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Deep Reinforcement Learning for process 

control and optimization 



Introduction 
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 Limitations of model-based control techniques for nonlinear 

processes (Xi et al., 2013) 

 Rigorous models of nonlinear processes are hard and time 

consuming to obtain 

 Even when available, large computational effort is needed for 

solving the nonlinear process control optimization problem 

 Models deteriorate in time so that they need to be reevaluated 

or adaptive mechanisms need to be implemented 

 

 Linear models are still mostly used in practice 
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 Successful applications of the data-based Reinforcement Learning 
techniques 

 

 

 

 

 Automation and data acquisition systems have grown in use in the 
process industry over the last decades 

 The number of publications of RL-based process control 
applications is blooming (Hoskins and Himmelblau,1992; 
Anderson et al., 1997; Martinez, 2000; Syafiie et al., 2008; Li et 
al., 2011; Mustafa and Wilson, 2012; Shah and Gopal, 
2016;Ramanathan et al., 2017; Hernández del Olmo et al., 2017; 
Pandian and Noel, 2018; Ma et al., 2019) 

 

 

 

 

 

 

 

 

 

 

Process 

Control? 
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 Interesting characteristics of RL-based control: 

 No need for a rigorous model of the process 

 The controller may be pre-trained from already implemented 

controllers (PID, MPC,...) or simulations based on simple models 

 RL-based control techniques are naturally adaptive as the learning 

may continue with the integration of new process data 

 By construction, the computational effort is very low compared to 

classical model-based techniques 

 

 In this work, a deep reinforcement learning algorithm for 

continuous control (Lillicrap et al., 2016) is implemented for the 

control and optimization of a Van De Vusse reactor 

 

 



Reinforcement Learning in the 

Machine Learning context 
 

 
Machine 
Learning 

Supervised 
Learning 

Unsupervised 
learning 

Reinforcement 
Learning 

Learning of a function 

from a data set of inputs 

and outputs.  

Classification 

Regression 

Learning of a function 

from a data set.  (The data 

are not classified nor 

categorized) 

Clustering 

Non clustering 

Learns a specific task by 

direct interaction with the 

environment from 

reinforcement signals 

received  from the 

environment. 5 



Reinforcement Learning Problem 
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 An agent (controller) learns a specific task (process control) 

by direct interaction with the environment (process) 

 

 

 

 

 

 

 Objective: learning a policy that maximizes the prevision of 

acumulated rewards. In the deterministic case: 

 

 
(s ) at t 

(Sutton and Barto, 1998) 



Return 

 Given a sequence of steps (episode) represented by: 

 

 

 The return Rt is the total discounted reward from time-step t 

onwards 
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Action-value function 

 The action-value function is the expected return given a certain 

state st and a given action at following policy π 

 

 

 

 Objective: Find the optimal action-value function Q*(s,a) that is 

the maximum action-value function among all possible policies: 
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Best policy 

 The best policy may be obtained by evaluating the action that 

maximizes Q*(s,a): 

 

 

 Problem easily solved for discrete state and action spaces 

 2 options for continuous problems (as for process control): 

 Discretization of the state and action spaces but the problem is 

affected by the “curse of dimensionality” 

 No discretization is done but the above optimization problem 

becomes a NonLinear Programming optimizaton problem (hard 

and time consuming to solve) 

 

 

 

 

 

 

 

(s) argmax *(s,a)
a A
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Action-Value function approximation 
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 To avoid the “curse of dimensionality”, continuous action and 

state spaces are considered and the action-value function is 

approximated by a parameter-dependent function: 

 

 

 Possible approximators: 

 Linear combination of radial basis functions 

 Neural networks 

 ... 

