
 
 

 
 

 
Metabolites 2021, 11, 685. https://doi.org/10.3390/metabo11100685 www.mdpi.com/journal/metabolites 

Review 

Defining Acute Coronary Syndrome through Metabolomics 
Arun Surendran 1,2,3, Negar Atefi 1, Hannah Zhang 1, Michel Aliani 4 and Amir Ravandi 1,3,5,* 

1 Cardiovascular Lipidomics Laboratory, St. Boniface Hospital, Albrechtsen Research Centre, Winnipeg, MB 
R2H 2A6, Canada; surendas@myumanitoba.ca (A.S.); atefin@myumanitoba.ca (N.A.);  
zhangh22@myumanitoba.ca (H.Z.) 

2 Mass Spectrometry and Proteomics Core Facility, Rajiv Gandhi Centre for Biotechnology,  
Thiruvananthapuram 695014, Kerala, India 

3 Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, 
Winnipeg, MB R2H 2A6, Canada 

4 Faculty of Agricultural and Food Sciences, Rady Faculty of Health Sciences, University of Manitoba,  
Winnipeg, MB R2H 2A6, Canada; Michel.Aliani@umanitoba.ca 

5 Section of Cardiology, Department of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 
Winnipeg, MB R2H 2A6, Canada  

* Correspondence: aravandi@sbgh.mb.ca; Tel.: +204-235-3206 or 204-235-3414;  
Fax: 204-235-0793 or 204-235-0793 

Abstract: As an emerging platform technology, metabolomics offers new insights into the 
pathomechanisms associated with complex disease conditions, including cardiovascular diseases. 
It also facilitates assessing the risk of developing the disease before its clinical manifestation. For 
this reason, metabolomics is of growing interest for understanding the pathogenesis of acute coro-
nary syndromes (ACS), finding new biomarkers of ACS, and its associated risk management. 
Metabolomics-based studies in ACS have already demonstrated immense potential for biomarker 
discovery and mechanistic insights by identifying metabolomic signatures (e.g., branched-chain 
amino acids, acylcarnitines, lysophosphatidylcholines) associated with disease progression. Herein, 
we discuss the various metabolomics approaches and the challenges involved in metabolic profil-
ing, focusing on ACS. Special attention has been paid to the clinical studies of metabolomics and 
lipidomics in ACS, with an emphasis on ischemia/reperfusion injury. 
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1. Introduction 
Coronary artery disease (CAD) continues to be a major public health concern with 

considerable morbidity and mortality in developed countries [1]. CAD includes chronic 
coronary artery disease (stable angina) and acute coronary syndrome (ACS), which al-
most invariably presents chest discomfort with or without dyspnea. It is estimated that in 
the United States alone, 720,000 people experience a new episode of ACS every year [2]. 
The costs and resource utilization associated with ACS also place an enormous economic 
burden on the healthcare system [2–4]. For instance, in a retrospective single-cohort study, 
it was found that the average one-year cost per patient associated with ACS was around 
32,000 US dollars [4]. The term ACS refers to a spectrum of conditions in which myocar-
dial ischemia or infarction develops due to acute occlusion of coronary blood flow to any 
part of the heart. The usual cause of acute occlusion is coronary artery thrombosis caused 
by rupture or erosion of a high-risk, lipid-laden, atheromatous plaque [5]. This sudden, 
reduced blood flow to the heart results in an imbalance between myocardial metabolic 
demands and blood supply, leading to myocardial ischemia, which is the hallmark of ACS 
[3,6]. The imbalance may also be caused by several other cardiac abnormalities, including 
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coronary artery embolism, coronary spasm, coronary dissection, severe anemia, and cal-
cific aortic valve stenosis [3]. Depending upon the range of ischemic state, location of the 
occlusion, cardiac biomarker levels (e.g., troponin), and ST-segment elevation on the elec-
trocardiogram (ECG), ACS is mainly categorized into three types (Figure 1), namely un-
stable angina (UA), non-ST-segment elevation myocardial infarction (NSTEMI), and ST-
segment elevation myocardial infarction (STEMI) [5]. Typically, a complete coronary ar-
tery occlusion leading to myocardial tissue injury and elevated cardiac troponin level re-
sults in STEMI. Partial occlusion or occlusion with collateral circulation may lead to 
NSTEMI or UA, depending on the presence or absence of cardiac troponin level, respec-
tively [5,7]. Troponins are released into the bloodstream when there is any damage to the 
heart muscle [8]. Due to its high sensitivity and specificity, cardiac troponin measurement 
is an essential element in diagnosing and managing ACS. 

 
Figure 1. Classification of acute coronary syndromes. Acute coronary syndromes are categorized 
into unstable angina (UA), non-ST-segment elevation myocardial infarction (NSTEMI), and ST-seg-
ment elevation myocardial infarction (STEMI). A complete coronary artery occlusion due to throm-
bus formation results in STEMI, where the coronary blood flow is completely obstructed. A partial 
occlusion of the artery (blood flow is not entirely restricted) can result in NSTEMI or UA. 

The human heart is the most metabolically active organ, and under normal condi-
tions, cardiac metabolism is tightly regulated by oxygen availability, substrate oxidation, 
hormonal and neurohumoral signals, among other factors [9]. The primary substrates for 
cardiac ATP production are lipids, carbohydrates, lactate, and glycogen [9]. Of these, li-
pids alone contribute to 60–90% of ATP production in the heart via oxidation of fatty acids 
[10]. Due to its exuberant use in the myocardium and its role in maintaining the myocar-
dial cell structure and cardiac function, alterations in lipid metabolism contribute to many 
cardiovascular pathologies, including atherosclerosis, insulin resistance, hypertension, 
and type 2 diabetes mellitus [11]. A fall in oxygen level and substrate availability during 
myocardial ischemic conditions alters the dynamic equilibrium state of cardiac metabo-
lism and leads to loss of homeostasis [12]. Hence, it is not surprising that ACS involves 
changes in cardiac metabolism. While some of the metabolic changes help the heart adjust 
to the altering substrate needs and physiological demands, most changes are maladaptive 
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and initiate other cardiac abnormalities, including myocardial stunning, cell death, and 
contractile dysfunction [13]. Recent findings suggest that alterations in the cardiac metab-
olism alone can also perpetuate disturbances in systemic metabolism [14]. Hence, blood-
derived plasma or serum metabolic profile could provide insights into the pathophysio-
logical processes happening within the heart in the event of an ACS. 

Metabolomics is the new entrant in the ‘omics’ cascade in the systems biology (ge-
nomics, transcriptomics, and proteomics) approach (Figure 2). It involves high-through-
put identification and quantification of small chemical compounds (<1000 to 1500 Da), 
commonly known as metabolites, present in a variety of biological system such as a cell, 
an organism, or biological fluids [15,16]. The complete set of these small-molecule metab-
olites and their interactions within the biological system are known as the metabolome. 
The metabolome includes endogenous (e.g., amino acids, fatty acids, sugars, carbohy-
drates, vitamins, lipids, and their derivatives) as well as exogenous (e.g., pollutants, phar-
maceuticals, food additives, xenobiotics) compounds. Lipidomics is a novel subdivision 
of metabolomics, dedicated to the detailed analysis of complex lipid mixtures found in 
biological materials [17]. The metabolome composition is inherently dynamic and flexible 
due to its continuous interaction within the biological system and also with the outside 
environment, including the effects of drugs, nutrition, lifestyle, or therapeutics [18]. 
Hence, any perturbations in metabolite levels are a true reflection of the phenotype and 
function of the developmental or pathological state of the biological system. Recent ad-
vancements in ‘omics’ technology platforms, particularly genomics and proteomics tech-
nologies, have enabled us to assess the changes within the genome and the proteome in 
cardiovascular diseases (CVD), including ACS. Metabolomics and lipidomics are required 
to bridge the knowledge gap between phenotype and metabolic abnormalities in CVD.  

Given that ACS is a multifactorial phenomenon, it requires a global assessment of 
molecular/cellular pathological functions from both untargeted and targeted approaches. 
Recognizing this, the American Heart Association recently released a scientific statement 
highlighting the potential impact of metabolomics in cardiovascular health and disease 
[19]. Thus, metabolomics and lipidomics are now evolving as essential tools in cardiovas-
cular research (i) to gain a better understanding of the mechanisms underlying CVD, (ii) 
to determine the clinically relevant metabolomic perturbations, and (iii) to identify novel 
biomarkers involved in various cardiovascular disease conditions. 
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Figure 2. The ‘omics cascade’. It depicts the directional flow of biological information from genes to metabolites. Metabo-
lomics is at the end of the cascade and is closer to the phenotype of an organism than proteomics or genomics. 

