
The Journal of Financial Data Science      1Spring 2020

*All articles are now 
categorized by topics 
and subtopics. View at 
PM-Research.com.

Zihao Zhang
is a D.Phil. student with 
the Oxford-Man Institute 
of Quantitative Finance 
and the Machine Learning 
Research Group at the 
University of Oxford in 
Oxford, UK.
zihao.zhang@worc.ox.ac.uk

Stefan Zohren
is an associate professor 
(research) with the 
Oxford-Man Institute of 
Quantitative Finance and 
the Machine Learning 
Research Group at the 
University of Oxford in 
Oxford, UK.
zohren@robots.ox.ac.uk

Stephen Roberts
is the director of the 
Oxford-Man Institute 
of Quantitative Finance, 
the founding director of 
the Oxford Centre for 
Doctoral Training in 
Autonomous Intelligent 
Machines and Systems, 
and the Royal Academy of 
Engineering/Man Group 
Professor in the Machine 
Learning Research Group 
at the University of 
Oxford in Oxford, UK.
sjrob@robots.ox.ac.uk

 
Deep Reinforcement  
Learning for Trading
Zihao Zhang, Stefan Zohren, and Stephen Roberts

ABSTRACT: In this article, the authors adopt 
deep reinforcement learning algorithms to design 
trading strategies for continuous futures contracts. 
Both discrete and continuous action spaces are 
considered, and volatility scaling is incorporated 
to create reward functions that scale trade posi-
tions based on market volatility. They test their 
algorithms on 50 very liquid futures contracts 
from 2011 to 2019 and investigate how per-
formance varies across different asset classes, 
including commodities, equity indexes, fixed 
income, and foreign exchange markets. They 
compare their algorithms against classical time-
series momentum strategies and show that their 
method outperforms such baseline models, deliv-
ering positive profits despite heavy transaction 
costs. The experiments show that the proposed 
algorithms can follow large market trends without 
changing positions and can also scale down, or 
hold, through consolidation periods.

TOPICS: Futures and forward contracts, 
exchanges/markets/clearinghouses, statistical 
methods, simulations*

Financial trading has been a widely 
researched topic, and a variety of 
methods have been proposed to trade 
markets over the last few decades. 

These include fundamental analysis (Graham 
and Dodd 1934), technical analysis (Murphy 
1999), and algorithmic trading (Chan 2009). 
Indeed, many practitioners use a hybrid of 
these techniques to make trades (Schwager 
2017). Algorithmic trading has arguably 
gained most recent interest and accounts for 
about 75% of trading volume in the US stock 
exchanges (Chan 2009). The advantages of 
algorithmic trading are widespread, ranging 
from strong computing foundations to faster 
execution and risk diversification. One key 

•	 In this article, the authors introduce reinforcement learning algorithms to design trading 
strategies for futures contracts. They investigate both discrete and continuous action spaces 
and improve reward functions by using volatility scaling to scale trade positions based on 
market volatility.

•	 The authors discuss the connection between modern portfolio theory and the reinforce-
ment learning reward hypothesis and show that they are equivalent if a linear utility 
function is used.

•	 The authors back test their methods on 50 very liquid futures contracts from 2011 to 
2019, and their algorithms deliver positive profits despite heavy transaction costs.

KEY FINDINGS
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component of such trading systems is a predictive signal 
that can lead to alpha (excess return); to this end, math-
ematical and statistical methods are widely applied. 
However, because of the low signal-to-noise ratio of 
financial data and the dynamic nature of markets, the 
design of these methods is nontrivial, and the effective-
ness of commonly derived signals varies through time.

In recent years, machine learning algorithms have 
gained much popularity in many areas, with notable 
successes in diverse application domains, including 
image classification (Krizhevsky, Sutskever, and Hinton 
2012) and natural language processing (Collobert et al. 
2011). Similar techniques have also been applied to 
f inancial markets in an attempt to f ind higher alpha 
(for a few examples using such techniques in the context 
of high-frequency data, see Tsantekidis et al. 2017a; 
Zhang, Zohren, and Roberts 2018, 2019a, 2019b; Siri-
gnano and Cont 2019). Most research focuses on regres-
sion and classification pipelines in which excess returns, 
or market movements, are predicted over some (fixed) 
horizons. However, there is little discussion related to 
transforming these predictive signals into actual trade 
positions (see Lim, Zohren, and Roberts 2019 for an 
attempt to train a deep learning model to learn positions 
directly). Indeed, such a mapping is nontrivial. As an 
example, predictive horizons are often relatively short 
(one day or a few days ahead if using daily data); how-
ever, large trends can persist for weeks or months with 
some moderate consolidation periods. We therefore 
need a signal that not only has good predictive power 
but also can consistently produce good directional calls.

