
The Journal of Financial Data Science    1Spring 2020

*All articles are now
categorized by topics
and subtopics. View at
PM-Research.com.

Zihao Zhang
is a D.Phil. student with
the Oxford-Man Institute
of Quantitative Finance
and the Machine Learning
Research Group at the
University of Oxford in
Oxford, UK.
zihao.zhang@worc.ox.ac.uk

Stefan Zohren
is an associate professor
(research) with the
Oxford-Man Institute of
Quantitative Finance and
the Machine Learning
Research Group at the
University of Oxford in
Oxford, UK.
zohren@robots.ox.ac.uk

Stephen Roberts
is the director of the
Oxford-Man Institute
of Quantitative Finance,
the founding director of
the Oxford Centre for
Doctoral Training in
Autonomous Intelligent
Machines and Systems,
and the Royal Academy of
Engineering/Man Group
Professor in the Machine
Learning Research Group
at the University of
Oxford in Oxford, UK.
sjrob@robots.ox.ac.uk

Deep Reinforcement
Learning for Trading
Zihao Zhang, Stefan Zohren, and Stephen Roberts

ABSTRACT: In this article, the authors adopt
deep reinforcement learning algorithms to design
trading strategies for continuous futures contracts.
Both discrete and continuous action spaces are
considered, and volatility scaling is incorporated
to create reward functions that scale trade posi-
tions based on market volatility. They test their
algorithms on 50 very liquid futures contracts
from 2011 to 2019 and investigate how per-
formance varies across different asset classes,
including commodities, equity indexes, fixed
income, and foreign exchange markets. They
compare their algorithms against classical time-
series momentum strategies and show that their
method outperforms such baseline models, deliv-
ering positive profits despite heavy transaction
costs. The experiments show that the proposed
algorithms can follow large market trends without
changing positions and can also scale down, or
hold, through consolidation periods.

TOPICS: Futures and forward contracts,
exchanges/markets/clearinghouses, statistical
methods, simulations*

Financial trading has been a widely
researched topic, and a variety of
methods have been proposed to trade
markets over the last few decades.

These include fundamental analysis (Graham
and Dodd 1934), technical analysis (Murphy
1999), and algorithmic trading (Chan 2009).
Indeed, many practitioners use a hybrid of
these techniques to make trades (Schwager
2017). Algorithmic trading has arguably
gained most recent interest and accounts for
about 75% of trading volume in the US stock
exchanges (Chan 2009). The advantages of
algorithmic trading are widespread, ranging
from strong computing foundations to faster
execution and risk diversification. One key

•	 In this article, the authors introduce reinforcement learning algorithms to design trading
strategies for futures contracts. They investigate both discrete and continuous action spaces
and improve reward functions by using volatility scaling to scale trade positions based on
market volatility.

•	 The authors discuss the connection between modern portfolio theory and the reinforce-
ment learning reward hypothesis and show that they are equivalent if a linear utility
function is used.

•	 The authors back test their methods on 50 very liquid futures contracts from 2011 to
2019, and their algorithms deliver positive profits despite heavy transaction costs.

KEY FINDINGS

 b
y

gu
es

t o
n

Ju
ne

 1
6,

 2
02

0.
 C

op
yr

ig
ht

 2
02

0
Pa

ge
an

t M
ed

ia
 L

td
.

ht
tp

s:
//j

fd
s.

pm
-r

es
ea

rc
h.

co
m

D
ow

nl
oa

de
d

fr
om

http://www.PM-Research.com
mailto:zihao.zhang@worc.ox.ac.uk
mailto:zohren@robots.ox.ac.uk
mailto:sjrob@robots.ox.ac.uk
https://www.iijournals.com/topic/futures-and-forward-contracts
https://www.iijournals.com/topic/exchangesmarketsclearinghouses
https://www.iijournals.com/topic/statistical-methods
https://www.iijournals.com/topic/statistical-methods
https://www.iijournals.com/topic/simulations
https://jfds.pm-research.com

2    Deep Reinforcement Learning for Trading	 Spring 2020

component of such trading systems is a predictive signal
that can lead to alpha (excess return); to this end, math-
ematical and statistical methods are widely applied.
However, because of the low signal-to-noise ratio of
financial data and the dynamic nature of markets, the
design of these methods is nontrivial, and the effective-
ness of commonly derived signals varies through time.

In recent years, machine learning algorithms have
gained much popularity in many areas, with notable
successes in diverse application domains, including
image classification (Krizhevsky, Sutskever, and Hinton
2012) and natural language processing (Collobert et al.
2011). Similar techniques have also been applied to
f inancial markets in an attempt to f ind higher alpha
(for a few examples using such techniques in the context
of high-frequency data, see Tsantekidis et al. 2017a;
Zhang, Zohren, and Roberts 2018, 2019a, 2019b; Siri-
gnano and Cont 2019). Most research focuses on regres-
sion and classification pipelines in which excess returns,
or market movements, are predicted over some (fixed)
horizons. However, there is little discussion related to
transforming these predictive signals into actual trade
positions (see Lim, Zohren, and Roberts 2019 for an
attempt to train a deep learning model to learn positions
directly). Indeed, such a mapping is nontrivial. As an
example, predictive horizons are often relatively short
(one day or a few days ahead if using daily data); how-
ever, large trends can persist for weeks or months with
some moderate consolidation periods. We therefore
need a signal that not only has good predictive power
but also can consistently produce good directional calls.

In this article, we report on reinforcement
learning (RL) (Sutton and Barto 1998) algorithms to
tackle the aforementioned problems. Instead of making
predictions—followed by a trade decision based on
predictions—we train our models to directly output
trade positions, bypassing the explicit forecasting step.
Modern portfolio theory (Arrow 1971; Pratt 1978;
Ingersoll 1987) implies that, given a finite time horizon,
an investor chooses actions to maximize some expected
utility of final wealth:

	 [()] 0
1

E E ∑= + δ
















=

U W U W WT
t

T

t 	 (1)

where U is the utility function, WT is the final wealth
over a finite horizon T, and dWt represents the change

in wealth. The performance of the final wealth measure
depends upon sequences of interdependent actions in
which optimal trading decisions do not just decide
immediate trade returns but also affect subsequent future
returns. As mentioned by Merton (1969) and Ritter
(2017), this falls under the framework of optimal con-
trol theory (Kirk 2012) and forms a classical sequential
decision-making process. If the investor is risk neutral,
the utility function becomes linear, and we only need
to maximize the expected cumulative trades returns,

()1E Σ δ= Wt
T

t ; we observe that the problem fits exactly
with the framework of RL, the goal of which is to maxi-
mize some expected cumulative rewards via an agent
interacting with an uncertain environment. Under the
RL framework, we can directly map different market
situations to trade positions and conveniently include
market frictions, such as commissions, in our reward
functions, allowing trading performance to be directly
optimized.

