
Deep Reinforcement Learning to play Space Invaders

Nihit Desai∗
Stanford University

Abhimanyu Banerjee∗
Stanford University

Abstract

In this project, we explore algorithms that use reinforcement learning to play the game space in-
vaders. The Q-Learning algorithm for reinforcement learning is modified to work on states that are
extremely high dimensional(images) using a convolutional neural network and is called the Deep-Q
learning algorithm. We also experiment with training on states represented by the RAM representa-
tion of the state. We also look at an extension of Q-learning known as Double Q learning, explore
optimal architectures for learning .

1 Introduction

Video games provide an ideal testbed for artificial intelligence methods and algorithms. In particular, programming
intelligent agents that learn how to play a game with human-level skills is a difficult and challenging task. Rein-
forcement learning (Sutton and Barto 1998) has been widely used to solve this problem traditionally. The goal of
reinforcement learning is to learn good policies for sequential decision problems by maximizing a cumulative future
reward. The reinforcement learning agent must learn an optimal policy for the problem, without being explicitly told
if its actions are good or bad.

Reinforcement learning approaches rely on features created manually by using domain knowledge (e.g. the re-
searcher might study game playing patterns of an expert gamer and see which actions lead to the player winning
the game, and then construct features from these insights). However, the current deep learning revolution has
made it possible to learn feature representations from high-dimensional raw input data such as images and videos,
leading to breakthroughs in computer vision tasks such as recognition and segmentation (Kaiming He et al. 2015
LeCun, Bengio, and Geoffrey Hinton 2015). Mnih et al. 2013 apply these advances in deep learning to the domain
of reinforcement learning. They present a convolutional neural network (CNN) architecture that can successfully
learn policies from raw image frame data in high dimensional reinforcement learning environments. They train
the CNN using a variant of the Q-learning (Watkins and Dayan 1992) and call this network a Deep Q-Networks (DQN).

In this project, we train an agent to play Space Invaders, a popular Atari game using Deep Reinforcement
Learning. Our project can be summarized as follows:

• Analyze how different representations of the input (image frame pixels v/s emulator RAM state) impact
training time and performance.

• improvements to CNN architectures and to the Fully connected networks for the RAM states
• Experiments on applying dropout and Early stopping and learning how they affect the learned policy

2 Related Work

Reinforcement Learning: Reinforcement learning is an area of machine learning concerned with how an agent
should act in an environment so as to maximize some cumulative reward. A software agent that learned to successfully
play TD-gammon (Tesauro 1995) was an early example of research in this area. Q-learning is a model-free technique
for reinforcement learning which can be used to learn an optimal action-selection policy for any finite MDP.
Q-learning was first introduced by Watkins and Dayan 1992. However, it has been shown that Q-learning with

∗equal contribution

1



non-linear function approximation is not guaranteed to converge (Tsitsiklis and Van Roy 1997)

Convolutional Neural Networks: Recent advances in deep learning, especially the use of convolutional neu-
ral networks (CNNs), have made it possible to automatically learn features representation from high-dimensional
raw input data such as images and videos. Now, CNN-based models produce state-of-the-art performance in various
computer vision tasks, including image classification (Krizhevsky, Sutskever, and G. Hinton 2012, K. He et al. 2015)
and object detection (K. He et al. 2014). There has been considerable work in enhancing CNN components, including
pooling layers (Zeiler and Fergus 2013) and activation units (Goodfellow et al. 2013) as well as training, including
Batch Normalization (Ioffe and Szegedy 2015) and Dropout (Srivastava et al. 2014).

