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Abstract

Downlink scheduling in the LTE system is an open problem for which several

heuristic solutions exist. Recently, there has been an increase in interest in ap-

plying machine learning to networking problems, including downlink scheduling.

Improvements in Physical Layer capabilities have generated new resource-intensive

use cases and continuously modifying existing heuristic solutions could result in

the development of systems too complex to maintain over time. We propose a

LSTM/Pointer Network-based downlink scheduler which aims to improve upon

the current models which utilize feed forward neural networks. Our scheduler flex-

ibly handles changing numbers of UEs via the use of a recurrent neural network.

We formulate the downlink scheduling problem as a Markov Decision Process that

integrates the channel quality indicator and the buffer size of each UE as the

observation and solve it using a Deep Reinforcement Learning algorithm. Our

experiments demonstrate that our approach results in a scheduler which gener-

alised across changing number of UEs and resource blocks and performed within

the range of traditional schedulers.
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Chapter 1

Introduction

1.1 Motivation

The LTE (Long Term Evolution) standard was designed by the Third Generation

Partnership Project (3GPP), the international organization that also developed the

widely used UMTS WCDMA/HSPA or 3G standards, to be a major improvement

on previous generations of cellular networks. The 3GPP Specification [11] required

that LTE provide increased peak data rates, increased cell edge bit-rates, lower

latency, and improved spectral efficiency over previous generations. With LTE,

the 3GPP introduced an all-IP (Internet Protocol) architecture, a change from the

combined circuit and packet switching which existed in UMTS. This simplified the

structure of the network and made accessible more of the available bandwidth to

pave the way for supporting high quality data services such as video streaming,

Voice over IP (VoIP) and online gaming, which require higher data rates and low

latency. According to [8], the desired improvements in performance, which drove

the development of LTE, could only be achieved by implementing new procedures

at the physical and MAC (Medium Access Control) Layers, which enable the

1
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exploitation of the wireless link capacity up to the Shannon limit1. This idea is

seen in much of the functionality designed into the E-UTRAN (Evolved-Universal

Terrestrial Radio Access Network) which is the component that manages the air

interface of the LTE network.

Within E-UTRAN, the Radio Resource Management (RRM) block of the LTE

architecture exploits a mix of advanced MAC and Physical Layer functions, like

resource sharing, Channel Quality Indicator (CQI) reporting, link adaptation

through Adaptive Modulation and Coding (AMC), and Hybrid Automatic Re-

transmission Requests (HARQ) [8]. Additionally, in the downlink direction, the

LTE standard introduced Orthogonal Frequency Division Multiplexing (OFDM)

in order to transmit more data at a lower per-bit cost. OFDM is a multi-carrier

transmission scheme where the available bandwidth is divided into multiple narrow

sub-carriers and data is transmitted on these sub-carriers in parallel. One thing the

LTE standard did not specify however, is how resource allocation should be carried

out. Even with all the improvements mentioned, there still exists the need for the

design of effective and efficient resource allocation strategies to share the available

(and limited) radio resources among the growing numbers of users in order to meet

the ever changing performance requirements of advanced applications.

Many researchers have proposed novel algorithms for uplink/downlink schedul-

ing in LTE. These algorithms are typically heuristics, and, due to the nature of the

scheduling problem (a combinatorial problem), involve trade-offs in some metrics

such as cell throughput, edge throughput, block error rate, fairness and delay to

achieve others. In many cases, designing an optimal solution for resource sharing is

computationally difficult due to the size of the state-space [2] and the fact that the

states are only partially observable. Nonetheless, there are some algorithms which

1The Shannon limit of a communication channel refers to the max rate of error-free data that
can theoretically be transferred over the channel given a particular noise level.
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have been developed and are commonly used in the operation of LTE networks.

These include Proportional Fair (PF), Round Robin (RR) and MaxCQI sched-

ulers. These are very useful methods but present limitations and may be difficult

to apply out of the box in an environment with more complex requirements. For

this reason and in keeping with general trends in the network management space,

there is quite a bit of exploration happening around the use of machine learning

to automate network management tasks such as routing and resource allocation.

There are 3 main branches of machine learning: supervised, unsupervised

and reinforcement learning. The need to adapt to changing network conditions

makes reinforcement learning one of the most promising paths for applying ma-

chine learning to the resource allocation problem. As discussed in [5], supervised

learning methods (for combinatorial problems) are essentially learning by imita-

tion, whereas reinforcement learning (learning through experience) allows for the

discovery of new policies and optimizations. Unsupervised learning is typically

more suited to classification tasks and involves methods such as clustering, den-

sity estimation, and dimensionality reduction. Consequently, [5] in their review

of learning methods for combinatorial optimization, chose not to discuss unsuper-

vised learning on the basis that ”it has received little attention in conjunction with

combinatorial optimization and its immediate use seems difficult”.

We will focus on reinforcement learning, which is a paradigm where an agent

learns to take actions within an environment with the goal to maximise some

cumulative reward. This approach has been used to learn to play games and

in other strategy-based problems. It is a fit for the resource allocation problem

in LTE for a few reasons. First, there is a centralised location within the LTE

architecture (the eNodeB - Evolved Node B) from which the agent can collect

information about the system and execute actions. Secondly, agents can continue
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to learn and improve while the network is online. Thirdly, there are approaches

which can be used in reinforcement learning that remove the need to have an

accurate mathematical model of the network dynamics. Finally, because this is a

current area of research interest, tools are being developed and released which allow

greater exploration by creating interfaces between popular reinforcement learning

tools and popular network research tools.

1.2 Contributions

This thesis explores the use of reinforcement learning to handle downlink schedul-

ing in LTE networks. We design and train, using reinforcement learning, a down-

link scheduler with a LSTM/Pointer Network structure. The scheduler is inte-

grated into the ns-3 simulation environment which is used to evaluate its useful-

ness.

The proposed solution treats the UEs to be scheduled as an input sequence

and leverages the memory capacity and flexibility of LSTM networks along with

an Encoder-Decoder structure to produce a corresponding sequence of UEs as the

scheduling decision. Further, the solution employs an attention mechanism to

ensure only UEs in the input can be selected as output. These two design decision

are made to allow the scheduler to handle changing numbers of UEs without the

need to retrain the model. This is an improvement on existing machine learning-

based schedulers which employ feed forward neural networks with fixed dimensions.

The simulation results confirm that our proposed solution is flexible. It man-

ages changing numbers of UEs without further training and maintains performance

in terms of throughput and fairness within in the range of traditional schedulers.

It also provides results competitive to the more traditional ML-based schedulers

that are trained for a specific number of UEs.
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1.3 Organization

The thesis is organized as follows: In Chapter 2 we give an overview of the rele-

vant factors for this study including: the functioning of an LTE network and the

mechanics of scheduling, scheduling metrics, existing scheduling algorithms, and

machine learning. In Chapter 3 we explore existing attempts to design schedulers

using reinforcement learning and the open areas for development. In Chapters 4

and 5 we introduce our proposed solution and describe the design and implemen-

tation. And finally, in Chapter 6 we share the experiments we conducted, present

the performance results, and the insights drawn from them.



Chapter 2

Background

2.1 LTE Structure

The LTE system is comprised of two parts, the core network, known as the Evolved

Packet Core (EPC), and a Radio Access Network (RAN) known as the Evolved-

Universal Terrestrial Radio Access Network (E-UTRAN). The EPC has three

main components, the Mobility Management Entity (MME), the Serving Gate-

way (SGW) and the Packet data network Gateway (PGW). The MME handles

user mobility, hand-offs, and the recording and paging of users. The SGW handles

routing and forwarding of user’s data packets as well as hand-over management,

while the PGW provides the connection between the core network and other ex-

ternal networks such as IP networks. The RAN on the other hand is comprised of

and supports two types of nodes, Base Station (BS) nodes known as eNodeB and

the user equipment (UE) nodes. The eNodeB is the entity in charge of carrying

out radio resource allocation processes.

Different methods can be used to share radio resources in a network. In the

downlink direction LTE employs Orthogonal Frequency Division Multiple Access

(OFDMA), while in the uplink direction, single channel orthogonal frequency di-

vision multiple access (SC-FDMA) is used. OFDMA is based on OFDM, which

6
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combines TDMA (Time Division Multiple Access) and FDMA (Frequency Division

Multiple Access) methods. OFDM is a multi-carrier transmission scheme where

the available bandwidth is divided into multiple narrow sub-carriers and data is

transmitted on these sub-carriers in parallel. OFDM was originally proposed to

solve the problems of inter-symbol interference1 and frequency selective fading.2

Its ability to be used as a multiple access scheme is what is exploited in OFDMA.

In each time interval, OFDMA can assign a fraction of the system bandwidth to

a number of UEs, so several mobile users are allowed to receive data at the same

time.

Resource allocation in LTE is concerned with deciding which UEs are assigned

resources in each time slot. The resources are considered in three dimensions:

time, frequency and power. Power allocation is outside the scope of this thesis and

is not determined by the same factors that will be considered here. We will focus

on downlink resource allocation in the time and frequency domains. In the time

domain, channels are divided into 10ms frames, with each frame consisting of 10

subframes of 1ms. This subframe interval is referred to as the Transmission Time

Interval (TTI). In the frequency domain, the total bandwidth available is divided

into sub-channels of 180 kHz, further split into 12 equally spaced sub-carriers of

15 kHz. This organization is depicted in Figure 2.1. A single unit of radio resource

covering 0.5 ms in the time domain and a 180 kHz sub-channel in the frequency

domain is called a Resource Block (RB) and it is these units which are individually

distributed to UEs at each TTI. All the RBs within the available bandwidth are

collectively called the Resource Grid. The number of RBs contained in a resource

grid and therefore available to be distributed to UEs, depends on the size of the

1If a wireless receiver starts to receive a new symbol, while it is still receiving a previous
symbol on a close-by frequency the two symbols will overlap at the receiver, causing a problem
known as inter-symbol interference (ISI) [9]

2Destructive interference caused by waves overlapping each other, resulting in a drop in re-
ceived signal power [9]
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Figure 2.1: LTE Frame [37]

LTE system bandwidth, which can take on a set number of values ranging from

1.4 MHz to 20 MHz.

2.2 Scheduling in LTE

The task of resource allocation is not simply to fit all UE data into the available

resource blocks. Resources need to be split up in ways that meet metrics important

to the network operator as well as service requirements for the users based on their

application type e.g. delivering a coherent video call. To achieve this, the MAC

Layer at the eNodeB needs to consider information not only about the number of

packets to be scheduled, but also information about their requirements, for example

delivery time guarantees. Additionally, the eNodeB must consider the condition of

the available radio resources as experienced by the UE. Wireless media is subject

to a variety of disruptive factors including the weather, urban factors and user

behavior. The effects of these factors on the wireless channel is captured in a

measure called the channel quality. Channel quality at the UE in a given instance
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can be evaluated through measurements reported by the UE.

