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Overview

I Study model driven portfolio management strategies
I Construct long/short portfolio from dataset of approx. 2000 individual stocks.

I Standard momentum and reversal predictors/features from Jagadeesh and
Titman (1993), and Takeuchi and Lee (2013).

I Probability of next month’s normalized return higher/lower than median value.

I Attention Enhanced Residual Network
I Optimize the magnitude of non-linearity in the model.

I Strike a balance between linear and complex non-linear models.

I Proposed network can control over-fitting.

I Evaluate portfolio performance against linear model and complex non-linear ANN.

I Deep Residual Switching Network
I Switching module automatically sense changes in stock market conditions.

I Proposed network switch between market anomalies of momentum and reversal.

I Examine dynamic behavior of switching module as market conditions change.

I Evaluate portfolio performance against Attention Enhanced ResNet.
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Part One: Attention Enhanced Residual Network

Figure 1: Fully connected hidden layer representation of multi-layer
feedforward network.
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Given input vector X , let n ∈
{

1, 2, ...,N
}

, i , j ∈
{

1, 2, 3, ...,D
}

, and

f (0)(X ) = X .

I Pre-activation at hidden layer n,

z(n)(X )i =
∑

j W
(n)
i ,j · f (n−1)(X )j + b

(n)
i

I Equivalently in Matrix Form,
z(n)(X ) = W (n) · f (n−1)(X ) + b(n)

I Activation at hidden layer n,
f (n)(X ) = σ(z(n)(X )) = σ(W (n) · f (n−1)(X ) + b(n))

I Output layer n = N + 1,
F(X ) = f (N+1)(X ) = Φ(z(N+1)(X ))

I Φ(z(N+1)(X )) =

[
exp(z

(N+1)
1 )∑

c exp(z
(N+1)
c )

, ..., exp(z
(N+1)
c )∑

c exp(z
(N+1)
c )

]ᵀ
I F(X )c = p(y = c |X ; Θ), Θ =

{
W

(n)
i ,j , b

(n)
i

}
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Universal Approximators

Multilayer Network with ReLu Activation Function

I “Multilayer feedforward network can approximate any continuous
function arbitrarily well if and only if the network’s countinuous
activation function is not polynomial.”

I ReLu: Unbounded activation function in the form σ(x) = max(0, x).

Definition

A set F of functions in L∞loc(Rn) is dense in C (Rn) if for every function
g ∈ C (Rn) and for every compact set K ⊂ Rn, there exists a sequence of
functions fj ∈ F such that

lim
f→∞

||g − fj ||L∞(K) = 0.

Theorem

(Leshno et al., 1993) Let σ ∈ M, where M denotes the set of functions
which are in L∞loc(Ω).

Σn = span
{
σ(w · x + b) : w ∈ Rn, b ∈ R

}
Then Σn is dense in C (Rn) if and only if σ is not an algebraic polynomial
(a.e.).

5 / 48



ANN and Over-fitting

Deep learning applied to financial data.

I Artificial Neural Network (ANN) can approximate non-linear
continuous functions arbitrarily well.

I Financial markets offer non-linear relationships.
I Financial datasets are large, and ANN thrives with big datasets.

When the ANN goes deeper.

I Hidden layers mixes information from input vectors.
I Information from input data get saturated.
I Hidden units fit noises in financial data.

May reduce over-fitting with weight regularization and dropout.

I Quite difficult to control, especially for very deep networks.
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Over-fitting and Generalization Power

I Generalization error decomposes into bias and variance.
I Variance: does model vary for another training dataset.
I Bias: closeness of average model to the true model F ∗.

Figure 2: Bias Variance Trade-Off. 7 / 48



Residual Learning: Referenced Mapping

I Network architecture that references mapping.

I Unreferenced Mapping of ANN:
I Y = F(X,Θ)

I Underlying mapping fit by a few stacked layers.

