo, M. D. (2010): “Efficient Semiparametric Estimation of Multi-valued Treatment Effects
under Ignorability,” Journal of Econometrics, 155(2), 138–154.

Cattaneo, M. D., M. Jansson, and X. Ma (2018): “Two-step Estimation and Inference with
Possibly Many Included Covariates,” arXiv:1807.10100, Review of Economic Studies, forthcom-
ing.

37



Chen, X. (2007): “Large Sample Sieve Estimation of Semi-Nonparametric Models,” in Handbook of
Econometrics, ed. by J. Heckman, and E. Leamer, vol. 6B of Handbook of Econometrics, chap. 76.
Elsevier.

Chen, X., H. Hong, and A. Tarozzi (2004): “Semiparametric Efficiency in GMM Models of
Nonclassical Measurament Errors, Missing Data and Treatment Effects,” Cowles Foundation
Discussion Paper No. 1644.

Chen, X., and X. Shen (1998): “Sieve extremum estimates for weakly dependent data,” Econo-
metrica, 66(2), 289–314.

Chen, X., and H. White (1999): “Improved rates and asymptotic normality for nonparametric
neural network estimators,” IEEE Transactions on Information Theory, 45(2), 682–691.

Chernozhukov, V., D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, W. Newey, and

J. Robins (2018): “Double/debiased machine learning for treatment and structural parameters,”
The Econometrics Journal, 21(1), C1–C68.

Chernozhukov, V., M. Demirer, E. Duflo, and I. Fernandez-Val (2018): “Generic Ma-
chine Learning Inference on Heterogenous Treatment Effects in Randomized Experiments,” arXiv
preprint arXiv:1712.04802.

Chernozhukov, V., J. C. Escanciano, H. Ichimura, W. K. Newey, and J. M. Robins
(2018): “Locally Robust Semiparametric Estimation,” arXiv:1608.00033.

Daniely, A. (2017): “Depth separation for neural networks,” arXiv preprint arXiv:1702.08489.

Farrell, M. H. (2015): “Robust Inference on Average Treatment Effects with Possibly More
Covariates than Observations,” arXiv:1309.4686, Journal of Econometrics, 189, 1–23.

Fortin, N., T. Lemieux, and S. Firpo (2011): “Decomposition Methods in Economics,” vol. 4
of Handbook of Labor Economics, pp. 1–102.

Goodfellow, I., Y. Bengio, and A. Courville (2016): Deep learning. MIT Press, Cambridge.

Hahn, J. (1998): “On the Role of the Propensity Score in Efficient Semiparametric Estimation of
Average Treatment Effects,” Econometrica, 66(2), 315–331.

(2004): “Functional restriction and efficiency in causal inference,” Review of Economics
and Statistics, 84(1), 73–76.

Hanin, B. (2017): “Universal function approximation by deep neural nets with bounded width
and relu activations,” arXiv preprint arXiv:1708.02691.

Hansen, C., D. Kozbur, and S. Misra (2017): “Targeted Undersmoothing,” arXiv:1706.07328.

Hartford, J., G. Lewis, K. Leyton-Brown, and M. Taddy (2017): “Deep iv: A flexible
approach for counterfactual prediction,” in International Conference on Machine Learning, pp.
1414–1423.

Hastie, T., R. Tibshirani, and J. Friedman (2009): The elements of statistical learning,
Springer Series in Statistics. Springer-Verlag, New York.

38



He, K., X. Zhang, S. Ren, and J. Sun (2016): “Identity mappings in deep residual networks,”
in European conference on computer vision, pp. 630–645. Springer.

Heckman, J., and E. J. Vytlacil (2007): “Econometric Evaluation of Social Programs, Part
I,” in Handbook of Econometrics, vol. VIB, ed. by J. Heckman, and E. Leamer, pp. 4780–4874.
Elsevier Science B.V.

Hirano, K., and J. Porter (2009): “Asymptotics for statistical treatment rules,” Econometrica,
77(5), 1683–1701.

Hitsch, G. J., and S. Misra (2018): “Heterogeneous Treatment Effects and Optimal Targeting
Policy Evaluation,” SSRN preprint 3111957.

Hornik, K., M. Stinchcombe, and H. White (1989): “Multilayer feedforward networks are
universal approximators,” Neural networks, 2(5), 359–366.

Imbens, G. W., and D. B. Rubin (2015): Causal Inference in Statistics, Social, and Biomedical
Sciences. Cambridge University Press.

Imbens, G. W., and J. M. Wooldridge (2009): “Recent Developments in the Econometrics of
Program Evaluation,” Journal of Economic Literature, 47(1), 5–86.

Javanmard, A., and A. Montanari (2014): “Confidence intervals and hypothesis testing for
high-dimensional regression,” The Journal of Machine Learning Research, 15(1), 2869–2909.

Johansson, F., U. Shalit, and D. Sontag (2016): “Learning representations for counterfactual
inference,” in International Conference on Machine Learning, pp. 3020–3029.

Kingma, D. P., and J. Ba (2014): “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980.

Kitagawa, E. M. (1955): “Components of a Difference Between Two Rates,” Journal of the
American Statistical Association, 50(272), 1168–1194.

Kitagawa, T., and A. Tetenov (2018): “Who should be treated? empirical welfare maximiza-
tion methods for treatment choice,” Econometrica, 86(2), 591–616.