In each TTI, the eNodeB sends reference signals which can be received by all

UEs in the cell. Using this reference signal, each UE calculates a value called the

signal to noise ratio (SNR) and maps it onto 15 channel quality indicator (CQI)

values defined by the 3GPP, with 15 indicating the best possible conditions and

degrading conditions as the value decreases. The UE reports this value to the

eNodeB. Each CQI value corresponds to a modulation scheme (QPSK, 16 QAM,

64 QAM), a code rate, and an efficiency value, designed to allow the UE to have

reasonably reliable transmission, taking into account the channel conditions it is

currently experiencing. This CQI value is used by the scheduler in its allocation of

resource blocks (RBs). If a UE is allocated a RB in a TTI, the Physical Downlink

Control Channel (PDCCH) will be used to communicate the RBs allocated to it

and the selected modulation scheme to be used. The UE then uses this information

to receive and decode its information. CQI is not the sole piece of information

used to make a scheduling decision. However, it is a fundamental one because it

is used to determine the modulation scheme for the UE. At the eNodeB there is

other information available to the scheduler which could be used in the decision

making and most scheduling algorithms use a combination of available data. These

include: the Head of Line delay, a measure of how long a packet has been waiting

to be scheduled; QoS parameters such as the GBR vs non-GBR designation which

informs the QCI (QoS Class Identifier) a ranking system for packet priorities i.e.

(does this packet require reserved bandwidth or can it be treated as best effort);

Queue Length, a measure of how much data a UE has pending transmission;

Buffer status, which is similar to queue length but considered from the perspective

of how much space there is left in the UE’s buffer, as well as measures indicating

the allocation history of the UE.
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2.3 Scheduling Metrics

The choice of scheduling algorithm by a network provider is typically made on

the basis of its ability to meet certain metrics depending on the services which

are typically accessed within the network. Common metrics include average cell

throughput, edge throughput, block error rate, fairness, delay and quality of service

requirements. For the work in this thesis we will focus on throughput and fairness

as metrics so these will be described in Subsections 2.3.1 and 2.3.2.

2.3.1 Average Cell Throughput

In general, throughput refers to a rate at which some entity passes through a

system or process. In the context of communication networks, throughput refers

to the amount of data delivered through the network and is typically measured in

multiples of bits per second e.g. Mega bits per second (Mbps). Throughput can

be measured at different levels, for instance the throughput (downlink) of a single

UE for time period t can be given as:

Ri(t) =
totBitsRcvd

t
(2.1)

i.e., the total number of bits received divided by the period of time being

evaluated t e.g. 1s.

Network operators are more concerned with aggregate performance rather than

single UE performance, so this idea can be built up into a more general metric.

First the individual throughput for each UE is combined to give a total throughput.

Rtot(t) =
NumUEs∑

i=1

Ri(t) (2.2)

Then, the total throughput is averaged over the total time period of interest
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to represent the average throughput of the cell.

R̄tot =

∑T
t=1Rtot(t)

T
(2.3)

2.3.2 Fairness

In general, fairness refers to the equality of resource allocation [17]. In our context

(un)fairness can be defined as some UEs having significantly higher throughput

than others or some UEs being starved of resources despite having a backlog of data

to be received. Algorithms which quantify fairness seek to present this observation

as an objective metric which is capable of being scaled to an arbitrary number of

entities i.e., the same metric should be able to describe fairness among 3 UEs

equally well as fairness among 3000 UEs. One such metric is Jain’s fairness index

(JFI) and it is computed as follows:

JFI =
(
∑

(xi))
2

n
∑

(xi)2
(2.4)

Where xi denotes the i-th user’s throughput and n is the total number of

UEs. Jain’s fairness index is a value in the range [0, 1] with one indicating perfect

fairness, i.e., all users receive the same allocation. Values less than one indicate a

degree of unfairness.

Fairness is an important metric in networks because the aim in most cases is to

offer acceptable service to all users, including those with strict requirements and

those without, as well as those experiencing ideal channel conditions and those in

known difficult spots such as at the cell edge.
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2.4 Scheduling Algorithms

The choice of scheduling algorithm has direct effects on the metrics described above

and as such algorithms are designed to achieve different network preferences. For

example, Max-CQI or Max Throughput algorithms schedule only the UEs with

the best channel conditions and in so doing achieve very high throughput but

considerable unfairness. There are however algorithms which do a better job at

balancing these two metrics. The ones utilized for comparison in this thesis will

be described in Subsections 2.4.1 to 2.4.3.

2.4.1 Round Robin

Round Robin (RR) is one of the simplest scheduling algorithms. It is channel-

unaware, meaning it does not take into account the channel conditions being expe-

rienced by the UE. RR assigns resource blocks in a sequential and cyclical manner,

with a UE being scheduled based on the last time it was scheduled among all the

UEs. Along with being very simple to implement, Round Robin also performs rea-

sonably well in terms of throughput and guarantees a high level of fairness when

channel conditions are generally good. It loses efficiency in situations with mixed

channel conditions such as the presence of UEs at the cell edge or some other area

of the cell experiencing interference. These UEs will not be able to receive as many

bytes in the time slot they are allocated compared to UEs experiencing good radio

conditions. They would benefit from being scheduled more often to maintain their

service quality. Channel aware algorithms aim to solve this problem.

2.4.2 Proportional Fair

The Proportional Fair algorithm is a channel aware algorithm which aims to bal-

ance throughput and fairness among all users [30]. The procedure tracks the
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average throughput for each UE and performs a calculation as follows:

mi,k =
di,k(f)

Ri(f)
(2.5)

Where Ri(f) is the the average throughput of user i in subframe f and di,k(f) is

an expression for the channel capacity, which describes the achievable throughput

or instantaneous data rate of user i in resource block k and in f .

di,k(f) = log[1 + SNRi,k(f)] (2.6)

The calculations are stored as data points in a matrix M . The scheduler selects,

for the current RB, the UE with the highest metric. The algorithm continues to

assign RBs to the user with next highest metric until all RBs are assigned or all

users have been served with RBs. If no data is available, a user is not scheduled.

More formally, the scheduler selects UE m to be assigned the next RB using on

the following equation:

m = argmax
i

di,k(f)

Ri(f)
(2.7)

2.4.3 Max Throughput (Frequency Domain)

Maximum Throughput Scheduler is another channel aware algorithm which ex-

ploits the instantaneous channel conditions to maximize the cell throughput. It

achieves this by scheduling the users with the most favorable channel conditions.

The scheduler selects UE m to be assigned based on the metric:

m = argmax[di,k(f)] (2.8)

where di,k(f) is the instantaneous rate that can be achieved by user i (as
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above in Proportional Fair) when assigned the RBGs in the fth subframe. This

is calculated based on the CQI reported by the user. While Max Throughput

schedulers achieve maximum cell throughput, they typically do so at the expense

of fairness. If users are spread across the cell and are experiencing widely varying

CQIs, the UEs with the worst channel conditions will be starved.

2.5 Automating Resource Scheduling

While the ’vanilla’ Proportional Fair algorithm works largely as advertised, re-

searchers have continued to adapt it to try to gain further improvements in per-

formance for varying and sometimes niche scenarios. This practice illustrates the

major draw-back to ’hand-developing’ and upgrading scheduling algorithms: the

rapid increase in use cases and the continuous development of the Physical Layer

attributes may lead to the development complicated systems that will eventu-

ally be extremely difficult to maintain and improve [2]. This points to a need to

have adaptable algorithms, not only for scheduling but in many areas of network

management. This need has given rise to a movement which seeks to leverage

machine learning to automate network management tasks, and ambitiously create

’self-driving’ networks [12].

2.5.1 Machine Learning

Machine learning refers to algorithms which are able to make decisions or pre-

dictions from data in training examples [42]. Training examples can be explicitly

given to the system such as when labeled images are provided to train an object

recognition system, or the system can gain examples or experience by doing the ac-

tual task and receiving feedback on the outcome of its decisions. Systems which are

given labeled training data are said to be utilizing a supervised learning method.
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There are also unsupervised methods where the system seeks to discover similar-

ities by explorations (without labels) and then there are reinforcement learning

methods which we will utilize in this thesis.

2.5.2 Supervised and Unsupervised Learning

Supervised learning is a machine learning technique predicated on the availability

of labeled examples. Supervised learning algorithms are given a labeled training

data set and from that build a model of the system representing the observed

relations between the inputs and outputs. After training, when a new input is

given into the system, the model can be used to generate an expected output

which should ideally be very close to the actual target output. The process of

defining such a model is called ’learning’ and is achieved by optimizing over a

family of functions [5]. Some common supervised learning algorithms include k-

nearest neighbor, decision tree, random forest, neural network, support vector

machine, Bayes’ theory, and hidden Markov models.

An unsupervised learning algorithm, on the other hand, is given a set of in-

puts without labels as its training data set. These algorithms aim to find patterns

or structures in unlabeled data by clustering data points into different groups

according to some similarity metric. Some common unsupervised learning algo-

rithms include k-means clustering, DBSCAN clustering and principal component

analysis.