I Referenced Residual Mapping (He et al., 2016):
I R(X,Θ) = F(X,Θ)− X

I Y = R(X,Θ) + X
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Residual Block

Figure 3: Fully connected hidden layer representation of multi-layer
feedforward network.
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I Let n ∈
{

1, 2, ...,N
}

, i , j ∈
{

1, 2, 3, ...,D
}

, f (0)(X ) = X

I z(n)(X ) = W (n) · f (n−1)(X ) + b(n)

I f (n)(X ) = σ(z(n)(X ))

I z(n+1)(X ) = W (n+1) · f (n)(X ) + b(n+1)

I z(n+1)(X ) + f (n−1)(X )

I f (n+1)(X ) = σ(z(n+1)(X ) + f (n−1)(X ))

I f (n+1)(X ) = σ(W (n+1) · f (n)(X ) + b(n+1) + f (n−1)(X ))

In the deeper layers of residual learning system, with
regularization weight decay, W (n+1) −→ 0 and b(n+1) −→ 0,
and with ReLU activation function σ, we have,

I f (n+1)(X ) −→ σ(f (n−1)(X ))

I f (n+1)(X ) −→ f (n−1)(X )
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Residual Learning: Referenced Mapping

I Residual Block

I Identity function is easy for residual blocks to learn.

I Improves performance with each additional residual block.

I If it cannot improve performance, simply transform via identity
function.

I Preserves structure of input features.

I Concept behind residual learning is cross-fertilizing and
hopeful for algorithmic portfolio management.

I He et al., 2016. Deep residual learning for image recognition.
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Figure 4:
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Attention Module

I Attention Module
I Naturally extend to residual block to guide feature learning.
I Estimate soft weights learned from inputs of residual block.
I Enhances feature representations at selected focal points.
I Attention enhanced features improve predictive properties of

the proposed network.

I Residual Mapping:
I R(X,Θ) = F(X,Θ)− X
I Y = R(X,Θ) + X

I Attention Enhanced Residual Mapping:
I Y = ( R(X,Θ) + X) ·M(X,Θ)

I Y = ( R(X,Θ) + Ws · X) ·M(X,Θ)
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Attention Enhanced Residual Block

Figure 5: Representation of Attention Enhanced Residual Block, “+”
denotes element-wise addition, σ denotes leaky-relu activation function,
and “X” denotes element-wise product. The short circuit occurs before σ
activation, and attention mask is applied after σ activation.
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Attention Enhanced Residual Block

I za,(n)(X ) = W a,(n) · f (n−1)(X ) + ba,(n+1)

I f a,(n)(X ) = σ(za,(n)(X ))

I za,(n+1)(X ) = W a,(n+1) · f a,(n)(X ) + ba,(n+1)

I f a,(n+1)(X ) = Φ(za,(n+1)(X ))

where,

I Φ(za,(n+1)(X )) =

[
exp(z

a,(n+1)
1 )∑

c exp(z
a,(n+1)
c )

, ..., exp(z
a,(n+1)
c )∑

c exp(z
a,(n+1)
c )

]ᵀ
I f (n+1)(X ) = [σ(z(n+1)(X ) + f (n−1)(X ))] · [Φ(za,(n+1)(X ))]
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Figure 6:
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Objective Function

I Objective function minimizes the error between the estimated conditional probability
and the correct target label is formulated as the following cross-entropy loss with
weight regularization:

I argmin
Θ

−1
m

∑
m y (m) · logF(x (m); Θ) + (1− y (m)) · log(1− F(x (m); Θ)) +λ

∑
n ||Θ||2F

I Θ =
{
W

(n)
i ,j , b

(n)
i

}
; || · ||F is Frobenius Norm.

I Cross-entropy loss speeds up convergence when trained with gradient descent
algorithm.

I Cross-entropy loss function also has the nice property that imposes a heavy penalty
if p(y = 1|X ; Θ) = 0 when the true target label is y=1, and vice versa.
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Optimization Algorithm

I Adaptive Moment (ADAM) algo combines Momentum and
RMS prop.

I The ADAM algorithm have been shown to work well across a
wide range of deep learning architectures.

I Cost contours: ADAM damps out oscillations in gradients
that prevents the use of large learning rate.

I Momentum: speed ups training in horizontal direction.

I RMS Prop: Slow down learning in vertical direction.

I ADAM is appropriate for noisy financial data.