In this article, we report on reinforcement 
learning (RL) (Sutton and Barto 1998) algorithms to 
tackle the aforementioned problems. Instead of making 
predictions—followed by a trade decision based on 
predictions—we train our models to directly output 
trade positions, bypassing the explicit forecasting step. 
Modern portfolio theory (Arrow 1971; Pratt 1978; 
Ingersoll 1987) implies that, given a finite time horizon, 
an investor chooses actions to maximize some expected 
utility of final wealth:

	 [ ( )] 0
1

E E ∑= + δ
















=

U W U W WT
t

T

t 	 (1)

where U is the utility function, WT is the final wealth 
over a finite horizon T, and dWt represents the change 

in wealth. The performance of the final wealth measure 
depends upon sequences of interdependent actions in 
which optimal trading decisions do not just decide 
immediate trade returns but also affect subsequent future 
returns. As mentioned by Merton (1969) and Ritter 
(2017), this falls under the framework of optimal con-
trol theory (Kirk 2012) and forms a classical sequential 
decision-making process. If the investor is risk neutral, 
the utility function becomes linear, and we only need 
to maximize the expected cumulative trades returns, 

( )1E Σ δ= Wt
T

t ; we observe that the problem fits exactly 
with the framework of RL, the goal of which is to maxi-
mize some expected cumulative rewards via an agent 
interacting with an uncertain environment. Under the 
RL framework, we can directly map different market 
situations to trade positions and conveniently include 
market frictions, such as commissions, in our reward 
functions, allowing trading performance to be directly 
optimized.

In this article, we adopt state-of-the-art RL algo-
rithms to the aforementioned problem setting, including 
deep Q-learning networks (DQN) (Mnih et al. 2013; 
Van Hasselt, Guez, and Silver 2016), policy gradients 
(PG) (Williams 1992), and advantage actor–critic (A2C) 
(Mnih et al. 2016). Both discrete and continuous action 
spaces are explored in our work, and we improve reward 
functions with volatility scaling (Moskowitz, Ooi, and 
Pedersen 2012; Harvey et al. 2018) to scale up trade posi-
tions when volatility is low, and vice versa. We show the 
robustness and consistency of our algorithms by testing 
them on 50 very liquid futures contracts (CLC Database 
2019) between 2011 and 2019. Our dataset consists of 
different asset classes, including commodities, equity 
indexes, f ixed income, and foreign exchange (FX) 
markets. We compare our method with classical time-
series momentum strategies and find that our method 
outperforms baseline models and generates positive 
returns in all sectors despite heavy transaction costs. 
Time-series strategies work well in trending markets, 
such as fixed-income markets, but suffer losses in FX 
markets in which directional moves are less usual. Our 
experiments show that our algorithms can monetize on 
large moves without changing positions and deal with 
markets that are more mean reverting.

The remainder of the article is structured as fol-
lows. We first introduce the current literature and present 
our methodology. We then compare our methods with 
baseline algorithms and show how trading performance 
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varies among asset classes; a description of the dataset and 
training methodology is also included. At the end, we 
offer our conclusions and discuss extensions of our work.

LITERATURE REVIEW

In this section, we review some classical trading 
strategies and discuss how RL has been applied to this 
field. Fundamental analysis aims to measure the intrinsic 
value of a security by examining economic data so inves-
tors can compare the security’s current price with esti-
mates to determine whether the security is undervalued 
or overvalued. One of the established strategies is called 
CAN-SLIM (O’Neil 2009), and it is based on a major 
study of market winners from 1880 to 2009. A common 
criticism of fundamental analysis is that the entrance 
and exit timing of trades is not specified. Even when 
markets move toward the estimated price, bad timing 
in entering trades could lead to huge drawdowns, and 
such moves in account values are often not bearable to 
investors, shaking them out of the markets. Technical 
analysis is in contrast to fundamental analysis, in which 
a security’s historical price data are used to study price 
patterns. Technicians place trades based on a combi-
nation of indicators such as the relative strength index 
(RSI) and Bollinger bands. However, owing to the lack 
of analysis on economic or market conditions, the pre-
dictability of these signals is not strong, often leading 
to false breakouts.

