

DEEPSTREAM SDK 2.0 WEBINAR

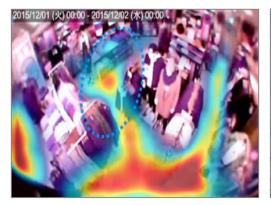
James Jeun July 2018

AGENDA

- Introduction to Intelligent Video Analytics
- What is DeepStream?
- DeepStream Basic Building Blocks
- Metadata Handling
- DeepStream Pipeline Architecture
- DeepStream Plugins
- Memory Management
- DeepStream Reference Application
- Performance
- Custom Plugins
- Translating Use Case to DeepStream Architecture
- Q&A

IVA IN SMART CITIES

Access Control

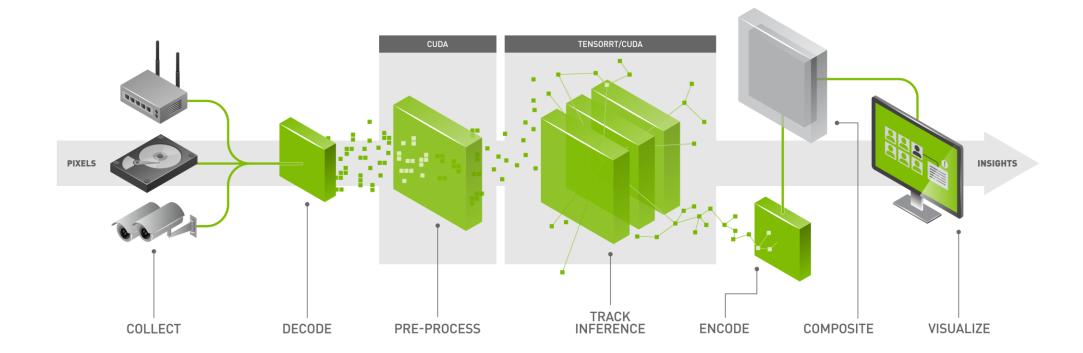

Public Transit

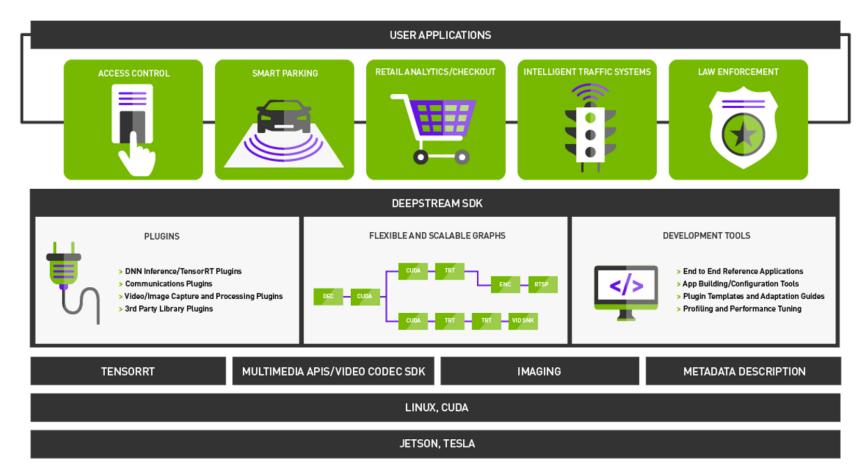
Parking Management

Traffic Engineering

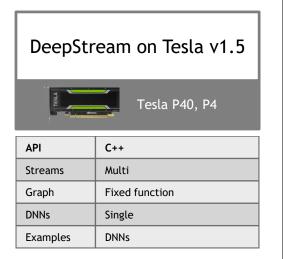
Retail Analytics

Securing Critical Infrastructure


Managing Logistics


Forensic Analysis

3


INTELLIGENT VIDEO ANALYTICS

DEEPSTREAM SOFTWARE STACK

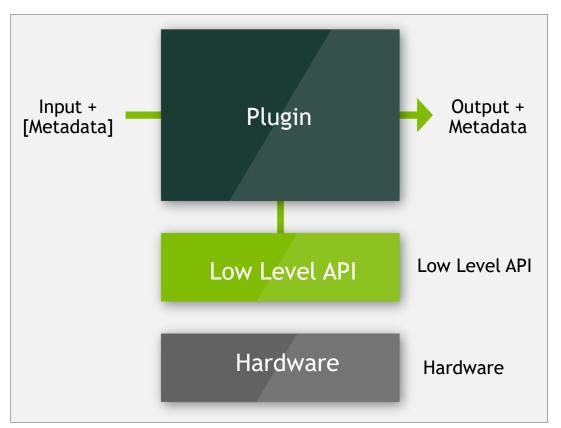
DEEPSTREAM 2.0

DeepStream on Jetson v1.5				
Jetson TX1, TX2				
API	Modular plugins. Gstreamer based			
Streams	Single, Multi thru multi-app			
Graph	Custom			
DNNs	Multi			