Supervised learning can be successfully applied to aid in the solving of combi-

natorial problems. The labeling acts as an expert source of knowledge or oracle

which demonstrates to the algorithm what the optimal decision would be in a

given situation, until the algorithm learns a model capable of making similar deci-

sions [5]. This is not useful in the context of downlink resource scheduling in LTE
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because, given that we are in search of a solution for an always changing future,

there is no source of expertise. Unsupervised learning is also not useful because

it is more suited to classification tasks and is rarely considered for combinatorial

problems [5]. With neither of these two algorithms being suitable we shift our

attention to the third, reinforcement learning.

2.5.3 Reinforcement Learning

In reinforcement learning, a software agent aims to discover which actions lead

to an optimal outcome by trial and error or by following some learned policy. A

goal is set, for example to find a scheduling method which minimizes packet delay.

The agent will then experiment with scheduling decisions, taking its feedback on

how well it is meeting the goal from a reward function, and refine its approach to

try to maximize the long term goal. This scenario illustrates the 3 components to

any reinforcement learning method: 1. a policy, which informs the behavior of the

actor, or no policy where the behavior is learned by trial and error, 2. a reward

signal, which is used by the actor to judge its actions, and 3. a value function,

which represents the overall goal of the optimization problem [34]. There is a

fourth and optional component, a model of the environment. It is important to

note that this option is not suitable for the downlink resource scheduling problem

because of the stochastic nature of wireless communication, it is very difficult

to create a useful model of the system and therefore we will see that model-free

algorithms are better suited to this problem as they remove the need to have an

accurate mathematical model of the network dynamics.

Reinforcement learning is a good solution for problems which can be formulated

as a Markov Decision Process (MDP). MDPs provide a mathematical framework

for describing a decision-making scenario where the outcomes are partly under the
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control of the decision maker and partly random. A MDP is generally denoted by

the triple (S,A,R),where S is either a complete or partial representation of the

state of the system, A is the set of possible actions (discrete or continuous), and

R is the set of rewards [34]. There are also variations on this model which add

other factors like a discount factor to prioritize current rewards or possible future

rewards.

The downlink scheduling problem is commonly framed by researchers as a

Markov decision process. Several pieces of information can be combined to provide

a partial description of the state of the system, these include CQI and length of

the buffer queues for each UE among others. The action space is comprised of

the RBs available to be scheduled and the UEs eligible to be scheduled. And

finally, from the scheduling metrics deemed important for the network, reward

functions can be developed to steer the agent towards maximization of the long

term results. This formulation opens up the downlink resource allocation problem

to the promise of reinforcement learning methods which could potentially replace

the existing heuristic schedulers.

Three types of classical reinforcement learning (RL) methods are commonly

used to solve MDPs: Q-learning, policy gradient, and actor-critic methods which

are originally described in [19, 35, 36]. Some of these have been applied in the

context of networking and will be explored in Chapter 3.

2.5.4 Deep Reinforcement Learning

The ”deep” in deep reinforcement learning refers to multiple layers of artificial neu-

ral networks which are capable of computing high dimensional parametric func-

tions. These neural networks can be used to supplement any machine learning

algorithm, thus turning it into a deep learning algorithm. A neural network is a
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computing system made up of a large number of simple processing units, which

operate in parallel to learn experiential knowledge from historical data [14]. The

layered structure is comprised of individual connections called neurons which, when

combined with activation functions (non-linear functions applied to each connec-

tion), can be used to perform complex calculations and are widely used in many

applications, such as pattern recognition. The value in deep learning is that it can

be used to find important features of the data and to model them as high-level

abstractions, thus avoiding manual description of a data structure as with feature

engineering3, by automatically learning features from the raw data [23]. For the

scheduling problem that would mean learning features from the available data at

the eNodeB and passing those to the reinforcement learning algorithm rather than

taking the plain data features as input to the learning algorithm.

Deep reinforcement learning (DRL) is suitable for the task of automating down-

link resource scheduling in LTE for a few reasons. One of these is that the eNodeB

provides a centralised location within the E-UTRAN where an agent can collect a

range of information about the network and execute the scheduling actions. With

data being key to the functioning of any machine learning application, the ability

to generate lots of training data is a fundamental consideration. According to [24],

decisions made by scheduling systems are highly repetitive, which leads to them

generating an abundance of training data for DRL algorithms. This is also true

of scheduling in LTE. Decisions are made every TTI and there are several data

points and metrics which can be considered for use as training data. Additionally,

rather than being designed offline and then deployed on the network, because the

network is continuously generating data, DRL agents can be trained and continue

to learn and improve while the network is online. This is critical to the idea of

3Feature engineering in ML includes feature selection and extraction. It is used to reduce
dimensionality in voluminous data and to identify discriminating features that reduce computa-
tional overhead and increase accuracy of ML models. [6]
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flexibility: as the network changes, rather than attempting to tweak an existing

algorithm and redeploy it to handle new demands or conditions, the same DRL

agent is capable of continuously learning new ways of meeting the defined metrics.

2.5.5 Available Research Tools

Access to live large scale networks is a challenge for academic researchers because

they are privately owned and costly to set up. Additionally, tools to integrate ma-

chine learning and control directly into networks are not yet fully developed and

commercialized. Because the application of reinforcement learning to networking

tasks is a current area of research interest, academic tools are being developed

and released which allow researchers to work on a smaller scale. OpenAI’s Gym,4

for example, is a toolkit for developing reinforcement learning algorithms which

can be used in conjunction with numerical computation libraries, such as Tensor-

Flow,5 which are used to build neural networks. One of the problems that Gym

aims to solve is the lack of a large open source collection of environments on which

reinforcement algorithms can be developed and tested. To that end they have pro-

vided an API which can be used to connect any environment to their toolkit and

by extension to the computation libraries. ns-36, which is an open source network

simulator that contains implementations of many networking protocols including

LTE, is a popular network research tool and an ideal environment for use with

Gym. It provides access to and control of many of the features of interest in net-

works and can generate data for a suite of analysis tools including visualisers. The

authors of [13] recognized this fit and developed ns3gym; a tool for representing an

ns-3 simulation as an environment in Gym, thus providing a compete sandbox for

4https://gym.openai.com
5https://www.tensorflow.org
6https://www.nsnam.org



20

RL research in networking. These tools will enable the exploration in this thesis.



Chapter 3

Literature Review

Techniques that leverage machine learning for downlink scheduling have become

interesting as a means of replacing traditional heuristic schedulers, because contin-

ually updating ’handmade’ schedulers could quickly create overly complex systems

given the pace of change of network requirements. Deep reinforcement learning-

based schedulers are even more interesting because they can learn how to schedule

directly from the network data via trial and error. This means the scheduler can

develop and change its own rules without human intervention and is therefore a

promising way to handle large amounts of changing requirements.

In the following sections we will explore the space of deep reinforcement learn-

ing and the ways in which it has already been applied to downlink scheduling in

LTE. We will then narrow our focus to policy gradients and their use in down-

link scheduling and finally look at recurrent neural networks as a candidate for

improving flexibility versus feed forward neural networks.

21
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3.1 Applying Deep Reinforcement Learning to

Resource Allocation and Scheduling

The authors of [24] applied the deep reinforcement learning (DRL) technique to

a resource management problem. They designed and evaluated a multi-resource

cluster scheduler which learned to optimize various objectives such as minimizing

average job slowdown or completion time. Their solution performed comparably

or better than standard heuristic for scheduling such as Shortest-Job-First. It even

learned unique strategies such as ”favoring short jobs over long jobs and keeping

some resources free to service future arriving short jobs”. Their approach used a

policy gradient method and the REINFORCE algorithm with a fully connected

feed forward network. Following on their successful effort, many others have ex-

plored DRL techniques to solve scheduling problems including scheduling problems

within the networking domain.

3.1.1 DRL applied to Downlink Scheduling

In networking, situations where there are no ready to use algorithms are common

targets for the use of the DRL method. These attempt to optimize a solution for

a specific purpose. For example, [1], [20] and [21] each attempted to solve the

problem of allocating bandwidth to network slices in 5G cellular networks. Their

choice of method differed based on what they were trying to optimise for.

In [21], the number of arrived packets in each slice (for a specific time win-

dow) was used to represent the state of the environment, the action taken was

the allocation of bandwidth (RBs) per slice and the reward was a weighted sum

of two metrics describing the spectrum efficiency and the QoE requirement (wait

time per flow). The authors employed the DQN (Deep Q Network - Q-learning
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with a neural network) algorithm and carried out comparisons against a no slicing

scenario (using Round Robin as MAC Scheduler), hard slicing and two demand-

prediction based allocation algorithms, with slices containing video, VoIP and

URLLC (Ultra-Reliable Low-Latency Communications) data. The DQN solution

was better at satisfying the URLLC requirements when the resources were suffi-

ciently constrained. When there were enough resources, ”no slicing” worked better.

The gain in QoE satisfaction came at the cost of spectrum efficiency and the au-

thors demonstrated that by adjusting the weight of the QoE part of the reward

metric the algorithm could learn a different scheduling policy which provided bet-

ter spectral efficiency. The algorithm did not significantly improve the satisfaction

of the video or VoIP slices.

In a slightly different approach [1] attempted to handle the case of a dynamic

number of network slices. They identified 8 metrics to describe their system state,

the actors’ task was to select an amount of resource blocks to allocate to the slice

and the reward was a combination of a metric which defined whether the UEs

in the slice were able to satisfy their requirements and a metric which compared

the amount of resource blocks used by the slice versus those assigned to it (i.e.

spectrum efficiency). In order to handle a changing number of network slices, the

authors proposed a solution where the actor would only allocate resources to one

slice at a time and would be called as many times as needed based on the number

of slices. The authors employed the DQN algorithm with the Ape-X [16] approach

for using prioritized experience replay in a distributed manner (multiple actors

with a single learner and replay experience buffer). Their method successfully

handled changing slice numbers and performed better than the situation where

no slicing was employed (all RBs scheduled to all UEs with a Proportional Fair

MAC scheduler) and the situation with hard slicing (equal amounts of bandwidth
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to each slice).