Deep Q-Learning: An early inspiration for using neural network architectures for reinforcement learning was
presented by Riedmiller 2005. This work uses neural fitted Q-learning (NFQ) and updates parameters of the Q-
network using the RPROP algorithm. Mnih et al. 2013 present a convolutional neural network (CNN) architecture that
can successfully learn policies from raw image frame data in high dimensional reinforcement learning environments.
They train the CNN using a variant of the Q-learning, hence the name Deep Q-Networks (DQN). Van Hasselt, Guez,
and Silver 2015 recently extended this work by incorporating Double Q-Learning which addresses the overestimation
problem (Q-learning algorithm is known to overestimate action values since the same set of parameter weights
are used to select an optimal action as well as evaluate the Q-value resulting from this selection). More recently,
DeepMind has achieved a breakthrough in using deep reinforcement learning, combined with tree search, to master
the game of Go (Silver et al. 2016).

3 Task definition

We consider the task of learning to play Space Invaders, a popular Atari console game. Formally, an agent interacts
with an environment E in a sequence of actions, observations and rewards. In our case the environment is the Atari
emulator for Space Invaders. The game play is discretized into time-steps and at each time step, the agent chooses an
action at from the set of possible actions for each state A = {1, 2, ...L}. The emulator applies the action to the current
state, and brings the game to a new state, as shown in figure 1. The game score is updated the a reward rt is returned
to the agent. We formalize this problem as follows:

• State s: A sequence of observations, where an observation, depending on the state space we are operating in,
is a matrix representing the image frame or a vector representing the emulator’s RAM state.

• Action a: An integer in the range of [1, L]. In case of Space Invaders L = 6 and the actions are {FIRE (shoot
without moving), RIGHT (move right), LEFT (move left), RIGHTFIRE (shoot and move right), LEFTFIRE
(shoot and move left), NOOP (no operation)}.

• Reward r: Reward returned by the environment, clipped to be in the range [−1, 1].

Our task is to learn a policy for the agent to enable the agent to make ‘good’ choice of action for each state.

Figure 1: An example of state, action sequence when playing SpaceInvaders

4 Approach

In this project, we use the Atari emulator open sourced by OpenAI (Brockman et al. 2016), the OpenAI gym. This
emulator provides with two possible environments to play space invaders . The First environment represents each
state by a raw RGB image of the screen which has a size (210, 160, 3) (SpaceInvaders-v0), the second environment

2



Figure 2: An overview of the Environment and Agent for this Reinforcement Learning task

represents the state by a 128 byte RAM state of the game (SpaceInvaders-ram-v0). As mentioned in the previous
section, our task is to learn a policy for the agent so that the agent can play the game. In order to accomplish this
task, we use reinforcement learning. However, learning from high dimensional representation of states such as images
is difficult for traditional reinforcement learning techniques with handcrafted features. Instead, we use an approach
similar to that of Mnih et al. 2013 which uses DQNs and extend their approach in a few ways listed in Section 1. In
this section, we introduce the concept of Deep Q-Networks, experience replay and double Q-learning all of which are
important foundational blocks of our approach. An overview of our approach is shown in Figure 2.

4.1 Q-Learning

Given a sequence of state, actions, rewards s1, a1, r1, s2, a2, r2.., we want to learn the optimal strategy to play the
game. The goal of the agent is to learn a strategy to maximize future rewards. We assume that the rewards are
discounted by a factor of γ at every time step and define the future discounted return as RT = Σt=Tt=0 γ

trt We also
define the optimal action value function Qopt(s, a) to be the reward we get on following the optimal policy and
starting in state s and playing action a Given a Markov Decision Process with transition probabilities t(s, a, s

′
) and

rewards r(s, a, s
′
), the Q-function satisfies a recurrence known as the Bellman equation:

Qopt(s, a) =
∑
s′

T (s, a, s
′
)(r(s, a, s

′
) + γVopt(s

′
)) (1)

However in the setting of reinforcement learning, we do not know the transition probabilities and rewards for each
transition. We try to learn the optimal strategy by minimizing the squared loss function∑
s,a,r,s′ (Qopt(s, a)−(r+γVopt(s