Koltchinskii, V. (2006): “Local Rademacher complexities and oracle inequalities in risk mini-
mization,” The Annals of Statistics, 34(6), 2593–2656.

Koltchinskii, V., and D. Panchenko (2000): “Rademacher processes and bounding the risk of
function learning,” in High dimensional probability II, pp. 443–457. Springer.

Krizhevsky, A., I. Sutskever, and G. E. Hinton (2012): “Imagenet classification with deep
convolutional neural networks,” in Advances in neural information processing systems, pp. 1097–
1105.

Lechner, M. (2001): “Identification and estimation of causal effects of multiple treatments under
the conditional independence assumption,” in Econometric Evaluations of Active Labor Market
Policies, ed. by M. Lechner, and E. Pfeiffer, pp. 43–58. Physica, Heidelberg.

LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner (1998): “Gradient-based learning applied
to document recognition,” Proceedings of the IEEE, 86(11), 2278–2324.

39



Liang, T. (2018): “On How Well Generative Adversarial Networks Learn Densities: Nonparamet-
ric and Parametric Results,” arXiv:1811.03179.

Liang, T., A. Rakhlin, and K. Sridharan (2015): “Learning with square loss: Localization
through offset Rademacher complexity,” in Conference on Learning Theory, pp. 1260–1285.

Liu, X., D. Lee, and K. Srinivasan (2017): “Large scale cross category analysis of consumer
review content on sales conversion leveraging deep learning,” working paper, NYU Stern.

Ma, X., and J. Wang (2018): “Robust Inference Using Inverse Probability Weighting,” arXiv
preprint arXiv:1810.11397.

Makovoz, Y. (1996): “Random approximants and neural networks,” Journal of Approximation
Theory, 85(1), 98–109.

Manski, C. F. (2004): “Statistical treatment rules for heterogeneous populations,” Econometrica,
72(4), 1221–1246.

Mendelson, S. (2003): “A few notes on statistical learning theory,” in Advanced lectures on
machine learning, pp. 1–40. Springer.

Mhaskar, H., and T. Poggio (2016a): “Deep vs. shallow networks: An approximation theory
perspective,” arXiv preprint arXiv:1608.03287.

Mhaskar, H. N., and T. Poggio (2016b): “Deep vs. shallow networks: An approximation theory
perspective,” Analysis and Applications, 14(06), 829–848.

Nair, V., and G. E. Hinton (2010): “Rectified linear units improve restricted boltzmann ma-
chines,” in Proceedings of the 27th international conference on machine learning (ICML-10), pp.
807–814.

Newey, W. K., and J. M. Robins (2018): “Cross-fitting and fast remainder rates for semipara-
metric estimation,” arXiv preprint arXiv:1801.09138.

Oaxaca, R. (1973): “Male-Female Wage Differentials in Urban Labor Markets,” International
Economic Review, 14(3), 693–709.

Pisier, G. (1981): “Remarques sur un résultat non publié de B. Maurey,” in Séminaire Analyse
fonctionnelle (dit Maurey-Schwartz), pp. 1–12.

Polson, N., and V. Rockova (2018): “Posterior Concentration for Sparse Deep Learning,” arXiv
preprint arXiv:1803.09138.

Raghu, M., B. Poole, J. Kleinberg, S. Ganguli, and J. Sohl-Dickstein (2017): “On the
Expressive Power of Deep Neural Networks,” in Proceedings of the 34th International Conference
on Machine Learning, ed. by D. Precup, and Y. W. Teh, vol. 70 of Proceedings of Machine
Learning Research, pp. 2847–2854, International Convention Centre, Sydney, Australia. PMLR.

Robins, J., L. Li, R. Mukherjee, E. Tchetgen, and A. van der Vaart (2017): “Minimax
Estimation of a Functional on a Structured High-Dimensional Model,” The Annals of Statistics,
45(5), 1951–1987.

40



Robins, J., L. Li, E. Tchetgen, and A. van der Vaart (2008): “Higher order influence
functions and minimax estimation of nonlinear functionals,” in Probability and Statistics: Essays
in Honor of David A. Freedman, ed. by D. Nolan, and T. Speed, vol. 2. Beachwood, Ohio, USA:
Institute of Mathematical Statistics.

Robins, J. M., A. Rotnitzky, and L. Zhao (1994): “Estimation of Regression Coefficients When
Some Regressors Are Not Always Observed,” Journal of the American Statistical Association,
89(427), 846–866.

(1995): “Analysis of Semiparametric Regression Models for Repeated Outcomes in the
Presence of Missing Data,” Journal of the American Statistical Association, 90(429), 846–866.

Romano, J. P. (2004): “On non-parametric testing, the uniform behaviour of the t-test, and
related problems,” Scandinavian Journal of Statistics, 31(4), 567–584.

Safran, I., and O. Shamir (2016): “Depth separation in relu networks for approximating smooth
non-linear functions,” arXiv preprint arXiv:1610.09887.

Sant’Anna, P. H. C., and J. B. Zhao (2018): “Doubly Robust Difference-in-Differences Esti-
mators,” arXiv:1812.01723.

Schmidt-Hieber, J. (2017): “Nonparametric regression using deep neural networks with ReLU
activation function,” arXiv preprint arXiv:1708.06633.