Deep Reinforcement Learning 

(s,a | )QQ 



Actor-Critic algorithm 

 

 Allows the use of continuous state and action spaces without 

solving a complex NLP optimization problem  

 As the action-value function, the policy is explicitly 

represented  by a parameter-dependent function (neural 

network here) 

 

 An iterative algorithm for training:  

 The actor is responsible for improving the policy 

 The critic is responsible for evaluating the action-value function 
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a A

Q
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Actor-Critic algorithm 
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Environment 

Action-Value 

function 

Policy 

Actor 

Critic 

State 

Action 

Reward 

Adapted from (Sutton and Barto, 1998) 

1 1(s ,a ) Q(s ,a )error t t t t tTD r Q    

Exploration 

noise 



Deep Deterministic Policy Gradient 

(DDPG) algorithm (Lillicrap et al., 2016)  
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 Both the policy and the action-value function are represented 

by neural networks: 

 Action-value function: 

 

 Policy 

 

 

 At each time step, the networks are updated with samples 

from a replay buffer to minimize correlations between 

samples 

(s,a | )QQ 

(s | ) 
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 At each time step, select action according to current policy 

and exploration noise: 

 

 Implement action at and observe immediate reward rt and 

new state st+1 

 Store this transition defined by (st,at,rt,st+1) 

 Sample a random batch of N transitions (si,ai,ri,si+1) from the 

replay buffer 

 Set 

Deep Deterministic Policy Gradient 

(DDPG) algorithm 

(s | )t t ta    

1 1(s , (s | ))i i i iy r Q     



Deep Deterministic Policy Gradient 

(DDPG) algorithm 
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 Update the critic network aiming at minimizing the loss 

defined by: 

 

 

 Update the actor network (policy) in the direction of greater 

cumulative reward using the sampled policy gradient: 
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CSTR with Van de Vusse reaction 
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 Van de Vusse reaction: 

 

 

 Control objectives (in priority 
order) 

1) Bring FB to its set point FB
SP 

2) Maximize CB 

 

 Manipulated variables: 

 Inlet flow F 

 Coolant temperature in the reactor 
jacket Tk 

(Klatt and Engell, 1998) 



Steady State Open loop behaviour of 

the VDV reactor 
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Immediate reward 
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Actor and critic neural networks (Lillicrap et al., 2016)  

 Actor network: 

 Fully connected neural networks 

 2 hidden layers of 400 and 300 
neurons with Rectified Linear Unit 
(ReLU) activation function 

 Output layer with hyperbolic 
tangent (tanh) activation function 
to bound the input efforts 

 Critic network: 

 Fully connected neural networks 

 2 hidden layers of 400 and 300 
neurons with Rectified Linear Unit 
(ReLU) activation function 

 Linear Output layer 
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Training 
 Training through simulated experiments with random initial 

steady state 

 Sampling time: 0.01 hours 

 Maximum time for an experiment: 100 hours 

 Total time for training: 15000 hours 

 Feed initial conditions                      Action bounds 

 

 

 

 

 Set point for outlet B molar flow: 2000 mol/h  

 Ornstein-Uhlenbeck process model used for exploration 
noise (Lillicrap et al., 2016)  

Variable Value 

Tin (ºC) 110 

CA,in (mol/L) 5,1 

CB,in 0 

Variable Value 

|ΔF| 1 L/h 

|ΔTk| 0.1 ºC 
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Simulation results 
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 Initial steady state: 

 

 

 

 

 Tin is considered as an unmeasured disturbance 

 

 Compararison with classical NMPC 

 Objective function                                                                    

with 

 Sampling time: 0.1 hora 

 Control horizon m=5, Prediction horizon p=100 

 

 

 

 

 

 

Inlet 

variables 

Value 

Tin (ºC) 110 

CA,in (mol/L) 5,1 

CB,in 0 

Manipulated 

variables 

Value 

F (L/h) 1000 

Tk (°C) 100 

CB,in 0 

Controlled 

variables 

Value 

FB (L/h) 457,03 

CB (mol/L) 0,457 
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Simulations results (Tin: 11090°C at 

t=50) 
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Simulations results (Tin: 11070°C at 

t=50) 
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Conclusions 
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 A deep Reinforcement Learning based controller was 

implemented for the control and optimization of the VDV 

reactor 

 The proposed controller showed a good performance 

compared to a classical NMPC controller. 

 RL-based techniques are promising tools for the control and 

optimization of chemical processes. 
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Thank you! 
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