′
)))2. In practice, this equation does not generalize to unseen states and actions, so

we use a function approximation to estimate the Q-function. It is common to use a linear approximator in traditional
RL approaches where we estimate Qopt(s, a, w) = w.φ(s, a). We still minimize the same loss function but now use
gradient descent to learn the weights-w The update equations are:

w ← w − η(Qopt(s, a)− (r + γVopt(s
′
)))φ(s, a) (2)

4.2 Deep Q-Networks

If we have very high dimensional data such as an image, it is hard to extract features manually because it is not
obvious what the features are that are relevant to extract from the image. To handle high dimensional inputs where
the agent learns from raw inputs such as image frames, Mnih et al. 2013 introduced Deep Q-Networks which uses a
convolutional neural network to approximate the Q-function. If the state is n dimensional and the number of actions
is m then the CNN is a mapping from Rn to Rm. We refer to a neural network function approximator with weights θi
as a Q-network. The objective is to now learn the weights θi Q-network.

θi ← θi − η(Qopt(s, a, θi)− (r + γVopt(s
′
)))∇θiQopt(s, a, θi) (3)

We can also use the same approach of using a neural network as a function approximator for the Q function when we
use the 128 byte representation of the state. While it is not evident a-priori to us what each byte represents, we can
nontheless use a fully connected neural network to represent the Q-function. Since the state is not an image this time,

3



we do not use a CNN for the function approximator. We feel it is necessary to use a fully connected neural network
to approximate the Q-function as there needs to be connections between every two bytes representing the state.
Moreover, we can consider the 128 byte representation as a feature vector, which allows us to drastically simplify our
network architecture as will be discussed in Section 5.

4.3 Double Q Learning:

The usual setup of Q-learning looks similar to gradient descent and the updates try to bring the current value ofQ(s, a)

closer towards a target value Y Qt = r+γVopt(s
′
) as mentioned in Eq.3. The quantity Vopt(s

′
) = max

a′
Q(s

′
, a

′
), where

the Max operator in Q-learning and DQN is used to select the action as well as evaluate the Q-function at the same
weights (θ). In a recent work, Van Hasselt, Guez, and Silver 2015 show that this makes it more likely to overestimate
the values, resulting in overoptimistic value estimates. The Double Q learning algorithm gets around this by keeping
two sets of weights θ and θ

′
For each update, one set of weights is used to determine the greedy policy and the other to

determine its value. For a clear comparison we first rewrite the target in Q-learning as :

Y Qt = r + γQ(s
′
, argmaxa′Q(s

′
, a

′
, θ), θ) (4)

The Double Q learning target can be written as :

Y Qt = r + γQ(s
′
, argmaxa′Q(s

′
, a

′
, θ), θ

′
) (5)

Notice that the argmax is over the set of weights θ while the evaluation of the value of the policy is done with another
set of weights θ

′
The second set of weights can be updated periodically by evaluating and setting them equal to

the weights θ. We experimented training our DQNs with double Q-learning and without it, and found that double
Q-learning indeed improves performance.

4.3.1 Experience Replay

A technique called experience replay is used in Deep Q learning to help with convergence. At every time step we
store the agents observations (s, a, r, s

′
) into an replay memory D. We then randomly sample a minibatch of observa-

tions from the replay memory D and use this minibatch to train the network (update weights with backpropagation).
Learning directly from consecutive samples is inefficient as there could be strong correlations between samples. Ran-
domizing the training by choosing random samples will help with this problem by smoothing the training distribution
over many past behaviors.

4.3.2 Frame Skipping

Following the approach of Mnih et al. 2013, we also use a simple frame-skipping technique. During training, the agent
sees and chooses optimal actions actions on every kth frame instead of every frame, and its last action is repeated on
skipped frames. This works because the game state does not change much in every frame. Skipping frames allows the
agent to play roughly k times more episodes for the same time/computational resources. We experimented with k = 3
and k = 4 in our experiments.