In this article, we adopt state-of-the-art RL algo-
rithms to the aforementioned problem setting, including
deep Q-learning networks (DQN) (Mnih et al. 2013;
Van Hasselt, Guez, and Silver 2016), policy gradients
(PG) (Williams 1992), and advantage actor–critic (A2C)
(Mnih et al. 2016). Both discrete and continuous action
spaces are explored in our work, and we improve reward
functions with volatility scaling (Moskowitz, Ooi, and
Pedersen 2012; Harvey et al. 2018) to scale up trade posi-
tions when volatility is low, and vice versa. We show the
robustness and consistency of our algorithms by testing
them on 50 very liquid futures contracts (CLC Database
2019) between 2011 and 2019. Our dataset consists of
different asset classes, including commodities, equity
indexes, f ixed income, and foreign exchange (FX)
markets. We compare our method with classical time-
series momentum strategies and find that our method
outperforms baseline models and generates positive
returns in all sectors despite heavy transaction costs.
Time-series strategies work well in trending markets,
such as fixed-income markets, but suffer losses in FX
markets in which directional moves are less usual. Our
experiments show that our algorithms can monetize on
large moves without changing positions and deal with
markets that are more mean reverting.

The remainder of the article is structured as fol-
lows. We first introduce the current literature and present
our methodology. We then compare our methods with
baseline algorithms and show how trading performance

 b
y

gu
es

t o
n

Ju
ne

 1
6,

 2
02

0.
 C

op
yr

ig
ht

 2
02

0
Pa

ge
an

t M
ed

ia
 L

td
.

ht
tp

s:
//j

fd
s.

pm
-r

es
ea

rc
h.

co
m

D
ow

nl
oa

de
d

fr
om

https://jfds.pm-research.com

The Journal of Financial Data Science    3Spring 2020

varies among asset classes; a description of the dataset and
training methodology is also included. At the end, we
offer our conclusions and discuss extensions of our work.

LITERATURE REVIEW

In this section, we review some classical trading
strategies and discuss how RL has been applied to this
field. Fundamental analysis aims to measure the intrinsic
value of a security by examining economic data so inves-
tors can compare the security’s current price with esti-
mates to determine whether the security is undervalued
or overvalued. One of the established strategies is called
CAN-SLIM (O’Neil 2009), and it is based on a major
study of market winners from 1880 to 2009. A common
criticism of fundamental analysis is that the entrance
and exit timing of trades is not specified. Even when
markets move toward the estimated price, bad timing
in entering trades could lead to huge drawdowns, and
such moves in account values are often not bearable to
investors, shaking them out of the markets. Technical
analysis is in contrast to fundamental analysis, in which
a security’s historical price data are used to study price
patterns. Technicians place trades based on a combi-
nation of indicators such as the relative strength index
(RSI) and Bollinger bands. However, owing to the lack
of analysis on economic or market conditions, the pre-
dictability of these signals is not strong, often leading
to false breakouts.

Algorithmic trading is a more systematic
approach that involves mathematical modeling and
automated execution. Examples include trend fol-
lowing (Schwager 2017), mean-reversion (Chan 2013),
statistical arbitrage (Chan 2009), and delta-neutral
trading strategies (Michaud 1989). We mainly review
time-series momentum strategies by Moskowitz,
Ooi, and Pedersen (2012) because we benchmark our
models against their algorithms. Their work developed
a very robust trading strategy by simply taking the
sign of returns over the last year as a signal; they dem-
onstrated prof itability for every contract considered
within 58 liquid instruments over 25 years. Thence-
forth, a number of methods (Baz et al. 2015; Baltas
and Kosowski 2017; Rohrbach, Suremann, and Oster-
rieder 2017; Lim, Zohren, and Roberts 2019) have been
proposed to enhance this strategy by estimating the
trend and mapping to actual trade positions. How-
ever, these strategies are designed to profit from large

directional moves but can suffer huge losses if markets
move sideways as the predictability of these signals
deteriorates and excess turnover erodes profitability.
Here, we adopt time-series momentum features along
with technical indicators to represent state space and
obtain trade positions directly using RL. The idea of
our representation is simple: extracting information
across different momentum features and outputting
positions based on the aggregated information.

The current literature on RL in trading can be
categorized into three main methods: critic-only, actor-
only, and actor–critic approaches (Fischer 2018). The
critic approach, mainly DQN, features most often in
publications in this field (Tan, Quek, and Cheng 2011;
Bertoluzzo and Corazza 2012; Jin and El-Saawy 2016;
Ritter 2017; Huang 2018). A state-action value function,
Q, is constructed to represent how good a particular
action is in a state. Discrete action spaces are adopted
in these works, and an agent is trained to fully go long
or short a position. However, a fully invested position
is risky during high-volatility periods, exposing one
to severe risk when opposite moves occur. Ideally, one
would like to scale positions up or down according to
current market conditions. Doing this requires one to
have large action spaces; however, the critic approach
suffers from large action spaces because a score must be
assigned for each possible action.

The second most common approach is the actor-
only approach (Moody et al. 1998; Moody and Saffell
2001; Deng et al. 2016; Lim, Zohren, and Roberts
2019), in which the agent directly optimizes the objec-
tive function without computing the expected outcomes
of each action in a state. Because a policy is directly
learned, actor-only approaches can be generalized to
continuous action spaces. In the works of Moody and
Saffell (2001) and Lim, Zohren, and Roberts (2019),
off line batch gradient ascent methods can be used to
optimize the objective function, such as profits or Sharpe
ratio, because the approach is differentiable end to end.
However, this is different from standard RL actor-only
approaches in which a distribution needs to be learned
for the policy. To study the distribution of a policy,
the policy gradient theorem (Sutton and Barto 1998)
and Monte Carlo methods (Metropolis and Ulam 1949)
are adopted in the training, and models are updated
until the end of each episode. We often experience slow
learning and need many samples to obtain an optimal
policy because individual bad actions will be considered

 b
y

gu
es

t o
n

Ju
ne

 1
6,

 2
02

0.
 C

op
yr

ig
ht

 2
02

0
Pa

ge
an

t M
ed

ia
 L

td
.

ht
tp

s:
//j

fd
s.

pm
-r

es
ea

rc
h.

co
m

D
ow

nl
oa

de
d

fr
om

https://jfds.pm-research.com

4    Deep Reinforcement Learning for Trading	 Spring 2020

good as long as the total rewards are good; thus, a long
time is needed to adjust these actions.

The actor–critic approach forms the third category
and aims to solve the aforementioned learning problems
by updating the policy in real time. The key idea is to
alternatively update two models in which one (the actor)
controls how an agent performs given the current state,
and the other (the critic) measures how good the chosen
action is. However, this approach is the least studied
method in financial applications (Li et al. 2007; Bekiros
2010; Xiong et al. 2018). We aim to supplement the
literature and study the effectiveness of this approach in
trading. For a more detailed discussion on state, action
spaces, and reward functions, interested readers are
pointed to the survey (Fischer 2018). Other important
financial applications such as portfolio optimization and
trade execution are also included in this work.

