
James Jeun

July 2018

DEEPSTREAM SDK 2.0 WEBINAR

2

AGENDA

• Introduction to Intelligent Video Analytics

• What is DeepStream?

• DeepStream Basic Building Blocks

• Metadata Handling

• DeepStream Pipeline Architecture

• DeepStream Plugins

• Memory Management

• DeepStream Reference Application

• Performance

• Custom Plugins

• Translating Use Case to DeepStream Architecture

• Q & A

3

IVA IN SMART CITIES

Access Control

Retail Analytics

Traffic Engineering

Forensic Analysis

Public Transit

Securing Critical Infrastructure

Parking Management

Managing Logistics

4

INTELLIGENT VIDEO ANALYTICS

5

DEEPSTREAM SOFTWARE STACK

6

DEEPSTREAM 2.0

DeepStream on Tesla v1.5

DeepStream on Jetson v1.5

Tesla P40, P4

Jetson TX1, TX2

DeepStream v2.0

Tesla Jetson

New modular framework and APIs →

Previous
Tesla – Now

Jetson - 2H’18

API C++

Streams Multi

Graph Fixed function

DNNs Single

Examples DNNs

API Modular plugins. Gstreamer based

Streams Single, Multi thru multi-app

Graph Custom

DNNs Multi

Examples Full app, multi-DNNs, tracking

API Unified edge-cloud

Streams Multi

Graph Custom

DNNs Multi

Examples Multiple apps, more plugins, multi-DNNs

*

7

DEEPSTREAM BUILDING BLOCK

• Based on Open Source GStreamer
Framework

• A plugin model based pipeline architecture

• Graph based pipeline interface to allow
high level component interconnect

• Enables heterogenous parallel processing
on GPU and CPU

• Hides parallelization and synchronization
under the hood

• Inherently multi-threaded

Gstreamer Plugin

Input +
[Metadata]

Output +
Metadata

Low Level API

Hardware

Plugin

Low Level API

Hardware

8

METADATA IN DEEPSTREAM
Metadata is generated by plugins in the graph

Plugins can progressively populate generated metadata

Metadata generated at every stage of the graph can be used for further processing

Metadata examples

Type of object detected

ROI coordinates

Object classification

Unique ID

Source and GPU ID

Rendering information and many more

VW SUV White Chevy SUV Black

Lexus Sedan White

Honda Sedan Black

BMW SUV Black

South

North

9

METADATA STRUCTURE (1/2)
NvDSObjectParams – Contains a subset of metadata information for an object detected in the frame.

GIE_Unique_ID - Multiple neural networks get assigned a unique ID

Num_rects – Number of objects detected in the frame

Stream_Id – In case of multi-stream to identify we need stream id to associate to which stream the
data belongs to.

10

METADATA STRUCTURE (2/2)

NvOSD_RectParams – Bounding box co-ordinates

NvOSD_TextParams – Label information required for

display (white car, Mercedes, sedan)

NvDSAttribinfo – Attributes of objects (type, color,

make)

Tracking_ID – Unique ID of that object from tracker

Class_ID – Type of object (Person, vehicle, two-wheeler,

road sign)

11

DEEPSTREAM PIPELINE ARCHITECTURE

12

NVIDIA-ACCELERATED PLUGINS
Some of the most commonly used

Plugin Name Functionality

gst-nvvideocodecs Accelerated H.265 & H.264 video decoders

gst-nvstreammux Stream aggregator - muxer and batching

gst-nvinfer TensorRT based inference for detection & classification

gst-nvtracker Reference KLT tracker implementation

gst-nvosd On-Screen Display API to draw boxes and text overlay

gst-tiler Renders frames from multi-source into 2D grid array

gst-eglglessink Accelerated X11 / EGL based renderer plugin

gst-nvvidconv Scaling, format conversion, rotation.

13

DECODER PLUGIN

Support multi-stream simultaneous decode

Uses NVDECODE API (formerly NVCUVID API)

H.264

H.265

Bit depth – decoder and platform limited

Resolution – decoder and platform limited

Compatible to plugins that accept YUV data

Nvinfer

Nvvidconv

Name - nvdec_h264, nvdec_H265

Encoded
Stream

YUV

Low Level API

Hardware

NVDEC_H264,

NVDEC_H265

NVDECODE API

NVDEC

14

MULTI-STREAM BATCHING

• TensorRT optimized for batched input

• Aggregate multiple sources to create batches

• Attach metadata to differentiate between buffers of different sources

Batching algorithmN Video

Sources
TensorRT

Batch of N

sources

Batched

Video

Batched

Video

Batched

Video

15

VIDEO AGGREGRATOR

Plugin that accepts “n” inputs streams and
converts to sequential batch frames

Scaling support – Incase video input
resolution differs with the model
resolution or vice-a-versa