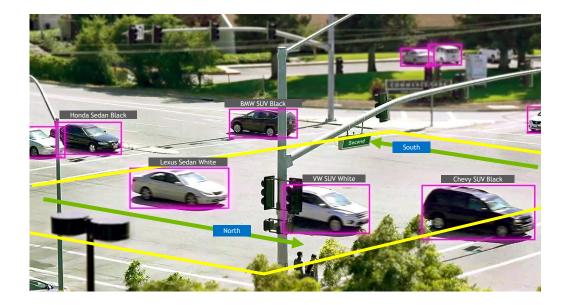
Full app, multi-DNNs, tracking

Examples

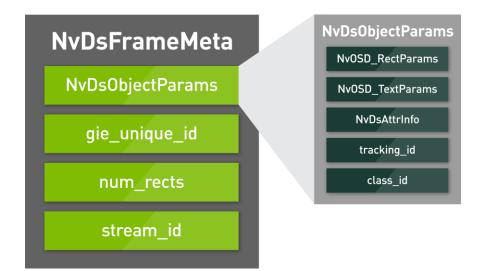
API	Unified edge-cloud		
Streams	Multi		
Graph	Custom		
DNNs	Multi		
Examples	Multiple apps, more plugins, multi-DNNs		


New modular framework and APIs \rightarrow

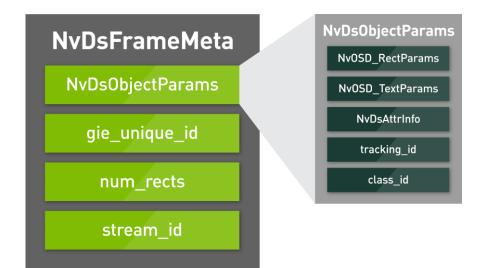
DEEPSTREAM BUILDING BLOCK


Gstreamer Plugin

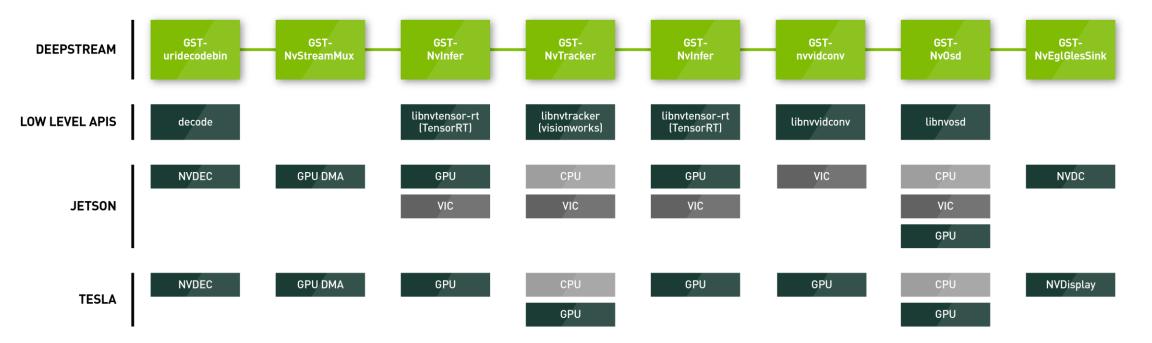
- Based on Open Source GStreamer Framework
- A plugin model based pipeline architecture
- Graph based pipeline interface to allow high level component interconnect
- Enables heterogenous parallel processing on GPU and CPU
- Hides parallelization and synchronization under the hood
- Inherently multi-threaded


METADATA IN DEEPSTREAM

- Metadata is generated by plugins in the graph
- Plugins can progressively populate generated metadata
- Metadata generated at every stage of the graph can be used for further processing
- Metadata examples
 - Type of object detected
 - ROI coordinates
 - Object classification
 - Unique ID
 - Source and GPU ID
 - Rendering information and many more


METADATA STRUCTURE (1/2)

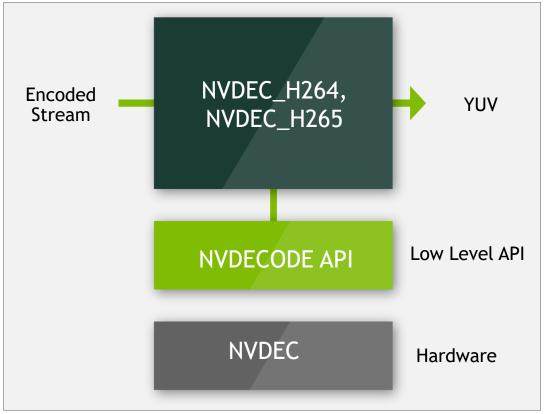
- NvDSObjectParams Contains a subset of metadata information for an object detected in the frame.
- GIE_Unique_ID Multiple neural networks get assigned a unique ID
- Num_rects Number of objects detected in the frame
- Stream_Id In case of multi-stream to identify we need stream id to associate to which stream the data belongs to.