Koo et al. [20] attempted to solve a joint optimization problem; allocating

CPU resources to the slice and allocation of bandwidth at the same time. This

expanded the action space beyond what we have seen in the previous two solutions

and introduces a new consideration. While the DQN algorithm is good at handling

relatively small action spaces, when the action space becomes large or continuous,

the algorithm is negatively impacted because it requires checking the value function

for each possible action. The authors [20] defined the problem in a continuous

rather than discrete manner, representing the state variables as distributions and

then applied a policy gradient method based on the REINFORCE [35] algorithm

seen in [24] (which was a discrete problem with a large action space) to solve

it. The environment state was represented by the amount of received resource

requests, the buffer level, and the last request arrival time. Two separate policies

are used to output the resource allocation (CPU and Bandwidth) and the reward

is a combination of processing delay and resource use cost. The method was

compared to a fixed allocation of bandwidth per slice and performed significantly

better in regard to the metric.

3.1.2 Policy Gradients

As mentioned, DQN as applied in the previous solutions is ill-suited for problems

with a large number of actions or continuous actions because it evaluates the Q-

function for every action in a state. The solutions reviewed above were allocating

resources to fewer than 10 slices. Policy gradient methods and their deep learning

variants however, can be easily applied to continuous action spaces as evidenced

by the solution in [20] and have also been adapted for large discrete action spaces

by mapping the algorithm’s continuous output to discrete actions [10].
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DDPG (Deep Deterministic Policy Gradients), which is the policy gradient

and continuous method analogous to DQN, has been directly applied to attempt

to solve the downlink scheduling problem in LTE (4G) networks. Wang et al. [41]

defined the problem using instantaneous rate and average rate of transmission for

each UE to represent the state of the system. They tested a scenario with a single

resource block such that the action is to decide which UE is scheduled to occupy the

only RBG in the scheduling period and a weighted sum of the total throughput

and UE fairness is used as the reward. The DDPG agent was utilized in three

different learning scenarios: 1. Directly interacting with the environment alone 2.

Two agents interacting with the environment and learning from each other and 3.

an agent interacting with the environment and learning from a Proportional Fair

scheduler. All scenarios were compared to the Proportional Fair scheduler. All 3

agents approached the Proportional Fair standard with the one learning directly

from it converging in the shortest amount of updates.

This result seemed to suggest that the best case scenario may be that a DRL

agent will learn a policy similar to the Proportional Fair algorithm. However, [33]

also deployed DDPG to schedule UEs and Resource blocks in a LTE Scenario.

Their state representation was different from that in [41], they optimized for re-

ducing bit delay by presenting the buffer state and CQI of each UE as the state.

They provided a reward function which reflected a change in the buffer state of

each UE from the previous time period to the current one. Their solution was

compared to PF, Max weight and Max CQI schedulers and performed compara-

tively well and in some cases better than all 3 in terms of throughput, fairness,

delay fairness and delay (measured per bit and using Little’s Law 1). This later

result suggests that there is potentially more to gain over the Proportional Fair

1W = L/λ where W is the average waiting time, L is the queue length and λ is the average
arrival rate per unit time
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scheduler with the use of DRL agent based schedulers.

3.2 Generalizing DRL solutions

Downlink scheduling is an example of a combinatorial optimization problem; of the

UEs with data pending, given their channel conditions, what is the combination

of them which, when scheduled in the available resource blocks in the current

time slot, will optimize the chosen metric. In the previous works described, fully

connected feed forward neural networks are utilized in the solutions. One of the

problems observed in these works is that feed forward neural networks do not

naturally lend themselves to varying input sizes. Papers which consider varying

inputs used various methods to work around the problem. For example, [1], which

noted that most papers that utilized machine learning for resource allocation to

network slices only investigated a fix number of slices, designed their solution to

handle changing numbers of slices by employing the RL agent to one slice at a time

and calling it as many times as needed to handle all slices. The authors of [33], who

considered a changing numbers of UEs, retrained their agent each time to handle

10, 20 and 30 UEs, each taking an increasing amount of time to train. All other

papers in this survey did not address changing numbers of inputs i.e. they used

a fixed number of slices or UEs etc. In DL scheduling, the UEs which are eligible

for scheduling in a time slot do not constitute a fixed list, their number changes

based on factors such as which UEs have data present for them or which UEs have

left the cell or which UEs are already scheduled through HARQ. One common

way of handling varying inputs in a fully connected feed forward network is to

estimate the largest number of inputs expected and pad smaller inputs with zeros

up to that limit. This creates a potential problem for generalized use of neural

networks in real scenarios because the network will require retraining if conditions
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shift beyond those limits, which is akin to the drawback of modifying heuristics.

3.2.1 Recurrent Neural Networks

There exists however, a class of neural networks called Recurrent Neural Networks

(RNNs) designed specifically for handling varying input sizes and these have been

explored for solving combinatorial problems. RNNs handle varying inputs by

unrolling (reusing) a single neural network as many times as there are inputs taking

each input one by one and passing it through the network, producing a ‘hidden

state’ which is combined with the next input in the series to produce its hidden

state and so on until the end of the input sequence is reached. This method of

combination allows the network to ‘remember’ information from previous inputs

by capturing important bits in the hidden state. In an RNN, outputs can be

generated at each time step or only once at the end of the sequence. RNNs are

commonly used in applications where the inputs can be interpreted as a variable

length sequence such as in sentences for language translation or audio clips for

music generation and have been formulated to produce classification type outputs

such as assigning a genre to a music clip, prediction type outputs such as predicting

the next number given the beginning of a series of numbers or outputs which

generate a corresponding sequence given the input such as translating from English

to French. The latter idea is referred to as the sequence-to-sequence (seq-to-seq)

paradigm.

In addition to applications where sequence-to-sequence is used to perform map-

pings to outputs that are strictly sequences from inputs that are strictly sequences,

there are examples of the technique being used to map to and from objects that

are not necessarily sequences [38]. Examples are image captioning, which maps

from an image to a sentence [40], or solving the traveling salesman problem (TSP)
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by outputting an ordered tour given a set of random location coordinates [39].

The latter example is also a combinatorial problem. The authors in [39] aimed

to expand ’vanilla’ seq-to-seq architectures to not just handle varying input but

also varying output dictionaries. In a typical seq-to-seq architecture, the size of

the output dictionary needs to be fixed beforehand, as in the case of translation

where there is a known fixed size corpus of words for any given language, which

becomes the pool of options for the network to draw output sequence members

from. This prevented the seq-to-seq solution from being applied directly to com-

binatorial problems where the size of the output dictionary varied with the input

sequence, as is the case with downlink scheduling: a changing list of eligible UEs

means a changing output dictionary. The authors of [39] addressed this issue by

generating pointers to input elements as the output, and successfully used this

mechanism to compute TSP tours. Inspired by the use of pointer networks de-

scribed in [39], the authors in [4] again tackled the TSP, this time training their

algorithm using reinforcement learning instead of supervised learning to remove

the need to provide the optimal solutions as the target. They were also successful

in producing near optimal tours. They further extended this RNN-RL solution

to the knapsack problem, which involves fitting items into a knapsack given their

weights and values, aiming to maximize the sum of value without exceeding the

weight capacity of the knapsack. The algorithm generated pointers for items to

include in the knapsack, stopping when the total weight of the items collected

exceeded the weight capacity [4]. This is in contrast to the TSP problem, which

produced an output sequence with length equal to the input length. This demon-

strates that the seq-to-seq architecture can be used with constraints on the length

of the output. In the case of DL scheduling, the output sequence should stop when

the available RBs are utilized.
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Structurally the sequence-to-sequence system takes the form of an Encoder-

Decoder architecture. It is comprised of an Encoder RNN, which takes the inputs

and produces a fixed size embedding vector, and a Decoder RNN (which is modified

in the pointer network), which takes the embedding vector and produces the output

sequence. In a regular seq-to-seq model, the output at each step is generated from

the preset dictionary. In a pointer network the outputs are pointers generated by

a mechanism known as Attention.

A vanilla RNN can produce its entire output sequence using the embedding

vector after processing the whole input sequence. This presents a computational

constraint as the size of the input sequence grows larger [39]. Attention [3] is a

mechanism designed to solve this problem by augmenting the Encoder and De-

coder RNNs with an additional, small, neural network which computes a vector

indicating the context of the current observation in the series. For example, for a

translation task, looking at the words immediately before and after a target word

is more beneficial to deciding how to translate it than a word 10 words away from

it. The pointing mechanism proposed in [39] makes use of this computed vector

of ‘relevancy’ and uses it to produce a probability distribution over the elements

in the input, thus identifying some as being a good next candidate at each step

of the output sequence. [The authors also point out that the RNN network could

learn to output the location (or index) of the target input point directly. However,

this solution apparently degrades as sequences become longer.]
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3.2.2 Conclusions

In this section we have explored several deep reinforcement learning methods which

are promising solutions for downlink scheduling. While many approaches to down-

link scheduling have relied on fully connected feed forward networks, we have iden-

tified a drawback to this network structure. Feed forward neural networks do not

naturally lend themselves to varying input sizes. However, UEs are free to join

and leave cells regularly and traffic demands or patterns fluctuate over time, so

in a realistic setting, the candidate set of UEs to be scheduled varies over time.

We observed that solutions to this problem have included retraining the model

each time a change in input is needed (a solution which is only feasible in research

context and not necessarily production networks) and padding the input values

to allow room for change. We explore recurrent neural networks which is another

class of machine learning structures better suited to handling changing inputs by

treating them as sequences. We also identified a model (sequence-to-sequence)

which treats not only the inputs as sequences but also the outputs. We conclude

that this sequence-to-sequence structure appears to be a good choice for creating

a generalized solution, capable of handling changing numbers of eligible UEs in

downlink scheduling. UEs (and their state representations) can be fed in as a

variable length sequence without attempting to estimate a largest possible input

and a valid output sequence drawn only from the UEs present in the input can be

produced by using a pointing mechanism.