Shalit, U., F. D. Johansson, and D. Sontag (2017): “Estimating individual treatment effect:
generalization bounds and algorithms,” arXiv preprint arXiv:1606.03976.

Sloczynski, T., and J. M. Wooldridge (2018): “A General Double Robustness Result for
Estimating Average Treatment Effects,” Econometric Theory, 34(1), 112133.

Stone, C. J. (1982): “Optimal global rates of convergence for nonparametric regression,” The
annals of statistics, pp. 1040–1053.

Taddy, M., M. Gardner, L. Chen, and D. Draper (2015): “A nonparametric Bayesian
analysis of heterogeneous treatment effects in digital experimentation,” Arxiv preprint
arXiv:1412.8563.

Tan, Z. (2018): “Model-assisted inference for treatment effects using regularized calibrated esti-
mation with high-dimensional data,” arXiv preprint arXiv:1801.09817.

Telgarsky, M. (2016): “Benefits of depth in neural networks,” arXiv preprint arXiv:1602.04485.

Tsiatis, A. A. (2006): Semiparametric Theory and Missing Data. Springer, New York.

van de Geer, S., P. Buhlmann, Y. Ritov, and R. Dezeure (2014): “On Asymptotically
Optimal Confidence Regions and Tests for High-Dimensional Models,” The Annals of Statistics,
42(3), 1166–1202.

van der Laan, M., and S. Rose (2001): Targeted Learning: Causal Inference for Observational
and Experimental Data. Springer-Verlag.

Wager, S., and S. Athey (2018): “Estimation and Inference of Heterogeneous Treatment Effects
using Random Forests,” Journal of the American Statistical Association, forthcoming.

41



Westreich, D., J. Lessler, and M. J. Funk (2010): “Propensity score estimation: neural
networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives
to logistic regression,” Journal of clinical epidemiology, 63(8), 826–833.

White, H. (1989): “Learning in artificial neural networks: A statistical perspective,” Neural
computation, 1(4), 425–464.

(1992): Artificial neural networks: approximation and learning theory. Blackwell Publish-
ers, Inc.

Yarotsky, D. (2017): “Error bounds for approximations with deep ReLU networks,” Neural
Networks, 94, 103–114.

(2018): “Optimal approximation of continuous functions by very deep ReLU networks,”
arXiv preprint arXiv:1802.03620.

Zhang, C., S. Bengio, M. Hardt, B. Recht, and O. Vinyals (2016): “Understanding deep
learning requires rethinking generalization,” arXiv preprint arXiv:1611.03530.

A Proof of Theorems 1 and 2

In this section we provide a proof of Theorems 1 and 2, our main theoretical results for deep ReLU

networks. The proof proceeds in several steps. We first give the main breakdown and bound the

bias (approximation error) term. We then turn our attention to the empirical process term, to

which we apply our localization. Much of the proof uses a generic architecture, and thus pertains

to both results. We will specialize the architecture to the multi-layer perceptron only when needed

later on. Other special cases and related results are covered in Section B. Supporting Lemmas are

stated in Section C.

For notational simplicity we will denote f̂DNN := f̂ , see (2.3), and εDNN := εn, see Assumption

3. As we are simultaneously consider Theorems 1 and 2, the generic notation DNN will be used

throughout.

A.1 Main Decomposition and Bias Term

Referring to Assumption 3, define the best approximation realized by the deep ReLU network class

FDNN as

fn := arg min
f∈FDNN
‖f‖∞≤2M

‖f − f∗‖∞.

By definition, εn := εDNN := ‖fn − f∗‖∞.

Recalling the optimality of the estimator in (2.3), we know, as both fn and f̂ are in FDNN, that

−En[`(f̂ ,z)] + En[`(fn, z)] ≥ 0.

42



This result does not hold for f∗ in place of fn, because f∗ 6∈ FDNN. Using the above display and

Lemma 9 (which does not hold with fn in place of f∗ therein), we obtain

c2‖f̂ − f∗‖2L2(X) ≤ E[`(f̂ ,z)]− E[`(f∗, z)]

≤ E[`(f̂ ,z)]− E[`(f∗, z)]− En[`(f̂ ,z)] + En[`(fn, z)]

= E
[
`(f̂ ,z)− `(f∗, z)

]
− En

[
`(f̂ ,z)− `(f∗, z)

]
+ En [`(fn, z)− `(f∗, z)]

= (E− En)
[
`(f̂ ,z)− `(f∗, z)

]
+ En [`(fn, z)− `(f∗, z)] . (A.1)

Equation (A.1) is the main decomposition that begins the proof. The decomposition must be

done this way because of the above notes regarding f∗ and fn. The first term is the empirical

process term that will be treated in the subsequent subsection. For the second term in (A.1), the

bias term or approximation error, we apply Bernstein’s inequality to find that, with probability at

least 1− e−γ ,

En [`(fn, z)− `(f∗, z)] ≤ E [`(fn, z)− `(f∗, z)] +

√
2C2

` ‖fn − f∗‖2∞γ
n

+
14C`Mγ

3n

≤ 1

c2
E
[
‖fn − f∗‖2

]
+

√
2C2

` ‖fn − f∗‖2∞γ
n

+
14C`Mγ

3n

≤ 1

c2
ε2n + εn

√
2C2

` γ

n
+

14C`Mγ

3n
, (A.2)

using Lemma 9 (wherein c2 is given) and E
[
‖fn − f∗‖2

]
≤ ‖fn − f∗‖2∞, along with the definition

of ε2n, and Lemma 10.