Algorithmic trading is a more systematic 
approach that involves mathematical modeling and 
automated execution. Examples include trend fol-
lowing (Schwager 2017), mean-reversion (Chan 2013), 
statistical arbitrage (Chan 2009), and delta-neutral 
trading strategies (Michaud 1989). We mainly review 
time-series momentum strategies by Moskowitz, 
Ooi, and Pedersen (2012) because we benchmark our 
models against their algorithms. Their work developed 
a very robust trading strategy by simply taking the 
sign of returns over the last year as a signal; they dem-
onstrated prof itability for every contract considered 
within 58 liquid instruments over 25 years. Thence-
forth, a number of methods (Baz et al. 2015; Baltas 
and Kosowski 2017; Rohrbach, Suremann, and Oster-
rieder 2017; Lim, Zohren, and Roberts 2019) have been 
proposed to enhance this strategy by estimating the 
trend and mapping to actual trade positions. How-
ever, these strategies are designed to profit from large 

directional moves but can suffer huge losses if markets 
move sideways as the predictability of these signals 
deteriorates and excess turnover erodes profitability. 
Here, we adopt time-series momentum features along 
with technical indicators to represent state space and 
obtain trade positions directly using RL. The idea of 
our representation is simple: extracting information 
across different momentum features and outputting 
positions based on the aggregated information.

The current literature on RL in trading can be 
categorized into three main methods: critic-only, actor-
only, and actor–critic approaches (Fischer 2018). The 
critic approach, mainly DQN, features most often in 
publications in this field (Tan, Quek, and Cheng 2011; 
Bertoluzzo and Corazza 2012; Jin and El-Saawy 2016; 
Ritter 2017; Huang 2018). A state-action value function, 
Q, is constructed to represent how good a particular 
action is in a state. Discrete action spaces are adopted 
in these works, and an agent is trained to fully go long 
or short a position. However, a fully invested position 
is risky during high-volatility periods, exposing one 
to severe risk when opposite moves occur. Ideally, one 
would like to scale positions up or down according to 
current market conditions. Doing this requires one to 
have large action spaces; however, the critic approach 
suffers from large action spaces because a score must be 
assigned for each possible action.

The second most common approach is the actor-
only approach (Moody et al. 1998; Moody and Saffell 
2001; Deng et al. 2016; Lim, Zohren, and Roberts 
2019), in which the agent directly optimizes the objec-
tive function without computing the expected outcomes 
of each action in a state. Because a policy is directly 
learned, actor-only approaches can be generalized to 
continuous action spaces. In the works of Moody and 
Saffell (2001) and Lim, Zohren, and Roberts (2019), 
off line batch gradient ascent methods can be used to 
optimize the objective function, such as profits or Sharpe 
ratio, because the approach is differentiable end to end. 
However, this is different from standard RL actor-only 
approaches in which a distribution needs to be learned 
for the policy. To study the distribution of a policy, 
the policy gradient theorem (Sutton and Barto 1998) 
and Monte Carlo methods (Metropolis and Ulam 1949) 
are adopted in the training, and models are updated 
until the end of each episode. We often experience slow 
learning and need many samples to obtain an optimal 
policy because individual bad actions will be considered 
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good as long as the total rewards are good; thus, a long 
time is needed to adjust these actions.

The actor–critic approach forms the third category 
and aims to solve the aforementioned learning problems 
by updating the policy in real time. The key idea is to 
alternatively update two models in which one (the actor) 
controls how an agent performs given the current state, 
and the other (the critic) measures how good the chosen 
action is. However, this approach is the least studied 
method in financial applications (Li et al. 2007; Bekiros 
2010; Xiong et al. 2018). We aim to supplement the 
literature and study the effectiveness of this approach in 
trading. For a more detailed discussion on state, action 
spaces, and reward functions, interested readers are 
pointed to the survey (Fischer 2018). Other important 
financial applications such as portfolio optimization and 
trade execution are also included in this work.

METHODOLOGY

In this section, we introduce our setups including 
state, action spaces, and reward functions. We describe 
three RL algorithms used in our work, DQN, PG, and 
A2C methods.

Markov Decision Process Formalization

We can formulate the trading problem as a Markov 
decision process in which an agent interacts with the 
environment at discrete time steps. At each time step t, the 
agent receives some representations of the environment 
denoted as a state St. Given this state, an agent chooses an 
action At, and based on this action, a numerical reward 
Rt+1 is given to the agent at the next time step, and the 
agent f inds itself in a new state St+1. The interaction 
between the agent and the environment produces 
a trajectory τ = [S0, A0, R1, S1, A1, R2, S2, A2, R3, …].  
At any time step t, the goal of RL is to maximize the 
expected return (essentially the expected discounted 
cumulative rewards) denoted as Gt at time t:

	 1

1
∑= γ − −

= +

G Rt
k t

k t

T

k 	 (2)

where g is the discounting factor. If the utility function 
in Equation 1 has a linear form and we use Rt to repre-
sent trade returns, we can see that optimizing E(G) is 
equivalent to optimizing our expected wealth.