2. Analytical Tools in Metabolomics 
Though metabolomics research is considered a relatively new field, the initial report 

of screening metabolites in body fluids for diagnostic purposes can be traced back to an-
cient China (1500–2000 BC), where traditional Chinese physicians used ants to diagnose 
diabetes by evaluating the smell, taste, and color of urine samples from patients [20]. How-
ever, the pioneering work carried out by the laboratories of Robinson’s and Pauling’s re-
search groups in the early 1970s [21–23] laid the foundation for a new era in metabolomics 
research. They successfully quantitated metabolites from various biofluids, including hu-
man blood and urine vapor, by applying the gas chromatography coupled with mass 
spectrometry (GC/MS) technique. The first printed reference to the word ‘metabolic pro-
file’ appeared in the literature in 1971 [24,25], when Horning and Horning used the 
GC/MS platform to profile different human metabolic products, including sugars, alco-
hols, and drug metabolites from blood and urine samples. Since these initial efforts, sev-
eral investigators have contributed in parallel to develop this naive concept into a format 
that is on par with the other established ‘omics’ approaches, namely genomics and prote-
omics. The word ‘metabolome’ was first used by Oliver Fiehn, a key metabolomics re-
searcher, in 1998 [26] to denote the changes in relative concentrations of metabolites due 
to the deletion or overexpression of a gene. Due to the metabolome’s vast complexity and 
dynamic nature, no single instrument platform currently available can simultaneously an-
alyze all the metabolites present in a biological sample. For example, within lipids alone, 
diverse lipid classes and lipid molecular species are categorized based on their structural 
and chemical properties. Moreover, while some lipids such as cholesteryl esters and tri-
glycerides are usually present in high concentrations (1–10 mmol/L) in samples such as 
plasma, others such as eicosanoids derived from arachidonic acid are present only in trace 
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amounts (1–10 pmol/L) [27]. Numerous analytical platforms with varying degrees of spec-
ificity and sensitivity have been developed in the last two decades to measure specific 
portions of the complex metabolome. Presently, nuclear magnetic resonance (NMR) spec-
troscopy and mass spectrometry (MS), coupled with gas or liquid chromatography 
(GC/MS or LC/MS, respectively), are the most widely used analytical tools in metabolom-
ics investigations [15]. In addition, analytical platforms such as MS coupled with capillary 
electrophoresis (CE/MS), shotgun lipidomics, and direct MS infusion methods are also 
used to fully understand the broad spectrum of metabolites [15,28]. For instance, while 
NMR makes the study of different isomers possible, GC/MS or LC/MS can analyze a large 
variety of molecules with high sensitivity, and CE/MS can provide data of high resolution. 
Table 1 summarizes the main advantages and disadvantages of using MS and NMR tech-
niques. 

Table 1. A summary of the important advantages and limitations of NMR and MS techniques. 

Technique Advantages Disadvantages 

NMR 

Highly reproducible results Relatively low sensitivity compared to MS 
Provides structural information about the com-

pounds 
Only suited for medium to high abundant metab-

olites (micro-molar range) 

Minimal requirement for sample preparation 
Relatively longer data acquisition times compared 

to MS  
Non-destructive in nature and suitable for multi-

ple analyses of the same sample 
Highly pH-sensitive  

Allows investigation of tissue energetics and in 
vivo metabolism 

 

Suitable for compounds which are otherwise dif-
ficult to ionize or derivatize 

 

Appropriate to use with samples with high salt 
content, including urine 

 

Well-established NMR spectra library to aid data 
analysis 

 

Ability to detect different isomeric products  

GC/MS 

Method of choice for the analysis of volatile/non-
polar metabolites 

Detection of polar metabolites is difficult and 
needs chemical derivatization. 

Increased signal-to-noise (S/N) ratios and rela-
tively better resolution 

Limited metabolome coverage 

Publicly available spectral libraries for com-
pound identification 

The high temperature applied in GC/MS can 
cause degradation or transformation of com-

pounds.  

LC/MS 

Ability to analyze metabolites with a wide range 
of polarity, including thermally unstable ones  

Not suitable for the analysis of gaseous mixtures 

Quicker and less extensive sample extraction 
procedures 

Decreased sensitivity due to ion suppression 

Suitable for measurement of compounds of 
lower volatility 

Difficulty in distinguishing isomers (both struc-
tural and positional) of molecules 

Requires little sample volume  
Abbreviations: NMR, nuclear magnetic resonance spectroscopy; GC/MS, gas chromatography/mass spectrometry; LC/MS, 
liquid chromatography/mass spectrometry. 
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2.1. NMR Spectroscopy 
NMR spectroscopy is one of the most prevalent techniques used in metabolomics 

research for structural elucidation of both pure compounds and mixtures. This technique 
relies on the magnetic spin properties (nuclear magnetic moment and angular momen-
tum) of protons and neutrons in the nucleus of an atom to provide information on molec-
ular structures. It is based on the principle that any nucleus possessing a (non-zero) nu-
clear spin can release characteristic radiofrequency waves when placed in an external 
magnetic field. The resonance frequency of the released energy is affected by the chemical 
microenvironment of these atoms and the coupling effect with nearby nuclei. The result-
ing frequencies are recorded as chemical shifts, and their patterns can be used for com-
pound identification [15]. The most commonly used nuclei for analysis are 1H, 13C, and 31P 
isotopes. The proton NMR spectroscopy (1H-NMR) has the advantage of having greater 
relative sensitivity and a short acquisition time. For this reason, 1H-NMR is widely used 
to identify and quantify a large number of small molecules coexisting in biological mate-
rial, such as tissues, whole cells, and biofluids. The major disadvantage of traditional one-
dimensional (1D) 1H-NMR is that the spectrum became very complex for larger, more 
complex molecules, making interpretation difficult as most of the signals overlap heavily. 
However, two-dimensional (2D) NMR helps circumvent this challenge by resolving sig-
nals that usually overlap in 1H-NMR. In short, 2D-NMR provides extra information about 
a molecule compared to traditional 1H-NMR spectra, thereby making spectral interpreta-
tion easy. Current practice requires 1D 1H-NMR to complement 2D-NMR or mass spec-
trometer for molecular identity confirmation. Carbon-13 NMR spectroscopy (13C-NMR) 
and phosphorous-31 NMR spectroscopy (31P-NMR) predominantly find applications in 
cellular energetics, particularly in tracking cellular changes in cardiac metabolism under 
normoxic and ischemic conditions [29–31].  

Table 2 shows that in ACS metabolomics studies, 1H-NMR spectroscopy is the most 
used NRM technique for analyzing biofluids, including plasma, serum, and urine. 1H-
NMR spectroscopy is routinely used to analyze several low-molecular-weight molecules, 
including branched-chain amino acids (e.g., valine, isoleucine) and ketone bodies from 
plasma and serum to find biomarkers for ACS [32–34]. In a study looking at potential 
candidate biomarkers for UA from plasma samples, 1H-NMR spectroscopy identified ten 
steroid metabolites belonging to the steroid hormone biosynthesis pathway, including 
one mineralocorticoid (deoxycorticosterone) and nine sex hormone metabolites (e.g., es-
tradiol, 2-hydroxyestradiol) [35]. Additionally, NMR has become the primary tool for an-
alyzing urinary metabolites. In a study involving UA patients [36], 1H-NMR analysis 
could successfully identify and quantitate waste metabolites such as trimethylamine-N-
oxide (TMAO) and trimethylamine (TMA) from urine specimens, in addition to short-
chain fatty acids (e.g., 3-hydroxybutyrate), organic acids (e.g., indol-3-acetate, methylma-
lonate), and amino acids (e.g., lysine, proline). 

The main advantages of NMR are its non-destructive nature and higher reproduci-
bility [37,38]. However, it is often limited by its requirement of a larger sample amount 
(2–50 mg) and therefore reduced sensitivity for low abundant compounds [39]. An early 
metabolomics study showed that 1H-NMR spectroscopy could correctly diagnose the 
presence of CAD and assess its severity [40]. Other applications of NMR-based metabolic 
profiling in ACS mainly include analysis of both urine [36] and serum [33,34] metabolites 
for unstable angina pectoris disease, investigating the serum metabolic characteristics of 
acute myocardial infarction (AMI) patients in comparison with those of chest pain con-
trols [41], and deciphering the metabolomic fingerprint of coronary blood in STEMI pa-
tients [42].  

Table 2. Main findings from the clinical studies of metabolomics in acute coronary syndrome. 
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No. First Author, Year Sample Size Sampling Time Specimen/ 
Technique Main Findings 

1 W Zhong [43], 2021 284 ACS; 130 HC 
At the time of hospital ad-

mission 
Plasma 
LC/MS 

Phenylalanine, arginine, and proline metabolism 
and synthesis and degradation of ketone bodies 

are involved in ACS pathogenesis. 

2 E Chorell [44], 2021 
50 STEMI; 50 

NSTEMI; 100 HC 
After fasting for 4 h 

Plasma 
GC/MS,  
LC/MS 

Plasma lysophospholipids ratio (LPC:LPE) could 
predict future risk in STEMI and NSTEMI pa-

tients.  

3 N Aa [45], 2021 
85 MI; 61 non-MI 
chest pain; 84 HC 

Within 6 h of the initial 
symptom attack 

Plasma 
GC/MS,  
LC/MS 

Patients with MI had elevated plasma levels of de-
oxyuridine, methionine, and homoserine. 

4 H Chen [46], 2021 
Discovery: 942  
Validation: 493  

After fasting for 8 h 
Plasma 
LC/MS 

Perturbations in cysteine and methionine metabo-
lism and glycerophospholipid metabolism are as-

sociated with CAD severity. 

5 A Mehta [47], 2020 
Discovery: 454  
Validation: 322  

After overnight fasting 
Plasma 
LC/MS 

Perturbations in tryptophan, lysine, tyrosine, as-
paragine/aspartate, urea cycle, and the carnitine 
shuttle metabolism are associated with mortality 

in CAD patients. 

6 J Li [48], 2020 
136 NOCAD; 118 

AMI 
After overnight fasting 

Serum 
LC/MS 

23 differential metabolites were identified between 
AMI and NOCAD, including 12 acylcarnitines, 7 
fatty acids, 3 glycerophospholipids, and L-trypto-

phan. 

7 H Jiang [49], 2020 252 ACS 
After initial diagnosis of 

ACS 
Serum 
LC/MS 

A total of four metabolites including isoundecylic 
acid, betaine, 1-heptadecanoyl-sn-glycero-3-phos-
phocholine, and acetylcarnitine could discriminate 

stable and vulnerable plaques. 

