
JAVA: An Introduction to Problem Solving & Programming, 7th Ed. By Walter Savitch

ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Defining Classes
and Methods

Chapter 5

Modified by James O’Reilly

JAVA: An Introduction to Problem Solving & Programming, 7th Ed. By Walter Savitch

ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Class and Method Definitions

• OOP- Object Oriented Programming – Big Ideas:
• Group data and related functions (methods) into Objects (Encapsulation)

• Objects are normally “Noun” concepts which have class types

• Objects can be made from (composed of) primitive data types and Objects

• Objects can often be treated as abstractions (interface separate from
implementation– information hiding)

• Objects can inherit traits from other Objects (one is a subtype of the other)

• Java programs typically consist of multiple objects of class types
• The Objects interact with one another where necessary

• These Objects can make it easier to understand the interactions between
parts of a program – a Person class stores information about people, Car
about cars…

• Program objects can represent Objects in real world and Abstractions

JAVA: An Introduction to Problem Solving & Programming, 7th Ed. By Walter Savitch

ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Class Files and Separate Compilation

• Each Java class definition usually in a file by itself
• File begins with name of the class

• Ends with .java

• Class can be compiled separately

• Helpful to keep all class files used by a program in the same directory

JAVA: An Introduction to Problem Solving & Programming, 7th Ed. By Walter Savitch

ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Class and Method Definitions (the Type)

• Figure 5.1 A class as a blueprint

JAVA: An Introduction to Problem Solving & Programming, 7th Ed. By Walter Savitch

ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Class Definitions and Instantiations

• Figure 5.1 ctd.

Objects are

instantiations of the

class Automobile

When you define a

class Automobile,

you define the type.

JAVA: An Introduction to Problem Solving & Programming, 7th Ed. By Walter Savitch

ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Encapsulation

• Consider example of driving a car
• We see and use break pedal, accelerator pedal, steering wheel – know what

they do

• We do not see mechanical details of how they do their jobs

• Encapsulation divides class definition into
• Class interface

• Class implementation

• (good example of abstraction too),

• (possibly good example of info hiding)

JAVA: An Introduction to Problem Solving & Programming, 7th Ed. By Walter Savitch

ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Encapsulation

• A class interface
• Tells what the class does/provides

• Gives headings for public methods and comments about them

• Helps manage complexity as a project grows

• Can always make a member public easily, which is not true for private

• A class implementation
• Contains private variables

• Includes definitions of public and private methods

JAVA: An Introduction to Problem Solving & Programming, 7th Ed. By Walter Savitch

ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Information Hiding

• Programmer using a class method need not know details of
implementation
• Only needs to know what the method does

• Can mark items as private (and others…) to indicate who should access

• Information hiding:
• Designing a method so it can be used without knowing details

• Also related to abstraction and encapsulation

• Method design should separate what from how, this allows changes
to methods to be done without modifying dependent code – great
for fixes and optimization

• Abstraction: the parts that are hidden can be ignored by
programmers using – not modifying -- the class. The generally visible
public parts represent a simplification of the whole.

JAVA: An Introduction to Problem Solving & Programming, 7th Ed. By Walter Savitch

ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Encapsulation, Info. Hiding, Abstraction

• Figure 5.3 A well encapsulated class definition

• Remember that the interface may represent a form of abstraction

Programmer who

uses the class

JAVA: An Introduction to Problem Solving & Programming, 7th Ed. By Walter Savitch

ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Methods

• When you use a method you "invoke" or "call" it

• Generally a verb (it is an action)

• Two kinds of Java methods
• Return a single item (can be primitive, array or other Object). Can be used to

get a value (e.g. String methods)

• Perform some other action – a void method. Will do something but

not return a value (a method should do something or return something or be
deleted).