METHODOLOGY

In this section, we introduce our setups including
state, action spaces, and reward functions. We describe
three RL algorithms used in our work, DQN, PG, and
A2C methods.

Markov Decision Process Formalization

We can formulate the trading problem as a Markov
decision process in which an agent interacts with the
environment at discrete time steps. At each time step t, the
agent receives some representations of the environment
denoted as a state St. Given this state, an agent chooses an
action At, and based on this action, a numerical reward
Rt+1 is given to the agent at the next time step, and the
agent f inds itself in a new state St+1. The interaction
between the agent and the environment produces
a trajectory τ = [S0, A0, R1, S1, A1, R2, S2, A2, R3, …].
At any time step t, the goal of RL is to maximize the
expected return (essentially the expected discounted
cumulative rewards) denoted as Gt at time t:

	 1

1
∑= γ − −

= +

G Rt
k t

k t

T

k 	 (2)

where g is the discounting factor. If the utility function
in Equation 1 has a linear form and we use Rt to repre-
sent trade returns, we can see that optimizing E(G) is
equivalent to optimizing our expected wealth.

State space. In the literature, many different
features have been used to represent state spaces.
Among these features, a security’s past price is always
included, and the related technical indicators are often
used (Fischer 2018). In our work, we take past price,
returns (rt) over different horizons, and technical indica-
tors including moving average convergence divergence
(MACD) (Baz et al. 2015) and the RSI (Wilder 1978) to
represent states. At a given time step, we take the past 60
observations of each feature to form a single state. The
following is a list of our features:

•	 Normalized close price series
•	 Returns over the past month, two months, three

months, and one year are used. Following Lim,
Zohren, and Roberts (2019), we normalize them
by daily volatility adjusted to a reasonable time
scale. As an example, we normalize annual returns
as /(252)252, σ−rt t t , where σt is computed using an
exponentially weighted moving standard deviation
of rt with a 60-day span,

•	 MACD indicators are proposed by Baz et al. (2015)
where

	

MACD
std()

(() ())/std()
252:

63:

=

= −
−

−

q
q

q m S m L p

t
t

t t

t t t 	 (3)

	 where std(pt−63:t) is the 63-day rolling standard
deviation of prices pt, and m(S) is the exponen-
tially weighted moving average of prices with a
time scale S.

•	 The RSI is an oscillating indicator moving
between 0 and 100. It indicates the oversold
(a reading below 20) or overbought (above 80)
condition of an asset by measuring the magnitude
of recent price changes. We include this indicator
with a look-back window of 30 days in our state
representations.

Action space. We study both discrete and con-
tinuous action spaces. For discrete action spaces, a simple
action set of {-1, 0, 1} is used, and each value represents
the position directly (i.e., -1 corresponds to a maximally
short position, 0 to no holdings, and 1 to a maximally
long position). This representation of action space is also
known as target orders (Huang 2018), in which a trade
position is the output instead of the trading decision.

 b
y

gu
es

t o
n

Ju
ne

 1
6,

 2
02

0.
 C

op
yr

ig
ht

 2
02

0
Pa

ge
an

t M
ed

ia
 L

td
.

ht
tp

s:
//j

fd
s.

pm
-r

es
ea

rc
h.

co
m

D
ow

nl
oa

de
d

fr
om

https://jfds.pm-research.com

The Journal of Financial Data Science    5Spring 2020

Note that if the current action and next action are the
same, no transaction cost will occur and we just maintain
our positions. If we move from a fully long position to
a short position, transaction cost will be doubled. The
design of continuous action spaces is very similar to the
discrete case in which we still output trade positions
but allow actions to be any value between -1 and 1
(At ∈ [-1, 1]).

Reward function. The design of the reward
function depends on the utility function in Equation 1.
Here, we let the utility function be profits representing
a risk-insensitive trader, and the reward Rt at time t is

	 | |bp1
1

1
1

1
2

2= µ
σ
σ

−
σ
σ

−
σ
σ







−
−

−
−

−
−

−R A r p A At t
tgt

t
t t

tgt

t
t

tgt

t
t 	 (4)

where stgt is the volatility target and st-1 is an ex
ante volatility estimate calculated using an exponen-
tially weighted moving standard deviation with a
60-day window on rt. This expression forms the volatility
scaling of Moskowitz, Ooi, and Pedersen (2012), Harvey
et al. (2018), and Lim, Zohren, and Roberts (2019), in
which our position is scaled up when market volatility is
low and vice versa. In addition, given a volatility target,
our reward Rt is mostly driven by our actions instead of
being heavily affected by market volatility. We can also
consider the volatility scaling as normalizing rewards
from different contracts to the same scale. Because our
dataset consists of 50 futures contracts with different
price ranges, we need to normalize different rewards to
the same scale for training and for portfolio construc-
tion. m is a fixed number per contract at each trade, and
we set it to 1. Note that our transaction cost term also
includes a price term pt−1. This is necessary because again
we work with many contracts, each of which has a dif-
ferent cost, so we represent transaction cost as a fraction
of traded value. The constant, basis point (bp), is the
cost rate and 1 bp = 0.0001. As an example, if the cost
rate is 1 bp, we need to pay $0.10 to buy one unit of a
contract priced at $1,000.

We define rt = pt - pt-1, and this expression repre-
sents additive profits. Additive profits are often used if
a fixed number of shares or contracts is traded at each
time. If we want to trade a fraction of our accumu-
lated wealth at each time, multiplicative profits should
be used, and rt = pt ⁄pt-1 - 1. In this case, we also need
to change the expression of Rt because Rt represents
the percentage of our wealth. The exact form is given

by Moody et al. (1998). We stick to additive profits in
our work because logarithmic transformation needs to
be done for multiplicative profits to have the cumula-
tive rewards required by the RL setup, but logarithmic
transformation penalizes large wealth growth.

RL Algorithms

DQN. By adopting a neural network, a DQN
approximates the state-action value function (Q func-
tion) to estimate how good it is for the agent to perform
a given action in a given state. Suppose our Q function
is parameterized by some θ. We minimize the mean
squared error between the current and target Q to derive
the optimal state-action value function:

	
() [((,) (,))]

(,) argmax (,)

2

1 11

Eθ = − ′
′ = + γ

θ θ

θ θ + ++

L Q S A Q S A

Q S A r Q S At t A t tt
	 (5)

where L(θ) is the objective function. A problem is that
the training of a vanilla DQN is not stable and suffers
from variability. Many improvements have been made to
stabilize the training process, and we adopt the following
three strategies to improve the training in our work:
fixed Q-targets (Van Hasselt, Guez, and Silver 2016),
double DQN (Hasselt 2010), and dueling DQN (Wang
et al. 2016). Fixed Q-targets and double DQN are used
to reduce policy variances and to solve the problem of
chasing tails by using a separate network to produce target
values. Dueling DQNs separate the Q-value into state
value and the advantage of each action. The benefit of
doing this is that the value stream has more updates and
we receive a better representation of the state values.