METADATA STRUCTURE (2/2)

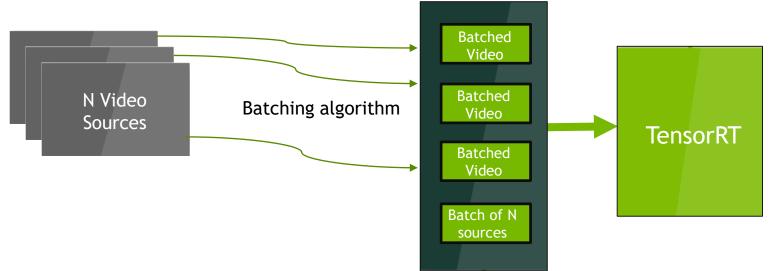
- NvOSD_RectParams Bounding box co-ordinates
- NvOSD_TextParams Label information required for display (white car, Mercedes, sedan)
- NvDSAttribinfo Attributes of objects (type, color, make)
- Tracking_ID Unique ID of that object from tracker
- Class_ID Type of object (Person, vehicle, two-wheeler, road sign)

DEEPSTREAM PIPELINE ARCHITECTURE


NVIDIA-ACCELERATED PLUGINS

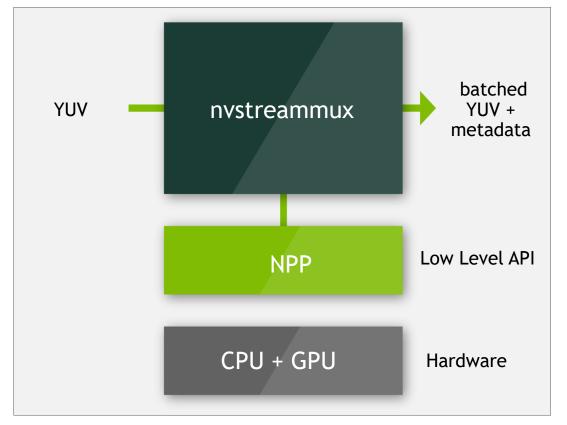
Some of the most commonly used

Plugin Name	Functionality		
gst-nvvideocodecs	Accelerated H.265 & H.264 video decoders		
gst-nvstreammux	Stream aggregator - muxer and batching		
gst-nvinfer	TensorRT based inference for detection & classification		
gst-nvtracker	Reference KLT tracker implementation		
gst-nvosd	On-Screen Display API to draw boxes and text overlay		
gst-tiler	Renders frames from multi-source into 2D grid array		
gst-eglglessink	Accelerated X11 / EGL based renderer plugin		
gst-nvvidconv	Scaling, format conversion, rotation.		


DECODER PLUGIN

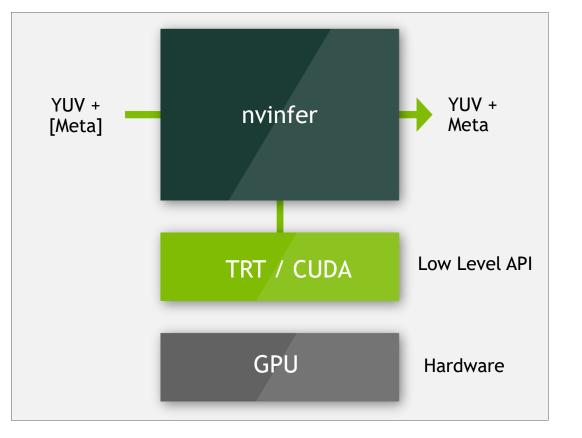
Name - nvdec_h264, nvdec_H265

- Support multi-stream simultaneous decode
- Uses NVDECODE API (formerly NVCUVID API)
 - ► H.264
 - ► H.265
- Bit depth decoder and platform limited
- Resolution decoder and platform limited
- Compatible to plugins that accept YUV data
 - Nvinfer
 - Nvvidconv


MULTI-STREAM BATCHING

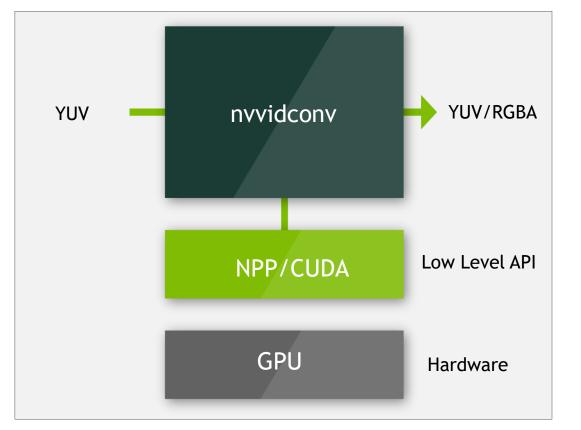
- TensorRT optimized for batched input
- Aggregate multiple sources to create batches
- Attach metadata to differentiate between buffers of different sources

