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Deep Reinforcement Learning for process 

control and optimization 



Introduction 
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 Limitations of model-based control techniques for nonlinear 

processes (Xi et al., 2013) 

 Rigorous models of nonlinear processes are hard and time 

consuming to obtain 

 Even when available, large computational effort is needed for 

solving the nonlinear process control optimization problem 

 Models deteriorate in time so that they need to be reevaluated 

or adaptive mechanisms need to be implemented 

 

 Linear models are still mostly used in practice 
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 Successful applications of the data-based Reinforcement Learning 
techniques 

 

 

 

 

 Automation and data acquisition systems have grown in use in the 
process industry over the last decades 

 The number of publications of RL-based process control 
applications is blooming (Hoskins and Himmelblau,1992; 
Anderson et al., 1997; Martinez, 2000; Syafiie et al., 2008; Li et 
al., 2011; Mustafa and Wilson, 2012; Shah and Gopal, 
2016;Ramanathan et al., 2017; Hernández del Olmo et al., 2017; 
Pandian and Noel, 2018; Ma et al., 2019) 

 

 

 

 

 

 

 

 

 

 

Process 

Control? 
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 Interesting characteristics of RL-based control: 

 No need for a rigorous model of the process 

 The controller may be pre-trained from already implemented 

controllers (PID, MPC,...) or simulations based on simple models 

 RL-based control techniques are naturally adaptive as the learning 

may continue with the integration of new process data 

 By construction, the computational effort is very low compared to 

classical model-based techniques 

 

 In this work, a deep reinforcement learning algorithm for 

continuous control (Lillicrap et al., 2016) is implemented for the 

control and optimization of a Van De Vusse reactor 

 

 



Reinforcement Learning in the 

Machine Learning context 
 

 
Machine 
Learning 

Supervised 
Learning 

Unsupervised 
learning 

Reinforcement 
Learning 

Learning of a function 

from a data set of inputs 

and outputs.  

Classification 

Regression 

Learning of a function 

from a data set.  (The data 

are not classified nor 

categorized) 

Clustering 

Non clustering 

Learns a specific task by 

direct interaction with the 

environment from 

reinforcement signals 

received  from the 

environment. 5 



Reinforcement Learning Problem 
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 An agent (controller) learns a specific task (process control) 

by direct interaction with the environment (process) 

 

 

 

 

 

 

 Objective: learning a policy that maximizes the prevision of 

acumulated rewards. In the deterministic case: 

 

 
(s ) at t 

(Sutton and Barto, 1998) 



Return 

 Given a sequence of steps (episode) represented by: 

 

 

 The return Rt is the total discounted reward from time-step t 

onwards 
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Action-value function 

 The action-value function is the expected return given a certain 

state st and a given action at following policy π 

 

 

 

 Objective: Find the optimal action-value function Q*(s,a) that is 

the maximum action-value function among all possible policies: 

 

 

 

 

 

 

 

 

 

1

1

(s, ) E | ,k

k t t

k

Q a r S s A a  






 
   

 


*(s,a) maxQ (s,a)Q 




8 



Best policy 

 The best policy may be obtained by evaluating the action that 

maximizes Q*(s,a): 

 

 

 Problem easily solved for discrete state and action spaces 

 2 options for continuous problems (as for process control): 

 Discretization of the state and action spaces but the problem is 

affected by the “curse of dimensionality” 

 No discretization is done but the above optimization problem 

becomes a NonLinear Programming optimizaton problem (hard 

and time consuming to solve) 
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Action-Value function approximation 
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 To avoid the “curse of dimensionality”, continuous action and 

state spaces are considered and the action-value function is 

approximated by a parameter-dependent function: 

 

 

 Possible approximators: 

 Linear combination of radial basis functions 

 Neural networks 

 ... 