Chapter 4

Solution Design

4.1 Overview

In our design, we are ultimately interested in a structure that will be capable of

fulfilling two requirements:

1. Handle changing numbers of UEs

2. Ensure that only the UEs presented at the input are candidates for schedul-
ing.

The first requirement directly addresses the drawback of feed forward neural

networks identified in Chapter 3 where they do not naturally lend themselves

to handling varying numbers of UEs when applied to downlink scheduling. The

second requirement arises from the fact that we have identified the sequence-to-

sequence model as a potential way to solve the variable input problem but in doing

so face another challenge in that the output dictionary in seq-to-seq (list of possible

output values) is typically predefined. In the case where UEs are leaving and

joining cells the set of UEs which are eligible to be scheduled at any time is not fixed

and therefore a pre-set dictionary would not be useful. In Chapter 3 we identified

a promising modification for handling this second challenge, Pointer Networks. We

propose that the use of this pointer network structure as an improvement on the

31
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sequence-to-sequence structure is a potential solution to having a fixed dictionary

of output UEs. The structure we design will be optimised by training with a deep

reinforcement learning algorithm using data generated by a LTE simulation. This

chapter explains in more detail what this structure will look like in the context of

the downlink scheduling problem and Figure 4.1 provides a visual overview.

4.2 Inputs and Data Preparation

Recall that representing a Markov Decision Process requires the triple (S,A,R),

where S is either a complete or partial representation of the state of the system,

A is the set of possible actions, and R is the set of rewards. The starting point of

the data flow is the state representation. We define the state as a combination of

the CQIs and buffer sizes (also called queue length) of all UEs at the time of the

scheduling decision. The values are collected prior to each scheduling decision in

a data structure and then normalised to the range [-1, 1] before being passed into

the machine learning network as shown in Figure 4.1. Normalization is employed

in situations where input values are not in similar ranges (in our case 1-15 for

CQI and 0 to some very large value decided by the amount of storage available for

buffer size). During the process of back propagation, large mismatches in input

ranges can cause the gradient to approach excessively large or zero values, these

phenomena are called the exploding gradient and vanishing gradient problems [29].

They arise from the derivative calculations done during back propagation which are

multiplied across the layers so if the values are too large they will get exponentially

larger and if they are too small, exponentially smaller. The accumulation of large

derivatives results in the model being unstable and incapable of effective learning.

In the worst cases the gradients will cause overflow values (NaN). The accumulation
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of small gradients results in a model that is incapable of learning because, in the

worst case, the gradient will be zero which will prevent the network from further

training.

In general, the set of possible actions (outputs from the network) for this prob-

lem is a combination of the set of UEs passed in as the inputs and the number of

scheduling slots available. E.g. if there are N UEs to be scheduled in the cell and

M RBs available to be scheduled, the input to the network would be of length N

and the action space would be of size: NM . The total set of possible states (pos-

sible inputs) would be: BN × CN×M , where B is the set of possible buffer states

(which is very large) and C is the number of possible CQI values (16). The size

of B is what necessitates the reinforcement learning approach because the state

space is now very large.

The reward function is defined as: Rt =
∑N

i=1 rt where:

rt =



−2 d < 0

+2 d > 0

−1 d, c, p = 0 and UEi ∈ At−1

+1 d = 0 and p 6= 0

(4.1)

for each UE in the cell and p = buffer size at t-1, c = buffer size at t, d = p − c,

A = Allocated UEs in t-1. This function rewards reducing the buffer size of a UE

while penalizing the scheduling of UEs with no data in the buffer or allowing a

UE to go unscheduled for a long time.
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4.3 Network - Encoder/Decoder LSTM Model

Encoder-Decoders are neural network approaches primarily developed for use with

deep learning in Natural Language Processing. The Encoder-Decoder architecture

has been adapted for use in combinatorial tasks and is made up of two basic

components: an Encoder to encode input data into a context vector and a Decoder

which decodes the context vector to the output sequence. The overall architecture

of the solution follows the Encoder-Decoder model. UE states are sent first to the

Encoder and the Decoder returns the scheduling decision as seen in Figure 4.1.

LSTM

Both the Encoder and Decoder are comprised of several recurrent units. A unit

is a single neural network structure which, as described previously, is unrolled or

reused for each element of the input sequence. Information is collected for each

element and stored as a hidden state, which is passed to the unit in the following

time step. This process is explained visually in Figure 4.2 where the unit s takes

information in a single time step x (interpreted here as CQI and Buffer size for

one UE in the list of UEs in the input) along with the hidden vector W from

the previous time step as its inputs and produces an output O. W , U and V are

additional parameters in the RNN.

LSTM (Long Short-Term Memory) cells are a modification to regular RNN

units proposed in [15] to improve the memory capability of RNNs. The proposal

in [15] was to alter the way that the hidden states are computed so they would

hold more information for longer sequences. The block labelled s in Figure 4.2 is

modified to function like the entire block between xt and ht in Figure 4.3, which

demonstrates one version of an LSTM cell. Unlike the regular RNN structure in
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Figure 4.2: Typical Recurrent Neural Network [32]

Figure 4.2 which passes two inputs (the value at the current time step and the

hidden state vector from the previous time step) through a single function to pro-

duce its output, the LSTM passes the inputs through several additional functions

(called gates) before determining an output, allowing the LSTM to memorize data

that is relevant and to forget information that is no longer needed when a new

input arrives. In Figure 4.3, the cell state (Ct) represents the long-term memory

of the system and stores the relevant information. The hidden state (ht) is akin to

working memory and is passed on to the subsequent recurrent unit so that memo-

rized information along with the new input is used to produce the output at each

step.

The LSTM functions by duplicating the input from the current time step 4

times, passing it to an ’input gate’ which determines the amount of information

from the current time step to store in the cell state. This information is concate-

nated with a copy of the original input passed through a sigmoid function (which

constrains the value between zero and one) before being sent to the cell state. Du-

plicates are also passed to a ’forget gate’ which decides what information to omit

from the cell state, and an ’output gate’ which acts like an attention mechanism
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Figure 4.3: One Variation of an LSTM Cell [32]

to decide what parts of the data should be focused on. All these mechanisms are

implemented as small neural networks which learn what to do via gradient decent.

4.3.1 Encoder

The Encoder in our solution is comprised of LSTM units and accepts input pairs

of CQI and Buffer state at each step and outputs an embedding vector along with

the final hidden state and final cell state vectors. These are passed to the Decoder

where they will be used to produce the final scheduling decisions.

4.3.2 Decoder

The Decoder is implemented as a pointer network as described earlier. It takes the

hidden state and cell state outputs of the Encoder and returns A (the number of

RBs available to be scheduled) vectors of length N (the number of UEs in the cell)
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with a softmax function (details below) applied across them. Note that the hidden

and cell states are sequences, so the Decoder is also comprised of a set of LSTM

units whose outputs are then modulated by the attention mechanism. From the

softmax distribution produced, as shown in Figure 4.1, the UE with the highest

probability is scheduled at each output step.

Attention

In the attention component of the model, the sequence of Encoder hidden states are

used to produce the output. At each output step, an attention vector is computed

as [39]:

uij = vT tanh(W1ej +W2di) jε(1, ..., n) (4.2)

aij = softmax(uji ) jε(1, ..., n) (4.3)

d
′

i =
n∑
j=1

ajiej (4.4)

where ej is the Encoder hidden state and di is the output of the Decoder

LSTM given the Encoder state at the previous time step. The softmax function

is calculated over the vector ui (of length n interpreted in this case as the number

of RBs) and the resulting vector is referred to as the attention ”mask”. Softmax

is a function which transforms a vector into a set of values between zero and one.

These values can be interpreted as probabilities, so the input transformed into the

highest value can be interpreted as having the highest probability of being the

correct choice given the others. It is computed via the following equation:

softmax(x)i =
exi∑K
j=1 e

xj
(4.5)
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where x is an input vector, and the softmax value is being computed for each

input i. e is the standard exponential constant, K is the number of values in the

input vector minus one (x = (x0, x1, ...xK)). The other variables in Equation 4.2,

i.e. v,W1, and W2, are learnable parameters of the model with v being a vector

and W1 and W2 square matrices.

In the traditional seq-to-seq with attention model, d
′
i and di are concatenated

and used as the hidden states from which predictions p(Ci|C1, ..., Ci−1, P ) (which

element Ci of the output dictionary should come next in the sequence given the

output dictionary C1, ..., Ci−1 and P being the input sequence) are made and fed

to the next output time step. This setup cannot be used as is in situations where

the output dictionary size depends on the input as we have in downlink scheduling,

where we want only the UEs in the input to be scheduled, because it is predicated

on having a pre-provided output dictionary. Recall that the aim here is to handle

varying numbers of input UEs, which implies that the UEs that comprise the

output dictionary are also changing and therefore cannot be preset. This is where

the pointer network modification of [39] is useful.

Pointer Network

The authors in [39] addressed the dictionary size limitation by re-purposing the

attention mechanism to create pointers to input elements as the output.

uij = vT tanh(W1ej +W2di) jε(1, ..., n) (4.6)

p(Ci|C1, ..., Ci−1, P ) = softmax(ui) (4.7)

Having the softmax output as the final stage means that for every step in

the output (i.e. the number of RBs) the pointer network generates a probability

distribution over all the UEs in the input and the UE having the highest probability
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at that output time step is scheduled in that single RB slot.

4.4 Training

The networks were trained using a DDPG version without any exploration noise.

DDPG uses function approximation to learn in continuous or large state and ac-

tion spaces. It is implemented using four deep neural networks, denoted actor

(θQ), critic (θµ), target-actor (θQ
′
) and target-critic (θµ

′
). The target networks are

copies of the actor and critic networks structurally. The weights from the actor

and critic networks are copied to the target networks at a rate slower than the reg-

ular networks update. This helps to stabilise the training on the target networks

because, while the regular networks may be affected by transient factors, these

effects will not be copied over at the same magnitude. The result is that while the

training rewards of the actor and critic networks may fluctuate wildly the target

networks will train in a more gradual way.