PG. The PG aims to maximize the expected
cumulative rewards by optimizing the policy directly.
If we use a neural network with parameters θ to rep-
resent the policy, pθ(A|S), we can generate a trajectory
τ = [S0, A0, R1, S1, …, St, At, …] from the environment
and obtain a sequence of rewards. We maximize the
expected cumulative rewards J(θ) by using gradient
ascent to adjust θ:

	

() |

() log (|)

1
0

1

0

1

E ∑

∑

θ = π





∇ θ = ∇ π

+
=

−

θ

θ θ
=

−

θ

J R

J A S G

t
t

T

t

T

t t t 	 (6)

 b
y

gu
es

t o
n

Ju
ne

 1
6,

 2
02

0.
 C

op
yr

ig
ht

 2
02

0
Pa

ge
an

t M
ed

ia
 L

td
.

ht
tp

s:
//j

fd
s.

pm
-r

es
ea

rc
h.

co
m

D
ow

nl
oa

de
d

fr
om

https://jfds.pm-research.com

6    Deep Reinforcement Learning for Trading	 Spring 2020

where Gt is defined in Equation 2. Compared with
DQN, PG learns a policy directly and can output a prob-
ability distribution over actions. This is useful if we want
to design stochastic policies or work with continuous
action spaces. However, the training of PG uses Monte
Carlo methods to sample trajectories from the environ-
ment, and the update is done only when the episode
finishes. This often results in slow training, and it can
get stuck at a (suboptimal) local maximum.

A2C. The A2C is proposed to solve the training
problem of PG by updating the policy in real time. It
consists of two models: One is an actor network that
outputs the policy, and the other is a critic network that
measures how good the chosen action is in the given
state. We can update the policy network p(A|S, θ) by
maximizing the objective function:

	 () [log (| ,) (,)]Eθ = π θJ AS A S Aadv 	 (7)

where Aadv(S, A) is the advantage function defined as

	 (,) (|) (|)1= + γ −+A S A R V S w V S wadv t t t t t 	 (8)

To calculate advantages, we use another network,
the critic network, with parameters w to model the state
value function V (s|w), and we can update the critic net-
work using gradient descent to minimize the temporal
difference error:

	 () ((|) (|))1
2= + γ −+J w R V S w V S wt t t 	 (9)

The A2C is most useful if we are interested in
continuous action spaces because we reduce the policy
variance by using the advantage function and update the
policy in real time. The training of A2C can be done
synchronously or asynchronously (A3C). In this article,
we adopt the synchronous approach and execute agents
in parallel on multiple environments.

EXPERIMENTS

Description of Dataset

We use data on 50 ratio-adjusted continuous
futures contracts from the CLC Database (2019). Our
dataset ranges from 2005 to 2019 and consists of a variety
of asset classes, including commodity, equity index,
fixed income, and FX. A full breakdown of the dataset

can be found in Appendix A. We retrain our model at
every five years, using all data available up to that point
to optimize the parameters. Model parameters are then
fixed for the next five years to produce out-of-sample
results. In total, our testing period is from 2011 to 2019.

Baseline Algorithms

We compare our methods to the following base-
line models including classical time-series momentum
strategies:

•	 Long only
•	 Sign(R) (Moskowitz, Ooi, and Pedersen 2012; Lim,

Zohren, and Roberts 2019):

	 sign()252:= −A rt t t 	 (10)

•	 MACD signal (Baz et al. 2015)

	

(MACD)

(MACD)
MACD exp(MACD /4)

0.89

2

= φ

φ =
−

At t

	 (11)

	 where MACDt is defined in Equation 3. We can
also take multiple signals with different time scales
and average them to give a final indicator:

	 MACD MACD (,) ∑= S Lt t
k

k k 	 (12)

	 where Sk and Lk define short and long time scales,
namely Sk ∈ {8, 16, 32} and Lk ∈ {24, 48, 96}, as
done by Lim, Zohren, and Roberts (2019).

We compare the aforementioned baseline models
with our RL algorithms, DQN, PG, and A2C. DQN
and PG have discrete action spaces {-1, 0, 1}, and A2C
has a continuous action space [-1, 1].

Training Schemes for RL

In our work, we use long short-term memory
(LSTM) (Hochreiter and Schmidhuber 1997) neural net-
works to model both actor and critic networks. LSTMs
are traditionally used in natural language processing,
but many recent works have applied them to financial
time series (Di Persio and Honchar 2016; Bao, Yue,

 b
y

gu
es

t o
n

Ju
ne

 1
6,

 2
02

0.
 C

op
yr

ig
ht

 2
02

0
Pa

ge
an

t M
ed

ia
 L

td
.

ht
tp

s:
//j

fd
s.

pm
-r

es
ea

rc
h.

co
m

D
ow

nl
oa

de
d

fr
om

https://jfds.pm-research.com

The Journal of Financial Data Science    7Spring 2020

and Rao 2017; Tsantekidis et al. 2017b; Fischer and
Krauss 2018). In particular, the work of Lim, Zohren,
and Roberts (2019) showed that LSTMs deliver superior
performance on modeling daily financial data. We use
two-layer LSTM networks with 64 and 32 units in all
models, and leaky rectifying linear units (Leaky-ReLU)
(Maas, Hannun, and Ng 2013) are used as activation
functions. Because our dataset consists of different asset
classes, we train a separate model for each asset class.
It is a common practice to train models by grouping
contracts within the same asset class, and we find it also
improves our performance.

We list the value of hyperparameters for different
RL algorithms in Exhibit 1. We denote the learning
rates for critic and actor networks as acritic and aactor.
The Adam optimizer (Kingma and Ba 2015) is used
for training all networks, and batch size means the size
of the minibatch used is in a gradient descent. As pre-
viously introduced, g is the discounting factor and bp
is the cost rate used in training. We can treat bp as a
regularizing term; a large bp penalizes turnovers and lets
agents maintain current trade positions. The memory
size shows the size of the buffer for experience replay,
and we update the parameters of our target network in
DQN every t steps.

Procedures for Controlling Overfitting

Because overfitting to backtest data can be problem-
atic in many application domains, especially in finance,
we adopt the following procedures to overcome it.
The most common cause of overfitting is a poor ratio of
training samples to model parameters. Although there
is no universal guarantee that increasing the number of
samples will resolve the overfitting issue, we find that
expanding the dataset to allow training on a cross sec-
tion of futures contracts, not just on a single contract,
greatly helps to reduce the problem in our case. Further-
more, we intentionally design our networks to have a
smaller number of free parameters whenever possible.

Our models consist of two hidden layers, and each layer
has a relatively small number of neurons. The resulting
network has fewer parameters, which makes it less likely
to overfit.