Name - nvstreammux

YUV
batched
YUV +

metadata

Low Level API

Hardware

nvstreammux

NPP

CPU + GPU

16

INFERENCE

Detector and Classifier

Primary & Secondary modes

Caffe & UFF models supported

Supports detector, classifier models that
TensorRT supports

Batched inferencing

Provision for adding custom models

Group rectangle algorithm for clustering

Name - nvinfer

YUV +
[Meta]

YUV +
Meta

Low Level API

Hardware

nvinfer

TRT / CUDA

GPU

17

FORMAT CONVERSION & SCALING PLUGIN

Uses NPP (NV performance primitives)

Format conversion

YUV>RGBA

YUV>BRGA

Resolution Scaling

Image Rotation

Name - nvvidconv

YUV YUV/RGBA

Low Level API

Hardware

nvvidconv

NPP/CUDA

GPU

18

OBJECT TRACKER

Based on KLT reference implementation

Uses NPP / CUDA kernel internally for
scaling and format conversion

Can be upgraded to advance tracker

Name - nvtracker

YUV +
Pmeta

YUV +
Tmeta

Low Level API

Hardware

nvtracker

Tracker API

GPU

19

SCREEN TILER

Used for creating video wall effect

Arranges multiple input sources into
complete video tiled output

Configurable window size

Name - nvstreamtiler

YUV + All
Meta

YUV +
All Meta

Low Level API

Hardware

nvstreamtiler

CUDA

GPU

20

ON SCREEN DISPLAY

Colored line and blending bounding boxes

Text / labels

Arrows, lines, circles, ROI

Name - nvosd

YUV + All
Meta

YUV +
All Meta

Low Level API

Hardware

nvosd

OSD API

GPU

21

ON SCREEN DISPLAY

100274 VW SUV White 100390 Chevy SUV Black

100893 Lexus Sedan White

100621 Honda Sedan Black

100424 BMW SUV Black

South

North

22

… AND MANY MORE PLUGINS

Plugin Name Functionality

filesrc Read from arbitrary point in a file

rtspsrc Receive data over the network via RTSP

v4l2src Reads frames from a Video4Linux2 device

xvimagesink X11 based videosink

x264Enc H264 Encoder

jpegdec/enc Decode / Encode in / from JPEG format

Dewarp Dewarp fish eye video

ALPR 3rd party IP plugin (License plate recognition)

23

MEMORY MANAGEMENT

Efficient Memory Management

cudaMalloc

Efficient Buffer Copy

24

MEMORY MANAGEMENT

GPU to CPU copy

cudaMalloc

cudaMemcpyEfficient Buffer Copy

25

DEEPSTREAM REFERENCE APPLICATION
Vehicle detection, tracking, classification

26

gpu-id=0

net-scale-factor=0.0039215697906911373

model-file=../../../samples/models/Primary_Detector/resnet10.caffemodel

proto-file=../../../samples/models/Primary_Detector/resnet10.prototxt

##output labels from detector

labelfile-path=../../../samples/models/Primary_Detector/labels.txt

int8-calib-file=../../../samples/models/Primary_Detector/cal_trt4.bin

net-stride=16

batch-size=1

0=FP32, 1=INT8

network-mode=1

num-classes=4

class-thresholds=0.2;0.2;0.2;0.2

class-eps=0.2;0.2;0.2;0.2

class-group-thresholds=1;1;1;1

gie-unique-id=1

parse-func=4

output-bbox-name=conv2d_bbox

output-blob-names=conv2d_cov

NVINFER CONFIGURATION FILE

For details refer to “Reference application configuration” section in user guide

27

SYSTEM CONFIGURATION

Enabling and Configuring the Sample Plugin

Example Input Source Configuration

Setup the reference application for performance measurements

28

DEEPSTREAM SINGLE STREAM OUTPUT

29

DEEPSTREAM REFERENCE APP OUTPUT

30

DEEPSTREAM REFERENCE APPLICATION

CPU – Intel® Xeon(R) CPU E5-2620 v4 @ 2.10GHz × 2

GPU – Tesla P4

System Memory – 256 GB DDR4, 2400MHz

Ubuntu 16.04

GPU Driver – 396.26

CUDA – 9.2

TensorRT – 4.0

GPU clock frequency – 1113 MHz

System Configuration & Performance for 25x 720p streams

31

PERFORMANCE ANALYSIS

32

KPIs FOR PERFORMANCE

1. Throughput (fps) = numbers of frames processed in unit time

2. Latency

3. Hardware utilization (decoder, SM, memory, PCI-e bus)

4. Power

1 second

tx = time when plugin processes buffer pipeline latency = tf - ta

queue

ta tb tc
td te

tf

33

MOTIVATION

Gst-
NvStreamMux

(N to 1)