8 A Khan [50], 2020 
112 patients at AMI 

risk; 89 HC 
During routine blood collec-
tion after overnight fasting 

Serum 
LC/MS 

L-homocysteine sulfinic acid, cysteic acid, and car-
nitine could serve as predictive markers for AMI 

risk. 

9 
M Pouralijan Amiri 

[35], 2020 
94 UA; 32 controls 

(angina, but no CAD) 
After coronary angiography  

Plasma 
H-NMR 

17 metabolites involved in pathways such as ster-
oid hormone biosynthesis, aminoacyl-tRNA bio-
synthesis, and lysine degradation could serve as 

promising biomarkers for UA diagnosis. 

10 A Vignoli [32], 2020 
825 total, 702 survi-

vors and 123 de-
ceased 

24–48 h after the PCI and 
overnight fasting 

Serum 
H-NMR 

Characterization of metabolite–metabolite associa-
tion, can be used as a potential tool to predict mor-

tality in AMI patients. 

11 
G Gundogdu [51], 

2020 
20 STEMI; 15 HC Within an hour of the initial 

symptom attack 
Serum 
LC/MS 

Malonic acid, maleic acid, fumaric acid, and pal-
mitic acid could be used for the diagnosis of 

STEMI. 

12 
A Surendran [52], 

2019 
27 STEMI 

Pre-PCI, 2, 24, and 48 h 
post-PCI 

Plasma 
LC/MS 

Identified lipids and lipid-derived molecules as 
the major constituents of the altered metabolomic 
profile prior to PCI and in the follow-up time in-

tervals post-PCI. 

13 J Wang [53], 2019 40 UA; 39 HC 
Blood samples taken at the 

same day of inclusion in the 
study 

Plasma 
LC/MS 

27 metabolites, including free fatty acids, amino 
acids, LPE, LPC, and organic acids, can be used to 

diagnose UA patients. 

14 M Deidda [42], 2019 15 STEMI 
Coronary artery blood sam-

pling during PCI 
Plasma 
H-NMR 

Coronary blood fingerprint in STEMI patients was 
represented by choline, phosphocholine, myo-ino-

sitol, lysine, ornithine, and 2-phosphoglycerate 
metabolites.  

15 A Vignoli [54], 2019 

Training: 80 survi-
vors and 40 deceased 
Validation: 752 survi-

vors and 106 de-
ceased 

24–48 h after the PCI and 
overnight fasting 

Serum 
H-NMR 

Mortality in AMI patients was associated with ele-
vated serum levels of acetone, 3-hydroxybutyrate, 
mannose, creatinine, acetate, formate, proline, and 

lower serum levels of valine and histidine. 

16 
VAM Goulart [55], 

2019 
15 STEMI; 19 HC Within 7 h after hospitaliza-

tion 
Plasma 
LC/MS 

STEMI metabolic fingerprint includes perturba-
tions associated with phosphatidylcholines, lyso-
phosphatidylcholines, sphingomyelins, and bio-

genic amine species. 

17 Y Wang [56], 2018 36 ACS; 30 HC Not specified 
Urine  

LC/MS 

Identified fatty acid metabolism, fatty acid β-oxi-
dation, amino acid metabolism, and TCA cycle as 
critical pathways associated with ACS pathogene-

sis 
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18 X Du [57], 2018 
96 STEMI with post-
PCI AEs; 96 without 

AEs 

Arterial blood before coro-
nary angiography 

Plasma 
LC/MS 

Circulating levels of branched-chain amino acids 
(BCAAs) were associated with the risk of adverse 

cardiovascular events in STEMI patients. 

19 X Du [58], 2018 
138 STEMI with 
AHF; 138 STEMI 

without AHF 

At the time of hospital ad-
mission 

Plasma 
LC/MS 

Elevated plasma BCAA levels were associated 
with long-term adverse cardiovascular events in 

patients with STEMI and AHF. 

20 L Huang [59], 2018 
44 STEMI (22 

LMCAD and 22 non-
LMCAD); 22 HC 

At the time of hospital ad-
mission 

Plasma 
LC/MS 

Retinol metabolism was the most perturbed meta-
bolic pathway for the LMCAD phenotype. 

21 D Dazhi [41], 2018 
45 AMI; 45 chest pain 

controls (CPCS) 

At the time of hospital ad-
mission and prior to any 

medication 

Serum 
H-NMR 

Multiple altered metabolic pathways, including 
the TCA cycle, lipoprotein changes, anaerobic gly-

colysis, gluconeogenesis, and fatty acid metabo-
lism, characterize AMI patients compared to 

CPCS. 

22 
M Kohlhauer [60], 

2018 

115 STEMI; 26 control 
patients 

(SA/NSTEMI) 

Immediately after stent de-
ployment 

Plasma 
LC/MS 

Increased levels of myocardial succinate are found 
in STEMI patients. 

23 L Zhang [61], 2018 
2,324 patients who 

underwent coronary 
angiography 

Before coronary angi-
ography  

Plasma 
LC/MS 

N-acetylneuraminic acid plays a key role during 
CAD progression. 

24 X Yin [62], 2018 
20 STEMI; 20 non-

ACS patients 
Pre-PCI 

Plasma 
LC/MS, ICP/MS 

ACS patients are characterized by disturbances in 
LPC, caffeine, glycolysis, tryptophan, and sphin-

gomyelin metabolism. 

25 W Yao [33], 2017 22 UA; 22 HC 
Within 24 h after overnight 

fasting 
Serum 

H-NMR 
UA patients are characterized by perturbations in 

phospholipid and amino acid metabolism. 

26 SE Ali [63], 2016 
30 STEMI; 15 UA; 15 

HC 

1–2 h post-chest pain for 
STEMI patients, before and 
after angioplasty for UA pa-

tients 

Serum 
GC/MS, SPME-

GC/MS, 
 H-NMR 

Elevated levels of serum hydrogen sulfide could 
discriminate STEMI patients from UA patients.  

27 Y Fan [64], 2016 
Discovery: 1086  
Validation: 933  

Before coronary angi-
ography  

Plasma 
LC/MS 

89 differential metabolites were identified between 
and within different CAD subtypes. 

28 X Xu [65], 2015 38 SA; 34 AMI; 71 HC After overnight fasting 
Serum 
LC/MS 

Different lipid classes, including fatty acids, ster-
oids, phospholipids, sphingolipids, and glycer-
olipids, are associated with CAD progression. 

29 L Huang [66], 2016 

47 STEMI (23 youth, 
24 elderly), 48 

healthy controls (24 
youth, 24 elderly)  

Post-PCI 
Plasma 
LC/MS 

The most perturbed metabolic pathway in young 
STEMI patients was sphingolipid metabolism. 

30 K Ameta [34], 2016 65 UA; 62 HC 
Within 4 h of onset of an-

gina 
Serum 

H-NMR 

Five significantly altered metabolites, namely va-
line, alanine, glutamine, inosine, and adenine, dif-

ferentiate UA patients from HC. 

31 Z Li [36], 2015 27 UA; 20 HC 
In the morning after fasting 

for 12 h 
Urine 

H-NMR 

20 metabolites, including energy metabolism-re-
lated metabolites and amino acids, could discrimi-

nate UA patients from HC. 

32 S Naz [67], 2015 

Discovery: 16 STEMI; 
16 NSTEMI 

Validation: 20 STEMI; 
28 NSTEMI 

Pre-PCI 
Serum 
LC/MS 

Carnitine-related compounds and amino acids 
were differentially present in STEMI and NSTEMI 

conditions. 

33 
CM Laborde [68], 

2013 

Discovery: 35 
NSTEACS; 35 HC 

Validation: 15 
NSTEACS; 15 HC 

At the onset of the syn-
drome 

Plasma 
GC/MS, LC/MS 

A panel of metabolites consisting of 5-OH-trypto-
phan, 2-OH-butyric acid, and 3-OH-butyric acid 
could serve as markers for the early diagnosis of 

ACS. 

34 M Sun [69], 2013 
45 UA; 43 atheroscle-

rosis controls 
In the morning after over-

night fasting  
Plasma 
LC/MS 

16 potential endogenous biomarkers for UA were 
identified including kynurenine. 

35 J Teul [70], 2011 19 NSTEACS; 6 HC 

Immediately before coro-
nary angiography, day 4, 2 
months and 6 months after 

diagnosis 

Plasma 
GC/MS 

27 metabolites including glucose, fructose, myo-
inositol, pyruvate, lactate, and succinate varied 

with time following an ACS event.  

36 M Vallejo [71], 2009 
9 NSTEACS; 10 stable 

atherosclerosis; 10 
HC 

In the morning after fasting 
on the 4th day of hospital 

stay 

Plasma 
GC/MS 

Plasma fingerprinting characterizes a key role for 
4-hydroxyproline in ACS. 

Abbreviations: STEMI, ST-elevation myocardial infarction; NSTEMI, non-ST-elevation myocardial infarction; NSTEACS, 
non-ST-elevation ACS; NOCAD, nonobstructive coronary artery disease; AMI, acute myocardial infarction; AHF, acute 
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heart failure; MI, myocardial infarction; SA, stable angina pectoris; UA, unstable angina pectoris; PCI, percutaneous cor-
onary intervention; ACS, acute coronary syndromes; CAD, coronary artery disease; HC, healthy control; LC/MS, liquid 
chromatography/mass spectrometry; GC/MS, gas chromatography/mass spectrometry; H-NMR, proton nuclear magnetic 
resonance; SPME, solid-phase microextraction; LPC, lysophosphatidylcholine; LPE, lysophosphatidylethanolamine; TCA, 
tricarboxylic acid cycle. 