In addition, we use dropout (Hinton et al. 2016),
a regularization method commonly employed in deep
learning. Because our networks are small, we did not
notice significant improvements, but we still recom-
mend the usage of dropout following the general advice
of selecting the least f lexible model that achieves com-
parable cross-validation performance. This is also in line
with other works (Zhang, Zohren, and Roberts 2018;
Lim, Zohren, and Roberts 2019) that show improved
results using dropout in financial applications, especially
when handling complex network architectures.

Finally, we use 10% of any given training data as
a separate cross-validation set to optimize hyperparam-
eters. We monitor the validation performance and use
early stopping with 20 epochs to help optimal model
selection. Any hyperparameter optimization is done on
the cross-validation set, leaving the test set for the final
test performance evaluation. This reduces the leakage
of the test data, another cause of overfitting.

Experimental Results

We test both baseline models and our methods
between 2011 and 2019, and we calculate the trade
returns net of transaction costs as in Equation 4 for each
contract. We then form a simple portfolio by giving
equal weights to each contract, and the trade return of
a portfolio is

	

1port

1
∑=

=

R
N

Rt t
i

i

N

	 (13)

where N represents the number of contracts considered,
and Rt

i is the trade return for contract i at time t. We
evaluate the performance of this portfolio using

E x h i b i t 1
Values of Hyperparameters for Different RL Algorithms

α α γ τ

 b
y

gu
es

t o
n

Ju
ne

 1
6,

 2
02

0.
 C

op
yr

ig
ht

 2
02

0
Pa

ge
an

t M
ed

ia
 L

td
.

ht
tp

s:
//j

fd
s.

pm
-r

es
ea

rc
h.

co
m

D
ow

nl
oa

de
d

fr
om

https://jfds.pm-research.com

8    Deep Reinforcement Learning for Trading	 Spring 2020

following metrics as suggested by Lim, Zohren, and
Roberts (2019):

1.	E(R): annualized expected trade returns
2.	std(R): annualized standard deviation of trade

returns
3.	Downside deviation (DD): annualized standard

deviation of trade returns that are negative, also
known as downside risk

4.	Sharpe: annualized Sharpe ratio (E(R) ⁄ std(R))
5.	Sortino: a variant of the Sharpe ratio that uses

downside deviation as risk measures (E(R) ⁄ DD)
6.	MDD: maximum drawdown shows the maximum

observed loss from any peak of a portfolio to the
trough

7.	 Calmar: the Calmar ratio compares the expected
annual rate of return with MDD; in general, the
higher the ratio, the better the performance of the
portfolio

8.	% +ve Returns: percentage of positive trade returns
9.	 Ave. P

Ave. L : the ratio between positive and negative trade
returns.

We present our results in Exhibit 2, in which an
additional layer of portfolio-level volatility scaling is
applied for each model. This brings the volatility of dif-
ferent methods to the same target, so we can directly
compare metrics such as expected and cumulative trade
returns. We also include the results without this vola-
tility scaling for reference in Exhibit B1 in Appendix B.
Exhibit 2 is split into five parts based on different asset
classes. The results show the performance of a portfolio
by only using contracts from that specific asset class.
An exception is the last part of the exhibit, in which we
form a portfolio using all contracts from our dataset. The
cumulative trade returns for different models and asset
classes are presented in Exhibit 3.

We can see that RL algorithms deliver better per-
formance for most asset classes except for the equity
index, for which a long-only strategy is better. This can
be explained by the fact that most equity indexes were
dominated by large upward trends in the testing period.
Similarly, f ixed incomes had a growing trend until
2016 and then entered currently ongoing consolida-
tion periods. Arguably, the most reasonable strategy in

E x h i b i t 2
Experiment Results for Portfolio-Level Volatility Targeting

(continued)

 b
y

gu
es

t o
n

Ju
ne

 1
6,

 2
02

0.
 C

op
yr

ig
ht

 2
02

0
Pa

ge
an

t M
ed

ia
 L

td
.

ht
tp

s:
//j

fd
s.

pm
-r

es
ea

rc
h.

co
m

D
ow

nl
oa

de
d

fr
om

https://jfds.pm-research.com

The Journal of Financial Data Science    9Spring 2020

E x h i b i t 2 (continued)
Experiment Results for Portfolio-Level Volatility Targeting

E x h i b i t 3
Cumulative Trade Returns

Notes: First row: commodity, equity index, and fixed income; second row: FX and the portfolio of using all contracts.

2

0

–2

–4

–6
2011 2012 2013 2014 2015 2016 2017 2018 2019

4

4

2

0

–2

2011 2012 2013 2014 2015 2016 2017 2018 2019

6

5

4

3

2

1

0
2011 2012 2013 2014 2015 2016 2017 2018 2019

7

6

2

1

0

–2

–1

–3

–4
2011 2012 2013 2014 2015 2016 2017 2018 2019

4

3

6

4

2

0

–2

2011 2012 2013 2014 2015 2016 2017 2018 2019

10

8

Long Sign(R) MACD DQN PG A2C

 b
y

gu
es

t o
n

Ju
ne

 1
6,

 2
02

0.
 C

op
yr

ig
ht

 2
02

0
Pa

ge
an

t M
ed

ia
 L

td
.

ht
tp

s:
//j

fd
s.

pm
-r

es
ea

rc
h.

co
m

D
ow

nl
oa

de
d

fr
om

https://jfds.pm-research.com

10    Deep Reinforcement Learning for Trading	 Spring 2020

these cases might be to hold our positions if large trends
persist. However, the long-only strategy performs the
worst in commodity and FX markets, in which prices
are more volatile. RL algorithms perform better in
these markets by being able to go long or short at rea-
sonable time points. Overall, DQN obtains the best
performance among all models, and the second best
is the A2C approach. We investigate the cause of this
observation and find that A2C generates larger turn-
overs, leading to smaller average returns per turnover,
as shown in Exhibit 4.

We also investigate the performance of our
methods under different transaction costs. In Panel A
of Exhibit 5, we plot the annualized Sharpe ratio for
the portfolio using all contracts at different cost rates.

We can see that RL algorithms can tolerate larger cost
rates; in particular, DQN and A2C can still generate
positive profits with the cost rate at 25 bp. To under-
stand how cost rates (bp) translate into monetary values,
we plot the average cost per contract in Panel B of
Exhibit 5, and we see that 25 bp represents roughly
$3.50 per contract. This is a realistic cost for a retail
trader to pay, but institutional traders have a different
fee structure based on trading volumes and often have
cheaper cost. In any case, this shows the validity of our
methods in a realistic setup.

The performance of a portfolio is generally better
than the performance of an individual contract because
risks are diversified across a range of assets, so the return
per risk is higher. To investigate the raw quality of our

E x h i b i t 4
Sharpe Ratio (top) and Average Trade Return per Turnover (bottom) for Individual Contracts

Commodity

1.00

0.75

0.50

0.25

0.00

–0.25

–0.50

–0.75

Equity Index
Asset Classes

Fixed Income FX

Sh
ar

pe
 R

at
io

Commodity

2

1

0

–1

–2

Equity Index
Asset Classes

Fixed Income FX

Av
e.