Mux

elapsed time

Enable more sophisticated analysis (eg: cascaded networks, tracking) by supporting larger
pipelines

Support increased frame rate and stream count through improved throughput

React quicker to events by optimizing pipeline latency

camerasrc Post-processing
& actuation

34

METHODOLOGY FOR PERFORMANCE ANALYSIS

Top-Down Approach

- Measure KPIs & identify gaps (eg: throughput, supported stream count)

- Utilization information (using nvidia-smi) readily suggests bottleneck

- Latency measurements (using gst-logs) confirm rate limiting step

- Kernel execution profiling (using nsight, nvvp) provides fine grained analysis

35

THROUGHPUT MEASUREMENT

gst probes install callbacks that get invoked when buffer travels through a pad

gst_pad_add_probe (display_sink_pad, GST_PAD_PROBE_TYPE_BUFFER,

display_sink_probe, u_data, NULL);

Callbacks stores temporal information about frames flowing through pipeline

Callback maintains various throughput related metrics (avg, max, min, per stream)

Display_sink_probe

36

LATENCY MEASUREMENT USING GST-LOGS

Decoder latency: 0:00:05.170122161 - 0:00:05.137672361 = 33ms

0:00:05.137621066 <capsfilter1:sink> calling chainfunction &gst_base_transform_chain with buffer buffer:

0x7f9c02bc00, pts 0:00:35.719066666, dts 0:00:35.719033333, dur 0:00:00.016683333, size 56047, offset

172403525, offset_end none, flags 0x2400

0:00:05.137672361 <omxh264dec-omxh264dec0:sink> calling chainfunction &gst_video_decoder_chain with

buffer buffer: 0x7f9c02bc00, pts 0:00:35.719066666, dts 0:00:35.719033333, dur 0:00:00.016683333, size

56047, offset 172403525, offset_end none, flags 0x2400

0:00:05.170122161 <src_0:proxypad3> calling chainfunction &gst_proxy_pad_chain_default with buffer

buffer: 0x7f714c5020, pts 0:00:35.719066666, dts 99:99:99.999999999, dur 0:00:00.016683333, size 808,

offset none, offset_end none, flags 0x0

0:00:05.170196720 <nvvconv0:sink> calling chainfunction &gst_base_transform_chain with buffer buffer:

0x7f714c5020, pts 0:00:35.719066666, dts 99:99:99.999999999, dur 0:00:00.016683333, size 808, offset none,

offset_end none, flags 0x0

37

PERFORMANCE BEST PRACTICES

- Reduced precision inference (INT8/FP16)

- Use increased batch size for inference

- Use appropriate frame rate for input video

- Optimize data movement between system and device memory

- Use CUDA streams to maximize execution parallelism

38

CUSTOM PLUGINS

39

CUSTOM PLUGIN FOR OBJECT DETECTION

Implement custom TensorRT plugin layers for your network topology

Integrate your TensorRT based object detection model in DeepStream

1. Train an object detection model to be deployed in DeepStream

2. Import the model into TensorRT

3. Wrap the TensorRT inference within the template plugin in DeepStream

4. Run in DeepStream

40

PIPELINE

camerasrc TensorRT
inference

library

Gst-DsExample

DeepStream Application

DISABLED

41

YOLO V2 OVERVIEW

- Object detection model

- Input: RGB image

- Output: Bounding boxes

- Convolutional network with anchor boxes

- Inference in a single forward pass

https://arxiv.org/pdf/1506.02640.pdf

42

DARKNET TO TENSORRT

How to create YOLO in TensorRT

● TensorRT’s network builder API

○ Create the network architecture from scratch

○ Read the darknet weights into the network

43

TENSORRT PLUGIN FACTORY

● TensorRT v4 currently doesn’t natively support Leaky ReLU, Reorg and Region layers

● Solution: TensorRT Plugin Factory

● Create interfaces for parser and runtime to add plugins

● NVIDIA provides these plugins with the TensorRT SDK

● Caveats:

○ Repurpose the PReLU to a leaky ReLU

○ Region Layer computes only logistic activations and softmax scores

○ Decoding predictions to bounding boxes should be handled outside the TensorRT engine

44

CREATING APPLICATIONS WITH DEEPSTREAM
Object detection and counting

45

DEEPSTREAM MODULAR APPLICATION

46

START DEVELOPING WITH DEEPSTREAM

DeepStream . Explore Metropolis . Intelligent Video Analytics Forums

https://developer.nvidia.com/deepstream-sdk
https://www.nvidia.com/en-us/autonomous-machines/intelligent-video-analytics-platform/
https://devtalk.nvidia.com/default/board/208/intelligent-video-analytics/

47

QUESTIONS?