Deep Reinforcement Learning 

(s,a | )QQ 



Actor-Critic algorithm 

 

 Allows the use of continuous state and action spaces without 

solving a complex NLP optimization problem  

 As the action-value function, the policy is explicitly 

represented  by a parameter-dependent function (neural 

network here) 

 

 An iterative algorithm for training:  

 The actor is responsible for improving the policy 

 The critic is responsible for evaluating the action-value function 
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Actor-Critic algorithm 
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Environment 

Action-Value 

function 

Policy 

Actor 

Critic 

State 

Action 

Reward 

Adapted from (Sutton and Barto, 1998) 

1 1(s ,a ) Q(s ,a )error t t t t tTD r Q    

Exploration 

noise 



Deep Deterministic Policy Gradient 

(DDPG) algorithm (Lillicrap et al., 2016)  
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 Both the policy and the action-value function are represented 

by neural networks: 

 Action-value function: 

 

 Policy 

 

 

 At each time step, the networks are updated with samples 

from a replay buffer to minimize correlations between 

samples 

(s,a | )QQ 
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 At each time step, select action according to current policy 

and exploration noise: 

 

 Implement action at and observe immediate reward rt and 

new state st+1 

 Store this transition defined by (st,at,rt,st+1) 

 Sample a random batch of N transitions (si,ai,ri,si+1) from the 

replay buffer 

 Set 

Deep Deterministic Policy Gradient 

(DDPG) algorithm 

(s | )t t ta    
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Deep Deterministic Policy Gradient 

(DDPG) algorithm 
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 Update the critic network aiming at minimizing the loss 

defined by: 

 

 

 Update the actor network (policy) in the direction of greater 

cumulative reward using the sampled policy gradient: 

 

 

 
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CSTR with Van de Vusse reaction 
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 Van de Vusse reaction: 

 

 

 Control objectives (in priority 
order) 

1) Bring FB to its set point FB
SP 

2) Maximize CB 

 

 Manipulated variables: 

 Inlet flow F 

 Coolant temperature in the reactor 
jacket Tk 

(Klatt and Engell, 1998) 



Steady State Open loop behaviour of 

the VDV reactor 
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Immediate reward 
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Actor and critic neural networks (Lillicrap et al., 2016)  

 Actor network: 

 Fully connected neural networks 

 2 hidden layers of 400 and 300 
neurons with Rectified Linear Unit 
(ReLU) activation function 

 Output layer with hyperbolic 
tangent (tanh) activation function 
to bound the input efforts 

 Critic network: 

 Fully connected neural networks 

 2 hidden layers of 400 and 300 
neurons with Rectified Linear Unit 
(ReLU) activation function 

 Linear Output layer 
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Training 
 Training through simulated experiments with random initial 

steady state 

 Sampling time: 0.01 hours 

 Maximum time for an experiment: 100 hours 

 Total time for training: 15000 hours 

 Feed initial conditions                      Action bounds 

 

 

 

 

 Set point for outlet B molar flow: 2000 mol/h  

 Ornstein-Uhlenbeck process model used for exploration 
noise (Lillicrap et al., 2016)  

Variable Value 

Tin (ºC) 110 

CA,in (mol/L) 5,1 

CB,in 0 

Variable Value 

|ΔF| 1 L/h 

|ΔTk| 0.1 ºC 
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Simulation results 
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 Initial steady state: 

 

 

 

 

 Tin is considered as an unmeasured disturbance 

 

 Compararison with classical NMPC 

 Objective function                                                                    

with 

 Sampling time: 0.1 hora 

 Control horizon m=5, Prediction horizon p=100 

 

 

 

 

 

 

Inlet 

variables 

Value 

Tin (ºC) 110 

CA,in (mol/L) 5,1 

CB,in 0 

Manipulated 

variables 

Value 

F (L/h) 1000 

Tk (°C) 100 

CB,in 0 

Controlled 

variables 

Value 

FB (L/h) 457,03 

CB (mol/L) 0,457 
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Simulations results (Tin: 11090°C at 

t=50) 
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Simulations results (Tin: 11070°C at 

t=50) 
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Conclusions 
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 A deep Reinforcement Learning based controller was 

implemented for the control and optimization of the VDV 

reactor 

 The proposed controller showed a good performance 

compared to a classical NMPC controller. 

 RL-based techniques are promising tools for the control and 

optimization of chemical processes. 
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Thank you! 
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