 R
et

ur
n/

Tu
rn

ov
er

Long Sign(R) MACD DQN PG A2C

 b
y

gu
es

t o
n

Ju
ne

 1
6,

 2
02

0.
 C

op
yr

ig
ht

 2
02

0
Pa

ge
an

t M
ed

ia
 L

td
.

ht
tp

s:
//j

fd
s.

pm
-r

es
ea

rc
h.

co
m

D
ow

nl
oa

de
d

fr
om

https://jfds.pm-research.com

The Journal of Financial Data Science    11Spring 2020

methods, we investigate the performance of individual
contracts. We use the boxplots in Exhibit 4 to present
the annualized Sharpe ratio and average trade return per
turnover for each futures contract. Overall, these results
reinforce our previous findings that RL algorithms gen-
erally work better, and the performance of our method
is not driven by a single contract that shows superior
performance, reassuring us about the consistency of our
model.

CONCLUSION

We adopt RL algorithms to learn trading strate-
gies for continuous futures contracts. We discuss the
connection between modern portfolio theory and the
RL reward hypothesis and show that they are equivalent
if a linear utility function is used. Our analysis focuses
on three RL algorithms, namely DQN, PG, and A2C,
and investigates both discrete and continuous action
spaces. We use features from time-series momentum
and technical indicators to form state representations.
In addition, volatility scaling is introduced to improve

reward functions. We test our methods on 50 liquid
futures contracts from 2011 to 2019, and our results
show that RL algorithms outperform baseline models
and deliver profits even under heavy transaction costs.

In continuations of this work, we would like to
investigate different forms of utility functions. In prac-
tice, an investor is often risk averse, and the objective is
to maximize a risk-adjusted performance function such
as the Sharpe ratio, leading to a concave utility function.
As suggested by Huang (2018), we can resort to distri-
butional RL (Bellemare, Dabney, and Munos 2017) to
obtain the entire distribution over Q(s, a) instead of the
expected Q-value. Once the distribution is learned, we
can choose actions with the highest expected Q-value
and the lowest standard deviation of it, maximizing the
Sharpe ratio. We can also extend our methods to port-
folio optimization by modifying the action spaces to give
weights of individual contracts in a portfolio. We can
incorporate the reward functions with mean–variance
portfolio theory (Markowitz 1952) to deliver a reason-
able expected trade return with minimal volatility.

E x h i b i t 5
Sharpe Ratio and Average Cost per Contract under Different Cost Rates

1 bp 5 bp 10 bp 15 bp 20 bp

25 bp 30 bp 35 bp 40 bp 45 bp

1.0

Panel A: Sharpe Ratio

0.5

0.0

–0.5

–1.0

–1.5

–2.0

–2.5

Long Sign(R) MACD DQN PG A2C

Panel B: Average Cost per Contract

7

6

5

4

3

2

1

0
Long Sign(R) MACD DQN PG A2C

 b
y

gu
es

t o
n

Ju
ne

 1
6,

 2
02

0.
 C

op
yr

ig
ht

 2
02

0
Pa

ge
an

t M
ed

ia
 L

td
.

ht
tp

s:
//j

fd
s.

pm
-r

es
ea

rc
h.

co
m

D
ow

nl
oa

de
d

fr
om

https://jfds.pm-research.com

12    Deep Reinforcement Learning for Trading	 Spring 2020

A p p e n d i x A

Our dataset consists of 50 futures contracts, and there are 25 commodity contracts, 11 equity index contracts, 5 fixed
income contracts, and 9 forex contracts. A detailed description of each contract is given in Exhibit A1.

E x h i b i t A 1
Contract Descriptions

E x h i b i t B 1
Experiment Results for the Raw Signal

A p p e n d i x B

Exhibit B1 presents the performance metrics for portfolios without the additional layer of volatility scaling.

(continued)

 b
y

gu
es

t o
n

Ju
ne

 1
6,

 2
02

0.
 C

op
yr

ig
ht

 2
02

0
Pa

ge
an

t M
ed

ia
 L

td
.

ht
tp

s:
//j

fd
s.

pm
-r

es
ea

rc
h.

co
m

D
ow

nl
oa

de
d

fr
om

https://jfds.pm-research.com

The Journal of Financial Data Science    13Spring 2020

ACKNOWLEDGMENT

The authors would like to thank Bryan Lim, Vu
Nguyen, Anthony Ledford, and members of Machine
Learning Research Group at the University of Oxford for
their helpful comments. We are most grateful to the Oxford-
Man Institute of Quantitative Finance, which provided the
Pinnacle dataset and computing facilities.

REFERENCES

Arrow, K. J. “The Theory of Risk Aversion.” In Essays in the
Theory of Risk-Bearing, pp. 90–120. Chicago: Markham, 1971.

Baltas, N., and R. Kosowski. “Demystifying Time-Series
Momentum Strategies: Volatility Estimators, Trading
Rules and Pairwise Correlations.” Trading Rules and Pairwise
Correlations, May 8, 2017.

E x h i b i t B 1 (continued)
Experiment Results for the Raw Signal

Bao, W., J. Yue, and Y. Rao. 2017. “A Deep Learning Frame-
work for Financial Time Series Using Stacked Autoencoders
and Long–Short Term Memory.” PLOS One 12 (7): e0180944.

Baz, J., N. Granger, C. R. Harvey, N. Le Roux, and S.
Rattray. “Dissecting Investment Strategies in the Cross
Section and Time Series.” SSRN 2695101, 2015.

Bekiros, S. D. 2010. “Heterogeneous Trading Strategies
with Adaptive Fuzzy Actor–Critic Reinforcement Learning:
A Behavioral Approach.” Journal of Economic Dynamics and
Control 34 (6): 1153–1170.

Bellemare, M. G., W. Dabney, and R. Munos. 2017. “A Dis-
tributional Perspective on Reinforcement Learning.” Proceed-
ings of the 34th International Conference on Machine Learning 70:
449–458.

 b
y

gu
es

t o
n

Ju
ne

 1
6,

 2
02

0.
 C

op
yr

ig
ht

 2
02

0
Pa

ge
an

t M
ed

ia
 L

td
.

ht
tp

s:
//j

fd
s.

pm
-r

es
ea

rc
h.

co
m

D
ow

nl
oa

de
d

fr
om

https://jfds.pm-research.com

14    Deep Reinforcement Learning for Trading	 Spring 2020

Bertoluzzo, F., and M. Corazza. 2012. “Testing Different
Reinforcement Learning Conf igurations for Financial
Trading: Introduction and Applications.” Procedia Economics
and Finance 3: 68–77.

Chan, E. Quantitative Trading: How to Build Your Own Algo-
rithmic Trading Business, vol. 430. Hoboken: John Wiley &
Sons, 2009.

——. Algorithmic Trading: Winning Strategies and Their Ratio-
nale, vol. 625. Hoboken: John Wiley & Sons, 2013.