I Kingma and Ba., 2015. ADAM: A Method For Stochastic
Optimization.
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ADAM
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Experiment Setting

I Model Input

I 33 features in total. 20 normalized past daily returns, 12 normalized
monthly returns for month t − 2 through t − 13, and an indicator variable
for the month of January.

I Target Output

I Label individual stocks with normalized monthly return above the median as
1, and below the median as 0.

I Strategy

I Over the broad universe of US equities (approx. 2000 tickers), estimate the
probability of each stock’s next month’s normalized return being higher or
lower than median.

I Rank estimated probabilities for all stocks in the trading universe (or by
industry groups), then construct long/short portfolio of stocks with
estimated probability in the top/bottom decile.

I Long signal: pi > p∗, p∗: threshold for the top decile.
I Short signal: pi < p∗∗, p∗∗: threshold for the bottom decile.
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Table 1: Trading Universe Categorized by GICS Industry Group as of January 3,
2017.
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Experiment Setting

I Holding Period: 20 trading days (one month).

I Cost Coefficient

I Assume trades executed at the closing price of the day.
I Assume 5 basis points transaction cost per trade.
I To ensure liquidity, sampled stocks that traded above 5 USD.

I Profit Functions (Yearly Return)

I R(1) =
∑12

m=1

[
0.5
∑L

l Rl,m − 0.5
∑S

s Rs,m − 2.c .(Lm + Sm)
]

I R(2) =
∑12

m=1 ·
∑24

g=1

[
0.5
∑L

l Rl,m − 0.5
∑S

s Rs,m − 2.c .(Lm + Sm)
]

I Back-Test Comparison

I 22-layer Attention ResNet.
I 22-layer plain ANN.
I Logistic Regression.
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Figure 7: Rolling dataset arrangement for training, validating, and testing from
2008 to 2017.
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Training Procedure

I Network trained using batch data:
{(xm, ym)|xm ∈ X , ym ∈ Y }m=1,2,...,b. b is the batch size set as 512.

I Implemented batch normalization on every hidden layer except the
output layer.

I Added random Gaussian noise N(0, 0.1) to the input tensor for noise
resistance and robustness.

I Initialized the network at random, the learning rate was set at 0.0001
with 0.995 exponential decay.

I Trained the model using ADAM optimization algorithm for
approximately 100k steps (20 epochs) until convergence and validated
our model every 10k steps to obtain optimal hyper-parameters.

I Codes are written with TensorFlow.
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In Sample Results - Strategy 1

I Rank estimated probabilities for stocks in the trading universe.

Figure 8: In-sample histoical PNL comparison for 22-layer attention ResNet,
22-layer ANN, and logistic regression.
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Out of Sample Results - Strategy 1

Figure 9: Out-of-sample histoical PNL comparison for 22-layer attention ResNet,
22-layer ANN, and logistic regression.
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In Sample Results - Strategy 2

I Rank estimated probabilities for stocks by industry groups.

Figure 10: Industry diversified strategy’s in-sample histoical PNL comparison for
22-layer attention ResNet, 22-layer ANN, and logistic regression.
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Table 2: Breakdown of Attention ResNet’s annualized return for in-sample period.
Trading signals sorted by GICS industry groups.
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Out of Sample Results - Strategy 2

Figure 11: Industry diversified strategy’s out-of-sample histoical PNL comparison
for 22-layer attention ResNet, 22-layer ANN, and logistic regression.
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Table 3: Breakdown of Attention ResNet’s out-of-sample annualized return.
Trading signals sorted by GICS industry groups.
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Table 4: Annualized return and Sharpe ratio for the three models. Sharpe Ratio is
defined as µ-r/s, where µ, r , s are the annualized return, risk free rate and
standard deviation of the PNL.

Table 5: Industry diversified strategy’s annualized return and Sharpe ratio for the
three models. Sharpe Ratio is defined as µ-r/s, where µ, r , s are the annualized
return, risk free rate and standard deviation of the PNL.
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Statistical Approach: T-Test

I Conduct t-test for return differences to reach a robust conclusion.

I 54 months out-of-sample annualized return results for the three
models.

I Null hypothesis: There is no statistically significant difference
between the samples.

I For Strategy 1 (signals sorted on entire trading universe), the
t-test rejects the null hypothesis at the 10 percent level.