Once the empirical process term is controlled (in Section A.2), the two bounds will be brought

back together to compute the final result, see Section A.3.

A.2 Localized Analysis

We now turn to bounding the first term in (A.1) (the empirical processes term) using a novel local-

ized analysis that derives bounds based on scale insensitive complexity measure. The ideas of our

localization are rooted in Koltchinskii and Panchenko (2000) and Bartlett, Bousquet, Mendelson,

et al. (2005). This proof section proceeds in several steps.

A key quantity is the Rademacher complexity of the function class at hand. Given i.i.d.

Rademacher draws, ηi = ±1 with equal probability independent of the data, the random vari-

able RnF , for a function class F , is defined as

RnF := sup
f∈F

1

n

n∑
i=1

ηif(xi).

Intuitively, RnF measures how flexible the function class is for predicting random signs. Taking

43



the expectation of RnF conditioned on the data we obtain the empirical Rademacher complexity,

denoted Eη[RnF ]. When the expectation is taken over both the data and the draws ηi, ERnF , we

get the Rademacher complexity.

A.2.1 Step I: Quadratic Process

The first step is to show that the empirical L2 norm of (f−f∗) is at most twice the population bound,

for certain functions f outside a certain critical radius. This fact will be used later on. Denote

‖f‖n :=
(

1
n

∑n
i=1 f(xi)

2
)1/2

to be the empirical L2-distance. To do so, we study the quadratic

process

‖f − f∗‖2n − ‖f − f∗‖2L2(X) = En(f − f∗)2 − E(f − f∗)2.

We will apply the symmetrization of Lemma 6 to g = (f − f∗)2 restricted to a radius ‖f −
f∗‖L2(X) ≤ r. This function g has variance bounded as

V[g] ≤ E[g2] ≤ E((f − f∗)4) ≤ 4M2r2.

Writing g = (f + f∗)(f − f∗), we see that by Assumption 1, |g| ≤ 2M |f − f∗| ≤ 4M2, where the

first inequality verifies that g has a Lipschitz constant of 2M , and second that g itself is bounded.

We therefore apply Lemma 6, to obtain, with probability at least 1− exp(−γ), that for any f ∈ F
with ‖f − f∗‖L2(X) ≤ r,

En(f − f∗)2 − E(f − f∗)2

≤ 3ERn{g = (f − f∗)2 : f ∈ F , ‖f − f∗‖L2(X) ≤ r}+ 2Mr

√
2γ

n
+

16M2

3

γ

n

≤ 6MERn{f − f∗ : f ∈ F , ‖f − f∗‖L2(X) ≤ r}+ 2Mr

√
2γ

n
+

16M2

3

γ

n
, (A.3)

where the second inequality applies Lemma 2 to the Lipschitz functions {g}.
Suppose the radius r satisfies

r2 ≥ 6MERn{f − f∗ : f ∈ F , ‖f − f∗‖L2(X) ≤ r} (A.4)

and

r2 ≥ 8M2γ

n
. (A.5)

Then we conclude from from (A.3) that

En(f − f∗)2 ≤ r2 + r2 + 2Mr

√
2γ

n
+

16M2

3

γ

n
≤ (2r)2 (A.6)

44



where the first inequality uses (A.4) and the second line uses (A.5). This means that for r above

the “critical radius” (see Step III), the empirical L2-norm is at most twice the population one

with probability at least 1− exp(−γ).

A.2.2 Step II: One Step Improvement

In this step we will show that given a bound on ‖f̂ −f∗‖L2(X) we can use this bound as information

to obtain a tighter bound, if the initial bound is loose as made precise at the end of this step.

Suppose we know that for some r0, ‖f̂ − f∗‖L2(X) ≤ r0 and, by Step I, ‖f̂ − f∗‖n ≤ 2r0. We

may always start with r0 = 2M given Assumption 1 and (2.3). Apply Lemma 6 with G := {g =

`(f, z)− `(f∗, z) : f ∈ FDNN, ‖f − f∗‖L2(X) ≤ r0}, we find that, with probability at least 1− 2e−γ ,

the empirical process term of (A.1) is bounded as

(E− En)
[
`(f̂ ,z)− `(f∗, z)

]
≤ 6EηRnG +

√
2C2

` r
2
0γ

n
+

46MC`
3

γ

n
, (A.7)

where the middle term is due to the following variance calculation (recall Lemma 10)

V[g] ≤ E[g2] = E[|`(f, z)− `(f∗, z)|2] ≤ C2
`E(f − f∗)2 ≤ C2

` r
2
0

and the final term follows because the right side of (C.1) is bounded by C`2M . Here the fact that

Lemma 6 is variance dependent, and that the variance depends on the radius r0, is important. It

is this property which enables a sharpening of the rate with step-by-step reductions in the variance

bound, as in Section A.2.4.