State space. In the literature, many different 
features have been used to represent state spaces. 
Among these features, a security’s past price is always 
included, and the related technical indicators are often 
used (Fischer 2018). In our work, we take past price, 
returns (rt) over different horizons, and technical indica-
tors including moving average convergence divergence 
(MACD) (Baz et al. 2015) and the RSI (Wilder 1978) to 
represent states. At a given time step, we take the past 60 
observations of each feature to form a single state. The 
following is a list of our features:

•	 Normalized close price series
•	 Returns over the past month, two months, three 

months, and one year are used. Following Lim, 
Zohren, and Roberts (2019), we normalize them 
by daily volatility adjusted to a reasonable time 
scale. As an example, we normalize annual returns 
as /( 252)252, σ−rt t t , where σt is computed using an 
exponentially weighted moving standard deviation 
of rt with a 60-day span,

•	 MACD indicators are proposed by Baz et al. (2015) 
where

	

MACD
std( )

( ( ) ( ))/std( )
252:

63:

=

= −
−

−

q
q

q m S m L p

t
t

t t

t t t 	 (3)

	 where std(pt−63:t) is the 63-day rolling standard 
deviation of prices pt, and m(S) is the exponen-
tially weighted moving average of prices with a 
time scale S.

•	 The RSI is an oscillating indicator moving 
between 0 and 100. It indicates the oversold 
(a reading below 20) or overbought (above 80) 
condition of an asset by measuring the magnitude 
of recent price changes. We include this indicator 
with a look-back window of 30 days in our state 
representations.

Action space. We study both discrete and con-
tinuous action spaces. For discrete action spaces, a simple 
action set of {-1, 0, 1} is used, and each value represents 
the position directly (i.e., -1 corresponds to a maximally 
short position, 0 to no holdings, and 1 to a maximally 
long position). This representation of action space is also 
known as target orders (Huang 2018), in which a trade 
position is the output instead of the trading decision. 
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Note that if the current action and next action are the 
same, no transaction cost will occur and we just maintain 
our positions. If we move from a fully long position to 
a short position, transaction cost will be doubled. The 
design of continuous action spaces is very similar to the 
discrete case in which we still output trade positions 
but allow actions to be any value between -1 and 1  
(At ∈ [-1, 1]).

Reward function. The design of the reward 
function depends on the utility function in Equation 1. 
Here, we let the utility function be profits representing 
a risk-insensitive trader, and the reward Rt at time t is

	 | |bp1
1

1
1

1
2

2= µ
σ
σ

−
σ
σ

−
σ
σ







−
−

−
−

−
−

−R A r p A At t
tgt

t
t t

tgt

t
t

tgt

t
t 	 (4)

where stgt is the volatility target and st-1 is an ex 
ante volatility estimate calculated using an exponen-
tially weighted moving standard deviation with a 
60-day window on rt. This expression forms the volatility 
scaling of Moskowitz, Ooi, and Pedersen (2012), Harvey 
et al. (2018), and Lim, Zohren, and Roberts (2019), in 
which our position is scaled up when market volatility is 
low and vice versa. In addition, given a volatility target, 
our reward Rt is mostly driven by our actions instead of 
being heavily affected by market volatility. We can also 
consider the volatility scaling as normalizing rewards 
from different contracts to the same scale. Because our 
dataset consists of 50 futures contracts with different 
price ranges, we need to normalize different rewards to 
the same scale for training and for portfolio construc-
tion. m is a fixed number per contract at each trade, and 
we set it to 1. Note that our transaction cost term also 
includes a price term pt−1. This is necessary because again 
we work with many contracts, each of which has a dif-
ferent cost, so we represent transaction cost as a fraction 
of traded value. The constant, basis point (bp), is the 
cost rate and 1 bp = 0.0001. As an example, if the cost 
rate is 1 bp, we need to pay $0.10 to buy one unit of a 
contract priced at $1,000.

We define rt = pt - pt-1, and this expression repre-
sents additive profits. Additive profits are often used if 
a fixed number of shares or contracts is traded at each 
time. If we want to trade a fraction of our accumu-
lated wealth at each time, multiplicative profits should 
be used, and rt = pt ⁄pt-1 - 1. In this case, we also need 
to change the expression of Rt because Rt represents 
the percentage of our wealth. The exact form is given 

by Moody et al. (1998). We stick to additive profits in 
our work because logarithmic transformation needs to 
be done for multiplicative profits to have the cumula-
tive rewards required by the RL setup, but logarithmic 
transformation penalizes large wealth growth.