4.4 Exploration Policy

We want to choose an exploration policy to ensure that the model learns from a wide range of states and actions in
the domain space. A common policy that balances exploration and exploitation is the ε greedy policy. We choose the
optimal policy with a probability 1− ε and the random policy with probability ε The value of ε is set to change linearly
from 1.0 to 0.1 over the course of training, ie. We initially only explore while during the later stages of training we
choose the optimal policy calculated more often. During the testing phase we use a value of ε = .05.

5 Data and Experiments

We use the Atari emulator open sourced by OpenAI (Brockman et al. 2016), the OpenAI gym, to run our reinforcement
learning experiments. The agent interacts with the environment in a sequence of (actions, observations, rewards)
tuples. In our case the environment is the Atari emulator for Space Invaders. In this project, we have run two different
kinds of experiments, corresponding to the two state spaces - the pixel(image) representation (where a game state is a

4



sequence of image frames), and the RAM state representation (where a game state is a sequence of emulator’s RAM
states). Across both these types of experiments, we use the same learning algorithm, policy and training pipeline and
only vary the network architecture, to allow a fair comparison of results.

5.1 Preprocessing and Training Details:

Preprocessing: When working directly with raw pixels, the image frames are 210x160, with a 128 color palette.
We preprocess the image frames from the emulator to convert them to grayscale images, normalize the intensity
values to be between 0 and 1, and downsample them to a size of 84x84 pixels. When working with emulator RAM
states, no such preprocessing is necessary. Each such (optionally preprocessed) output of the Atari emulator is an
observation. As in Mnih et al. 2013, we stack the last 4 observations of a history to form a game state. We clip rewards
to be in the range [−1, 1]. This is done to make sure that the magnitude of gradients during backpropagation is bounded

Hyperparameters: In order to train the networks, we tried the Adam algorithm (Kingma and Ba 2014) and
the RMSProp algorithm (Tieleman and G. Hinton 2012) both with minibatches of size 32 and learning rate of 0.0002.
The policy behavior during training was ε - greedy with ε annealed linearly from 1 to 0.1 over the duration of the
training. We experimented with replay memory of varying sizes, from 100K to 1M but saw little difference in running
time or performance of the model. Finally, we decided to go with a replay memory size of 1M . We use a discounting
γ value of 0.99.

Training: As mentioned above, we use Adam and RMSProp, both of which are variations of stochastic gradi-
ent descent but usually allow the models to learn much faster in practice. As discussed in Mnih et al. 2013, we also
use a simple frame-skipping technique where the agent sees and selects actions on every 4th frame instead of every
frame, and its last action is repeated on skipped frames. We train our models for the RAM state space for 1M steps
and our models for the image frame state space for 2M steps. For both experiment types, we checkpoint the model
every 100K steps as a way to implement early stopping.

Infrastructure: Our models are implemented using Keras, with Tensorflow (Martı́n Abadi et al. 2015) back-
end and trained on a g2.2xlarge GPU instance (NVIDIA Tesla K40 GPU) on Amazon Web Services.

(a) 3-layer fully connected neural net-
work we used for the RAM state space

(b) 5-layer convolutional neural network we used for the
pixel (imageframe) state space

Figure 3: Network architecture of some of the models we used for our experiments

5.2 Experiments on the RAM state space

Atari 2600 uses a 128 byte RAM to for its internal representation of the game state. This compact representation
is supposed to contains all information describing the game current game state. This relatively low dimensional
representation is attractive for reinforcement learning. When working in this state space, we experimented with four
different model architectures:

• Linear model: A simple linear model, which approximates the Q-function as a linear combination of the 128
features and has 774 parameters.

• 2-layer fully connected network: A fully-connected neural network with 1 hidden layer of 512 units. This
model has about 69K parameters.

• 3-layer fully connected network: Two variations of a 3-layer neural network, one with hidden layers of 256
and 128 dimensions and another with hidden layers of 512 ans 128 dimensions.

