
Defending	Layer	7:	A	look	inside	Web	
Application	Firewalls

OWASP	Aguascalientes	- Chapter	Meeting	September – September	1st	2016



{Alejandro	Jalomo,	MSc,	CISSP,	CRISC,	
CISA,	ISO	27001	LA}
§ 15	years	in	TI,	6	years	in	Information	Security
§ Experience	with	ISO	27001,	HIPAA	and	PCI	Compliance,	Audit,	

Risk	management.
§ Expert	in	data	protection	solutions
§ Drummer,	black	&	gray	tattoos,	concerts

{David	Garcia}
§ More	than	8	years	in	Information	Security
§ Experience	with	Application	Security,	Vulnerability	Management,	Third	Party	

Compliance.
§ Expert	in	Pentesting
§ Rubik’s	cubes,	soccer,	Necaxa

About us

We are	not in	
social	networks,	
we just talk by
phone



Agenda

§ What is a	Web	Application Firewall	(WAF)?
§ When to	use	a	WAF?
§ WAF	Architecture
§ Key	Market Players
§ Top	Ten	Open	Source WAFs
§ Typical WAF	Architecture
§ Difference between IPS	and	WAF
§ What is ModSecurity?
§ What ModSecurity can	do?
§ Deployment Options
§ Main Areas of	Functionality
§ What Rules	Look	Like
§ Transaction Lifecycle
§ Useful	Rules
§ Transaction Example
§ Other	projects
§ What	is	WebKnight?
§ Questions
§ Demos



What is a	Web	Application Firewall	(WAF)?

§ A web application firewall (WAF) is an appliance, server
plugin, or filter that applies a set of rules to an HTTP
conversation.

§ Generally, these rules cover common attacks such as cross-site
scripting (XSS) and SQL injection.

§ By customizing the rules to your application, many
attacks can be identified and blocked. The effort to
perform this customization can be significant and
needs to be maintained as the application is
modified.



What is a	Web	Application Firewall	(WAF)?

§ Software or appliances used to filter unwanted TCP port
80/443 traffic from connecting to a web server

§ Web Application Firewalls:
• Examine within the data payload, beyond simply the

IP or TCP headers
• Perform "Deep packet inspection"
• Detect and respond to signatures for known

application vulnerabilities
• Do not require modifications to existing application

code



When to	use	a	WAF?



Gartner 2016 Magic Quadrant for Web Application Firewalls

Magic Quadrant for Web	Application Firewalls,Published:	19	July 2016

Key	Market Players



To
p	
10
	O
pe

n	
So
ur
ce

W
AF

s

1. ModSecurity (Trustwave SpiderLabs)
2. AQTRONIX	WebKnight
3. ESAPI	WAF
4. WebCastellum
5. Binarysec
6. Guardian@JUMPERZ.NET
7. OpenWAF
8. Ironbee
9. Profense
10.Smoothwall



Typical WAF	Architecture



Difference between IPS	and	WAF

An	IPS	generally	sits	in-line	and	watches	network	traffic	as	the	
packets	flow	through	it.	It	acts	by	trying	to	match	data	in	the	
packets	against	a	signature	database	or	detect	anomalies	
against	what	is	pre-defined	as	"normal"	traffic.

IPSs	do	not	have	the	ability	to	understand	web	application	
protocol	logic.	Hence,	IPSs	cannot	fully	distinguish	if	a	request	
is	normal	or	malformed	at	the	application	layer	(OSI	Layer	7).

WAFs are designed to protect web applications/servers from
web-based attacks that IPSs cannot prevent. In the same
regards as an IPS, WAFs can be network or host based. They sit
in-line and monitor traffic to and from web
applications/servers. Basically, the difference is in the level of
ability to analyze the Layer 7 web application logic.

By watching for unusual or unexpected patterns in the traffic
they can alert and/or defend against unknown attacks. For
example- if a WAF detects that the application is returning
much more data than it is expected to, the WAF can block it
and alert someone.

Difference 
between IPS 
and WAF



What	is	ModSecurity?

• An HTTP intrusion detection tool
• Lets you see your web traffic
• Once you are able to see HTTP traffic, you are able to analyze it in real time,
record it as necessary, and react to the events

• Without actually touching web applications
• The concept can be applied to any application—even if you can’t access the
source code.

ModSecurity is a toolkit for real-time
web application monitoring, logging,
and access control.



• Real-time	application	security	monitoring	and	access	control
At its core, ModSecurity gives you access to the HTTP traffic stream, in real-time, along with the
ability to inspect it.

What	ModSecurity can	do?

• Virtual	patching
Virtual patching is a concept of vulnerability mitigation in a separate layer, where you get to fix
problems in applications without having to touch the applications themselves.