2.2. Mass Spectrometry 
Mass spectrometry (MS) provides accurate weight measurements of one or more 

molecules within a sample of interest. MS separates the molecules based on their specific 
mass-to-charge ratio (m/z) by converting them into ions in the gas phase [72]. The sepa-
rated ions are then sorted according to their acceleration and deflection in an external 
electromagnetic field. The final output is presented as the relative abundance of each ion 
as an m/z spectrum. MS is extensively used in the field due to its wide dynamic range, 
speed, high sensitivity, and the ability to identify and quantify more metabolites in a sin-
gle measurement relative to NMR.  

The MS essentially has three main components: (1) the ion source, where the sample 
is ionized, (2) the mass analyzer, where the ions are separated according to their mass-to-
charge (m/z) values, and (3) the detector, which provides a count of the intensity of sepa-
rated ions [73]. The most commonly used mass analyzers are Time-of-Flight (TOF), mag-
netic sector, and quadrupole, each with its own set of strengths and limitations [74]. Time-
of-Flight, as the name implies, uses a flight tube of known length, where the ions are sep-
arated based on the flight time (time taken for the ions to travel through the flight tube). 
TOF MS consists of a pulsed ion source and therefore is best suited with ionization meth-
ods that ionize molecules in pulses, such as laser ionization. TOF systems have an excel-
lent mass range and are generally utilized for high-resolution MS. Unlike TOF systems, 
magnetic sector mass analyzers use a magnetic field to sort ions of different mass-to-
charge ratios. The key advantages of magnetic sector mass analyzers are their high sensi-
tivity and high resolution. As its name suggests, quadrupole consists of four parallel cy-
lindrical or hyperbolic rods. The opposite rods are connected electrically inside a vacuum 
chamber. By changing the electrical potential, ions with different m/z values can be ‘fil-
tered’ through the quadrupole to the detector one after another. The quadrupole mass 
analyzers are usually compact and have good scan speed, durability, and reliability. How-
ever, they usually have a limited mass range. 

MS uses various ionization methods for mass analysis. The classic methods include 
matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ESI), in 
addition to other methods, such as electron impact (EI) ionization, chemical ionization, 
and atmospheric pressure chemical ionization (APCI) [75]. ESI is based on the evaporation 
of charged droplets and is notable for being the softest ionization method, allowing for 
generating ions with multiple charges with great sensitivity and no matrix interference 
[76]. However, some of the pitfalls of ESI include incompatibility with salts, complex mix-
tures, and impure samples. On the other hand, MALDI functions by proton absorption 
and transfer and can ionize metabolites with much higher masses (up to 300,000 Da). 
MALDI is also compatible with both salts in millimolar concentration as well as complex 
samples. One disadvantage of using MALDI is the potential for the degeneration of me-
tabolites due to the acidic matrix or photogeneration via laser ionization. Additionally, 
MALDI is also not suitable to analyze low-molecular-weight compounds (<1000 m/z) be-
cause of the matrix background interferences in this mass range [77]. Overall, it has been 
shown that using multiple ionization approaches with mass spectrometry can enhance the 
detection of global metabolome for complex samples [78]. 

A separation technique in a time dimension (GC, LC, or CE) is often employed before 
MS analysis to isolate the individual components from complex samples containing hun-
dreds to thousands of small molecules [79]. The chromatographic separation techniques 
use the physicochemical properties of the compounds in a sample, such as polarity, size, 
and presence of double bonds, to separate the molecules inside the medium [80]. Hence, 
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combinations of separation and MS, usually either GC/MS or LC/MS, have become the 
preferred analytical choice for small-molecule analysis from complex biological samples. 
The application of MS-based metabolic fingerprinting in ACS mainly includes investigat-
ing biomarkers for ACS [68–71], characterizing the metabolic difference between different 
types of ACS [64,65,67], and identifying the molecular differences between patients with 
ACS and healthy controls [51,62]. 

For minimally complex samples such as synthetic peptides or pure compounds, di-
rect infusion mass spectrometry (DIMS) or shotgun lipidomics (for lipid samples) are 
used. The samples are introduced directly into the MS without prior chromatographic 
separation. Though suited for high-throughput metabolomics analysis, DIMS often suf-
fers from the matrix effect and ion suppression since all the sample components are in-
fused simultaneously [81,82]. Direct infusion also leads to ion source contamination, 
which usually takes a long time to recover. Recently introduced chip-based direct-infusion 
nano-electrospray interfaces were successful in resolving this problem to a great extent 
[83]. Due to the lack of chromatographic separation, DIMS also cannot separate isomeric 
compounds. One approach to achieving isomeric separation is incorporating ion mobility 
spectrometry (IMS) as the separation process before MS [84]. Another drawback of the 
DIMS system is that multiple ions of the same molecule, such as its molecular ions, ad-
ducts, and in-source fragments, can be present in the mass spectrum, thus making inter-
pretation of the data very difficult.  

Compared to NMR, MS is the method of choice for global metabolite profiling and 
identifying unknown compounds within samples. MS can detect various metabolite clas-
ses (polar, non-polar, and neutral) depending on the choice of ionization mode (posi-
tive/negative). For instance, positive ESI mode works well with medium-sized polar mol-
ecules, whereas negative ESI mode is suitable for carbohydrates and organic acids. It is 
worth mentioning that all clinical studies of lipidomics in ACS mentioned in Table 3 were 
carried out using the LC/MS platform. Additionally, MS also provides an excellent ana-
lytical platform for profiling the molecular composition of lipoprotein complexes. For ex-
ample, multiple clinical studies [85–87] employed the LC/MS platform to highlight the 
changes in lipidome composition of HDL (high-density lipoprotein) during ACS patho-
genesis.  

Table 3. Main findings from the clinical studies of lipidomics in acute coronary syndrome. 

No 
First Author, 

Year Sample Size Sampling Time 
Specimen/ 
Technique Main Findings 

1 L Zhang [88], 
2021 

20 STEMI 

30 min before PCI; 6, 12, 
24, and 72 h after PCI; 1 
day before discharge; 
and 28 days after PCI 

Plasma 
LC/MS 

The circulating levels of PGE2, PGD2, and 
TXA2 were significantly lower at 6 h post-

PCI in STEMI patients. The levels of 20-
HETE content were significantly higher at 

12–72 h post-PCI. 

2 
J Burrello [89], 

2020 7 STEMI; 9 controls 
Pre-PCI, and 24 h post-

PCI 

Isolated EV 
Plasma 
LC/MS 

The levels of ceramides, dihydroceramides, 
and sphingomyelins in extracellular vesicles 

increased in STEMI compared to matched 
controls and decreased post-PCI. 

3 
PJ Meikle [90], 

2019 
47 ACS; 83 stable 

CAD 
Before coronary 
catheterization 

Plasma 
LC/MS 

Venous plasma lipid species was better than 
traditional risk factors in discriminating ACS 

from stable CAD. 

4 JH Lee [87], 2018 
30 CAD, 10 ACS, 10 

with stable CAD 
without ACS 

Not specified Plasma 
LC/MS 

Two LPC species (16:0 and 18:0) were 
significantly elevated only in the HDL of the 

ACS group vs. the stable CAD group, 
whereas PE species (38:5 and 40:5) were 

elevated in ACS by >2-fold in both HDL and 
LDL. 
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5 MJ Gerl [91], 2018 74 ACS, 78 SA, 21 
IS, 52 HC 

Within the first 24 h of 
hospital admission 

Plasma 
LC/MS 

The levels of LPC and ratios of CE to free 
cholesterol were decreased in the CVD 
subjects compared to control subjects. 

6 
S Anroedh [92], 

2018 
581 ACS; 155 

MACEs 
Prior to coronary 

angiography or PCI 
Plasma 
LC/MS 

The circulating ceramides were associated 
with MACEs independent of clinical risk 

factors in CAD patients. 

7 L Feng [93], 2018 40 STEMI Pre-PCI, 2 h and 24 h 
post-PCI 

Plasma 
LC/MS 

16 circulating fatty acids were associated 
with myocardial reperfusion injury. 

8 C Garcia [94], 
2018 

30 ACS; 30 No 
CAD 

Before hospital discharge Plasma 
LC/MS 

HDL2 subclass from ACS patients was 
enriched with oxidized polyunsaturated 

fatty acids. 

9 
LP de Carvalho 

[95], 2018 
Discovery: 337  
Validation: 119 

Pre-angiography and 
within 24 h post-

angiography 

Tissue, 
Plasma 
LC/MS 

11 ceramides (C14 to C26) and 1 
dihydroceramide (C16) were associated with 

MACEs in patients with AMI. 

10 
M Chatterjee [96], 

2017 
175 symptomatic 

CAD; 15 HC 
During coronary 

angiography 
Platelet 
LC/MS 

Symptomatic CAD patients were 
characterized by a perturbed platelet 

lipidome. 

11 L Zu [97], 2016 39 MACE; 39 Non-
MACE; 39 controls 

During coronary 
angiography 

Plasma 
LC/MS 

The plasma level of 19-HETE is useful for the 
prognosis of ACS after adjustment for 

clinical risk factors. 

12 JM Cheng [98], 
2015 

162 STEMI; 151 
NSTEACS; 261 

stable CAD 

Prior to coronary 
angiography 

Plasma 
LC/MS 

Plasma ceramide (d18:1/16:0) was associated 
with vulnerable plaque and 1-year MACE. 

13 F Rached [86], 
2015 

16 STEMI; 10 
controls 

Within 24 h after 
diagnosis 

Plasma 
LC/MS 

The lipidome of HDL particles were 
markedly altered in STEMI. 

