

Defect Chemistry of Solids

Malte Behrens Fritz Haber Institute of the Max Planck Society Department of Inorganic Chemistry behrens@fhi-berlin.mpg.de

Outline

- Fundamentals
 - Ideal and real structure, intrinsic and extrinsic defects, thermodynamics of defects
- Ionic solids
 - Schottky and Frenkel defects, ionic conductivity, fast ion conductors
- Transition metal oxides
 - Non-stochiometry and redox processes, cation and anion vacancies, electronic properties of defective oxides
- Metals
 - Dislocations, grain boundaries, stacking faults, properties of engineering materials
- Defects in catalysis
 - Characterization and role of defects in catalysts, examples

Ideal structure vs. real structure

- Ideal structure of a solid: Every lattice point has exactly the same environment
- Deviations from ideal structure: Defects
- Intrinsic defects: $\Delta G = \Delta H T \Delta S$

• Extrinsic defects: Non-stochiometry, doping

Intrinsic point defects

 Schottky defect (pairs of ions)

NaCI:
$$V_{Na}^{-} + V_{CI}^{+}$$

• Frenkel defect (ion on interstitial site)

AgBr:
$$Ag_{Ag} \rightarrow Ag_{i}^{+} + V_{Ag}^{-}$$

Thermodynamics of intrinsic defects

• n defects are distributed over N lattice sites:

$$W = \binom{N}{n} = \frac{N!}{n!(N-n)!}$$
 W possible arrangements

• Boltzmann: $S = k \ln W$ with $\Delta G = \Delta H - T \Delta S$ $\Delta G = n \Delta H_{c} - kT \ln \left(\frac{N!}{2} \right) \qquad \Delta H_{f}$: Enthalpy of formation f

$$= n\Delta H_f - kT \ln \left(\frac{N!}{(N-n)!n!} \right) \qquad \Delta H_f: \text{ Enthalpy of formation for one defect}$$

• Equilibrium, T=const. $d(\Delta G) = \left(\frac{\partial \Delta G}{\partial n}\right)_T = 0$ with $\ln x! \approx x \ln x - x$

$$\ln\!\left(\frac{n}{N-n}\right) = -\frac{\Delta H_f}{kT}$$

• n << N:
$$\frac{n}{N} = e^{-\frac{\Delta H_f}{kT}}$$
 Schottky defects: $\frac{n}{N} = e^{-\frac{\Delta H_f}{2kT}}$

Ionic solids: Alkali halides

- Rocksalt structure
 - fcc packing of oxygen atoms
 - cations in every octaheral void
- NaCl, KCI: Schottky defects dominating
- AgCI: Frenkel defects
 dominating
 - 4d electrons tend to occupy free 3d orbitals of Cl⁻ (partial covalent bonding), favored at interstitial sites

Defect structure of NaCl

- $\frac{n}{N} = e^{-\frac{\Delta H_f}{2RT}} \Delta H_f(\text{NaCl}) \sim 200 \text{ kJ/mol}$
 - 300 K:
 < 10⁻¹³
 Schottky defects / 10.000 sites

- 1000 K:
 - < 0.1 Schottky defects / 10.000 sites

10000 sites ~ 1000 unit cells

Ionic conductivity

 Point defects enhance the mobility of ions

n: number of ions

• Specific ionic conductivity $\sigma = nze\mu ze_{\mu}$

 μ : module of μ : module of \mu: module of μ : module of \mu: module of μ : module of \mu: module of μ : mod

	Material	σ/Sm^{-1}
Ionic conductors	Ionic crystals	<10 ⁻¹⁶ – 10 ⁻²
	Solid electrolytes	10 ⁻¹ – 10 ³
	Solutions of electrolytes	10 ⁻¹ – 10 ³
Electronic conductors	Metals	10 ³ – 10 ⁷
	Semiconductors	10 ⁻³ – 10 ⁴
	Insulators	<10-10

Ionic conductivity of NaCl

T-dependence ionic conductivity

$$\sigma = nze\mu \qquad \ln \sigma = \ln \sigma_0 - \frac{E_a}{T}$$
$$\sigma = \sigma_0 e^{-\frac{E_a}{T}} \qquad \sigma = \sigma' e^{-\frac{E_a}{kT}} e^{-\frac{\Delta H_f}{2kT}}$$