I For Strategy 2 (signals sorted by each GICS industry group), the
t-test rejects the null hypothesis at the 10 percent level.

I Statistical findings support that Attention ResNet has the best
out-of-sample performance among the three models.
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Predictive Accuracy

I In-sample predictive accuracy of the 22-layer ANN outperformed the 22-layer Attention ResNet, and both
deep learning models outperformed the linear model.

I Out-of-sample predictive accuracy of the 22-layer attention ResNet outperformed both the 22-layer
ANN and the logistic regression model.

I Predictive accuracy measured as cross entropy loss:
−1
M

∑M
m=1 y

(m) · logF(x (m); Θ) + (1− y (m)) · log(1− F(x (m); Θ))
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Part One Summary

I Present a novel neural network architecture for portfolio optimization.

I Attention ResNet captures the appropriate magnitude of non-linearity,
and strikes a balance between linear and complex non-linear models
for financial modeling.

I Attention ResNet incorporates attention mechanism to enhance
financial feature learning.

I Increased network depth to tens of hidden layers, quite deep for
financial modeling using DL methodologies.

I The scope of this work extends to portfolio management, nonetheless,
this work is hopeful for other financial fields where over-fitting is an
obstacle for DL models.
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Part Two: Deep Residual Switching Network

I There are various stylized features/predictors for portfolio
management.

I Broadly categorized by prominent market anomalies of
momentum and reversal.

I Each style is effective periodically, but rarely all the time
(Voyanos and Woolley 2008).

I Momentum/reversal is effective in a bullish/bearish market
regime. Bullish/bearish regime is associated with lower/higher
market variance (Cooper, Gutierrez and Hameed 2004).

I Based on this notion, it would be extremely beneficial if the
DL system can figure out which style (momentum or reversal)
is more effective and switch accordingly.
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Deep Residual Switching Network

I Develop the residual switching network (Switching ResNet).

I Combines two separate ResNets: Switching Module and
ResNet from Part 1.

I Switching Module learns market condition features and
computes a conditional weight mask. This mask applied to
ResNet from Part 1 via element wise product.

I The switch or weight change conditions are market conditions
like squared VIX, realized volatility and variance risk premium
for SP500 index.
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Figure 12:
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ResNet

I z(n)(X ) = W (n) · f (n−1)(X ) + b(n)

I f (n)(X ) = σ(z(n)(X ))
I z(n+1)(X ) = W (n+1) · f (n)(X ) + b(n+1)

I z(n+1)(X ) + f (n−1)(X )
I f (n+1)(X ) = σ(z(n+1)(X ) + f (n−1)(X ))

Switching Module

I zs,(n)(X s) = W s,(n) · f s,(n−1)(X s) + bs,(n)

I f s,(n)(X s) = σ(zs,(n)(X s))
I zs,(n+1)(X s) = W s,(n+1) · f s,(n)(X s) + bs,(n+1)

I zs,(n+1)(X s) + f s,(n−1)(X s)
I f s,(n+1)(X s) = σ(zs,(n+1)(X s) + f s,(n−1)(X s))
I Output layer n = N + 1,
I f s,(N+1)(X s) = Φ(zs,(N+1)(X s))

I Φ(zs,(N+1)(X s)) =

[
exp(z

s,(N+1)
1 (X s))∑

c exp(z
s,(N+1)
c (X s))

, ..., exp(z
s,(N+1)
c (X s))∑

c exp(z
s,(N+1)
c (X s))

]ᵀ
Combined

I Output layer n = N + 1,
I f (N+1)(X ) = Φ

[
z(N+1)(X ) · f s,(N+1)(X s)

]
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Intermediate Result

I Evaluate switching module’s predictive power on SP500 index RV.

I Input Features: Past values of return variance and squared VIX.

I In-Sample period 2005-2015. Out-of-Sample period 2015-Aug 2018.
I Following Bollerslev et al. 2016, out-of-sample R2 formulated as

R2 = 1−
∑T

t=1(RVM
t+22 − RV P

t+22)2/
∑T

t=1(RVM
t+22 − RV LR

t )2.

I RV LR
t is long-run volatility factor over the full sample up to time t.