14 I Sutter [85], 2015 
23 stable CAD; 22 

ACS; 22 HC 
Within 12 h of the initial 

symptom attack 
Plasma 
LC/MS 

HDL-plasmalogen levels were inversely 
associated with both stable and acute CAD. 

15 JY Park [99], 2015 140 CAD; 70 HC After fasting for 12 h 
Serum 
LC/MS 

PC containing palmitic acid, DG, SM, and 
Cer were associated with an increased risk of 

MI, whereas PE-plasmalogen and PI were 
associated with a decreased risk. 

16 
PJ Meikle [100], 

2011 
60 SA; 80 UA; 80 

HC 
Not specified 

Plasma 
LC/MS 

The study showed that multivariate models 
using multiple lipid species can stratify 
unstable and stable CAD patients with 

improved accuracy compared to traditional 
risk factors.  

Abbreviations: MACE, major adverse cardiac events; STEMI, ST-elevation myocardial infarction; NSTEACS, non-ST-ele-
vation ACS; AMI, acute myocardial infarction; MI, myocardial infarction; SA, stable angina pectoris; UA, unstable angina 
pectoris; IS, ischemic stroke; PCI, percutaneous coronary intervention; ACS, acute coronary syndromes; CAD, coronary 
artery disease; HC, healthy control; LC/MS, liquid chromatography/mass spectrometry; LPC, lysophosphatidylcholine; 
PE, phosphatidylethanolamine; CE, cholesteryl ester; PC, phosphatidylcholine; DG, diacylglycerol; SM, sphingomyelin; 
Cer, ceramide; PI, phosphatidylinositol; HDL, high-density lipoprotein. 

NMR and MS primarily use two strategies to conduct metabolomics and lipidomics 
studies, i.e., untargeted, and targeted approaches [101,102]. The untargeted approach, also 
called open profiling, aims to analyze the most comprehensive set of metabolites from 
biological samples and is non-selective and non-discriminative towards metabolites 
screening. It is mainly used for the discovery of novel biomarkers or to generate a specific 
hypothesis. Usually, no pre-existing knowledge about the metabolic profile of the sample 
is required for this type of analysis. The untargeted approach usually compares metabolite 
levels between different groups (e.g., healthy control vs. disease) under similar conditions 
[101,103]. A schematic showing the different steps in untargeted metabolomics is shown 
in Figure 3. 

On the other hand, the targeted approach or closed profiling focuses on a limited 
number of known metabolites, such as 10–20 lipids, and seeks to quantify them. A hy-
pothesis is being tested in this approach, and often the sample preparation and analytical 
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techniques are more sophisticated. In the case of ACS, the most used approach so far has 
been untargeted metabolomics to differentiate the ACS profile from healthy controls. 
However, most ACS studies complement their untargeted analysis by performing a tar-
geted analysis of those compounds that exhibited a significant difference between various 
groups for further quantitation and identity confirmation using the suitable internal 
standards. In a study to understand the underlying mechanisms associated with CAD 
progression, Zhang and colleagues initially performed an untargeted analysis of metabo-
lites in plasma of 2324 patients who underwent coronary angiography [61]. They identi-
fied a total of 36 differential metabolites across different CAD types, including N-
acetylneuraminic acid (a ligand for many hormones and lectins), whose levels were ele-
vated in plasma during CAD progression. Subsequently, a targeted quantification was 
performed using isotope-labeled N-acetylneuraminic acid to confirm its vital role in CAD 
progression. 

 
Figure 3. A standard workflow for untargeted metabolomics. After sample collection and extraction, the samples are an-
alyzed by NMR spectroscopy or mass spectrometry. The raw data are then analyzed using appropriate software followed 
by statistical analysis to identify metabolites of interest or potential candidate biomarkers. Adapted from “Untargeted 
Metabolomics for Discovery of Disease Biomarkers”, by BioRender.com (2021). Retrieved from https://app.bioren-
der.com/biorender-templates on August 11, 2021. 

3. Pre-Analytical Considerations in Metabolomics Studies 
The analytical quality of both untargeted and targeted metabolomics approaches is 

mainly dependent on the various pre-analytical steps involved in sample handling, sam-
ple collection, centrifugation, aliquoting, transportation, freezing, and storage [104]. Even 
minor discrepancies in any of these pre-analytical factors can greatly influence metabo-
lomic assessments. Discrepancies may include, but are not limited to, choice of anticoag-
ulants or preservatives added to the sample specimen, time delay, and storage tempera-
ture during blood preprocessing [105], diet and time of sampling in urinalysis [106,107], 
metabolite degradation or aggregation induced by air oxidation and light exposure 
[108,109], number of freeze–thaw cycles before aliquoting biological fluids [110], and time 
delay in transportation and sample storage [111]. Therefore, knowledge about different 
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sample collection procedures and preparation protocols is essential to ensure reliable and 
reproducible results in a metabolomics study. A variety of biological fluids, including 
plasma, serum, urine, saliva, cerebrospinal fluid, bronchoalveolar lavage fluid, and cell 
and tissue extracts, are used in metabolomics studies depending upon the biological ques-
tion under study and the pathophysiological nature of the disease process [112]. 

3.1. Serum vs. Plasma 
Notably, most of the metabolomics studies in ACS have been performed using either 

plasma or serum as the sample source [33,34,69–71]. The general theme of most of these 
plasma- or serum-based studies is to find biomarkers associated with ACS and its sub-
types, compared to healthy controls. Though both plasma and serum matrices provide an 
excellent functional readout of an organism’s metabolic activity, the question regarding 
which is more suitable is still highly debatable. Both plasma and serum are derived from 
the liquid portion of the blood. The serum is extracted after the blood has clotted, and it 
is obtained by centrifugation after clotting. For plasma, the blood is not coagulated and is 
obtained by adding an appropriate anticoagulant (heparin, citrate, or Ethylenediaminetet-
raacetic acid (EDTA)) to the whole blood, followed by centrifugation and aliquoting [112]. 
Typically, plasma makes up to 55% of the total volume of blood, and it contains dissolved 
proteins, clotting factors, salts, lipids, and other suspended materials in water. The serum 
is similar to plasma, except it lacks fibrinogen (clotting factor). Contrary to serum, plasma 
has the advantage that it can be immediately placed on ice, thereby avoiding the possible 
loss of labile metabolites due to enzymatic conversion or other degradation processes dur-
ing clot formation at room temperature [112]. Several studies have tested the role of pre-
analytical factors on the metabolic composition of serum and plasma [113–115]. Teahan et 
al. showed that variations in certain pre-analytical factors such as clotting time and tem-
perature, the presence/absence of anticoagulant, and storage conditions including re-
peated freeze−thaw cycles, can introduce bias into metabolic data [115]. Additionally, re-
cent data suggest that it is not advisable to combine serum samples exposed to different 
clotting procedures (e.g., thrombin vs. silicate-enhanced) or different clotting times into a 
single sample set for biomarker analysis, as coagulation and associated processes can alter 
metabolite concentrations [116]. This limitation can be highly challenging, particularly in 
multicentric clinical studies involving humans, where samples are collected from different 
hospital sites and transported to a centralized facility for further processing and analysis.  

Besides assessing various pre-analytical factors, numerous studies have also investi-
gated the difference in metabolic profile generated by serum and plasma samples [116–
118]. In a study comparing serum and plasma metabolic profiles [116], it was found out 
that 46% out of the 216 identified metabolites were significantly different between the two, 
and except for three (methionine, C2:0-, and C3:0-carnitine), the levels of all other metab-
olites were higher in serum. In line with this, in another metabolomics study comprising 
377 individuals [118], it was reported that although the reproducibility was slightly better 
in plasma than serum, the concentrations of analytes were generally higher in serum, with 
an average relative difference of 11.7%. In another study involving 29 small-cell lung can-
cer patients [117], it was shown that neither fluid is superior to the other, and the two 
metabolomes were markedly similar in terms of reproducibility, specificity, and metabolic 
coverage. These studies suggest that even though both biofluids are comparable in terms 
of analytical throughput, serum may provide better sensitivity than plasma. 

3.2. Polar vs. Non-Polar Metabolites 
Due to the enormous diversity in the physicochemical properties of metabolites, es-

pecially polar (including amino acids, nucleic acids, and sugars) and non-polar (including 
fatty acids and other lipids) metabolite classes, no ideal extraction protocol exists that can 
extract both polar and non-polar metabolites from the same sample. Accordingly, a com-
prehensive analysis of the entire metabolome in a biological sample requires multiple ex-
traction strategies to cover different metabolite classes. Hence, multiple aliquots of the 
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same sample with specific extraction procedures, such as using a modified Bligh–Dyer 
protocol for extracting polar metabolites [119], are required to obtain extensive coverage 
of the entire cellular metabolome, which in turn facilitates the need of a larger sample 
amount. In studies where sample amount is a limiting factor, this approach might not be 
feasible. Of late, efforts have been made to develop extraction protocols that can extract 
both polar and non-polar analytes from the same sample [120]. Selecting the proper ex-
traction protocol is critical in all metabolomics studies as the metabolite extraction step 
directly affects all downstream steps of metabolomics data analysis. 