For the empirical Rademacher complexity term, the first term of (A.7), Lemma 2, Step I, and

Lemma 3, yield

EηRnG = EηRn{g : g = `(f, z)− `(f∗, z), f ∈ FDNN, ‖f − f∗‖ ≤ r0}

≤ C`EηRn{f − f∗ : f ∈ FDNN, ‖f − f∗‖ ≤ r0}

≤ C`EηRn{f − f∗ : f ∈ FDNN, ‖f − f∗‖n ≤ 2r0}

≤ C` inf
0<α<2r0

{
4α+

12√
n

∫ 2r0

α

√
logN (δ,FDNN, ‖ · ‖n)dδ

}
≤ C` inf

0<α<2r0

{
4α+

12√
n

∫ 2r0

α

√
logN (δ,FDNN|x1,...,xn ,∞)dδ

}
,

Recall Lemma 4, one can further upper bound the entropy integral when n > Pdim(FDNN),

inf
0<α<2r0

{
4α+

12√
n

∫ 2r0

α

√
logN (δ,FDNN|x1,...,xn ,∞)dδ

}
≤ inf

0<α<2r0

{
4α+

12√
n

∫ 2r0

α

√
Pdim(FDNN) log

2eMn

δ · Pdim(FDNN)
dδ

}

45



≤ 32r0

√
Pdim(FDNN)

n

(
log

2eM

r0
+

3

2
log n

)

with a particular choice of α = 2r0

√
Pdim(FDNN)/n < 2r0. Therefore, whenever r0 ≥ 1/n and

n ≥ (2eM)2,

EηRnG ≤ 64C`r0

√
Pdim(FDNN)

n
log n.

Applying this bound to (A.7), we have

(E− En)
[
`(f̂ ,z)− `(f∗, z)

]
≤ Kr0

√
Pdim(FDNN)

n
log n+ r0

√
2C2

` γ

n
+

46MC`
3

γ

n
(A.8)

where K = 6× 64C`.

Going back now to the main decomposition, plug (A.8) and (A.2) into (A.1), and we find that

c2‖f̂ − f∗‖2L2(X)

≤ Kr0

√
Pdim(FDNN)

n
log n+ r0

√
2C2

` γ

n
+

46MC`
3

γ

n
+

 1

c2
ε2 + ε

√
2C2

` γ

n
+

14C`Mγ

3n


≤ r0 ·

K√Pdim(FDNN)

n
log n+

√
2C2

` γ

n

+ ε2n + εn

√
2C2

` γ

n
+ 20MC`

γ

n

≤ r0 ·

K√C√WL logW

n
log n+

√
2C2

` γ

n

+ ε2n + εn

√
2C2

` γ

n
+ 20MC`

γ

n
, (A.9)

with probability at least 1− 3 exp(−γ), where the last line applies Lemma 7. Therefore, whenever

εn � r0 and
√

WL logW
n log n� r0, the knowledge that ‖f̂ − f∗‖L2(X) ≤ r0 implies that (with high

probability) ‖f̂ − f∗‖L2(X) ≤ r1, for r1 � r0. One can recursively improve the bound r to a fixed

point/radius r∗, which describes the fundamental difficulty of the problem. This is done in the

course of the next two steps.

A.2.3 Step III: Critical Radius

Formally, define the critical radius r∗ to be the largest fixed point

r∗ = inf
{
r > 0 : 6MERn{f − f∗ : f ∈ F , ‖f − f∗‖L2(X) ≤ s} < s2, ∀u ≥ r

}
.

By construction this obeys (A.4), and thus so does 2r∗. Denote the event E (depending on the

data) to be

E =
{
‖f − f∗‖n ≤ 4r∗, for all f ∈ F and ‖f − f∗‖L2(X) ≤ 2r∗

}

46



and 1E to be the indicator that event E holds. We know from (A.6) that P(1E = 1) ≥ 1 − n−1,

provided r∗ ≥
√

8M
√

log n/n to satisfy (A.5).

We can now give an upper bound for the the critical radius r∗. Using the logic of Step II to

bound the empirical Rademacher complexity, and then applying Lemma 7, we find that

r2
∗ ≤ 6MERn

{
f − f∗ : f ∈ F , ‖f − f∗‖L2(X) ≤ r∗

}
≤ 6MERn

{
f − f∗ : f ∈ F , ‖f − f∗‖L2(X) ≤ 2r∗

}
≤ 6ME

{
EηRn{f − f∗ : f ∈ F , ‖f − f∗‖n ≤ 4r∗}1E + 2M(1− 1E)

}
≤ 12MK

√
C · r∗

√
WL logW

n
log n+ 12M2 1

n

≤ 14MK
√
C · r∗

√
WL logW

n
log n,

with the last line relying on the above restriction that r∗ ≥
√

8M
√

log n/n. Dividing through by

r∗ yields the final bound:

r∗ ≤ 14MK
√
C

√
WL logW

n
log n. (A.10)

A.2.4 Step III: Localization

Divide the space FDNN into shells of increasing radius by intersecting it with the balls

B(f∗, r̄), B(f∗, 2r̄)\B(f∗, r̄), . . . B(f∗, 2
lr̄)\B(f∗, 2

l−1r̄) (A.11)

where l ≤ log2
2M√

(logn)/n
. We will specify the choice of r̄ shortly.