Table 6: In-sample and out-of-sample R2 scores for SP500 realized volatility
prediction.
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Experiment Setting

I Strategy (Same as in Part 1)

I Over the broad universe of US equities (approx. 2000 tickers), estimate the
probability of each stock’s next month’s normalized return being higher or
lower than median.

I Long signal: pi > p∗, p∗: threshold for the top decile.
I Short signal: pi < p∗∗, p∗∗: threshold for the bottom decile.

I Target Output: Same as in Part 1.

I Model Input:

I Individual stock level: 33 features in total. 20 normalized past daily
returns, 12 normalized monthly returns for month t − 2 through t − 13, and
an indicator variable for the month of January (Jagadeesh and Titman,
1993; Takeuchi and Lee, 2013).

I Market Conditions: 41 features in total. 23 past daily VIX values, 12
SP500 return variance values for month t − 2 through t − 13, and 6 SP500
variance risk premium values for month t − 1 through t − 6.
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Variance Risk Premium

I Carr and Wu (2016): Variance risk premium can be quantified as the
difference of variance swap rate and ex post realized variance.

SW t,T = EP
t [mt,TRVt,T ] = EP

t [RVt,T ] + CovPt (mt,T ,RV t,T ) (1)

I EP
t [RVt,T ] is the conditional mean of realized variance.

I CovPt (mt,T ,RV t,T ) is the conditional co-variance between realized
variance and normalized pricing kernel mt,T , the negative of this term
defines variance risk premium.

I We formulate the variance risk premium for SP500 return as the difference
between VIX and SP500 index’s one month realized variance.

I VIX is an approximator for 30-day variance swap rate on SP500 index
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Training Procedure

I Network trained using batch data:
{(xm, x sm, ym)|xm ∈ X , x sm ∈ X s , ym ∈ Y }m=1,2,...,b, b is the batch size
set as 512.

I Added random Gaussian noise N(0, 0.1) to the input tensor for noise
resistance and robustness.

I Implemented batch normalization on every hidden layer except the
output layer.

I Initialized the network at random, the learning rate was set at 0.0003
with 0.995 exponential decay.

I Trained the model using ADAM optimization algorithm for
approximately 120k steps (24 epochs) until convergence and validated
our model every 10k steps to obtain optimal hyper-parameters.

I Codes are written with TensorFlow.
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Conditional Weight Mask: Dynamic Behavior

I The focus of the experiment is to evaluate the ability of the switching
module to guide feature selection as market conditions change.

I For each day in the entire sample period, the switching module
computes a conditional weight mask comprised of 33 weights, one for
each of the 33 individual stock level feature representations.

I Observe two patterns for conditional weight mask:

I Weights on reversal representations jumps higher during periods of
higher market volatility and are positively correlated with VIX.

I Weights on momentum representations are lower during periods of
higher market volatility and are negatively correlated with VIX.
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Conditional Weight Mask: Reversal

.

Figure 13: Top: VIX Level from January 2008 to December 2017.
Bottom: Conditional weights assigned to latent representation of
normalized past daily return lag 4 and lag 17.
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Conditional Weight Mask: Momentum

.

Figure 14: Top: VIX Level from January 2008 to December 2017.
Bottom: Conditional weights assigned to latent representation of
normalized past monthly return lag 3 and lag 8.
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Table 7: Correlation matrix for VIX level and conditional weights assigned to
momentum latent representation of normalized past monthly return lag 3, and
conditional weights assigned to reversal latent representation of normalized past
daily return lag 17.

Table 8: Table records out-of-sample annualized return and Sharpe ratio for both
the Attention ResNet and the Switching ResNet.
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Part Two Summary

I Presents a novel residual switching network architecture which
combines two separate ResNets: a switching module that learns
market conditions, and a ResNet for individual stock level features.

I Dynamic behavior of the switching module is in excellent agreement
with changes in stock market conditions.

I During periods of higher market volatility, the switching module
concentrates on reversal latent representations.

I For periods of lower market volatility, the condition weight mask
switches concentration back to momentum.

I Switching module can automatically sense changes in stock market
conditions and guide the proposed DL framework to switch between
the momentum and reversal anomalies.
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Thank You!
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