4. Extraction Procedures for Metabolomics 
The reliability and accuracy of metabolic data also depend upon the sample prepara-

tion strategy. Ideally, the sample processing should be fast, easy, minimal, and tailored to 
the analytical scheme. Common approaches include homogenization, dialysis, fractiona-
tion, extraction, distillation, centrifugation, and concentration. Critically, these ap-
proaches should be compatible with the nature of the biological matrix, chemical/physical 
properties of the analyte of interest, and the final detection technology. For example, in a 
typical LC/MS platform, sample preparation is usually the most time-consuming and er-
ror-prone step of the chromatographic assay. The inherent ‘matrix effect’ on different sam-
ples such as plasma, serum, urine, and tissue lysate, presents significant analytical chal-
lenges during LC/MS analysis [121]. Matrix effects are caused by co-eluting endogenous 
components and preservative agents in the same matrix [122], which often lead to material 
buildup on the analytical column and ion source in LC and MS, respectively. This can 
cause ion suppression or enhancement, drift in chromatographic response, increased or 
reduced analytical signal, reduced column life, and frequent MS cleaning [123]. Cumula-
tively, these issues may compromise analytical accuracy and increase the total analysis 
time, in addition to significantly affecting the cost of MS analysis [121]. Therefore, 
thoughtful selection and optimizing sample preparation procedures are essential to min-
imize variability and improve analytical performance in metabolomics studies. 

The three most popular sample preparation techniques in metabolomics analysis in-
clude protein precipitation (PPT), liquid–liquid extraction (LLE), and solid-phase extrac-
tion (SPE) [124,125]. PPT generally begins with adding organic solvents such as methanol, 
acetonitrile, or a combination thereof to the sample, followed by agitation and centrifuga-
tion [126]. Its ‘nonselective’ nature makes it well-suited for global metabolomics analysis. 
Adding an ice-cold organic solvent is beneficial as it may improve the efficiency of protein 
removal and prevent metabolite degradation as the sample warms up from its stored fro-
zen state [127]. While agitation increases the protein accumulation rate, centrifugation 
helps separate the supernatant holding analytes from the protein pellets [128]. Though 
this method provides high metabolite coverage, PPT is often time-consuming, particularly 
while dealing with hundreds of samples manually, as in large-scale epidemiological stud-
ies. Robotic systems capable of performing automated protein precipitation such as mem-
brane-based protein precipitation filter plates have been developed recently to address 
this issue [124,129,130]. 

Another classic method used for the qualitative/quantitative identification of metab-
olites is biphasic LLE. LLE utilizes two immiscible liquids for the extraction of analytes. 
In LLE, the analyte is differentially distributed between the aqueous matrix and water-
immiscible organic solvent [124]. Traditionally, LLE is most preferred for comprehensive 
lipid analysis [131] (i.e., global lipidomics). Apart from enriching analytes of interest (here, 
lipids) and improving signal-to-noise ratios, any extraction protocol used in lipidomics 
should also remove any non-lipid compounds. Being insoluble in water, lipids are ex-
tracted from a biological matrix, such as blood plasma or tissue, using organic solvents. 
The most widely used method for isolating lipids from biological samples was devised by 
Folch et al. more than 60 years ago using 2:1 chloroform/methanol (v/v) as the solvent 
mixture [132]. In this two-phase LLE procedure, most lipids are dispersed into the lower 
chloroform phase, and are clearly separated from the upper methanolic phase holding 
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non-lipid substances. To enhance recovery, Bligh and Dyer later revised Folch’s method 
by combining chloroform, methanol, and water [133]. The disadvantage of these two 
methods is that the recovery of the lower lipid fraction is often cumbersome, resulting in 
contamination of the isolate and blockage of the analytical column. In 2008, Matyash and 
co-workers [134] showed that an extraction procedure using methyl-tert-butyl ether 
(MTBE) could solve this problem as the lipid-containing organic layer settles at the top 
during phase separation, thereby enabling a much cleaner lipid extraction. More recently, 
a chloroform-free one-phase lipid extraction protocol based on a mixture of butanol and 
methanol (BUME) was described by Löfgren and coworkers [135]. This novel approach is 
rapid and shows similar extraction efficiency compared to the Folch and the Bligh and 
Dyer procedures. 

In SPE, samples are loaded onto a solid sorbent held primarily on a cartridge device 
(SPE cartridge). The analyte of interest present in samples is selectively retained by the 
sorbent material [136]. The retained analyte is then eluted with a suitable solvent [137]. 
Different SPE types include reverse, normal, anion, cation, and mixed-mode sorbents 
[124]. Due to its highly selective nature, SPE is not recommended for global metabolomics 
profiling [138]. It is mainly used to concentrate analytes present at low levels and purify 
analytes from matrix interferences. There exist contradictory reports regarding the ana-
lytical reproducibility using the SPE procedure. In a study comparing PPT and SPE pro-
cedures, SPE showed improved repeatability compared to PPT for human plasma meta-
bolic profiling [139]. However, in another similar study evaluating different human 
plasma preparation protocols, the metabolome coverage and repeatability of the SPE pro-
cedure are reported to be lower than PPT protocols [126]. Once an extraction procedure is 
selected, caution should be taken to ensure that the same procedure is repeated consist-
ently throughout the entire study. For large-scale cohort studies, maintaining this con-
sistency presents a real challenge. Inconsistency in extraction procedures is a source of 
variation in the dataset and may compromise the robustness and accuracy of the results. 

5. Data Processing in Metabolomics 
As with the genomics platform, metabolomics studies generate a large amount of 

multidimensional, non-linear, and non-normal data [140]. Due to its sheer complexity, the 
metabolomics data-analytical approach relies heavily on advanced computational ap-
proaches. Many instrument-specific and open-source software solutions are available, 
such as MetaboAnalyst [141] and XCMS [142], that can perform the critically important 
steps in metabolomics data analysis, such as run alignment, peak picking, data prepro-
cessing (e.g., deconvolution, scaling, and normalization), annotation, and compound 
identification. However, selecting a suitable approach or software is often confusing and 
depends upon the separation technique, detection mode, and output file format (e.g., 
mzXML, mzML, NetCDF) generated by each instrument. Additionally, there remains lit-
tle accord or harmonization among different software in handling various cross-vendor 
file formats. Recently, much effort has been made to address this issue, and new software 
platforms such as Progenesis QI [143] have been developed, that are compatible with a 
wide variety of instruments and can perform platform-independent metabolomics data 
analysis. 

5.1. Handling Unwanted Variances in Metabolomics Data 
Analytical and biological variability issues are critical in human metabolomics stud-

ies. If these unwanted variations are not accounted for, it may affect the statistical power 
of detecting metabolites that are characteristic of, for example, a disease state such as ACS. 
Laboratory procedures or technological platforms primarily introduce analytical variabil-
ity. Typical examples include matrix effects, temperature changes, solvent pH changes, 
sample degradation over time in extended sample runs spanning weeks or months, fluc-
tuation in instrumental sensitivity, and personal errors [144]. One way to combat these an-
alytical errors is by employing suitable sample normalization strategies, such as data-
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driven normalizations, internal standards-based normalization, or quality control (QC)-
based normalization [145]. These strategies help to standardize metabolite abundances 
before statistical analyses and improve the quality of metabolomics data. Of these, QC-
based normalization approaches are gaining more popularity of late [144,146]. Several 
QC-based normalization algorithms have been developed in recent times, including 
batch-ratio [147], LOESS [148], and SERFF [145]. The QC samples are injected at regular 
intervals along with the study samples in every batch. Ideally, the QC sample should have 
the same matrix composition as that of study samples and is usually obtained by pooling 
multiple aliquots. After QC-based batch correction, those metabolites which exhibited 
poor repeatability across QC samples were often removed based on specific cut-off criteria 
to assure an expected level of data quality. For example, after batch correction, only those 
metabolites satisfying the cut-off criteria were often retained for subsequent data analysis 
[149], such as (1) metabolites present in >50% of QC samples, and (2) metabolites with a 
coefficient of variation for QC samples <20%.  

Though the above-mentioned approaches can largely eliminate unwanted analytical 
variations from the dataset, the inherent biological variability induced by factors such as 
diet, ethnicity, physical activity, circadian rhythm, and medications still poses a signifi-
cant challenge in interpreting the real physiological variations due to disease status or 
interventions [150]. To overcome these challenges, several strategies have been proposed, 
including cross-validation of results using an appropriate proportion of test and valida-
tion sets (e.g., 30%, the ‘test set’), validation of identified biomarkers using large cohorts 
of multi-centric samples (validation set), reporting results in relative amounts rather than 
absolute amounts of metabolites, and finally, validation of candidate biomarkers based on 
comparison to isotopically labeled internal standards. Current practice involves using dif-
ferent software for different tasks in the metabolomics workflow, such as one for peak 
picking, another one for normalization, and another one for metabolite annotations. This 
is a very tedious process and a time-consuming one. As we move forward, particular em-
phasis should be given to developing software that can automate this process from align-
ing runs to peak picking to batch correction to metabolite annotations, which may become 
“current practices” in the immediate future. 

6. Metabolomics in ACS 
Recently, there has been a growing appreciation for metabolomics as a promising 

approach for investigating cardiovascular diseases, including CAD to allow for better 
mechanistic understanding and biomarker discovery. The studies in the 2000s by Sabatine 
and colleagues initially demonstrated the application of a blood-based metabolomics plat-
form to identify markers associated with myocardial injury. In a study comprising 36 sub-
jects who underwent exercise stress testing (inducible ischemia), Sabatine et al. showed 
that myocardial ischemia is characterized by significant changes in the circulating levels 
of multiple metabolites, including lactic acid (final product of glycolysis) [151]. The path-
way analysis identified a key role for the TCA cycle (regulator of oxidative phosphoryla-
tion) during myocardial ischemia. Moreover, they identified a panel of six metabolites, 
including citric acid, which could accurately stratify patients with myocardial ischemia 
from control subjects. Following this study, in a human model of planned myocardial in-
farction, via alcohol septal ablation, the same group identified metabolic changes as early 
as 10 minutes after myocardial injury [152]. They reported that perturbations in pyrimi-
dine metabolism, the TCA cycle, and the pentose phosphate pathway were associated 
with myocardial injury. Importantly, these perturbations were observed in both coronary 
sinus and peripheral blood and were further validated in an independent clinical cohort. 