VIDEO AGGREGRATOR


Name - nvstreammux

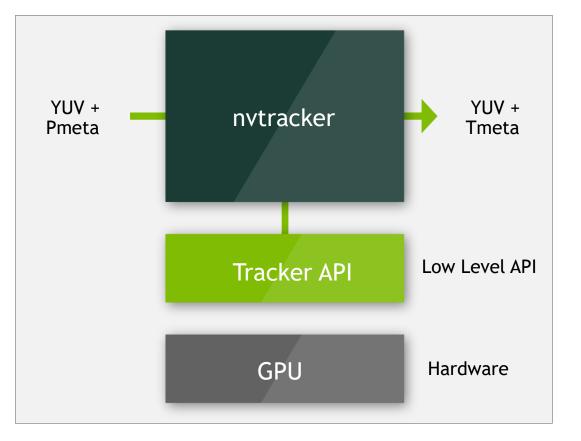
- Plugin that accepts "n" inputs streams and converts to sequential batch frames
- Scaling support Incase video input resolution differs with the model resolution or vice-a-versa

INFERENCE


Name - nvinfer

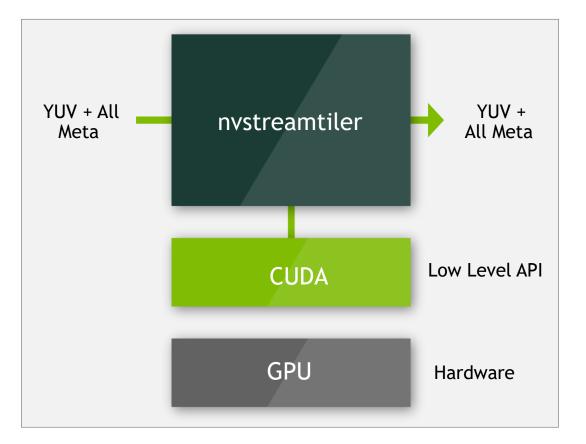
- Detector and Classifier
- Primary & Secondary modes
- Caffe & UFF models supported
- Supports detector, classifier models that TensorRT supports
- Batched inferencing
- Provision for adding custom models
- Group rectangle algorithm for clustering

FORMAT CONVERSION & SCALING PLUGIN


Name - nvvidconv

- Uses NPP (NV performance primitives)
- Format conversion
 - YUV>RGBA
 - YUV>BRGA
- Resolution Scaling
- Image Rotation

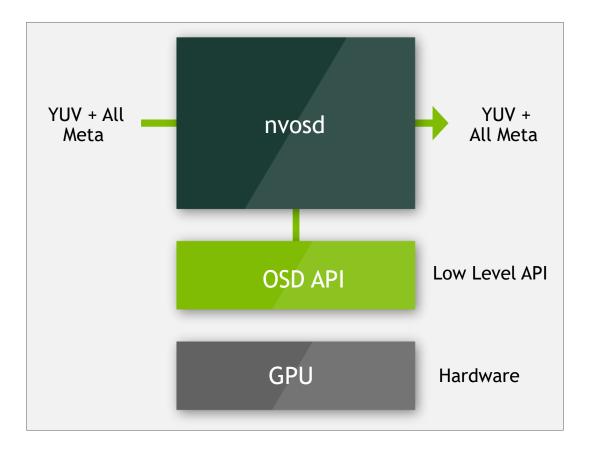
OBJECT TRACKER


Name - nvtracker

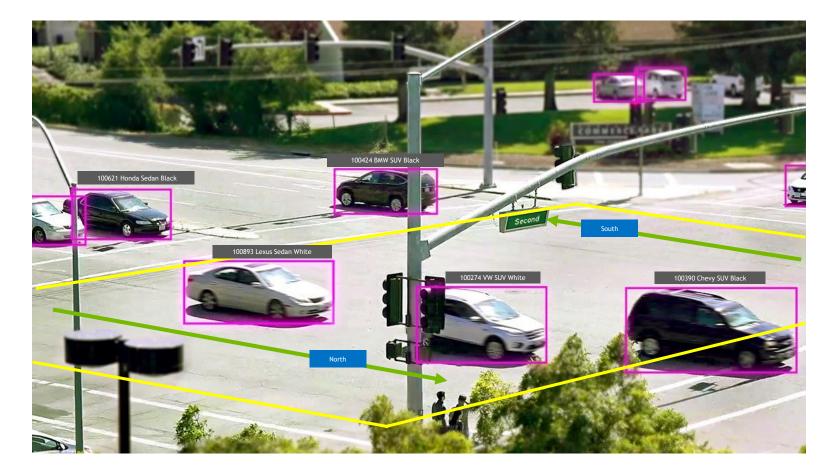
- Based on KLT reference implementation
- Uses NPP / CUDA kernel internally for scaling and format conversion
- Can be upgraded to advance tracker