RL Algorithms

DQN. By adopting a neural network, a DQN 
approximates the state-action value function (Q func-
tion) to estimate how good it is for the agent to perform 
a given action in a given state. Suppose our Q function 
is parameterized by some θ. We minimize the mean 
squared error between the current and target Q to derive 
the optimal state-action value function:

	
( ) [( ( , ) ( , )) ]

( , ) argmax ( , )

2

1 11

Eθ = − ′
′ = + γ

θ θ

θ θ + ++

L Q S A Q S A

Q S A r Q S At t A t tt
	 (5)

where L(θ) is the objective function. A problem is that 
the training of a vanilla DQN is not stable and suffers 
from variability. Many improvements have been made to 
stabilize the training process, and we adopt the following 
three strategies to improve the training in our work: 
fixed Q-targets (Van Hasselt, Guez, and Silver 2016), 
double DQN (Hasselt 2010), and dueling DQN (Wang 
et al. 2016). Fixed Q-targets and double DQN are used 
to reduce policy variances and to solve the problem of 
chasing tails by using a separate network to produce target 
values. Dueling DQNs separate the Q-value into state 
value and the advantage of each action. The benefit of 
doing this is that the value stream has more updates and 
we receive a better representation of the state values.

PG. The PG aims to maximize the expected 
cumulative rewards by optimizing the policy directly. 
If we use a neural network with parameters θ to rep-
resent the policy, pθ(A|S), we can generate a trajectory 
τ = [S0, A0, R1, S1, …, St, At, …] from the environment 
and obtain a sequence of rewards. We maximize the 
expected cumulative rewards J(θ) by using gradient 
ascent to adjust θ:

	

( ) |

( ) log ( | )

1
0

1

0

1

E ∑

∑

θ = π





∇ θ = ∇ π

+
=

−

θ

θ θ
=

−

θ

J R

J A S G

t
t

T

t

T

t t t 	 (6)
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where Gt is defined in Equation 2. Compared with 
DQN, PG learns a policy directly and can output a prob-
ability distribution over actions. This is useful if we want 
to design stochastic policies or work with continuous 
action spaces. However, the training of PG uses Monte 
Carlo methods to sample trajectories from the environ-
ment, and the update is done only when the episode 
finishes. This often results in slow training, and it can 
get stuck at a (suboptimal) local maximum.

A2C. The A2C is proposed to solve the training 
problem of PG by updating the policy in real time. It 
consists of two models: One is an actor network that 
outputs the policy, and the other is a critic network that 
measures how good the chosen action is in the given 
state. We can update the policy network p(A|S, θ) by 
maximizing the objective function:

	 ( ) [log ( | , ) ( , )]Eθ = π θJ AS A S Aadv 	 (7)

where Aadv(S, A) is the advantage function defined as

	 ( , ) ( | ) ( | )1= + γ −+A S A R V S w V S wadv t t t t t 	 (8)

To calculate advantages, we use another network, 
the critic network, with parameters w to model the state 
value function V (s|w), and we can update the critic net-
work using gradient descent to minimize the temporal 
difference error:

	 ( ) ( ( | ) ( | ))1
2= + γ −+J w R V S w V S wt t t 	 (9)

The A2C is most useful if we are interested in 
continuous action spaces because we reduce the policy 
variance by using the advantage function and update the 
policy in real time. The training of A2C can be done 
synchronously or asynchronously (A3C). In this article, 
we adopt the synchronous approach and execute agents 
in parallel on multiple environments.

EXPERIMENTS

Description of Dataset

We use data on 50 ratio-adjusted continuous 
futures contracts from the CLC Database (2019). Our 
dataset ranges from 2005 to 2019 and consists of a variety 
of asset classes, including commodity, equity index, 
fixed income, and FX. A full breakdown of the dataset 

can be found in Appendix A. We retrain our model at 
every five years, using all data available up to that point 
to optimize the parameters. Model parameters are then 
fixed for the next five years to produce out-of-sample 
results. In total, our testing period is from 2011 to 2019.