CLC Database. Pinnacle Data Corp, 2019, https://pinnacle-
data2.com/clc.html.

Collobert, R., J. Weston, L. Bottou, M. Karlen, K.
Kavukcuoglu, and P. Kuksa. 2011. “Natural Language
Processing (Almost) from Scratch.” Journal of Machine Learning
Research 12 (Aug): 2493–2537.

Deng, Y., F. Bao, Y. Kong, Z. Ren, and Q. Dai. 2016. “Deep
Direct Reinforcement Learning for Financial Signal Repre-
sentation and Trading.” IEEE Transactions on Neural Networks
and Learning Systems 28 (3): 653–664.

Di Persio, L., and O. Honchar. 2016. “Artificial Neural Net-
works Architectures for Stock Price Prediction: Comparisons
and Applications.” International Journal of Circuits, Systems and
Signal Processing 10: 403–413.

Fischer, T., and C. Krauss. 2018. “Deep Learning with Long
Short-Term Memory Networks for Financial Market Predic-
tions.” European Journal of Operational Research 270 (2): 654–669.

Fischer, T. G. “Reinforcement Learning in Financial
Markets—A Survey.” Technical report, FAU Discussion
Papers in Economics, 2018.

Graham, B., and D. L. F. Dodd. Security Analysis. New York:
McGraw-Hill, 1934.

Harvey, C. R., E. Hoyle, R. Korgaonkar, S. Rattray, M. Sar-
gaison, and O. Van Hemert. 2018. “The Impact of Volatility
Targeting.” The Journal of Portfolio Management 45 (1): 14–33.

Hasselt, H. V. “Double Q-Learning.” In Advances in Neural
Information Processing Systems, pp. 2613–2621. Cambridge,
MA: MIT Press, 2010.

Hinton, G. E., A. Krizhevsky, I. Sutskever, and N. Srivastva.
“System and Method for Addressing Overfitting in a Neural
Network.” US Patent 9,406,017, August 2, 2016.

Hochreiter, S., and J. Schmidhuber. 1997. “Long Short-Term
Memory.” Neural Computation 9 (8): 1735–1780.

Huang, C. Y. 2018. “Financial Trading as a Game: A Deep
Reinforcement Learning Approach.” arXiv 1807.02787.

Ingersoll, J. E. Theory of Financial Decision Making, vol. 3.
Lanham, MD; Rowman & Littlefield, 1987.

Jin, O., and H. El-Saawy. “Portfolio Management Using
Reinforcement Learning.” Technical report working paper,
Stanford University, 2016.

Kingma, D. P., and J. Ba. “Adam: A Method for Stochastic
Optimization.” Proceedings of the International Conference on
Learning Representations, 2015.

Kirk, D. E. Optimal Control Theory: An Introduction. North
Chelmsford: MA; Courier Corporation, 2012.

Krizhevsky, A., I. Sutskever, and G. E. Hinton. “Imagenet
Classification with Deep Convolutional Neural Networks.”
In Advances in Neural Information Processing Systems, pp.
1097–1105. Cambridge, MA: MIT Press, 2012.

Li, H., C. H. Dagli, and D. Enke. 2007. “Short-Term Stock
Market Timing Prediction under Reinforcement Learning
Schemes.” 2007 IEEE International Symposium on Approximate
Dynamic Programming and Reinforcement Learning, pp. 233–240.

Lim, B., S. Zohren, and S. Roberts. 2019. “Enhancing Time-
Series Momentum Strategies Using Deep Neural Networks.”
The Journal of Financial Data Science 1 (4): 19–38.

Maas, A. L., A. Y. Hannun, and A. Y. Ng. 2013. “Rectifier
Nonlinearities Improve Neural Network Acoustic Models.”
ICML Workshop on Deep Learning for Audio, Speech and Lan-
guage Processing 30: 3.

Markowitz, H. 1952. “Portfolio Selection.” The Journal of
Finance 7 (1): 77–91.

Merton, R. C. 1969. “Lifetime Portfolio Selection under
Uncertainty: The Continuous-Time Case.” The Review of
Economics and Statistics 51 (3): 247–257.

Metropolis, N., and S. Ulam. 1949. “The Monte Carlo
Method.” Journal of the American Statistical Association 44 (247):
335–341.

Michaud, R. O. 1989. “The Markowitz Optimization
Enigma: Is ‘Optimized’ Optimal?” Financial Analysts Journal
45 (1): 31–42.

 b
y

gu
es

t o
n

Ju
ne

 1
6,

 2
02

0.
 C

op
yr

ig
ht

 2
02

0
Pa

ge
an

t M
ed

ia
 L

td
.

ht
tp

s:
//j

fd
s.

pm
-r

es
ea

rc
h.

co
m

D
ow

nl
oa

de
d

fr
om

https://jfds.pm-research.com

The Journal of Financial Data Science    15Spring 2020

Mnih, V., A. P. Badia, M. Mirza, A. Graves, T. Lillicrap,
T. Harley, D. Si lver, and K. Kavukcuoglu. 2016.
“Asynchronous Methods for Deep Reinforcement Learning.”
In International Conference on Machine Learning 48: 1928–1937.

Mnih, V., K. Kavukcuoglu, D. Silver, A. Graves, I.
Antonoglou, D. Wierstra, and M. Riedmiller. “Playing Atari
with Deep Reinforcement Learning.” NIPS Deep Learning
Workshop, 2013.

Moody, J., and M. Saffell. 2001. “Learning to Trade via
Direct Reinforcement. IEEE Transactions on Neural Networks
12 (4): 875–889.

Moody, J., L. Wu, Y. Liao, and M. Saffell. 1998. “Performance
Functions and Reinforcement Learning for Trading Systems
and Portfolios.” Journal of Forecasting 17 (5–6): 441–470.

Moskowitz, T. J., Y. H. Ooi, and L. H. Pedersen. 2012. “Time
Series Momentum.” Journal of Financial Economics 104 (2):
228–250.

Murphy, J. J. Technical Analysis of the Financial Markets: A Com-
prehensive Guide to Trading Methos and Applications. Paramus,
NJ: New York Institute of Finance, 1999.

O’Neil, W. J. How to Make Money in Stocks: A Winning System
in Good Times and Bad, 4th ed. New York: McGraw-Hill,
2009.

Pratt, J. W. “Risk Aversion in the Small and in the Large.” In
Uncertainty in Economics, pp. 59–79. Elsevier, 1978.

Ritter, G. 2017. “Machine Learning for Trading.” August 8,
2017. Available at SSRN: https://ssrn.com/abstract=3015609
or http://dx.doi.org/10.2139/ssrn.3015609.

Rohrbach, J., S. Suremann, and J. Osterrieder. 2017.
“Momentum and Trend Following Trading Strategies for
Currencies Revisited—Combining Academia and Industry.”
SSRN 2949379.