5



Performance of these models is shown in Table 1 and the network architecture is shown in 3. We see that relatively
simple models do pretty well in the low dimensional state space, with the linear model scoring an average of 323
points per episode. This is already well above the baseline, and the FC-3 models do better still. The RAM state is
lower dimensional and has a more compact representation of the game state which makes it easier to learn from.

Model ↓Metrics→ Num. parameters Best episode Avg. of test episodes
Linear 774 840 323

FC-2 [512] 69K 835 389
FC-3 [256, 128] 69K 745 357
FC-3 [512, 128] 132K 830 394

Table 1: The experiment results on states represented RAM state of the game. Test time mean reward per episode,
and reward of best episode by running the ε - greedy policy with ε = 0.05. All models use double Q-learning unless
specified otherwise.

5.3 Experiments with pixel state space

. As mentioned in Section 5.1, after processing the dimensionality of our states is 84x84x4. In this state space, we
have experimented with 4 types of network architectures so far:

• 5 layer Convolutional Neural Network: 3 convolutional layers and 2 fully-connected layers. Architecture
of this network is shown in Figure 3. The number of filters in the three convolutional layers are 32 (8x8, with
stride 4), 64 (4x4 with stride 2) and 64 (3x3 with stride 1) and use a ReLU non-linearity. The hidden layer
has 512 units. Total number of network parameters are 1.6M.

• 6 layer Convolutional Neural Network: 4 convolutional layers and 2 fully-connected layers. Architecture
of this network is similar to the one shown in Figure 3. The number of filters in the four convolutional layers
are 32 (4x4, with stride 2), 32 (4x4 with stride 2), 64 filters (4x4 with stride 1) and 64 filters (3x3 with stride
1) and use a ReLU non-linearity. The hidden layer has 256 units. Number of network parameters is 3.3M.

• Dropout: Versions of the above architectures with dropout.

Performance of these models is shown in Table 2. We observe that while the models are much more complex compared
the ones used with RAM state space (they have roughly 100x more parameters), the performance of the models quite
comparable, even slightly better. The need for more complex models is obvious given that the state space is much
larger, and we are working with raw inputs (pixels or image frames). This means the model needs to learn to extract
good features from the image. The best performing model gives an average score of 420 after 2M training steps. One
point to note is that the performance improvement observed in both the network architectures while going from 1M
steps to 2M steps - for example, the average score for CNN-5 went up from 350 to 414. One results which initially
surprised us is that adding dropout significantly degraded performance (for example, the performance of CNN-5 at
1M steps with dropout was less than 200). As a result, we omit these results from Table 2 and discuss these results in
Section 6.

Model ↓Metrics→ Num. parameters Best episode Avg. of test episodes
CNN-5, 1M steps 1.6M 820 350
CNN-5, 2M steps 1.6M 810 414
CNN-6, 1M steps 3.3M 730 310
CNN-6, 2M steps 3.3M 850 420

Table 2: The experiment results on states represented as pixels. Test time mean reward per episode, and reward of best
episode by running the ε - greedy policy with ε = 0.05.

6 Discussion and Analysis

We have performed a number of experiments which can broadly be classified as experiments on using a pixel represen-
tation of the state and experiments that use a RAM representation of the state. In this section we share some insights
we gained while doing these experiments.

6



(a) Mean Q value as function of training episode
(CNN-5 2M steps)

(b) Episode reward as function of training episode
(CNN-5 2M steps)

Figure 4: Mean Q value and episode reward as function of episode during training, for the state space of image frames

6.1 Evaluting Training progress:

In reinforcement learning, however, accurately evaluating the progress during training can be challenging. Our eval-
uation metric is the total reward that the agent collects in an episode (in our case, the final score). We see that the
average total reward metric is fairly noisy for both types of experiments because small changes to the weights of a
policy can lead to large changes in the states that the policy visits. Therefore, in parallel, we also track the Q-value of
the best action at each step during training. This provides an estimate of how much discounted reward the agent can
obtain by following its policy from any given state. These tend to be stable and show relatively smooth improvement
as the training proceeds. These quantities are plotted as a function of the episode number in Figures 4 and 5.