SCREEN TILER

Name - nvstreamtiler



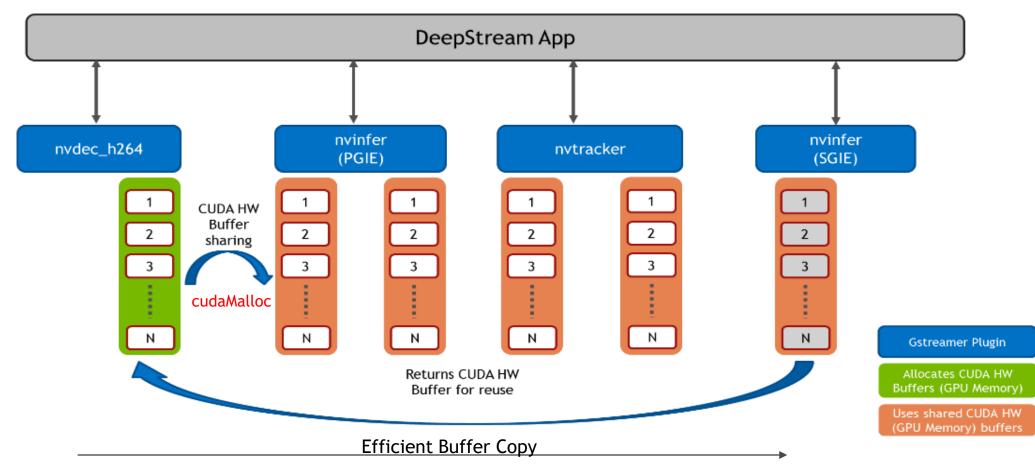
- Used for creating video wall effect
- Arranges multiple input sources into complete video tiled output
- Configurable window size


ON SCREEN DISPLAY

Name - nvosd

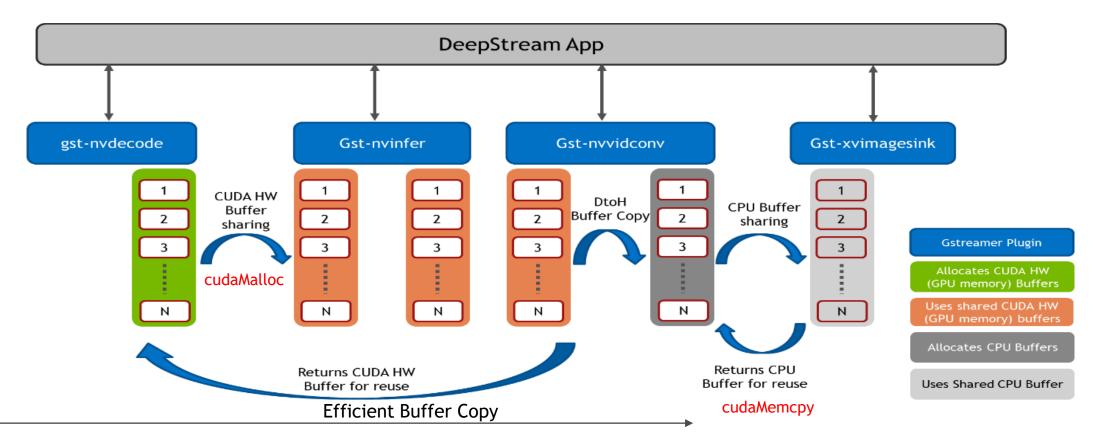
- Colored line and blending bounding boxes
- Text / labels
- Arrows, lines, circles, ROI