Schwager, J. D. A Complete Guide to the Futures Market: Technical
Analysis, Trading Systems, Fundamental Analysis, Options, Spreads,
and Trading Principles. Hoboken: John Wiley & Sons, 2017.

Sirignano, J., and R. Cont. 2019. “Universal Features of Price
Formation in Financial Markets: Perspectives from Deep
Learning.” Quantitative Finance 19 (9): 1449–1459.

Sutton, R. S., and A. G. Barto. Introduction to Reinforcement
Learning, vol. 2. Cambridge, MA: MIT Press, 1998.

Tan, Z., C. Quek, and P. Y. Cheng. 2011. “Stock Trading
with Cycles: A Financial Application of Anfis and Rein-
forcement Learning.” Expert Systems with Applications 38 (5):
4741–4755.

Tsantekidis, A., N. Passalis, A. Tefas, J. Kanniainen,
M. Gabbouj, and A. Iosif idis. 2017a. “Forecasting Stock
Prices from the Limit Order Book Using Convolutional
Neural Networks.” 2017 IEEE 19th Conference on Business
Informatics (CBI) 1: 7–12.

——. “Using Deep Learning to Detect Price Change Indica-
tions in Financial Markets.” 2017b. 2017 25th European Signal
Processing Conference (EUSIPCO), pp. 2511–2515.

Van Hasselt, H., A. Guez, and D. Silver. “Deep Reinforce-
ment Learning with Double Q-Learning.” Thirtieth AAAI
Conference on Artificial Intelligence, 2016.

Wang, Z., T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot,
and N. De Freitas. 2016. “Dueling Network Architectures
for Deep Reinforcement Learning.” In Proceedings of the 33rd
International Conference on International Conference on Machine
Learning 48: 1995–2003.

Wilder, J. W. “New Concepts in Technical Trading Systems.”
Trend Research, 1978.

Williams, R. J. 1992. “Simple Statistical Gradient-Following
Algorithms for Connectionist Reinforcement Learning.”
Machine Learning 8 (3–4): 229–256.

Xiong, Z., X. Y. Liu, S. Zhong, and A. Walid. 2018. “Prac-
tical Deep Reinforcement Learning Approach for Stock
Trading.” arXiv 1811.07522.

Zhang, Z., S. Zohren, and S. Roberts. “Bdlob: Bayesian Deep
Convolutional Neural Networks for Limit Order Books.”
Presented at Third Workshop on Bayesian Deep Learning
(NeurIPS 2018), Montréal, Canada, 2018.

——. 2019a. “Deeplob: Deep Convolutional Neural Net-
works for Limit Order Books.” IEEE Transactions on Signal
Processing 67 (11): 3001–3012.

——. “Extending Deep Learning Models for Limit Order
Books to Quantile Regression.” Proceedings of Time Series
Workshop of the 36th International Conference on Machine
Learning, 2019b.

To order reprints of this article, please contact David Rowe at
d.rowe@pageantmedia.com or 646-891-2157.

 b
y

gu
es

t o
n

Ju
ne

 1
6,

 2
02

0.
 C

op
yr

ig
ht

 2
02

0
Pa

ge
an

t M
ed

ia
 L

td
.

ht
tp

s:
//j

fd
s.

pm
-r

es
ea

rc
h.

co
m

D
ow

nl
oa

de
d

fr
om

https://jfds.pm-research.com

16    Deep Reinforcement Learning for Trading	 Spring 2020

ADDITIONAL READING

The Impact of Volatility Targeting
Campbell R. Harvey, Edward Hoyle, Russell Kor-
gaonkar, Sandy Rattray, Matthew Sargaison, and
Otto Van Hemert

The Journal of Portfolio Management
https://jpm.pm-research.com/content/45/1/14

ABSTRACT: Recent studies show that volatility-managed equity
portfolios realize higher Sharpe ratios than portfolios with a constant
notional exposure. The authors show that this result only holds for risk
assets, such as equity and credit, and they link this finding to the so-
called leverage effect for those assets. In contrast, for bonds, currencies,
and commodities, the impact of volatility targeting on the Sharpe ratio
is negligible. However, the impact of volatility targeting goes beyond
the Sharpe ratio: It reduces the likelihood of extreme returns across all
asset classes. Particularly relevant for investors, left-tail events tend
to be less severe because they typically occur at times of elevated vola-
tility, when a target-volatility portfolio has a relatively small notional
exposure. We also consider the popular 60–40 equity–bond balanced
portfolio and an equity–bond–credit–commodity risk parity portfolio.
Volatility scaling at both the asset and portfolio level improves Sharpe
ratios and reduces the likelihood of tail events.

A Century of Evidence on Trend-Following
Investing
Brian Hurst, Yao Hua Ooi, and Lasse Heje Pedersen

The Journal of Portfolio Management
https://jpm.pm-research.com/content/44/1/15

ABSTRACT: In this article, the authors study the performance of
trend-following investing across global markets since 1880, extending
the existing evidence by more than 100 years using a novel data set.
They find that in each decade since 1880, time-series momentum has
delivered positive average returns with low correlations to traditional
asset classes. Further, time-series momentum has performed well in
8 out of 10 of the largest crisis periods over the century, defined as
the largest drawdowns for a 60/40 stock/bond portfolio. Lastly, the
authors find that time-series momentum has performed well across
different macro environments, including recessions and booms, war
and peace, high- and low-interest-rate regimes, and high- and low-
inf lation periods.

Enhancing Time-Series Momentum Strategies
Using Deep Neural Networks
Bryan Lim, Stefan Zohren, and Stephen Roberts

The Journal of Financial Data Science
https://jfds.pm-research.com/content/1/4/19

ABSTRACT: Although time-series momentum is a well-studied
phenomenon in finance, common strategies require the explicit defini-
tion of both a trend estimator and a position sizing rule. In this article,
the authors introduce deep momentum networks—a hybrid approach
that injects deep learning–based trading rules into the volatility scaling
framework of time-series momentum. The model also simultaneously
learns both trend estimation and position sizing in a data-driven
manner, with networks directly trained by optimizing the Sharpe
ratio of the signal. Backtesting on a portfolio of 88 continuous futures
contracts, the authors demonstrate that the Sharpe-optimized long
short-term memory improved traditional methods by more than two
times in the absence of transactions costs and continued outperforming
when considering transaction costs up to 2–3 bps. To account for more
illiquid assets, the authors also propose a turnover regularization term
that trains the network to factor in costs at run-time.

 b
y

gu
es

t o
n

Ju
ne

 1
6,

 2
02

0.
 C

op
yr

ig
ht

 2
02

0
Pa

ge
an

t M
ed

ia
 L

td
.

ht
tp

s:
//j

fd
s.

pm
-r

es
ea

rc
h.

co
m

D
ow

nl
oa

de
d

fr
om

https://jpm.pm-research.com/content/45/1/14
https://jpm.pm-research.com/content/44/1/15
https://jfds.pm-research.com/content/1/4/19
https://jfds.pm-research.com