• The method main is a void method

• Invoked by the system

• Not by the application program (the general case)

JAVA: An Introduction to Problem Solving & Programming, 7th Ed. By Walter Savitch

ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Methods That Return a Value

• Consider method getAgeInHumanYears()

• Heading declares type of value to be returned

• Last statement executed is return

JAVA: An Introduction to Problem Solving & Programming, 7th Ed. By Walter Savitch

ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Defining void Methods

• Consider method writeOutput from

Listing 5.1

• Method definitions appear inside class definition
• Can be used only with objects of that class (or the class name, for static

methods)

• Can return in a void method (just return;), ends execution of that method.

JAVA: An Introduction to Problem Solving & Programming, 7th Ed. By Walter Savitch

ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

The Keyword this

• Referring to instance variables outside of the class – must use
• Name of an object of the class

• Followed by a dot

• Name of instance variable

• Inside the class,
• Use name of variable alone

• The object (unnamed) is understood to be there from the context

• Do not use within static methods (such as main())

• Inside the class the unnamed object can be referred to with the name this

• Example
 this.name = keyboard.nextLine();

• The keyword this stands for the receiving object

• We will see some situations later that require the this

keyboard.nextLine();

JAVA: An Introduction to Problem Solving & Programming, 7th Ed. By Walter Savitch

ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Local Variables

• Variables declared inside a method are called local variables
• May be used only inside the method

• All variables declared in method main are local to main

• Must be initialized before being read (other variables have defaults)

• Local variables having the same name and declared in different methods
are different variables

JAVA: An Introduction to Problem Solving & Programming, 7th Ed. By Walter Savitch

ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Blocks

• Recall compound statements

• Enclosed in braces { }

• When you declare a variable within a compound statement
• The compound statement is called a block

• The scope of the variable is from its declaration to the end of the block

• Variable declared outside the block usable both outside and inside the
block

JAVA: An Introduction to Problem Solving & Programming, 7th Ed. By Walter Savitch

ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Parameters of Primitive Type

• Note the declaration
public int predictPopulation(int years)

• The formal parameter is years

• Calling the method

int futurePopulation =
 speciesOfTheMonth.predictPopulation(10);
• The actual parameter, also called the argument, is the integer 10

JAVA: An Introduction to Problem Solving & Programming, 7th Ed. By Walter Savitch

ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Parameters of Primitive Type

• Parameter names are local to the method

• When method invoked
• Each parameter initialized to value in corresponding actual parameter

• Primitive actual parameter cannot be altered by invocation of the method –
pass by value

• Automatic type conversion performed
byte -> short -> int ->

 long -> float -> double

JAVA: An Introduction to Problem Solving & Programming, 7th Ed. By Walter Savitch

ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Automatic Documentation javadoc

• Generates documentation for class interface

• Comments in source code must be enclosed in /** */

• Utility javadoc will include

• These comments

• Headings of public methods

• Output of javadoc is HTML format (webpage format).

JAVA: An Introduction to Problem Solving & Programming, 7th Ed. By Walter Savitch

ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Pre- and Postcondition Comments

• Precondition comment
• States conditions that must be true before method is invoked

• Postcondition comment
• Tells what will be true after method executed

• Example

JAVA: An Introduction to Problem Solving & Programming, 7th Ed. By Walter Savitch

ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Access Modifiers

• For general use: specified as public
• Any other class can directly access that object by name

• Classes generally specified as public

• Only class should modify/access: specify private
• Instance variables usually private

• Make all member variables private unless you have a good reason not to.

• Also, two others

• <package-private>: only visible within package (collection of
related files)

• protected: ”The protected modifier specifies that the member can
only be accessed within its own package (as with package-private) and, in
addition, by a subclass of its class in another package.”[1]

JAVA: An Introduction to Problem Solving & Programming, 7th Ed. By Walter Savitch

ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Programming Example

• Another implementation of a Rectangle class

• View sample code, listing 5.10

class Rectangle2

• Note setDimensions method

• This is the only way the width and height may be altered

outside the class

CodeSamples2.htm

JAVA: An Introduction to Problem Solving & Programming, 7th Ed. By Walter Savitch

ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Encapsulation with Information Hiding (a
recipe for making a class)

• Preface class definition with comment on how to use class

•Declare all instance variables in the class as private.