ON SCREEN DISPLAY

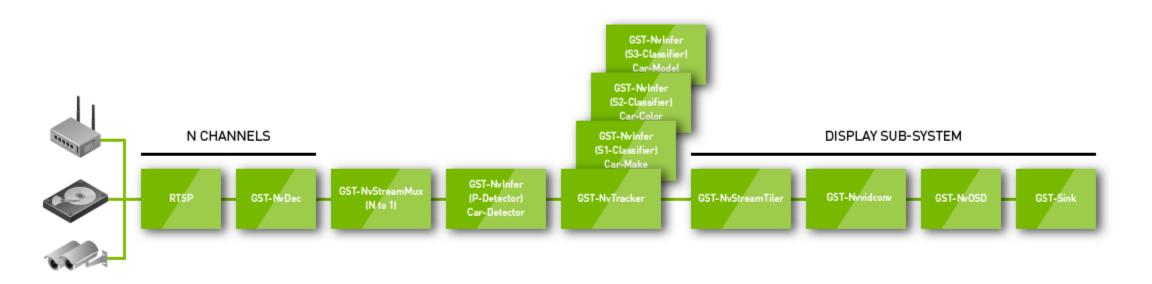


... AND MANY MORE PLUGINS

Plugin Name	Functionality
filesrc	Read from arbitrary point in a file
rtspsrc	Receive data over the network via RTSP
v4l2src	Reads frames from a Video4Linux2 device
xvimagesink	X11 based videosink
x264Enc	H264 Encoder
jpegdec/enc	Decode / Encode in / from JPEG format
Dewarp	Dewarp fish eye video
ALPR	3rd party IP plugin (License plate recognition)


MEMORY MANAGEMENT

Efficient Memory Management


MEMORY MANAGEMENT

GPU to CPU copy

DEEPSTREAM REFERENCE APPLICATION

Vehicle detection, tracking, classification

NVINFER CONFIGURATION FILE

gpu-id=0

net-scale-factor=0.0039215697906911373

model-file=../../../samples/models/Primary_Detector/resnet10.caffemodel
proto-file=../../../samples/models/Primary_Detector/resnet10.prototxt
##output labels from detector
labelfile-path=../../../samples/models/Primary_Detector/labels.txt
int8-calib-file=../../../samples/models/Primary_Detector/cal_trt4.bin
net-stride=16

batch-size=1

0=FP32, 1=INT8
network-mode=1

num-classes=4

```
class-thresholds=0.2;0.2;0.2;0.2
class-eps=0.2;0.2;0.2;0.2
class-group-thresholds=1;1;1;1
gie-unique-id=1
```

parse-func=4
output-bbox-name=conv2d_bbox
output-blob-names=conv2d_cov

SYSTEM CONFIGURATION

Setup the reference application for performance measurements

enable-perf-measurement=1 //To enable performance measurement
perf-measurement-interval-sec=10 //Sampling interval in seconds for performance metrics
flow-original-resolution=1 //Stream muxer flows original input frames in pipeline
#gie-kitti-output-dir=/home/ubuntu/kitti_data/ // location of KITTI metadata files

Example Input Source Configuration

[source0] enable=1 // Enables source0 input #Type - 1=CameraV4L2 2=URI 3=MultiURI //1) Input source can be USB Camera (V4L2) // 2)URI to the encoded stream. Can be a file,HTTP URI or an RTSP live source // 3) Select URL from multi-source input type=3 // Type of input source is selected uri=file://../.streams/sample_720p.mp4 // Actual path of the encoded source. num-sources=1 // Number of input sources. gpu-id=0 // GPU ID on which the pipeline runs within a single system

Enabling and Configuring the Sample Plugin

enable=1 //enable sample plugin
gpu-id=0 //GPU id to be used in case of multiple GPUs
processing-width=640 //operating image width for this plugin
processing-height=480 //operating image height for this plugin
full-frame=0 //Operate on individual bounding boxes/objects given by upstream component (for ex. Primary Model)
unique-id=15 //Unique Id (should be >= 15) of plugin to identify its Meta data by application or other elements

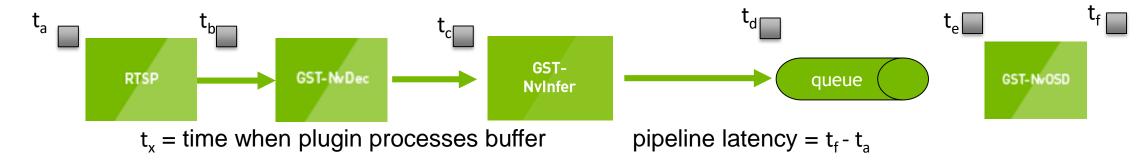
DEEPSTREAM SINGLE STREAM OUTPUT

DEEPSTREAM REFERENCE APP OUTPUT

DEEPSTREAM REFERENCE APPLICATION

System Configuration & Performance for 25x 720p streams

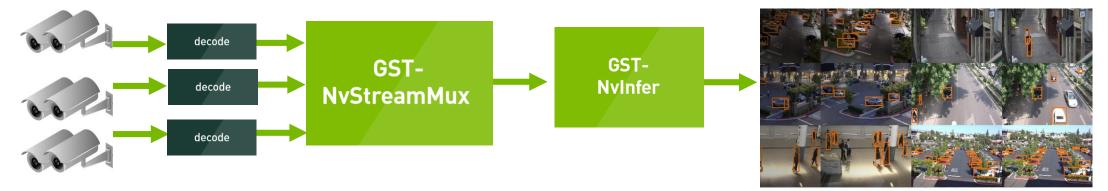
CPU - Intel® Xeon(R) CPU E5-2620 v4 @ 2.10GHz × 2				
GPU - Tesla P4				
System Memory - 256 GB DDR4, 2400MHz				
Ubuntu 16.04				
GPU Driver - 396.26				
CUDA - 9.2				
TensorRT - 4.0				
GPU clock frequency - 1113 MHz				