Baseline Algorithms

We compare our methods to the following base-
line models including classical time-series momentum 
strategies:

•	 Long only
•	 Sign(R) (Moskowitz, Ooi, and Pedersen 2012; Lim,  

Zohren, and Roberts 2019):

	 sign( )252:= −A rt t t 	 (10)

•	 MACD signal (Baz et al. 2015)

	

(MACD )

(MACD)
MACD exp( MACD /4)

0.89

2

= φ

φ =
−

At t

	 (11)

	 where MACDt is defined in Equation 3. We can 
also take multiple signals with different time scales 
and average them to give a final indicator:

	 MACD MACD ( , ) ∑= S Lt t
k

k k 	 (12)

	 where Sk and Lk define short and long time scales, 
namely Sk ∈ {8, 16, 32} and Lk ∈ {24, 48, 96}, as 
done by Lim, Zohren, and Roberts (2019).

We compare the aforementioned baseline models 
with our RL algorithms, DQN, PG, and A2C. DQN 
and PG have discrete action spaces {-1, 0, 1}, and A2C 
has a continuous action space [-1, 1].

Training Schemes for RL

In our work, we use long short-term memory 
(LSTM) (Hochreiter and Schmidhuber 1997) neural net-
works to model both actor and critic networks. LSTMs 
are traditionally used in natural language processing, 
but many recent works have applied them to financial 
time series (Di Persio and Honchar 2016; Bao, Yue, 
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and Rao 2017; Tsantekidis et al. 2017b; Fischer and 
Krauss 2018). In particular, the work of Lim, Zohren, 
and Roberts (2019) showed that LSTMs deliver superior 
performance on modeling daily financial data. We use 
two-layer LSTM networks with 64 and 32 units in all 
models, and leaky rectifying linear units (Leaky-ReLU) 
(Maas, Hannun, and Ng 2013) are used as activation 
functions. Because our dataset consists of different asset 
classes, we train a separate model for each asset class. 
It is a common practice to train models by grouping 
contracts within the same asset class, and we find it also 
improves our performance.

We list the value of hyperparameters for different 
RL algorithms in Exhibit 1. We denote the learning 
rates for critic and actor networks as acritic and aactor. 
The Adam optimizer (Kingma and Ba 2015) is used 
for training all networks, and batch size means the size 
of the minibatch used is in a gradient descent. As pre-
viously introduced, g is the discounting factor and bp 
is the cost rate used in training. We can treat bp as a 
regularizing term; a large bp penalizes turnovers and lets 
agents maintain current trade positions. The memory 
size shows the size of the buffer for experience replay, 
and we update the parameters of our target network in 
DQN every t steps.

Procedures for Controlling Overfitting

Because overfitting to backtest data can be problem-
atic in many application domains, especially in finance, 
we adopt the following procedures to overcome it.  
The most common cause of overfitting is a poor ratio of 
training samples to model parameters. Although there 
is no universal guarantee that increasing the number of 
samples will resolve the overfitting issue, we find that 
expanding the dataset to allow training on a cross sec-
tion of futures contracts, not just on a single contract, 
greatly helps to reduce the problem in our case. Further-
more, we intentionally design our networks to have a 
smaller number of free parameters whenever possible. 

Our models consist of two hidden layers, and each layer 
has a relatively small number of neurons. The resulting 
network has fewer parameters, which makes it less likely 
to overfit.

In addition, we use dropout (Hinton et al. 2016), 
a regularization method commonly employed in deep 
learning. Because our networks are small, we did not 
notice significant improvements, but we still recom-
mend the usage of dropout following the general advice 
of selecting the least f lexible model that achieves com-
parable cross-validation performance. This is also in line 
with other works (Zhang, Zohren, and Roberts 2018; 
Lim, Zohren, and Roberts 2019) that show improved 
results using dropout in financial applications, especially 
when handling complex network architectures.

Finally, we use 10% of any given training data as 
a separate cross-validation set to optimize hyperparam-
eters. We monitor the validation performance and use 
early stopping with 20 epochs to help optimal model 
selection. Any hyperparameter optimization is done on 
the cross-validation set, leaving the test set for the final 
test performance evaluation. This reduces the leakage 
of the test data, another cause of overfitting.

Experimental Results

We test both baseline models and our methods 
between 2011 and 2019, and we calculate the trade 
returns net of transaction costs as in Equation 4 for each 
contract. We then form a simple portfolio by giving 
equal weights to each contract, and the trade return of 
a portfolio is

	

1port

1
∑=

=

R
N

Rt t
i

i

N

	 (13)

where N represents the number of contracts considered, 
and Rt

i is the trade return for contract i at time t. We 
evaluate the performance of this portfolio using 

E x h i b i t  1
Values of Hyperparameters for Different RL Algorithms

α α γ τ
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following metrics as suggested by Lim, Zohren, and 
Roberts (2019):

1.	E(R): annualized expected trade returns
2.	std(R): annualized standard deviation of trade 

returns
3.	Downside deviation (DD): annualized standard 

deviation of trade returns that are negative, also 
known as downside risk

4.	Sharpe: annualized Sharpe ratio (E(R) ⁄ std(R))
5.	Sortino: a variant of the Sharpe ratio that uses 

downside deviation as risk measures (E(R) ⁄ DD)
6.	MDD: maximum drawdown shows the maximum 

observed loss from any peak of a portfolio to the 
trough

7.	 Calmar: the Calmar ratio compares the expected 
annual rate of return with MDD; in general, the 
higher the ratio, the better the performance of the 
portfolio

8.	% +ve Returns: percentage of positive trade returns
9.	 Ave. P

Ave. L : the ratio between positive and negative trade 
returns.