The purpose of the actor is to take the states and return the actions while the

critic outputs a score which describes the goodness of the state action pair. This

goodness value is calculated as:

yi = ri + γQ′(si+1, µ
′(si + 1|θµ′)|θQ′

) (4.8)

using the target network values.

After obtaining the critic value, a loss value is calculated between the current

critic value and the previous critic value computed using the regular actor and

critic networks:

L =
1

N

∑
i

(yi −Q(si, ai|θQ))2 (4.9)
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This loss is used in updating the gradients of the critic network, the aim is to

minimize the loss.

For updating the gradients of the actor network the following formula is used

to calculate the loss:

∇θµJ ≈ 1

N

∑
i

∇aQ(s, a|θQ)|s=si,a=µ(si)∇θµµ(s|θµ)|si (4.10)

where N is the size of the set of samples being used to update the gradient.

The weights for the copied target-actor and target-critic networks are updated

more slowly than the main networks. The update rate is determined by a pa-

rameter τ which is a value < 1. The updates are performed according to the

equations:

θQ
′ ←− τθQ + (1− τ)θQ

′
(4.11)

θµ
′ ←− τθµ + (1− τ)θµ

′
(4.12)

Additionally, DDPG makes use of a replay buffer, which stores past state, ac-

tion, reward tuples from which small random samples (’mini-batch’) are drawn at

each time step and used in the gradient calculation which updates the weights.

This allows the algorithm to learn from uncorrelated past events. Lastly, DDPG

encourages exploration of the action space by adding noise sampled from a noisy

process to the actor policy. DRL methods including DDPG often try to encourage

exploratory behavior through injecting noise in the action space [31]. DDPG as

described in [22] uses Ornstein-Uhlenbeck noise to encourage action space explo-

ration. However, we found that the method caused our training rewards to oscillate

over a large range rather than approach a specific value. Consequently, we chose

to omit the noise in our solution. The algorithm is summarized in Algorithm 1.
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Algorithm 1: Pseudocode for DDPG algorithm without noise

Randomly initialize critic network Q(s, a|θQ) and actor µ(s|θµ) with

weights θQ and θµ.

Initialize target network Q′ and µ′ with weights θQ
′ ←− θQ, θµ

′ ←− θµ

Initialize replay buffer R

for episode = 1 to M do

Receive initial observation state s1

for t = 1 to T do

Select action at = µ(st|θµ)) according to the current policy

Execute action at and observe reward rt and observe new state st+1

Store transition (st, at, rt, st+1) in R

Sample a random minibatch of N transitions (st, at, rt, st+1) from R

Set yi = ri + γQ′((si+1, µ
′(si + 1|θµ′)|θQ′

)

Update critic by minimizing the loss: L = 1
N

∑
i(yi −Q(si, ai|θQ))2

Update the actor policy using the sampled policy gradient:

∇θµJ ≈ 1

N

∑
i

∇aQ(s, a|θQ)|s=si,a=µ(si)∇θµµ(s|θµ)|si

Update the target networks:

θQ
′ ←− τθQ + (1− τ)θQ

′

θµ
′ ←− τθµ + (1− τ)θµ

′

end for

end for
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Implementation

5.1 System Overview

The major components required to implement a RL solution are the environment,

which should be capable of reporting its state and implementing any actions de-

cided by the agent, and the learning agent, which should be capable of accepting

an environment’s states and providing corresponding actions which optimize some

reward function. In deciding on components for implementing our own set-up, it

was important to use tools that were already regarded as credible in the research

community. The system as shown in Figure 5.1 comprises ns-31: an open-source

discrete-event network simulator for networking systems, targeted primarily for re-

search and educational use, ns3gym [13]: a tool for representing an ns-3 simulation

as an environment in the widely accepted toolkit for RL research: OpenAI Gym [7]

and a learning agent implemented with the Python numerical libraries Keras2 and

Tensorflow3. Data flows from the ns-3 simulator through the ns3gym middleware

which consists of two parts: a) the environment gateway (implemented as part of

the ns-3 simulation environment) and b) the environment proxy (inherited from

1https//www.nsnam.org/
2https://keras.io/
3https://www.tensorflow.org/
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the OpenAI Gym API). They are responsible for receiving the state information

from the simulator, encoding it in the numerical formats accepted by learning

agents and doing the reverse for actions received from the agent, converting them

back to function calls which correspond to the simulation.

Figure 5.1: System Diagram.
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5.2 The Simulation Environment

ns-3 is a discrete-event network simulator for Internet systems. It is targeted

primarily for research and educational use and is free and open source under the

GNU GPLv2 license. ns-3 provides models of how packet data networks work

and perform, as well as a simulation engine for conducting experiments. The tool

is designed as a set of libraries that can be combined together as well as with

other external software libraries. Scripts in ns-3, used for setting up and running

simulations are written in C++ or Python while the models themselves are written

in C++. ns-3 is primarily used on Linux or macOS systems.

There are a few useful constructs in ns-3 for experimenters, one of which is

the tracing system. The tracing system is built on the idea of having independent

tracing sources and tracing sinks, and a uniform mechanism for connecting sources

to sinks [27]. Trace sources are entities that can signal events that happen in a

simulation. For example, a trace source could indicate when a packet is received

by a device and provide access to the packet contents. Trace sources are connected

to other pieces of code that are capable of interpreting and using the information

gathered, these are called trace sinks. For example, one could create a trace sink

that could print out parts of a received packet. ns-3 allows users to define new

types of sinks and sources, through scripts or by editing the simulation core.

For the purposes of this investigation, the simulation implemented in ns-3 is

an LTE network model where a base station (BS) allocates resource blocks to

connected UEs. The UEs are receiving data packets at regular intervals and the BS

allocates resources in each transmission time interval (TTI). The BS is configured

with a MAC scheduler where the downlink scheduling sequence collects the buffer

status and CQI value of all UEs and passes this information to the environment

gateway (also implemented in ns-3) to be transformed and used to represent the
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state of the environment. The scheduler also receives from the gateway (which is

connected to the learning agent) the scheduling decision corresponding to the sent

state information and based on this decision performs the necessary sequence for

assigning RBs to the UEs in the simulator.

5.2.1 Tracing CQI and Buffer Data, Scheduling Decisions

As mentioned earlier, the ns-3 tracing system is the mechanism used to retrieve

information from a simulation. The pieces of information which needed to be

accessed in this investigation were the CQI and Buffer data. As mentioned in

Chapter 2, CQI is reported by each UE to the eNodeB and buffer data is main-

tained for each UE at the eNodeB. This data was needed each time a scheduling

decision was to be made. Scheduling decisions are made by the MAC scheduler

which is represented by a module in the ns-3 simulation. ns-3 already contains

implementations for some of the common scheduling algorithms. Each is modeled

on a generic mac scheduler API provided by the core and so new schedulers can

be implemented using this API. We created a new scheduler which would collect

the CQI and buffer data, request a decision from the machine learning model and

implement the received scheduling decision following the standard protocols. To

explain where the source and sinks for the CQI and buffer data were placed, we

need to look at the path that data takes within the eNodeB.

Buffer and CQI Data Path

After an IP packet generated by some host device on the Internet is successfully

routed to the eNodeB to which the destination UE is attached, it passes through

a protocol stack to prepare the packet for delivery. This data plane protocol

stack consists of the following layers (in descending order): PDCP (Packet Data
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Convergence Protocol), RLC (Radio Link Control), and MAC (Medium Access

Control). The packet will first arrive at the EpcEnbApplication, which performs

tasks such as stripping headers, attaching a bearer ID to the packet and then

forwarding it to the LteEnbNetDevice. The LteEnbNetDevice determines, based

on the BID (Binding Identity), the Radio Bearer instance (controlled by the Radio

resource control protocol, RRC) and the corresponding PDCP and RLC protocol

instances which will be used to forward the packet to the destination UE via the

LTE radio interface. In the simulation environment, each of these layers and the

services which support them are organized as separate modules. Figure 5.2 shows

how these planes are connected as well as the services which support them and

their organization in ns-3.

In the downlink direction, the PDCP is responsible for header decompression

for the data packets. The outputs of a protocol layer is generally referred to as a

PDU (Protocol Data Unit) so the output from the PDCP Layer is referred to as

PDCP PDU. When the PDCP is ready to transmit a PDU it first calls a service in

the RLC. The RLC entity processes this notification according to the data transfer

procedures for its type. 4 The following procedures are performed:

1. The data received by the PDCP is placed in the Transmission Buffer

2. The size of the buffers are computed, and a service of the eNodeB MAC
entity is called in order to notify it of the sizes of the buffers.

3. The eNodeB MAC entity then updates the buffer status in the MAC sched-
uler.

4. When the MAC scheduler decides that data can be sent, the MAC entity
notifies the RLC, which will create a new PDU from the data in the Trans-
mission Buffer, reformatting it to fit the size required by the MAC Layer’s
transport block, which is dependent on the system bandwidth. It will then

4The RLC entity as specified by 3GPP can take three different formats: Transparent Mode
(TM), Unacknowledged Mode (UM) and Acknowledged Mode (AM).
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Figure 5.2: LTE Radio Protocol Stack Architecture, eNodeB, Data Plane [26]
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move the PDU from the transmission buffer to the transmitted PDUs buffer
(in case it needs to be re-transmitted) and send the PDU to the MAC entity.

This process is illustrated in the sequence diagram in Figure 5.3.

Figure 5.3: Data PDU Transmission in the Downlink [26]

The CQI feedback we are interested in capturing is the inband CQI. This is

a value calculated to represent each UE’s channel condition. It is reported by

first obtaining a SINR measurement and then passing this measurement to the

Adaptive Modulation and Coding module, which will map it to the CQI index.

Each MAC scheduler is responsible for handling CQI values when needed and so

this data is received directly by the scheduler via a call to the MAC and PHY

Layers.
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Given that both values of interest were accessible via the scheduler module,

the trace source for the observation of both values was placed there. When the

information corresponding to the eligible UE is available, a tuple is created con-

taining the CQI data, the buffer data, the number of data flows, and the number

of resource blocks available. This source is accessible by the sink located in the

environment gateway. In the reverse direction, the source for the action (schedul-

ing decisions) is updated when new information is available in the environment

gateway and is accessible by the sink in the scheduler.