Arrhenius

Fast ion conductors: α -Agl

- bcc arrangement of anions
- large and polarizable anion
- low charge of cations, low CN
- many vacant lattice sites
- conductivity comparable to solutions of strong electrolytes

Defects in transition metal oxides

Rocksalt-type oxides: Wuestite

- "FeO" is always Fe-deficient
- Presence of extra O²⁻ on interstitial sites can be excluded from density measurements → Fe vacancies Fe_{1-x}O
- Gradual change of lattice parameter with x in Fe_{1-x}O
- For each Fe vacancy, two Fe(II) have to be oxidized to Fe(III)

Clustering of defects in Fe_{1-x}O

- Diffraction studies have shown that some Fe atoms are located on tetrahedral sites
- Mößbauer data reveals that Fe^{tet} is Fe(III)
- As the distance between octahedral and tetrahedral sites is short, vacancies cluster around occupied tetrahedral sites
- Koch-Cohen cluster: 4 interstitial Fe^{tet} and 13 vacancies
- "Fe₃O₄ (FeO·Fe₂O₃) –like domains in Fe_{1-x}O"

Non-stochiometry of ZnO

- Wurzite (ZnS) structure type
 - hexagonally packed oxygen anions
 - half of the tetrahedral voids filled with Zn²⁺
- Upon heating some zinc is partially reduced and migrates to interstitial sites
 - Zn_{1.00007}O at 800 °C:
 "ZnO" is yellow
- Interstitial Zn atoms act as electron donators

 $- Zn_i^{(2-x)+} \rightarrow Zn_i^{2+} + xe^{-}$

 $Zn^{1+} O^{1-} Zn^{1+} O^{1-} Zn^{2+} O^{1-}$ $O^{1-} Zn^{1+} O^{1-} Zn^{1+} O^{1-} Zn^{1+}$ $Zn^{1+} O^{2-} Zn^{1+} O^{1-} Zn^{1+} O^{1-}$ $O^{1-} Zn^{1+} O^{1-} Zn^{1+} O^{1-} Zn^{1+}$ $Zn^{1+} O^{1-} Zn^{1+} O^{2-} Zn^{1+} O^{1-}$ $O^{1-} Zn^{1+} O^{1-} Zn^{1+} O^{1-} Zn^{1+}$

Non-stochiometry of NiO

- Stochiometric NiO is an insulator and green (bandgap 3.8 eV)
- Non-stochiometric Ni_{0.98}O (NaCl structure type) is a semiconductor and black
- Formation of Ni vacancies by oxidation : 2 Ni²⁺ + ½ O₂ → O²⁻ + □ + 2 Ni³⁺
- Ni³⁺ in the lattice is an acceptor for electrons
- Li doping $(0 \le x \le 0.1)$: Li_xNi_{1-x}O
- As conductive as typical metals

Measuring the electronic properties of nonstochiometric transition metal oxides

Defects donor levels

A: extra electrons in the

•

conduction band as charge carriers B: extra holes in the valence Defects acceptor levels ۲ mma band as charge carriers Hall effect $E_{y} = -\frac{j_{x}B_{z}}{ne} \quad n; \text{ -e: electron concentration and charge}$ $R_{H} = \frac{E_{y}}{j_{x}B_{z}} = -\frac{1}{ne} \quad \text{for electrons} \qquad R_{H} = +\frac{1}{pe} \quad \text{for holes}$ Voltmeter Seebeck effect Li,Ni,_,O 400 $\Delta \Phi = \Phi_A - \Phi_B = -\alpha \Delta T$

 α (Seebeck coefficient) positive if holes are the major charge carrier, negative for electrons

Flourite-type oxides

 CaF₂ structure type: large and highly charged cations, small anions (PbF₂, UO₂, ZrO₂)

- fcc packing of cations, anions in tetrahedral voids
- large octahedral voids are vacant, anion mobility via interstitial sites

Kation O Anion

Crystal chemistry of ZrO₂

X.-J. Jin I Current Opinion in Solid State and Materials Science 9 (2005) 313-318