GPU	0000000:05:00.0					
	Utilization					
	Gpu	:	59 %			
	Memory	:	30 %			
	Encoder	:	0 %			
	Decoder	:	88 %			
	GPU Utilization Samples		0.2267(2020)			
	Duration	:	16.44 sec			
	Number of Samples	:	99			
	Max	:	83 %			
	Min	:	54 %			
	Avg	:	65 %			
	Memory Utilization Samples					
	Duration	:	16.44 sec			
	Number of Samples	:	99			
2	Max	:	39 %			
	Min	:	28 %			
	Avg	:	32 %			
	ENC Utilization Samples					
	Duration	:	16.44 sec			
	Number of Samples	:	99			
	Max	:	0 %			
	Min	:	0 %			
	Avg		0 %			
	DEC Utilization Samples					
	Duration	:	16.44 sec			
	Number of Samples	:	99			
	Max		100 %			
	Min	:	63 %			
	Avg	:	87 %			

PERFORMANCE ANALYSIS

KPIs FOR PERFORMANCE

1. Throughput (fps) = numbers of frames processed in unit time


2. Latency

3. Hardware utilization (decoder, SM, memory, PCI-e bus)

4. Power

MOTIVATION

Support increased frame rate and stream count through improved throughput

Enable more sophisticated analysis (eg: cascaded networks, tracking) by supporting larger pipelines

METHODOLOGY FOR PERFORMANCE ANALYSIS

Top-Down Approach

- Measure KPIs & identify gaps (eg: throughput, supported stream count)
- Utilization information (using nvidia-smi) readily suggests bottleneck
- Latency measurements (using gst-logs) confirm rate limiting step
- Kernel execution profiling (using nsight, nvvp) provides fine grained analysis

THROUGHPUT MEASUREMENT

gst probes install callbacks that get invoked when buffer travels through a pad gst_pad_add_probe (display_sink_pad, GST_PAD_PROBE_TYPE_BUFFER, display_sink_probe, u_data, NULL);

Callbacks stores temporal information about frames flowing through pipeline Callback maintains various throughput related metrics (avg, max, min, per stream)

LATENCY MEASUREMENT USING GST-LOGS

Decoder latency: 0:00:05.170122161 - 0:00:05.137672361 = 33ms

0:00:05.137621066 <capsfilter1:sink> calling chainfunction &gst_base_transform_chain with buffer buffer: 0x7f9c02bc00, pts 0:00:35.719066666, dts 0:00:35.719033333, dur 0:00:00.016683333, size 56047, offset 172403525, offset end none, flags 0x2400

0:00:05.137672361 <omxh264dec-omxh264dec0:sink> calling chainfunction &gst_video_decoder_chain with buffer buffer: 0x7f9c02bc00, pts 0:00:35.719066666, dts 0:00:35.719033333, dur 0:00:00.016683333, size 56047, offset 172403525, offset end none, flags 0x2400

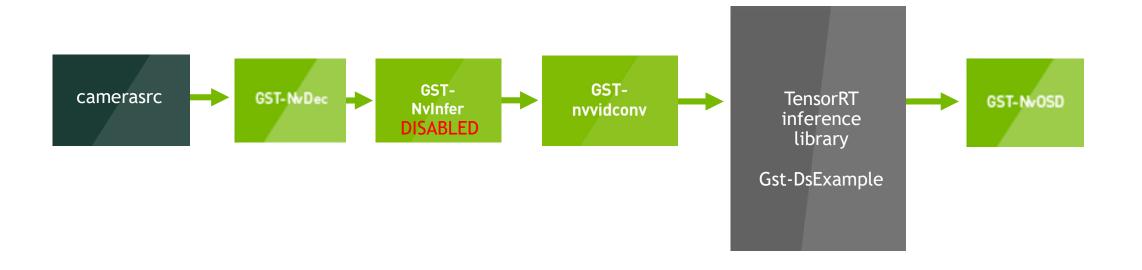
0:00:05.170196720 <nvvconv0:sink> calling chainfunction &gst_base_transform_chain with buffer buffer: 0x7f714c5020, pts 0:00:35.719066666, dts 99:99:99.99999999, dur 0:00:00.016683333, size 808, offset none, offset end none, flags 0x0

PERFORMANCE BEST PRACTICES

- Reduced precision inference (INT8/FP16)
- Use increased batch size for inference
- Use appropriate frame rate for input video
- Optimize data movement between system and device memory
- Use CUDA streams to maximize execution parallelism