A comprehensive overview of the clinical studies of metabolomics in ACS is pro-
vided in Table 2. Only those studies which explicitly discuss any of the ACS subtypes 
were included in the table. As evident from Table 2, blood-derived plasma and serum 
from veins are the most preferred biological fluids, and LC/MS is the favored technique 
being used in these studies. However, the sampling time varies greatly between these 
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studies. First-morning collection, collection after overnight fasting, spot sampling at the 
time of admission (non-fasting), and timed collection at different sampling time points are 
the various sampling modes employed in these studies. The ideal sampling time is when 
the rate of metabolic flow, or flux, is constant, i.e., a steady metabolic state. However, ACS 
always involves ‘metabolic shifts’, and thus there is no steady metabolic state available in 
ACS events. Under these circumstances, time-series analyses could provide a better in-
sight into the molecules and pathways with clinical relevance. 

The initial clinical studies of metabolomics in ACS made use of GC/MS to identify 
biomarkers for the early diagnosis of ACS. Utilizing GC/MS, Vallejo et al. and Laborde et 
al. elucidated the metabolic differences in plasma of non-ST-elevation ACS patients rela-
tive to healthy subjects [68,71]. These studies collectively identified tricarboxylic acid 
(TCA) cycle intermediates along with 4-hydroxyproline, tryptophan, 3-OH-butyric acid, 
and 2-OH-butyric acid as key players in ACS pathophysiology. Subsequent studies em-
ployed NMR, LC/MS, and CE/MS approaches, shifting focus from the broad spectrum of 
ACS towards various ACS subtypes. Using CE/MS and hydrophilic interaction chroma-
tography/MS-targeted analysis, Naz et al. found increased acylcarnitines (associated with 
defective mitochondrial β-oxidation) and amino acids (involved in myocardial energy me-
tabolism) levels in STEMI patients compared to NSTEMI patients [67]. Another study 
used a combination of different metabolomics approaches, including GC/MS and H-NMR, 
and confirmed the presence of elevated hydrogen sulfide (an endogenous gasotransmit-
ter) levels in STEMI patients compared to UA patients [63]. In a large study comprising 
2324 patients from 4 independent centers [64], Fan et al. evaluated the diagnostic value of 
plasma metabolomics to characterize different types of CAD. Based on CAD severity, pa-
tients were divided into five groups, of those with the normal coronary artery, nonob-
structive coronary atherosclerosis, stable angina, UA, and AMI. They found 89 differential 
metabolites across different CAD types. Additionally, they identified glycerophospho-
lipid metabolism, amino acids, acylcarnitines, TCA cycle, and bile acid biosynthesis as the 
main metabolic pathways associated with CAD progression. Importantly, these findings 
were replicated in a validation cohort. 

Metabolomics has also been used to explore biomarkers predictive of adverse cardi-
ovascular events following ACS. For instance, Du et al. performed LC/MS analysis of 26 
amino acids in a cohort of 138 STEMI patients with acute heart failure to find metabolites 
predictive of adverse cardiovascular events [58]. They found that elevated plasma 
branched-chain amino acids (BCAA) levels on admission are associated with adverse car-
diovascular events. In another study comprising 978 patients [54], Vignoli et al. used 
NMR-based metabolomics to identify prognostic markers of two-year mortality after 
AMI. They showed that elevated levels of amino acids including mannose, formate, ace-
tone, proline, creatinine, acetate, and 3-hydroxybutyrate were associated with mortality 
following AMI. Another study used an untargeted LC/MS approach and showed that six 
metabolic pathways, namely urea cycle, tyrosine, lysine, tryptophan, aspartate/aspara-
gine, and carnitine shuttle, are associated with mortality in patients with CAD [47]. More 
recently, Chorell et al. showed that lysophospholipids (involved in inflammation and ar-
teriosclerosis) are associated with future cardiovascular risk in STEMI and NSTEMI pa-
tients [44]. They reported that while STEMI is characterized by a higher ratio of lysophos-
phatidylcholine to lysophosphatidylethanolamine, NSTEMI is characterized by a lower 
ratio of these two lipids [44]. 

In recent times, lipid molecules and their associated pathways gained particular in-
terest in the setting of ACS. In 2018, Wang et al. demonstrated that in addition to TCA 
cycle intermediates and amino acid metabolism, other lipid-associated pathways, includ-
ing fatty acid metabolism and fatty acid β-oxidation, also play important roles in ACS [56]. 
During the same time, Goulart et al. showed that the most perturbed metabolites associ-
ated with STEMI were primarily lipid species, including phosphatidylcholines, lysophos-
phatidylcholines, and sphingomyelins [55]. These results underscore the need for com-
prehensive lipid profiling to provide insight into ACS pathogenesis. 
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One of the most consistent findings in these clinical studies has been the link between 
carnitine (short-chain and long-chain) and lysophosphatidylcholine (LPC) species with 
ACS. Carnitines play a critical role in transporting long-chain fatty acids from the cyto-
plasm into the mitochondria, where they undergo β-oxidation to produce energy. Accu-
mulating evidence suggests that elevated levels of carnitines reflect impaired β-oxidation 
and mitochondrial dysfunction [153] and are associated with a wide variety of disorders, 
including type 2 diabetes [154], and cardiovascular diseases [155]. Since long-chain fatty 
acylcarnitines are produced from fatty acid metabolism and are primarily synthesized in 
the mitochondria, their levels indicate mitochondrial fatty acid oxidation [156]. On the other 
hand, LPC is a group of proinflammatory lipids, which is primarily derived from phos-
phatidylcholine (PC) by the enzymatic action of phospholipase A2 (PLA2). LPC has been 
linked to the pathogenesis of atherosclerosis and the progression of various diseases [157], 
including cardiovascular diseases, renal failure [158], ovarian cancer [159], and diabetes 
[160]. Among other properties, LPC also activates several signaling pathways, such as ox-
idative stress and inflammatory responses, contributing to endothelial cell injury in ath-
erosclerosis and cardiovascular disorders [161]. 

7. Lipidomics in ACS 
Apart from their primary role as the structural components of cells, lipids exert in-

dispensable functionalities as cell signaling molecules and energy sources. Evidence from 
genomics studies and large randomized controlled trials has established the link between 
the dysregulated lipid metabolism and CAD progression, including ACS. The results from 
clinical trials of lipid-modifying therapy demonstrated that lowering the levels of serum 
lipids (especially cholesterol) reduces the risk of cardiovascular events [162]. Given the 
crucial role of lipids in regulating health and disease states, elucidating the lipid compo-
sition at the molecular and system level is essential to characterize the molecular basis of 
ACS. Therefore, there is a growing interest in lipidomics as a promising approach to reveal 
lipid alterations in ACS progression and to find new biomarkers for early ACS diagnosis. 
Table 3 summarizes the applications of lipidomics on ACS in clinical settings. From Table 
3, it is evident that MS has been the dominating technique for lipid profiling, and blood-
derived plasma is the most preferred biospecimen. 

Traditional clinical lipid biomarkers for the development and progression of CAD, 
including elevated serum low-density lipoprotein (LDL), decreased high-density lipopro-
tein (HDL), or increased triglycerides levels, often fail to correctly distinguish ACS from 
stable coronary artery disease. Using plasma lipid profiling on 220 individuals, Meikle 
and colleagues showed that multivariate models incorporating both lipids and conven-
tional risk factors could stratify unstable CAD from stable CAD patients with better accu-
racy than models with conventional risk factors alone [100]. The plasma levels of many 
lipids, including alkylphosphatidylcholine and phosphatidylcholine plasmalogen (these 
species are susceptible to oxidative stress), displayed a significant association with disease 
severity, suggesting their part in the onset and progression of ACS. In a report to charac-
terize lipid species within lipoprotein particles, Meikle also reported that the levels of 
phospholipids, including lysophospholipids and plasmalogens, were significantly lower 
within the HDL of the ACS group relative to the CAD group [90]. In line with this finding, 
Sutter et al. and Rached et al. showed the contribution of alterations in the HDL lipidome 
to the disease severity of ACS [85,86]. Similarly, looking at 365 lipids, Lee et al. demon-
strated that the levels of saturated lysophosphatidylcholine (LPC) species (16:0 and 18:0) 
were increased only in the HDL fraction of the ACS group, indicating an intermediate link 
between LPC species and progression of ACS [87]. In another study using a targeted lip-
idomics approach, Garcia et al. showed that the HDL2 subclass of ACS patients is enriched 
with oxidized fatty acids compared to non-ACS subjects, which may modulate platelet-
dependent thrombotic risk [94]. Together, these studies demonstrate the ability of whole-
plasma and lipoprotein-specific lipidomics for the early detection of ACS and discrimi-
nating stable CAD from ACS. 
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Recently, several studies have looked at the association between molecular lipid spe-
cies and clinical outcomes in patients with ACS. In a study comprising 581 patients with 
ACS or stable CAD, Cheng et al. investigated the association of plasma lipids with 1-year 
clinical outcome [98]. They showed that plasma concentration of ceramides (involved in 
inflammation, membrane integrity, and apoptosis), particularly Cer(d18:1/16:0), is 
strongly associated with 1-year major adverse cardiac events (MACE) and plaque vulner-
ability, independent of statin usage and LDL levels. The prognostic value of these high-
risk circulating ceramide species was further probed in the prospective ATHEROREMO 
cohort of 581 patients with stable angina pectoris or ACS and a median follow-up of 4.7 
years [92]. Multivariable analyses showed that the circulating levels of Cer(d18:1/16:0), 
Cer(d18:1/20:0), Cer(d18:1/24:1), and their ratios were associated with adverse cardiac out-
comes independent of the established clinical risk factors. A recent lipidomics analysis by 
Carvalho et al. employing paired tissue–plasma samples in human and animal models 
took these results a step further [95]. They showed that arterial and myocardial tissue 
ceramide levels also correlate with MACE in patients with AMI. Collectively, these data 
suggest a predictive role of plasma ceramide species in patients with ACS. 