5.3 The Reinforcement Learning Environment

OpenAI Gym is ”a toolkit for developing and comparing reinforcement learning

algorithms” [7]. The primary feature of the tool is that its developers maintain a

collection of benchmark problems (environments) which researchers can use via a

common interface to test and compare against their own RL algorithms. Important

to our investigation is the fact that OpenAI Gym makes this interface available via

an API so that custom environments can be developed and used. Any environment

can be integrated into Gym as long as all the observations, actions, and rewards can

be represented as numerical values. Gym then provides the interface between the

environment and any numerical computation library and is developed in Python.

The interface provided by Gym manages the processes required to generate

observations and actions from the environment and the reinforcement agent (de-

fined by the developer, Gym has no prescriptions for this). For example, Gym

has functions to indicate when to render and reset an environment, to run the

environment only for the number of time steps specified, and to pass the actions

and observations between the environment and agent. In our example this would

mean starting an ns-3 simulation as for as many runs as specified, collecting the
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packaged CQI and buffer data, and returning the scheduling decision made by the

agent to the ns-3 simulation.

Integrating any non-trivial environment to Gym requires some software in the

middle to handle the data collection and management of the environment’s con-

trols. For example, while the agent is performing calculations in order to return

the scheduling decisions, the ns-3 simulation would need to be paused. The Ope-

nAI Gym framework can indicate when calculations would start or end but it does

not have the controls to pause the simulation itself. Also, recall that ns-3 is C++

based and OpenAI Gym is Python based so there is a need for an integrator. In

our setup, that role is filled by the open-sourced ns3gym [13] toolkit.

ns3gym [13] consists of two software components, the Environment Gateway,

written in C++, and the Environment Proxy, written in Python. The gateway

resides in the ns-3 simulator and requires the simulation script to implement a

set of callback functions for receiving and sending the relevant information, while

the Environment Proxy is a Python class which inherits from the generic Gym

environment provided by the OpenAI Gym API [13]. The communication between

these two components is handled with ZMQ sockets and using the Protocol Buffers

library. ZMQ is an asynchronous messaging library and Protocol Buffers is a cross

platform library for data serialization.

5.4 Agent Implementation with Keras and Ten-

sorflow

At each scheduling decision, the collected and formatted information flows from

the scheduler in the simulation through the ns3gym middleware and to the learn-

ing agent. The agent, during training, will be attempting to learn an action model
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which maximizes the long term reward by trial and error. This is done by a series

of mathematical computations involving neural networks, computing high dimen-

sional (on the order of several thousand nodes) parametric functions. Software

libraries have been developed to quickly set up and manage these computations.

Tensorflow is one of the popular and powerful open source projects written in

Python, however it is still cognitively demanding to use as a developer. In re-

sponse to the need to further simplify the process of setting up a machine learning

project, Keras was created as a high-level interface that can be used with Tensor-

flow as the backend. It allows users to abstract away some of the finer details of

tensor algebra and optimizing computations and thus allow faster prototyping etc.

In this investigation we took advantage of these Keras wrapper for Tensorflow to

simplify the process. As mentioned in Chapter 4, the training algorithm used was

a modification of DDPG and consisted of two actor-critic networks with a replay

buffer. The base of the structure was modeled on the sample network provided by

the Keras documentation [18] to solve the pendulum benchmark environment in

OpenAI Gym and then modified as described in Chapter 4 for the pointer network

structure.

Figures 5.4 and 5.5 show the Keras model summary of the networks. For

each model, the figure depicts its layers, output shape, number of parameters

(i.e. connections in the network that will be updated by gradient decent during

training) and which layers it is connected to. For example, the decoder layer in

the actor model produces an output of size (None, 6, None) translating to (any

batch size, 6: the number of resource blocks available in that example, any number

of UEs). Defining a size parameter as none means the size is not predetermined.

Further, the decoder layer has 164480 trainable parameters and is connected to

the 3 outputs from the encoder (recall that the encoder produces an embedding
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vector, a hidden state and a cell state).

Figure 5.4: Actor Model Summary

The actor network is comprised of the input layer, the Encoder LSTM and the

Decoder LSTM with the pointer network structure. The critic network (designed

to produce a single value) takes two inputs: a state representation and the corre-

sponding action generated by the actor model. Both are drawn from the replay

buffer. These two values are passed through several neural network layers and then

concatenated into a single vector which is again filtered through NN layers to pro-

duce the single critic value. A mean squared error loss is computed for both actor

and critic networks at each training step and the is used to update the network

weights via back propagation. The target-actor and target-critic network weights

are updated periodically by copying a fraction of the actor and critic networks

weights.
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Figure 5.5: Critic Model Summary



Chapter 6

Experiments and Results

The performance of the reinforcement-learning-based solution implemented in this

thesis is evaluated in this chapter. We will first describe details of the experiments

which were run and the parameters used. Then, we will share the data obtained

and the insights generated.

The solution involves a LSTM neural network structure trained using rein-

forcement learning. In Chapter 3 we referenced feed forward neural networks and

some of the attempts at designing machine-learning-based schedulers that involve

them. So for comparison to our solution, a feed forward neural network was also

trained and used in the experiments. This network was modeled on the work done

in [33] and is implemented using fully-connected deep neural networks trained us-

ing the standard DDPG algorithm. NNs are also capable of solving the downlink

scheduling problem and the authors of [33] were able to produce a network which

performed well in terms of throughput and fairness compared to some traditional

algorithms, even though their primary target was head of line delay reduction.

Their limitation is their inability to handle changing numbers of UEs without re-

training the model or training. The other schedulers used in the comparisons are

the three described in Chapter 2. The Max Throughput scheduler is expected

to consistently provide the highest throughput at the expense of fairness while

55
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Round Robin and Proportional Fair are expected to better balance throughput

and fairness in different scenarios.

Neither the feed forward neural network nor our solution network were op-

timised for performance. So while we expect them to perform reasonably well,

we cannot argue that they are better or worse in terms of performance against

the traditional schedulers because they have already been tuned to be optimal for

their desired output. What we can however show is that the developed solution

is suitable for the task, delivers the benefit of flexibility and that its performance

remains consistent with expectations in the face of the changing external factors

to which all schedulers in the evaluation will be exposed.

6.1 Simulation Parameters

Table 6.1 lists all relevant parameters for the common ns-3 simulation used to

generate the results. All simulation parameters were held constant in the experi-

ments except for the parameters of interest: the scheduler, the number of UEs, the

number of RBs and the PRNG run variable used to seed the simulation. The trace

files provided as outputs from the ns-3 simulations were collected and analysed to

determine the throughput (in Mbps) and fairness (using Jain’s index) achieved in

each scenario.



57

Parameter Current Value

Simulator ns-3.30.1

OS
Train: Fedora 33 64-bit

Test: macOS 10.14.6

Processor
Train: Intel Core i7-8700 CPU @ 3.20GHz

Test: Intel Core i5 CPU @ 1.6 GHz

PRNG

Seed = 400

Run = Change for each run

– guarantees independence of streams

Number of Runs per Scenario 31

Number of UEs
Default: 12

Otherwise: Varies from 6 - 96

DL Bandwidth

Default: 1.4 MHz (6 RBs)

Otherwise: 3 MHz, 5 MHz, 10 MHz or 15 MHz

(as defined in 3GPP specification)

Number of eNodeBs 1

eNobeB Power transmission 43 dBm

Frequency Reuse Scheme Hard Frequency Reuse

Pathloss model
ThreeGppUmaPropagationLossModel

(Urban Macrocell)

Channel model ThreeGppUmaChannelConditionModel

Center frequency 500 MHz

Antenna configuration SISO

Mobility model Stationary

Simulation duration 1s

Traffic Type CBR/UDP

Packet Size 4096 bytes

Packet Interval 10 ms

Table 6.1: Simulation Parameters
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6.1.1 Topology

The topology used in the simulation is depicted in Figure 6.1. The single eNodeB

(one of the yellow nodes) is positioned at coordinates (50, 50, 0) along with the

nodes representing the remote host, evolved packet core and a point to point

helper. The UEs (numbered and shown in red) are distributed in a disc of radius

1km around the eNodeB. The concentric lines on the image show the range of the

signal from the eNodeB. The UEs are distributed using a uniform disk allocator

which positions the UEs ”randomly within a disc D lying on the plane z and having

center at coordinates (x, y, z) and radius ρ such that, for any subset S ⊂ D, the

expected value of the fraction of points which fall into S ⊂ D corresponds to

|S|
|D| , the ratio of the area of the subset to the area of the whole disc.” [28]. This

distribution ensures that the CQIs of the UEs are spread across the full range from

1 - 15.

6.1.2 Training, Evaluation

The training and data collection portions of this investigation are separated. First,

the models are trained for the specified number of episodes, 300 in the case of the

NN and 500 for our LSTM/Pointer. These training lengths were chosen because

they represented the a point at which the network seemed to have learned to

achieve reward values within a small range and would not improve significantly

with more training. After training, the target-actor networks are used to make

scheduling decisions in the evaluation scenarios. The final weights from the target-

actor networks are copied to a replica of the network and the training sequence is

discontinued.

In order to evaluate the performance of the trained scheduler we test it on
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Figure 6.1: Simulation Topology

unseen simulation runs. To achieve this the PRNG run variable for the evaluation

simulations are set outside the range which would have been seen in the training

episodes. As noted in Table 6.1, in the ns-3 environment holding the PRNG seed

variable constant and changing the run variable guarantees independent random

number streams so we can be confident that the exact simulation conditions were

not present in both the training runs and the evaluation runs.
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6.1.3 Training Parameters

Tables 6.2 and 6.3 lists all relevant parameters for the training of the Neural

Network (for comparison) and the LSTM-based pointer solution. The parameters

were introduced in Chapters 4 and 5. In order to monitor the progression of the

training, a moving average of the reward from training episodes was plotted for each

model. These plots are shown in Figures 6.2(a), 6.2(b) and 6.3. They illustrate

how the network improves over time and when it has learned a reasonable policy.