 Martensitic phase transformations of ZrO₂

 $- \text{ m-ZrO}_{2}^{1100^{\circ}\text{C}} \xrightarrow{2300^{\circ}\text{C}} \text{ c-ZrO}_{2} \xrightarrow{2300^{\circ}\text{C}} \text{ c-ZrO}_{2}$

 Cubic ZrO₂ (CaF₂ structure type) is stable above 2300
 °C or can be stabilized by cation substitution

$$- Ca_m Zr_{1-m}O_{2-m}$$

Applications of stabilized zirconia

- Solid electrolyte, e.g in fuel cells
- Oxygen sensor $E = \frac{2.3RT}{4F} \log \left(\frac{p'}{p_{ref}}\right) \text{ Nernst}$
- Application: 3-way catalyst
 - Simultaneous oxidation of $C_n H_m$ and CO and reduction of NO_x requires optimal air/exhaust gas ratio ($\lambda = 1$)
 - λ-sensor: Yttrium stabilized zirconia (YSZ), ca. 3 mol-% Y₂O₃

Fig. 156 λ -Sonde, Dreiweg-Katalysator und λ -Sondenspannung in Abhängigkeit von λ .

Extended defects

- Crystallographic shear
 - Elimination of vacancies by crystallographic shear: $MO_{3-x} = M_nO_{3n-1}$, $M = Mo, W, n \ge 4$

(a) \bigcirc : Leerstelle WO_3

 $W_{11}O_{32}$

ReO₃ type oxides

 Mo_5O_{14}

Vacancy elimination in oxygen deficient ReO₃ type solids

MoVTeNb catalyst (M1)

Solid solutions: Oxides

- Ruby: 0.04–0.5 % Cr³⁺ in $\alpha\text{-Al}_2\text{O}_3$
- Structure of corundum
 - hexagonal packing of oxygen, ²/₃ of octahedral voids occupied by Al³⁺
- Isomorphous substitution Al³⁺ by Cr³⁺
- Application: Ruby laser

Defects in metals

- Microstructure of engineering materials
 - point defects
 - grain boundaries
 - interfaces
 - twin boundaries
 - dislocations

Interstitial solid solutions: Steel

- Up to 2% C can be dissolved in fcc γ-Fe (Austenite), 0.8% at 723 °C, as interstitial solid solution
- At 723 °C only 0.02% C can be dissolved in bcc α -Fe (Ferrite)
- Upon slow cooling Austenite splits into Ferrite and Zementite (diffusion controlled)
- Upon fast cooling, a novel metastable phase will form without diffusion: Tetragonally distorted bcc Fe with C in octahedral intersitials, Martensite (hardening of steel)

Properties governed by defects

Microscopy: Planar defects in Cu catalysts

Diffraction: Planar defects in Cu

Stacking faults in fcc materials

Combined XRD and TEM apprach

(Kasatkin, I., Kurr, P., Kniep, B., Trunschke, A., Schlögl, R., Angew. Chem. 119, 2007, 7465)

Literature and references

- L. Smart, E. Moore, "Einführung in die Festkörperchemie" (German), Vieweg, Braunschweig, 1997
- W. J. Moore, "Der feste Zustand" (German), Vieweg, Braunschweig, 1977
- A. F. Hollemann, N. Wieberg, "Lehrbuch der Anorganischen Chemie" (German), de Gruyter, Berlin, 1995
- P. A. Cox, "The Electronic Strucutre and Chemistry of Solids" Oxford University Press, Oxford, 1987
- U. Müller, "Anorganische Strukturchemie" (German), Teubner, Stuttgart, 1991
- S.E. Dann "Reaction and Characterization of Solids" RSC, Cambridge 2000.
- W. Reimers, A.R. Pyzalla, A. Schreyer, H. Clemens (ed), "Neutrons and Synchroton Radiation in Engineeing Materials Science", Wiley, Weinheim, 2008
- I. Kasatkin, P. Kurr, B. Kniep, A. Trunschke, R. Schlögl, Angew. Chem. 119, 2007, 7465
- M.S. Paterson, J. Appl. Phys. 23, 1952, 805
- X.-J. Jin, Current Opin. Solid State Mater. Sci. 9, 2005, 313