ModSecurity excels at virtual patching because of its reliable blocking capabilities and the
flexible rule language that can be adapted to any need.

• Full	HTTP	traffic logging
ModSecurity gives you that ability to log anything you need, including raw transaction data,
which is essential for forensics.



• Web	application hardening
ModSecurity is attack surface reduction, in which you selectively narrow down the HTTP
features you are willing to accept (e.g., request methods, request headers, content types, etc.).



Deployment	Options

• Embedded
Because ModSecurity is an Apache module, you can add it to any compatible version of Apache.

The embedded option is a great choice for those who already have their architecture laid out
and don’t want to change it.

• Reverse	proxy	
Reverse proxies are effectively HTTP routers, designed to stand between web servers and their
clients.

You can use it to protect any number of web servers on the same network.



Main Areas of	Functionality

• Parsing
The supported data formats are backed by security-conscious parsers that extract bits of data
and store them for use in the rules.

• Buffering
Both request and response bodies will be buffered. This means that ModSecurity usually sees
complete requests before they are passed to the application for processing, and complete
responses before they are sent to clients.



Main Areas of	Functionality

• Logging	
This feature allows you to record complete HTTP traffic. Request headers, request body,
response header, response body will be available

• Rule	engine
The rule engine builds on the work performed by all other components. By the time the rule
engine starts operating, the various bits and pieces of data it requires will all be prepared and
ready for inspection.

At	that	point,	the	rules	will	take	over	to	assess	the	transaction	and	take	actions	as	necessary.



What Rules	Look	Like

SecRule ARGS	"<script>"	log,deny,status:404

SecRule VARIABLES	OPERATOR	ACTIONS	

configuration	tells	ModSecurity how	to	process	the	data	it	sees;	
the	rules	decide	what	to	do	with	the	processed	data.	

The	three	parts	have	the	following	meanings:

1.	The	VARIABLES	part	tells	ModSecurity where	to	look.	The	ARGS	variable,	used	in	the	example,	means	all	
request	parameters.

2.	The	OPERATOR	part	tells	ModSecurity how	to	look.	In	the	example,	we	have	a	regular	expression	pattern,	
which	will	be	matched	against	ARGS.	

3.	The	ACTIONS	part	tells	ModSecurity what	to	do	on	a	match.	The	rule	in	the	example	gives	three	
instructions:	log	problem,	deny	transaction	and	use	the	status	404	for	the	denial	(status:404).



Transaction Lifecycle

Request	
Headers	(1)

allow	rule	writers	to	assess	a	request	
before	the	costly	request	body	
processing	is	undertaken

For	example,	ModSecurity will	not	parse	an	XML	request	body	by	
default,	but	you	can	instruct	it	do	so	by	placing	the	appropriate	rules	
into	phase	1.



Transaction Lifecycle

Request	
Body	(2)

is	the	main	request	
analysis	phase	and	takes	
place	immediately	after	a	
complete	request	body	has	
been	received	and	
processed.	



Transaction Lifecycle

Response	
Headers	(3)

takes	place	after	response	headers	become	
available,	but	before	a	response	body	is	
read.	

The	rules	that	need	to	decide	whether	to	
inspect	a	response	body	should	run	in	this	
phase.



Transaction Lifecycle

Response	
Body	(4)

is	the	main	response	analysis	phase.	The	
response	body	will	have	been	read,	with	all	
its	data	available	for	the	rules	to	make	their	
decisions.



Transaction Lifecycle

Logging	(5)

It’s	the	only	phase	from	which	you	cannot	
block.	

By	the	time	this	phase	runs,	the	
transaction	will	have	finished,	so	there’s	
little	you	can	do	but	record	the	fact	that	it	
happened.	



Useful	Rules

AV	Integration

Drop for Brute Force
SecAction phase:1,initcol:ip=%{REMOTE_ADDR},nolog
SecRule ARGS:login "!^$"	\

nolog,phase:1,setvar:ip.auth_attempt=+1,deprecatevar:ip.auth_attempt=20/120	
SecRule IP:AUTH_ATTEMPT	"@gt 25"	\

"log,drop,phase:1,msg:'Possible	Brute Force Attack'"	

SecRule FILES_TMPNAMES	"@inspectFile /opt/modsecurity/bin/file-inspect.pl“	\
phase:2,t:none,log,block	



Transaction Example

POST	/?a=test	HTTP/1.0	Content-Type:	
application/x-www-form-urlencoded
Content-Length:	6	
b=test

parameter	a	in	the	query	string	and	parameter	b	in	the	request	
body

request



Transaction Example

HTTP/1.1	200	OK	
Date:	Sun,	17	Jan	2010	00:13:44	GMT	
Server:	Apache	
Content-Length:	12	Connection:	close	
Content-Type:	text/html	

Hello	World!