Reasonableness here means it is relatively consistent, fluctuating only around a

small value compared to the range of possible values as would be seen if the policy

were random. The number of training episodes chosen for the final models correlate

to how long it appeared to take to learn a reasonable policy. Two plots are provided

for the neural network because it had to be retrained to accommodate a change

in the number of UEs, whereas the LSTM/Pointer solution was trained once and

reused to generate all the scenarios.

Note that Figures 6.2(a), 6.2(b) and 6.3 cannot be used to make any inference

about the performance of the networks on the target metrics (throughput and fair-

ness) compared to each other. There is no unit assigned to the episodic rewards

received. That is to say, a maximum average reward of approximately -500 in Fig-

ure 6.3 does not imply ’better or worse’ performance than a max of approximately

5500 in Figure 6.2(a). The numerical difference in the average reward value ranges

can be accounted for by the difference in reward functions used to train the NN

and LSTM/Pointer solutions and also by the fact that the rewards were assigned

on a per UE basis such that the reward sum for episodes with twelve UEs versus

six UEs could be different. The performance of the networks can only be evaluated
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Training Hyperparameters - NN

Number of Episodes 300

Simulation Length 2s

Noise Ornstein-Uhlenbeck

Replay buffer capacity 1000000

Mini-batch size 64 samples

Network weights initialization

uniform initializer

min value = -1.0

max value = 1.0

Optimiser Adam

Critic learning rate 0.002

Actor learning rate 0.001

Tau 0.005

Table 6.2: NN Training Hyperparameters

Training Hyperparameters - LSTM/Pointer

Number of Episodes 500

Simulation Length 2s

Replay buffer capacity 1000000

Mini-batch size 64 samples

Network weights initialization

uniform initializer

min value = -1.0

max value = 1.0

Optimizer Adam

Critic learning rate 0.002

Actor learning rate 0.001

Tau 0.005

Table 6.3: LSTM/Pointer Network Training Hyperparameters
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(a) 6 UEs

(b) 12 UEs

Figure 6.2: Moving Average Reward, Neural Network
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Figure 6.3: Moving Average Reward, LSTM/Pointer Network
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by comparing the target metrics after simulation.
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6.2 Results

We compared the performance of the different algorithms in three scenarios.

1. Where there are an equal amount of resource blocks as UEs

2. Where there are more resource blocks than UEs

3. Where there are more UEs than resource blocks

This was to investigate how the solution performed in comparison to the es-

tablished scheduling algorithms as well as to the feed forward NN model. It also

allows us to explore how the change in ratio of UEs to resource blocks changes the

performance of the solution in comparison to the established scheduling algorithms

and NN model. The UEs were sent traffic at a rate which ensured that they were

always backlogged with data to be received. The results are plotted in Figures 6.4

to 6.6.

In all three scenarios the proposed LSTM/Pointer-based scheduler performed

similarly to the PF Fair, Round Robin and Neural Network algorithms in terms

of average throughput. In terms of fairness, the proposed scheduler was better

than Max throughput but worse than the other three algorithms. The error bars

in Figures 6.4 to 6.6 represent the 95% confidence intervals, the narrowness of

these intervals confirms that the learned policy of the network is stable rather than

random. Further, the fact that the network learned a policy which generates results

that are within the range of the established schedulers shows that the solution

is suitable for the task and presents an opportunity to tune for better results.

Additionally, in the face of changing simulation conditions the solution responds

with the same trends as the established schedulers i.e. throughput and fairness rise

and fall when all other schedulers rise or fall, suggesting that the flexibility of the

solution does not impact the stability or cause unexpected behaviors.
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Figures 6.4 to 6.6 also show that while the implemented solution tracks Propor-

tional Fair and Round Robin in terms of throughput, it lags both in fairness. This

we think can be attributed to the reward function defined in Chapter 4. While

the function rewards reducing the buffer size of UEs and penalizes the scheduling

of UEs with no data in the buffer or allowing a UE to go unscheduled for a long

time, it does not explicitly nudge the solution towards fairness. This could be

attributed to the fact that more points are awarded for a reduction in buffer size

than are removed by ignoring a UE for a long time. It is likely, once the network

finds a combination of UEs which are consistently resulting in a reduction of the

buffer size, that it may keep scheduling these UEs until the buffer is drained (and

therefore producing a negative reward). This leaves an opportunity to design a

different reward function to better encourage fairness.

Future Stability

We further explored how far into the future (from the number of UEs it was

trained on) the implemented solution would remain useful. The plots in Figures

6.7(a) and 6.7(b) show that with regard to throughput, the solution continued to

track the performance of Round Robin and the Proportional Fair algorithm, while

with respect to fairness it tracks the max throughput curve in trajectory but has

a value approximately 1.5 times higher than max throughput.

This result confirms that the trained LSTM/Pointer structure has generalized

beyond its specific training conditions (meaning it is able to handle scenarios not

seen during training) and can in fact be useful in the context of changing numbers

of UEs. The ability to maintain performance at three times the number of UEs

used in training suggests that the LSTM/Pointer scheduler will remain viable even
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(a) Throughput

(b) Fairness

Figure 6.4: Comparison of Throughput and Fairness for 6 UEs, 6 RBs
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(a) Throughput

(b) Fairness

Figure 6.5: Comparison of Throughput and Fairness for 6 UEs, 25 RBs
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(a) Throughput

(b) Fairness

Figure 6.6: Comparison of Throughput and Fairness for 12 UEs, 6 RBs
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in surge demand conditions on the network.

Finally, though the solution was developed to handle changing numbers of UEs,

which occurs frequently in an LTE cell, the use of LSTM units in the Decoder also

lends itself easily to handling changing numbers of RBs. This would not happen

frequently within a cell, but having the ability to reuse a trained model in a new

cell with more or less resource blocks is also useful, as well as being able to reuse

the model within a cell if more spectrum is obtained by the operator. To test this

viability we ran a set of scenarios, again comparing the solution to the traditional

scheduling algorithms while changing the number of RBs (with the number of UEs

fixed to 12). Figures 6.8(a) and 6.8(b) show that the LSTM/Pointer scheduler

reasonably maintains its performance up to approximately 4x the number of RBs

it was trained on before degrading slightly in comparison to the other algorithms.

This result is comparable to the scenario where the number of UEs was changed.

LSTMs were designed to improve the memory of recurrent neural networks but

there are still several factors which could have them lose effectiveness, including

the ordering of the input sequences as noted in [38] and [25]. More experiments

would have to be designed to determine what factors lead to the eventual decline

in performance.
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(a) Throughput

(b) Fairness

Figure 6.7: Throughput and Fairness as the Number of UEs Increase.
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(a) Throughput

(b) Fairness

Figure 6.8: Comparison of Throughput and Fairness as the Number of RBs In-
crease.
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6.3 Summary

The data generated by the experiments described in this chapter demonstrate that

the implemented solution delivers the flexibility it was designed for while maintain-

ing performance in the range of traditional schedulers. Some areas for improvement

were identified including refactoring the reward function to explicitly encourage

fairness, as well as optimization i.e. exploring the training hyper-parameters space

to determine the set of parameters which deliver the best performance. Addition-

ally, other forms of optimization can be pursued, such as tweaking the network

structure itself. LSTM units can be replaced with other types of recurrent units

and the Actor and Critic models could incorporate more or fewer layers and layer

types.



Chapter 7

Conclusion and Future Work

7.1 Summary and Conclusions

In this thesis we set out to develop a reinforcement learning solution which can

flexibly handle changing numbers of UEs without retraining the model or resorting

to padding the inputs. We believe that such a structure could potentially be more

suitable for the growing demands of modern LTE networks.

In Chapter 2 we give an overview of the relevant factors for this study including:

the functioning of an LTE network and the mechanics of scheduling, scheduling

metrics, existing scheduling algorithms, and machine learning. In Chapter 3 we

explore some of the existing attempts to design schedulers using reinforcement

learning and the open areas for development. We identify that many solutions

have focused on utilizing feed forward neural networks which have fixed dimensions.

Those solutions which sought to handle changes in UE numbers resorted to padding

the input. We take this as an opportunity to design a more flexible solution.

In Chapters 4 and 5 we introduce our proposed solution utilizing LSTM units

to handle variable input and outputs. This is further augmented by an atten-

tion mechanism resulting in a pointer structure which produces output sequences
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consisting only of the UEs present in the input sequence. This structure is imple-

mented using ns-3 as the simulator, Keras and Tensorflow for the reinforcement

learning agent and ns3gym as the bridge between the two.

Finally we share the experiments run and results generated in Chapter 6. From

these results we conclude that the implemented solution allows for flexibility in

handling training conditions where the number of user equipment and resource

blocks may be fixed, and testing or real world environments where these may

fluctuate without the need to retrain the model. The solution is shown to generalize

to the new conditions and maintains a performance within the range of traditional

schedulers.

7.2 Future Work

The training of the solution was not optimised, meaning experiments were not

run to tune the training parameters to explore the full range of results and an

optimal set selected. This leaves the opportunity to gain more performance out

of the network through hyper-parameter tuning. Optimization efforts should also

include refactoring the reward function to encourage better fairness.

Additionally, we remove the noise portion of the original DDPG algorithm when

training the solution because we found that the action space noise used produced

worse results than the no noise situation. Some papers such as [31] propose the

use of parameter noise instead of action space noise to promote exploration which

may also be a valuable avenue to pursue for more performance.

One other avenue for exploration is in changing the structure itself. In this

thesis we made use of LSTMs. However, there are other forms of recurrent units

such as GRUs (Gated Recurrent Units) which are also improvements over the

regular RNN and employ different gating mechanisms. In some use cases GRUs
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can perform better than LSTM units. It may be useful to swap the LSTM units

for other types and see if increased performance can be achieved.
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