We present our results in Exhibit 2, in which an 
additional layer of portfolio-level volatility scaling is 
applied for each model. This brings the volatility of dif-
ferent methods to the same target, so we can directly 
compare metrics such as expected and cumulative trade 
returns. We also include the results without this vola-
tility scaling for reference in Exhibit B1 in Appendix B. 
Exhibit 2 is split into five parts based on different asset 
classes. The results show the performance of a portfolio 
by only using contracts from that specific asset class. 
An exception is the last part of the exhibit, in which we 
form a portfolio using all contracts from our dataset. The 
cumulative trade returns for different models and asset 
classes are presented in Exhibit 3.

We can see that RL algorithms deliver better per-
formance for most asset classes except for the equity 
index, for which a long-only strategy is better. This can 
be explained by the fact that most equity indexes were 
dominated by large upward trends in the testing period. 
Similarly, f ixed incomes had a growing trend until 
2016 and then entered currently ongoing consolida-
tion periods. Arguably, the most reasonable strategy in 

E x h i b i t  2
Experiment Results for Portfolio-Level Volatility Targeting

(continued)
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E x h i b i t  2  (continued)
Experiment Results for Portfolio-Level Volatility Targeting

E x h i b i t  3
Cumulative Trade Returns

Notes: First row: commodity, equity index, and fixed income; second row: FX and the portfolio of using all contracts.
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these cases might be to hold our positions if large trends 
persist. However, the long-only strategy performs the 
worst in commodity and FX markets, in which prices 
are more volatile. RL algorithms perform better in 
these markets by being able to go long or short at rea-
sonable time points. Overall, DQN obtains the best 
performance among all models, and the second best 
is the A2C approach. We investigate the cause of this 
observation and find that A2C generates larger turn-
overs, leading to smaller average returns per turnover, 
as shown in Exhibit 4.

We also investigate the performance of our 
methods under different transaction costs. In Panel A 
of Exhibit 5, we plot the annualized Sharpe ratio for 
the portfolio using all contracts at different cost rates.  

We can see that RL algorithms can tolerate larger cost 
rates; in particular, DQN and A2C can still generate 
positive profits with the cost rate at 25 bp. To under-
stand how cost rates (bp) translate into monetary values, 
we plot the average cost per contract in Panel B of 
Exhibit 5, and we see that 25 bp represents roughly 
$3.50 per contract. This is a realistic cost for a retail 
trader to pay, but institutional traders have a different 
fee structure based on trading volumes and often have 
cheaper cost. In any case, this shows the validity of our 
methods in a realistic setup.

The performance of a portfolio is generally better 
than the performance of an individual contract because 
risks are diversified across a range of assets, so the return 
per risk is higher. To investigate the raw quality of our 

E x h i b i t  4
Sharpe Ratio (top) and Average Trade Return per Turnover (bottom) for Individual Contracts
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methods, we investigate the performance of individual 
contracts. We use the boxplots in Exhibit 4 to present 
the annualized Sharpe ratio and average trade return per 
turnover for each futures contract. Overall, these results 
reinforce our previous findings that RL algorithms gen-
erally work better, and the performance of our method 
is not driven by a single contract that shows superior 
performance, reassuring us about the consistency of our 
model.

CONCLUSION

We adopt RL algorithms to learn trading strate-
gies for continuous futures contracts. We discuss the 
connection between modern portfolio theory and the 
RL reward hypothesis and show that they are equivalent 
if a linear utility function is used. Our analysis focuses 
on three RL algorithms, namely DQN, PG, and A2C, 
and investigates both discrete and continuous action 
spaces. We use features from time-series momentum 
and technical indicators to form state representations. 
In addition, volatility scaling is introduced to improve 

reward functions. We test our methods on 50 liquid 
futures contracts from 2011 to 2019, and our results 
show that RL algorithms outperform baseline models 
and deliver profits even under heavy transaction costs.