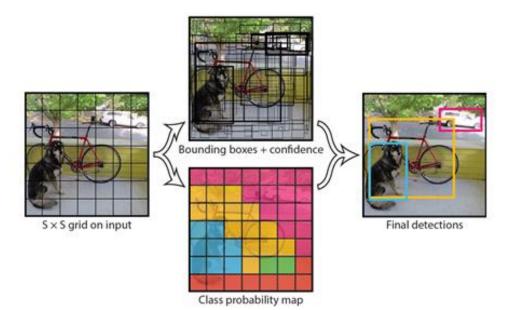
CUSTOM PLUGINS

CUSTOM PLUGIN FOR OBJECT DETECTION


Implement custom TensorRT plugin layers for your network topology

Integrate your TensorRT based object detection model in DeepStream

- 1. Train an object detection model to be deployed in DeepStream
- 2. Import the model into TensorRT
- 3. Wrap the TensorRT inference within the template plugin in DeepStream
- 4. Run in DeepStream


PIPELINE

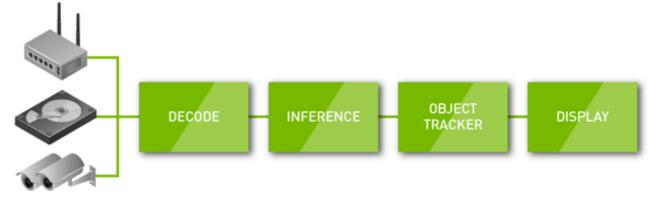
DeepStream Application

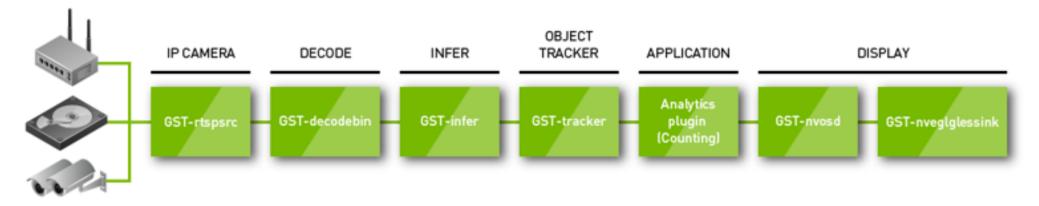
YOLO V2 OVERVIEW

- Object detection model
- Input: RGB image
- Output: Bounding boxes
- Convolutional network with anchor boxes
- Inference in a single forward pass

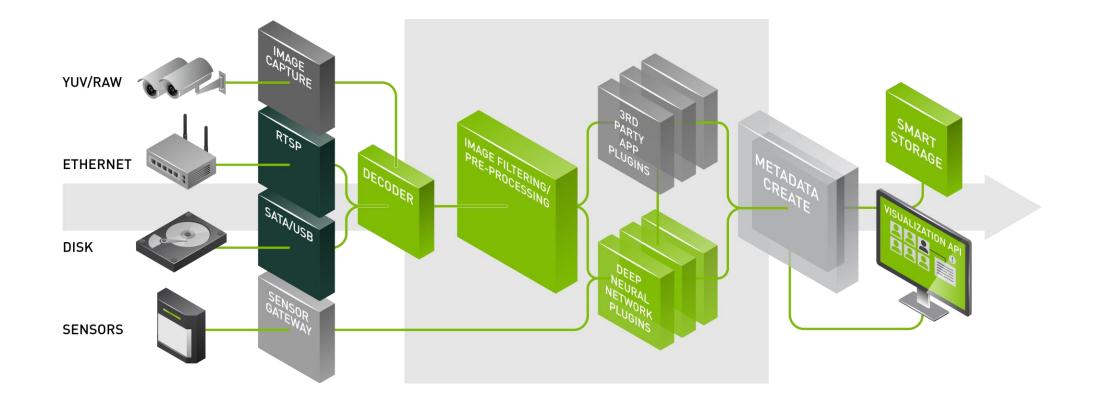
DARKNET TO TENSORRT

How to create YOLO in TensorRT


- TensorRT's network builder API
 - Create the network architecture from scratch
 - Read the darknet weights into the network


TENSORRT PLUGIN FACTORY

- TensorRT v4 currently doesn't natively support Leaky ReLU, Reorg and Region layers
- Solution: TensorRT Plugin Factory
- Create interfaces for parser and runtime to add plugins
- NVIDIA provides these plugins with the TensorRT SDK
- Caveats:
 - Repurpose the PReLU to a leaky ReLU
 - Region Layer computes only logistic activations and softmax scores
 - Decoding predictions to bounding boxes should be handled outside the TensorRT engine


CREATING APPLICATIONS WITH DEEPSTREAM

Object detection and counting

DEEPSTREAM MODULAR APPLICATION

START DEVELOPING WITH DEEPSTREAM

DeepStream . Explore Metropolis .

Intelligent Video Analytics Forums