Suppose r̄ > r∗. Then for each shell, Step I implies that with probability at least 1−2l exp(−γ),

‖f − f∗‖L2(X) ≤ 2j r̄ ⇒ ‖f − f∗‖n ≤ 2j+1r̄. (A.12)

Further, suppose that for some j ≤ l

f̂ ∈ B(f∗, 2
j r̄)\B(f∗, 2

j−1r̄). (A.13)

Then applying the one step improvement argument in Step II (again the variance dependence

captured in Lemma 6 is crucial, here reflected in the variance within each shell), Equation (A.9)

yields that with probability at least 1− 3 exp(−γ),

‖f̂ − f∗‖2L2(X) ≤
1

c2

2j r̄ ·

K√C√WL logW

n
log n+

√
2C2

` t

n

+ ε2n + εn

√
2C2

` γ

n
+ 20MC`

γ

n


≤ 22j−2r̄2,

47



if the following two conditions hold:

1

c2

K√C√WL logW

n
log n+

√
2C2

` γ

n

 ≤ 1

8
2j r̄

1

c2

ε2n + εn

√
2C2

` t

n
+ 26MC`

γ

n

 ≤ 1

8
22j r̄2.

It is easy to see that these two hold for all j if we choose

r̄ =
8

c2

K√C√WL logW

n
log n+

√
2C2

` γ

n

+

(√
16

c2
εn +

√
208MC`

c2

γ

n

)
+ r∗. (A.14)

Therefore with probability at least 1 − 5l exp(−γ), we can perform shell-by-shell argument

combining the results in Step I and Step II:

‖f̂ − f∗‖L2(X) ≤ 2lr̄ and ‖f̂ − f∗‖n ≤ 2l+1r̄

implies ‖f̂ − f∗‖L2(X) ≤ 2l−1r̄ and ‖f̂ − f∗‖n ≤ 2lr̄

. . . . . .

implies ‖f̂ − f∗‖L2(X) ≤ 20r̄ and ‖f̂ − f∗‖n ≤ 21r̄.

The “and” part of each line follows from Step I and the implication uses the above argument

following Step II. Therefore in the end, we conclude with probability at least 1− 5l exp(−t),

‖f̂ − f∗‖L2(X) ≤ r̄ , (A.15)

‖f̂ − f∗‖n ≤ 2r̄ . (A.16)

Therefore choose γ = log(5l) + γ′, we know from (A.14), and the upper bound on r∗ in (A.10)

r̄ ≤ 8

c2

K√C√WL logW

n
log n+

√
2C2

` (log log n+ γ′)

n

+

(√
16

c2
εn +

√
208MC`

c2

log logn+ γ′

n

)
+ r∗

≤ C ′
(√

WL logW

n
log n+

√
log logn+ γ′

n
+ εn

)
, (A.17)

with some absolute constant C ′ > 0. This completes the proof of Theorem 2.

48



A.3 Final Steps for the MLP case

For the multi-layer perceptron, W ≤ C ·H2L, and plugging this into the bound (A.17), we obtain

C ′

(√
H2
nL

2
n log(H2

nLn)

n
log n+

√
log log n+ t′

n
+ εn

)

To optimize this upper bound on r̄, we need to specify the trade-offs in εn and Hn and Ln. To

do so, we utilize the MLP-specific approximation rate of Lemma 8 and the embedding of Lemma 1.

Lemma 1 implies that, for any εn, one can embed the approximation class FDNN given by Lemma

8 into a standard MLP architecture FMLP, where specifically

Hn = H(εn) ≤W (εn)L(εn) ≤ C2ε
− d
β

n (log(1/εn) + 1)2,

Ln = L(εn) ≤ C · (log(1/εn) + 1).

For standard MLP architecture FMLP,

H2
nL

2
n log(H2

nLn) ≤ C̃ · ε
− 2d
β

n (log(1/εn) + 1)7.

Thus we can optimize the upper bound

r̄ ≤ C ′


√
ε
− 2d
β

n (log(1/εn) + 1)7

n
log n+

√
log log n+ γ′

n
+ εn


by choosing εn = n

− β
2(β+d) , Hn = c1 · n

d
2(β+d) log2 n, Ln = c2 · log n. This gives

r̄ ≤ C

(
n
− β

2(β+d) log4 n+

√
log logn+ t′

n

)
.

Hence putting everything together, with probability at least 1− exp(−γ),

E(f̂ − f∗)2 ≤ r̄2 ≤ C
(
n
− β
β+d log8 n+

log log n+ γ

n

)
,

En(f̂ − f∗)2 ≤ (2r̄)2 ≤ 4C

(
n
− β
β+d log8 n+

log log n+ γ

n

)
.

This completes the proof of Theorem 1.

49



B Proof of Corollaries 1 and 2

For Corollary 1, we want to optimize

WL logU

n
log n+

log log n+ γ

n
+ ε2DNN.

Yarotsky (2017, Theorem 1) shows that for the approximation error εDNN to obey εDNN ≤ ε, it

suffices to choose W,U ∝ ε−
d
β (log(1/ε) + 1) and L ∝ (log(1/ε) + 1), given the specific architecture

described therein. Therefore, we attain ε � n−β/(2β+d) by setting W,U � nd/(2β+d) and L � log n,

yielding the desired result.

For Corollary 2, we need to optimize

H2L2 log(HL)

n
log n+

log logn+ γ

n
+ ε2MLP.

Yarotsky (2018, Theorem 1) shows that for the approximation error εMLP to obey εMLP ≤ ε, it

suffices to choose H ∝ 2d + 10 and L ∝ ε−
d
2 , given the specific architecture described therein.