In continuations of this work, we would like to 
investigate different forms of utility functions. In prac-
tice, an investor is often risk averse, and the objective is 
to maximize a risk-adjusted performance function such 
as the Sharpe ratio, leading to a concave utility function. 
As suggested by Huang (2018), we can resort to distri-
butional RL (Bellemare, Dabney, and Munos 2017) to 
obtain the entire distribution over Q(s, a) instead of the 
expected Q-value. Once the distribution is learned, we 
can choose actions with the highest expected Q-value 
and the lowest standard deviation of it, maximizing the 
Sharpe ratio. We can also extend our methods to port-
folio optimization by modifying the action spaces to give 
weights of individual contracts in a portfolio. We can 
incorporate the reward functions with mean–variance 
portfolio theory (Markowitz 1952) to deliver a reason-
able expected trade return with minimal volatility.

E x h i b i t  5
Sharpe Ratio and Average Cost per Contract under Different Cost Rates
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A p p e n d i x  A

Our dataset consists of 50 futures contracts, and there are 25 commodity contracts, 11 equity index contracts, 5 fixed 
income contracts, and 9 forex contracts. A detailed description of each contract is given in Exhibit A1.

E x h i b i t  A 1
Contract Descriptions

E x h i b i t  B 1
Experiment Results for the Raw Signal

A p p e n d i x  B

Exhibit B1 presents the performance metrics for portfolios without the additional layer of volatility scaling.

(continued)
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ADDITIONAL READING

The Impact of Volatility Targeting
Campbell R. Harvey, Edward Hoyle, Russell Kor-
gaonkar, Sandy Rattray, Matthew Sargaison, and 
Otto Van Hemert

The Journal of Portfolio Management 
https://jpm.pm-research.com/content/45/1/14

ABSTRACT: Recent studies show that volatility-managed equity 
portfolios realize higher Sharpe ratios than portfolios with a constant 
notional exposure. The authors show that this result only holds for risk 
assets, such as equity and credit, and they link this finding to the so-
called leverage effect for those assets. In contrast, for bonds, currencies, 
and commodities, the impact of volatility targeting on the Sharpe ratio 
is negligible. However, the impact of volatility targeting goes beyond 
the Sharpe ratio: It reduces the likelihood of extreme returns across all 
asset classes. Particularly relevant for investors, left-tail events tend 
to be less severe because they typically occur at times of elevated vola-
tility, when a target-volatility portfolio has a relatively small notional 
exposure. We also consider the popular 60–40 equity–bond balanced 
portfolio and an equity–bond–credit–commodity risk parity portfolio. 
Volatility scaling at both the asset and portfolio level improves Sharpe 
ratios and reduces the likelihood of tail events.

A Century of Evidence on Trend-Following 
Investing
Brian Hurst, Yao Hua Ooi, and Lasse Heje Pedersen

The Journal of Portfolio Management
https://jpm.pm-research.com/content/44/1/15

ABSTRACT: In this article, the authors study the performance of 
trend-following investing across global markets since 1880, extending 
the existing evidence by more than 100 years using a novel data set. 
They find that in each decade since 1880, time-series momentum has 
delivered positive average returns with low correlations to traditional 
asset classes. Further, time-series momentum has performed well in 
8 out of 10 of the largest crisis periods over the century, defined as 
the largest drawdowns for a 60/40 stock/bond portfolio. Lastly, the 
authors find that time-series momentum has performed well across 
different macro environments, including recessions and booms, war 
and peace, high- and low-interest-rate regimes, and high- and low-
inf lation periods.

Enhancing Time-Series Momentum Strategies 
Using Deep Neural Networks
Bryan Lim, Stefan Zohren, and Stephen Roberts

The Journal of Financial Data Science
https://jfds.pm-research.com/content/1/4/19

ABSTRACT: Although time-series momentum is a well-studied 
phenomenon in finance, common strategies require the explicit defini-
tion of both a trend estimator and a position sizing rule. In this article, 
the authors introduce deep momentum networks—a hybrid approach 
that injects deep learning–based trading rules into the volatility scaling 
framework of time-series momentum. The model also simultaneously 
learns both trend estimation and position sizing in a data-driven 
manner, with networks directly trained by optimizing the Sharpe 
ratio of the signal. Backtesting on a portfolio of 88 continuous futures 
contracts, the authors demonstrate that the Sharpe-optimized long 
short-term memory improved traditional methods by more than two 
times in the absence of transactions costs and continued outperforming 
when considering transaction costs up to 2–3 bps. To account for more 
illiquid assets, the authors also propose a turnover regularization term 
that trains the network to factor in costs at run-time.
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