(a) Mean Q value as function of training episode
(FC-3 1M steps)

(b) Episode reward as function of training episode
(FC-3 1M steps)

Figure 5: Mean Q value and episode reward as function of episode during training, for the RAM state space

6.2 The effect of dimensionality of the state

We have explained how the RAM state is a much lower dimensional representation of the game state than the pixel
representation.The models we used for the RAM state have 69K free parameters , while the models used with the
pixel representation have 2-3M free parameters This definitely impacts the training a lot. We have observed that the
models with the RAM state train very quickly and start showing good performance after just about 200,000 training
steps of gradient descent(with Adam optimizer). The models with pixel state representation typically take 2M steps
to train.

Dimensionality, and the difference in state extracted features also leads to fairly different policies learned and
this is evident when we observe the two agents play a game. For example, all the models with the RAM state space
learned to target the mothership as it was flying by to get a very high bonus. The pixel represented state models did
not learn this policy as we observed from gameplay. This is possibly because this information needs to be teased out

7



(a) Start of the game: q-value is high,
since potential future reward is large)

(b) Mothership appears: q-value jumps
by 82% because shooting the mother-
ship can give a huge boost to the score)

(c) Ship about to be killed: q-value
drops to nearly 0, or slightly negative
when player’s ship is about to be killed)

Figure 6: cap cap

of the raw pixel input with a specific set of features which may not be learned by the neural network. The simpler
representation of the state enabled us the RAM state models to learn this policy.

6.3 Early stopping

An interesting observation with the RAM state models was related to early stopping. Firstly, we observe that lower
dimensionality and relatively few parameters (on the order of 100s or 1000s) means the models train much quicker
compared to pixels state - we see good performance after 200K to 250K training steps. However, we also observed
that when we train these models for north of 1M steps, we see a degradation in performance of the final model
weights. This is possibly because of overfitting, which we address by early stopping.

The pixel represented states take longer to train and take about 1M steps before they learn a reasonable policy.
We saw that early stopping is useful for training on these states too, although the extent of degradation is much
smaller. For example, in case of CNN-5, the model weights after training for 1.75M steps give a better performance
during testing compared to the weights after training for 2M steps.

6.4 The effect of adding dropout

We mentioned in the previous section that early stopping is necessary to get a well trained policy. We initially guessed
that maybe we are overfitting because of insufficient regularization and perhaps adding dropout might help in training
the models. However we saw that dropout strictly worsened gameplay in both kinds of states. The average score after
10 games(during the test phase) after dropout was lesser , in the range of 100-150 for the models that were pixel
based.(scores are 300+ without dropout)

The case for dropout adversely impacting performance in RAM state space is more clear - the 128 dimen-
sional vector is already a compact low dimensional feature representation, and dropping random units from this
means that useful information about the state is not conveyed to the model. Even for pixel based models, our CNNs
are relatively simple in architecture (with just 5 or 6 layers), which means dropout is less useful as a means to prevent
overfitting.

6.5 Interpreting the Q values

: We observe that frequently, big jumps and drops in predicted value of a state, action pair intuitively correspond to
events in the game that we would think of as good or bad respectively. For example, predicted value jumps after the
mothership appears on the left of the screen, and just before the mothership is about to be hit. Similarly, the value
drops just before the player is about to be hit . Some examples of this are shown in Figure 6

8



7 Conclusion and Future work

We have done different experiments that show that the Deep-Q learning algorithm can learn from gameplay even with
very high dimensional state representations. We experimented with architecture and found that our larger models
have learned better policies in general(for the pixel states the CNN-6 learned the best policy and for RAM states the
FC-3 learned the best policy) More training does help in learning better policies but one must keep checkpoints of the
weights stored every 100K or so steps because early stopping seems to be crucial in learning a good policy. Dropout
was found to hinder performance in learning a good policy rather than help.
It seems that training a Deep-Q learning algorithm well is quite difficult and seems to depend a lot on choosing a
good explore vs exploit policy. In the future we might want to sample states from the memory which would be more
beneficial ie. have a large difference between the current and target Q-values. Another aspect which we wanted to try
out but did not get the time to is that of policy gradients and compare it to the DQN algorithm.