Thus, for ε � n−1/(2+d) we take L � n−d/(4+2d), and the result follows.

C Supporting Lemmas

First, we show that one can embed a feedforward network into the multi-layer perceptron architec-

ture by adding auxiliary hidden nodes. This idea is due to Yarotsky (2018).

Lemma 1 (Embedding). For any function f ∈ FDNN, there is a g ∈ FMLP, with H ≤ WL + U ,

such that g = f .

Figure 6: Illustration of how to embed a feedforward network into a multi-layer perceptron, with
auxiliary hidden nodes (shown in yellow).

50



Proof. The idea is illustrated in Figure 6. For the edges in the directed graph of f ∈ FDNN

that connect nodes not in adjacent layers (shown in yellow in Figure 6), one can insert auxiliary

hidden units in order to simply “pass forward” the information. The number of such auxiliary

“passforward units” is at most the number of offending edges times the depth L (i.e. for each edge,

at most L auxiliary nodes are required), and this is bounded by WL. Therefore the width of the

MLP network that subsumes the original is upper bounded by WL+U while still maintaining the

required embedding that for any fθ ∈ FDNN, there is a gθ′ ∈ FMLP such that gθ′ = fθ. In order to

match modern practice we only need to show that auxiliary units can be implemented with ReLU

activation. This can be done by setting the constant (“bias”) term b of each auxiliary unit large

enough to ensure σ(x̃′w+ b) = x̃′w+ b, and then subtracting the same b in the last receiving unit

along the path.

Next, we give two properties of the Rademacher complexity that we require (see Mendelson,

2003).

Lemma 2 (Contraction). Let φ : R→ R be a Lipschitz contraction |φ(x)− φ(y)| ≤ L|x− y|, then

EηRn{φ ◦ f : f ∈ F} ≤ LEηRnF .

Lemma 3 (Dudley’s Chaining). Let N (δ,F , ‖ · ‖n) denote the metric entropy for class F (with

covering radius δ and metric ‖ · ‖n), then

EηRn{f : f ∈ F , ‖f‖n ≤ r} ≤ inf
0<α<r

{
4α+

12√
n

∫ r

α

√
logN (δ,F , ‖ · ‖n)dδ

}
.

Furthermore, because ‖f‖n ≤ maxi |f(xi)|, and therefore N (δ,F , ‖ · ‖n) ≤ N (δ,F|x1,...,xn ,∞) and

so the upper bound in the conclusions also holds with N (δ,F|x1,...,xn ,∞).

The next two results, Theorems 12.2 and 14.1 in Anthony and Bartlett (1999), show that the

metric entropy may be bounded in terms of the pseudo-dimension and that the latter is bounded

by the Vapnik-Chervonenkis (VC) dimension.

Lemma 4. Assume for all f ∈ F , ‖f‖∞ ≤ M . Denote the pseudo-dimension of F as Pdim(F),

then for n ≥ Pdim(F), we have for any δ,

N (δ,F|x1,...,xn ,∞) ≤
(

2eM · n
δ · Pdim(F)

)Pdim(F)

.

Lemma 5. If F is the class of functions generated by a neural network with a fixed architecture

and fixed activation functions, then

Pdim(F) ≤ VCdim(F̃)

where F̃ has only one extra input unit and one extra computation unit compared to F .

51



The following symmetrization lemma bounds the empirical processes term using Rademacher

complexity, and is thus a crucial piece of our localization. This is a standard result based on

Talagrand’s concentration, but here special care is taken with the dependence on the variance.

Lemma 6 (Symmetrization, Theorem 2.1 in Bartlett, Bousquet, Mendelson, et al. (2005)). For

any g ∈ G, assume that |g| ≤ G and V[g] ≤ V . Then for every γ > 0, with probability at least

1− e−γ

sup
g∈G
{Eg − Eng} ≤ 3ERnG +

√
2V γ

n
+

4G

3

γ

n
,

and with probability at least 1− 2e−t

sup
g∈G
{Eg − Eng} ≤ 6EηRnG +

√
2V γ

n
+

23G

3

γ

n
.

The same result holds for supg∈G {Eng − Eg}.

In turn, when bounding the complexity using the VC dimension of FDNN, we use the following

bounds on the latter.

Lemma 7 (Theorem 6 in Bartlett, Harvey, Liaw, and Mehrabian (2017), ReLU case). Consider a

ReLU network architecture F = FDNN(W,L,U), then the VC-dimension and pseudo-dimension is

sandwiched by

c ·WL log(W/L) ≤ VCdim(F) ≤ C ·WL logW,

with some universal constants c, C > 0. The same result holds for Pdim(F).

For multi-layer perceptrons we use the following approximation result, Theorem 1 of Yarotsky

(2017).

Lemma 8. There exists a network class FDNN, with ReLU activation, such that for any ε > 0:

(a) FDNN approximates the W β,∞([−1, 1]d) in the sense for any f∗ ∈W β,∞([−1, 1]d), there exists

a fn(ε) := fn ∈ FDNN such that

‖fn − f∗‖∞ ≤ ε,

(b) and FDNN has L(ε) ≤ C · (log(1/ε) + 1) and W (ε), U(ε) ≤ C · ε−
d
β (log(1/ε) + 1).