8. Metabolomics of Ischemia/Reperfusion Injury 
Timely myocardial reperfusion strategies employing fibrinolytic therapy or percuta-

neous coronary intervention (PCI) are the treatment of choice for acute STEMI patients. 
Besides salvaging viable cardiomyocytes from ischemic death, reperfusion profoundly 
limits the infarct size following a prolonged ischemic insult and improves the clinical out-
come. However, pre-clinical and clinical data show that this sudden reintroduction of ox-
ygen and nutrients during reperfusion by itself induces cardiomyocyte death, a phenom-
enon termed myocardial reperfusion injury [13,163]. Clinically, the largest effect of ische-
mia/reperfusion (I/R) injury is during PCI of STEMI patients. In STEMI patients, once the 
coronary artery is opened by PCI (Figure 4), it allows for reperfusion of the ischemic my-
ocardium. Despite rapid and successful reperfusion, the mortality rate after an AMI is 
nearly 10% [164]. 

 
Figure 4. Percutaneous coronary intervention (PCI): PCI widens the blocked or narrow coronary arteries, thereby allowing 
reperfusion of the ischemic myocardium. Adapted from “Percutaneous Coronary Intervention”, by BioRender.com (2021). 
Retrieved from https://app.biorender.com/biorender-templates on August 11, 2021. 
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Low blood flow during acute ischemia switches cell metabolism to anaerobic metab-
olism, resulting in lactate accumulation and lowering of intracellular pH [165]. Addition-
ally, there is a decrease in cellular ATP, which results in Ca2+ overload [165]. These pro-
cesses disturb cell volume regulatory mechanisms, leading to disrupted cellular structure 
and cell lysis. Thus, it is essential to restore tissue oxygen supply. However, reperfusion 
leads to a sudden increase in the amount of oxygen available that causes an intense burst 
of mitochondrial reactive oxygen species (ROS), resulting in cellular dysfunction by mod-
ifying intracellular molecules [165]. Reperfusion also restores the physiological pH, which 
releases the inhibitory effect on mitochondrial permeability transition pores’ (mPTP) 
opening. Moreover, reperfusion results in intracellular Ca2+-overload due to the dysfunc-
tion of the sarcoplasmic reticulum. Reperfusion also initiates endoplasmic reticulum 
stress, a pro-inflammatory response, and pro-thrombogenic pathway activation in is-
chemic tissues [163,165]. The excess Ca2+ and enhanced ROS production trigger mPTP 
opening, resulting in ATP depletion and, ultimately, cellular death. A graphic indicating 
the main proponents of myocardial I/R injury is shown in Figure 5. In brief, reperfusion is 
associated with an additional injury that extends the ischemic damage. As a result of this 
puzzling problem between ischemic injury vs. reperfusion injury, there is significant in-
terest in finding ways to protect against and treat the latter. 

 
Figure 5. Myocardial ischemia/reperfusion (I/R) injury. Schematic showing the main events in myocardial I/R injury. Ab-
breviations: Ca2+, Calcium ion; ROS, reactive oxygen species; mPTP, mitochondrial permeability transition pore. 

The ROS generation during reperfusion was previously thought of as a non-specific 
response to reoxygenation of ischemic tissue. However, a recent comparative in vivo 
metabolomic analysis in a mouse model of I/R injury has revealed that the TCA cycle in-
termediate, succinate accumulates during ischemia and the oxidation of succinate during 
reperfusion drives mitochondrial ROS accumulation and reperfusion injury [166]. A later 
study used a targeted LC/MS approach to analyze plasma metabolites in 115 STEMI pa-
tients undergoing PCI and revealed that myocardial succinate accumulation is an early 
marker of human I/R injury [60]. They reported an association between myocardial con-
tent of succinate and the magnitude of ischemic injury in STEMI patients.  
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Recent metabolomics studies have also implicated the role of BCAAs in the develop-
ment of I/R injury. In a metabolomics study utilizing a KO mouse model (2C-type ser/thr 
protein phosphatase (PP2Cm) deficient), Li et al. showed that impaired BCAA catabolism 
suppresses glucose uptake and worsens the I/R injury [167]. In line with this finding, our 
previous study in a clinical setting of human I/R injury identified BCAA (leucine, isoleu-
cine, and valine) biosynthesis as one of the most perturbed metabolic pathways during 
early reperfusion [52]. Our study showed that lipids and their derivatives formed the bulk 
of the altered metabolome in the setting of reperfusion injury in STEMI patients [52]. We 
also identified a panel of three lipid molecules, namely pentadecanoic acid, 18:2 carnitine, 
and 18:2 lysophosphatidylcholine, that can determine the extent of I/R injury in STEMI 
patients after primary PCI. 

A few studies have also explored the time-course changes in the circulating metabolic 
profile following reperfusion. Based on a time-series analysis before and after PCI com-
prising 40 STEMI patients, Feng et al. showed that the fatty acid content in the circulating 
blood gradually decreases with an increase in reperfusion time [93]. In another study 
monitoring the changes in eicosanoid profile before and after PCI in 20 STEMI patients, 
Zhang et al. found that the levels of some bioactive eicosanoids, including PGE2, PGD2, 
TXA2, and 20-HETE, were significantly decreased after PCI. Interestingly, these molecules 
are pro-inflammatory and are associated with platelet aggregation [168].  

There are currently no therapeutic options for I/R injury in patients presenting with 
STEMI who undergo revascularization. Given the complex metabolic changes within the 
myocardium and hence within the circulation during I/R injury, it is necessary to identify 
the metabolic and lipidomic pathway(s) that impact clinical outcomes. There are many 
limitations to the current studies in the setting of I/R injury, including focusing on a single 
metabolite (e.g., succinate), a specific metabolite class (e.g., fatty acids or eicosanoids), a 
single pathway (e.g., BCAA metabolism), or having small sample sizes. Animal studies 
and planned strategies (e.g., inducible ischemia) are helpful to understand pathological 
mechanisms. Nevertheless, more clinical investigations incorporating time course anal-
yses in large cohorts are needed to better understand the dynamic changes and metabolic 
pathways involved in human I/R injury. 

9. Translational Metabolomics and Future Directions 
Despite showing substantial potential for biomarker discovery and a more detailed 

understanding of pathogeneses of ACS, few findings from metabolomics studies have 
been translated into disease diagnostics and risk prediction. One main reason is the valid-
ity and reliability of new markers/clusters of metabolites [169]. The main challenge in bi-
omarker validation is the difficulty in measuring subtle differences in metabolite fluctua-
tions associated with different disease status or interventions. Additionally, as evident 
from Tables 2 and 3, barring a few, most of the clinical metabolomics studies on ACS are 
small-scale preliminary-type studies performed with a limited sample size (n < 100), 
which lack the required statistical robustness and validity. We believe the only way to 
overcome this is to perform large clinical studies to allow for successful translation of 
metabolomics to clinics. In addition, as discussed in Section 5.1, the inter-individual vari-
ation induced by diet, genetic, and environmental exposures, coupled with technical var-
iability, also diminishes metabolomics studies’ power to detect actual physiological vari-
ations associated with different ACS subtypes and, eventually, to provide clinical bi-
omarkers[170]. One way to overcome this is by conducting follow-up metabolomics ex-
periments using a large validation cohort consisting of diverse patient groups (multi-cen-
tric) with suitable control cohorts. However, large-scale multi-cohort studies are usually 
laborious, expensive, and time-consuming. Once validated appropriately, there are in-
creased prospects of translating these biomarkers towards clinics and diagnostic centers. 
Another potential challenge in translational metabolomics is that most of the metabolom-
ics studies in ACS published thus far were focused on generating data and interpreting 
them without delving into the mechanistic link underlying the association between the 
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identified metabolites and ACS pathogeneses [171]. Finding the relation between candi-
date biomarkers and their biological role is the next important step after biomarker dis-
covery. This can be carried out by employing suitable in vitro and animal model experi-
ments. Importantly, in the future, the metabolomics community should work in tandem 
with other omics communities such as genomics and transcriptomics to gain more insights 
on cellular processes represented by a candidate marker[172]. This will bring us closer to 
a mechanistic understanding of various physiological and pathophysiological conditions 
associated with various disease states, including ACS. 

10. Conclusions 
Over the past decade, metabolomics has become a powerful investigative tool to elu-

cidate the underlying metabolic mechanisms of cardiovascular diseases. Most of the 
metabolomics studies in ACS have focused on biomarker identification to differentiate 
ACS from healthy controls, to differentiate ACS subtypes (UA, NSTEMI, and STEMI), and 
to find predictive molecules of mortality or adverse events following an ACS incident. 
Several studies also performed pathway analysis for finding the biological pathways that 
contribute to disease pathogenesis. Many of these studies have already shown substantial 
potential for discovery and understanding. However, as discussed above, attempts to 
translate these study results into clinical practice have resulted in contradictory results. 
Considering metabolomics is still early in its scientific evolution, the future is promising 
with the ongoing technological advances in the field. More importantly, more clinical 
studies aiming at a system-wide understanding of ACS pathogenesis rather than risk pre-
diction models are the need of the hour. 
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