References

[Bro+16] Greg Brockman et al. OpenAI Gym. 2016. eprint: arXiv:1606.01540.
[Goo+13] I. Goodfellow et al. “Maxout networks”. In: ICML (2013).
[He+14] K. He et al. “Spatial pyramid pooling in deep convolutional networks for visual recognition”. In: ECCV

(2014).
[He+15a] Kaiming He et al. “Deep residual learning for image recognition”. In: arXiv preprint arXiv:1512.03385

(2015).
[He+15b] K. He et al. “Deep Residual Learning for Image Recognition”. In: in ArXiv technical report

arXiv:1512.03385 (2015).
[IS15] S. Ioffe and C. Szegedy. “Batch Normalization: Accelerating Deep Network Training by Reducing Inter-

nal Covariate Shift”. In: JLMR (2015).
[KB14] Diederik Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In: arXiv preprint

arXiv:1412.6980 (2014).
[KSH12] A. Krizhevsky, I. Sutskever, and G. Hinton. “ImageNet classification with deep convolutional neural net-

works”. In: in NIPS (2012).
[LBH15] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: Nature 521.7553 (2015),

pp. 436–444.
[Mar+15] Martı́n Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software

available from tensorflow.org. 2015. URL: http://tensorflow.org/.
[Mni+13] Volodymyr Mnih et al. “Playing atari with deep reinforcement learning”. In: arXiv preprint

arXiv:1312.5602 (2013).
[Rie05] Martin Riedmiller. “Neural fitted Q iteration–first experiences with a data efficient neural reinforcement

learning method”. In: European Conference on Machine Learning. Springer. 2005, pp. 317–328.
[SB98] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. Vol. 1. 1. MIT press

Cambridge, 1998.
[Sil+16] David Silver et al. “Mastering the game of Go with deep neural networks and tree search”. In: Nature

529.7587 (2016), pp. 484–489.
[Sri+14] N. Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”. In: JLMR

(2014).
[Tes95] Gerald Tesauro. “Temporal difference learning and TD-Gammon”. In: Communications of the ACM 38.3

(1995), pp. 58–68.
[TH12] T. Tieleman and G. Hinton. “RMSProp: Lecture 6.5 - rmsprop, COURSERA Neural Networks for Ma-

chine Learning”. In: (2012).
[TV97] John N Tsitsiklis and Benjamin Van Roy. “An analysis of temporal-difference learning with function

approximation”. In: IEEE transactions on automatic control 42.5 (1997), pp. 674–690.
[VGS15] Hado Van Hasselt, Arthur Guez, and David Silver. “Deep reinforcement learning with double Q-learning”.

In: CoRR, abs/1509.06461 (2015).
[WD92] Christopher JCH Watkins and Peter Dayan. “Q-learning”. In: Machine learning 8.3-4 (1992), pp. 279–

292.
[ZF13] M. D. Zeiler and R. Fergus. “Stochastic pooling for regularization of deep convolutional neural networks”.

In: ICLR (2013).

9

arXiv:1606.01540
http://tensorflow.org/

	Introduction
	Related Work
	Task definition
	Approach
	Q-Learning
	Deep Q-Networks
	Double Q Learning:
	Experience Replay
	Frame Skipping

	Exploration Policy

	Data and Experiments
	Preprocessing and Training Details:
	Experiments on the RAM state space
	Experiments with pixel state space

	Discussion and Analysis
	Evaluting Training progress:
	The effect of dimensionality of the state
	Early stopping
	The effect of adding dropout
	Interpreting the Q values

	Conclusion and Future work