Here C only depends on d and β.

The next two lemmas relate differences in the loss to differences in the functions themselves.

These are used at very steps and follow from standard calculus arguments.

Lemma 9 (Curvature). For Both the least squares (2.1) and logistic (2.2) loss functions

c1E
[
(f − f∗)2

]
≤ E[`(f,Z)]− E`[(f∗,Z)] ≤ c2E

[
(f − f∗)2

]
.

For least squares, c1 = c2 = 1/2. For logistic, c1 = (2(exp(M) + exp(−M) + 2))−1, c2 = 1/8.

52



Proof. For least squares, using iterated expectations

2E`(f,Z)− 2E`(f∗,Z) = E
[
−2Y f + f2 + 2Y f∗ − f2

∗
]

= E
[
−2f∗f(x) + f2 + 2(f∗)

2 − f2
∗
]

= E
[
(f − f∗)2

]
.

For logistic regression,

E[`(f,Z)]− E[`(f∗,Z)] = E
[
− exp(f∗)

1 + exp(f∗)
(f − f∗) + log

(
1 + exp(f)

1 + exp(f∗)

)]
.

Define ha(b) = − exp(a)
1+exp(a)(b− a) + log

(
1+exp(b)
1+exp(a)

)
, then

ha(b) = ha(a) + h′a(a)(b− a) +
1

2
h′′a (ξa+ (1− ξ)b) (b− a)2

and h′′a(b) = 1
exp(b)+exp(−b)+2 ≤

1
4 . The lower bound holds as |ξf∗ + (1− ξ)f | ≤M .

Lemma 10 (Lipschitz). For Both the least squares (2.1) and logistic (2.2) loss functions

|`(f, z)− `(g,z)| ≤ C`|f(x)− g(x)|. (C.1)

For least squares, C` = M . For logistic regression, C` = 1.

Our last result is to verify condition (c) of Theorem 3. We do so using our localization, which

may be of future interest in second-step inference with machine learning methods.

Lemma 11. Let the conditions of Theorem 3 hold. Then

En
[
(µ̂t(xi)− µt(xi))

(
1− 1{ti = t}

P[T = t|X = xi]

)]
= oP

(
n
− β
β+d log8 n+

log log n

n

)
= oP

(
n−1/2

)
.

Proof. Without loss of generality we can take p̄ < 1/2. The only estimated function here is µt(x),

which plays the role of f∗ here. For function(als) L(·) of the form

L(f) := (f(xi)− f∗(xi))
(

1− 1{ti = t}
P[T = t|X = xi]

)
,

it is true that

E[L(f)] = E
[
(f(X)− f∗(X))

(
1− E[1{ti = t}|xi]

P[T = t|X = xi]

)]
= 0

53



and

V[L(f)] ≤ (1/p̄− 1)2 E
[
(f(X)− f∗(X))2

]
≤ (1/p̄− 1)2 r̄2

|L(f)| ≤ (1/p̄− 1) 2M.

For r̄ defined in (A.14),

6MERn{f − f∗ : f ∈ F , ‖f − f∗‖L2(X) ≤ r̄} ≤ r̄2

ERn{L(f) : f ∈ F , ‖f − f∗‖L2(X) ≤ r̄} ≤ (1/p̄− 1)ERn{f − f∗ : f ∈ F , ‖f − f∗‖L2(X) ≤ r̄}

where the first line is due to r̄ > r∗, and second line uses Lemma 2.

Then by the localization analysis and Lemma 6, for all f ∈ F , ‖f − f∗‖L2(X) ≤ r̄, L(f) obeys

En[L(f)] = En[L(f)]− E[L(f)] ≤ 3Cr̄2 + r̄

√
2 (1/p̄− 1)2 t

n
+

4 (1/p̄− 1) 2M

3

t

n
≤ 4Cr̄2

≤ C ·
{
n
− β
β+d log8 n+

log log n

n

}
,

sup
f∈F ,‖f−f∗‖L2(X)≤r̄

En[L(f)] ≤ C ·
{
n
− β
β+d log8 n+

log log n

n

}
.

With probability at least 1− exp(−n
d

β+d log8 n), f̂MLP lies in this set of functions, and therefore

En[L(f̂MLP)] = En
[
(f̂n,H,L(x)− f∗(x))

(
1− 1(T = t)

P (T = t|x = x)

)]
≤ C ·

{
n
− β
β+d log8 n+

log logn

n

}
,

as claimed.

54


	Introduction
	Related Theoretical Literature

	Deep Neural Networks
	Neural Network Constructions
	Bounds and Convergence Rates for Multi-Layer Perceptrons
	Other Network Architectures

	Parameters of Interest
	Full-Population Average Effect Parameters
	Subpopulation Effect Parameters
	Optimal Policies
	Other Estimands

	Asymptotic Inference
	Inference Under Randomization
	Sample Splitting

	Empirical Application
	Implementation Details
	Results
	Optimal Targeting


	Monte Carlo Analysis
	Conclusion
	References
	Proof of Theorems 1 and 2
	Main Decomposition and Bias Term
	Localized Analysis
	Step I: Quadratic Process
	Step II: One Step Improvement
	Step III: Critical Radius
	Step III: Localization

	Final Steps for the MLP case

	Proof of Corollaries 1 and 2
	Supporting Lemmas