ModSecurity is first invoked by Apache after
request headers become available, but before a
request body (if any) is read.

First comes the initialization message, which
contains the unique transaction ID generated by
mod_unique_id.

Using this information, you should be able to
pair the information in the debug log with the
information in your access and audit logs.

At this point, ModSecurity will parse the
information on the request line and in the
request headers

response



Transaction Example

In	this	example,	the	query	string	part	contains	a	single	parameter	(a),	so	you	
will	see	a	message	documenting	its	discovery.	ModSecurity will	then	create	a	
transaction	context	and	invoke	the	REQUEST_HEADERS	phase:	

[4] Initialising transaction (txid SopXW38EAAE9YbLQ).
[5] Adding request argument (QUERY_STRING): name "a", value "test"
[4] Transaction context created (dcfg 8121800).
[4] Starting phase REQUEST_HEADERS.

Assuming that a rule didn’t block the transaction, ModSecurity
will now return control to Apache, allowing other modules to
process the request before control is given back to it.



Transaction Example

In the second phase, ModSecurity will first read and process the request
body, if it is present.

In the following example, you can see three messages from the input filter,
which tell you what was read.

The fourth message tells you that one parameter was extracted from the
request body. The content type used in this request (application/x-www-
form-urlencoded) is one of the types ModSecurity recognizes and parses
automatically. Once the request body is processed, the REQUEST_BODY rules
are processed.

[4] Second phase starting (dcfg 8121800).
[4] Input filter: Reading request body.
[9] Input filter: Bucket type HEAP contains 6 bytes.
[9] Input filter: Bucket type EOS contains 0 bytes.
[5] Adding request argument (BODY): name "b", value "test"
[4] Input filter: Completed receiving request body (length 6).
[4] Starting phase REQUEST_BODY.



Transaction Example

Shortly thereafter, the output filter will start receiving data, at which point
the RESPONSE_HEADERS rules will be invoked:

[9] Output filter: Receiving output (f 81d2258, r 81d0588).
[4] Starting phase RESPONSE_HEADERS.



Transaction Example

Once all the rules have run, ModSecurity will continue to store the response
body in its buffers, after which it will run the RESPONSE_BODY rules:

[9] Output filter: Bucket type MMAP contains 12 bytes.
[9] Output filter: Bucket type EOS contains 0 bytes.
[4] Output filter: Completed receiving response body (buffered full - 12
bytes).
[4] Starting phase RESPONSE_BODY.



Transaction Example

Finally, the logging phase will commence. The LOGGING rules will be run first
to allow them to influence logging, after which the audit logging subsystem
will be invoked to log the transaction if necessary. A message from the audit
logging subsystem will be the last transaction message in the logs. In this
example, ModSecurity tells us that it didn’t find anything of interest in the
transaction and that it sees no reason to log it:

[4] Initialising logging.
[4] Starting phase LOGGING.
[4] Audit log: Ignoring a non-relevant request.



Transaction Example

Again, assuming that none of the rules blocked, the accumulated response
body will be forwarded to the client:

[4] Output filter: Output forwarding complete.



1. http://waf-fle.org/	
2. https://splunkbase.splunk.com/app/880/
3. https://www.owasp.org/index.php/Category:OWASP_WeBekci_Project	
4. http://www.root25.com/2013/02/mod-security-log-auditor-application-in-PHP-free-analyse-

draw-chart-from-modsecurity-log.html	
5. https://www.netsparker.com/blog/docs-and-faqs/generate-modsecurity-web-application-

firewall-rules/		

Other	projects



AQTRONIX	WebKnight is	an	application	firewall	for	IIS	and	other	web	servers	and	is	released	under	the	GNU	
General	Public	License.	

More	particularly	it	is	an	ISAPI	filter	that	secures	your	web	server	by	blocking	certain	requests.	

If	an	alert	is	triggered	WebKnight will	take	over	and	protect	the	web	server.	

It	does	this	by	scanning	all	requests	and	processing	them	based	on	filter	rules,	set	by	the	administrator.	

These	rules	are	not	based	on	a	database	of	attack	signatures	that	require	regular	updates.	Instead	WebKnight
uses	security	filters	as	buffer	overflow,	SQL	injection,	directory	traversal,	character	encoding	and	other	attacks.	

This	way	WebKnight can	protect	your	server	against	all	known	and	unknown	attacks.	

Because	WebKnight is	an	ISAPI	filter	it	has	the	advantage	of	working	closely	with	the	web	server,	this	way	it	can	
do	more	than	other	firewalls	and	intrusion	detection	systems,	like	scanning	encrypted	traffic.



Questions?DEMOS