• Provide public accessor methods to retrieve data

• Provide public methods manipulating data
• Such methods could include public mutator methods.

• Place a comment before each public method heading that
fully specifies how to use method.

•Make any helping methods private.

•Write comments within class definition to describe
implementation details.

JAVA: An Introduction to Problem Solving & Programming, 7th Ed. By Walter Savitch

ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Methods Calling Methods

• A method body may call any other method

• If the invoked method is within the same class
• Need not use prefix of receiving object

• View demo program, listing 5.16
class OracleDemo

CodeSamples2.htm

JAVA: An Introduction to Problem Solving & Programming, 7th Ed. By Walter Savitch

ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Methods Calling Methods

Sample

screen

output

JAVA: An Introduction to Problem Solving & Programming, 7th Ed. By Walter Savitch

ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

UML Class Diagrams

• Contains more than interface, less than full implementation

• Usually written before class is defined – a good design before
implementation prevents rewrites

• Used by the programmer defining the class
• Contrast with the interface used by programmer who uses the class

JAVA: An Introduction to Problem Solving & Programming, 7th Ed. By Walter Savitch

ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Class and Method Definitions

• Figure 5.2 A class outline as a UML class diagram

• + and – indicate public/private, respectively (later – Access mods)

JAVA: An Introduction to Problem Solving & Programming, 7th Ed. By Walter Savitch

ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

UML Class Diagrams

• Note
Figure 5.4
for the

Purchase
class

Plus signs imply

public access

Minus signs imply

private access

JAVA: An Introduction to Problem Solving & Programming, 7th Ed. By Walter Savitch

ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Variables of a Class Type

• All variables are implemented as a memory location

• Data, the actual value, of primitive type stored in the memory
location assigned to the variable

• Variable of class type contains memory address of object named by
the variable

• Address called the reference to the variable

• A reference type variable holds references (memory addresses) , not
all the data

JAVA: An Introduction to Problem Solving & Programming, 7th Ed. By Walter Savitch

ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Complete Programming Example

• View sample code, listing 5.19

class Species

• Figure 5.7
Class Diagram
for the class

Species
in listing 5.19

CodeSamples2.htm

JAVA: An Introduction to Problem Solving & Programming, 7th Ed. By Walter Savitch

ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Defining an equals Method

• As demonstrated by previous figures
• We cannot use == to compare two objects

• We must write a method for a given class which will make the comparison as
needed

• View sample code, listing 5.17

class Species

• The equals for this class method used same way as

equals method for String

CodeSamples2.htm

JAVA: An Introduction to Problem Solving & Programming, 7th Ed. By Walter Savitch

ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Demonstrating an equals Method

• View sample program, listing 5.18

class SpeciesEqualsDemo

• Note difference in the two comparison methods == versus

.equals()

Sample

screen

output

CodeSamples2.htm

JAVA: An Introduction to Problem Solving & Programming, 7th Ed. By Walter Savitch

ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Accessor and Mutator Methods

• When instance variables are private must provide methods to access
values stored there

• Typically named getSomeValue
• Referred to as an accessor method

• Must also provide methods to change the values of the private
instance variable

• Typically named setSomeValue
• Referred to as a mutator method

• Allows us to check the values (e.g. negative width doesn’t make sense
normally)

JAVA: An Introduction to Problem Solving & Programming, 7th Ed. By Walter Savitch

ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Accessor and Mutator Methods

• Consider an example class with accessor and mutator methods

• View sample code, listing 5.11

class Species
• Note the mutator method

•setSpecies
• Note accessor methods

•getName, getPopulation,

getGrowthRate

CodeSamples2.htm

JAVA: An Introduction to Problem Solving & Programming, 7th Ed. By Walter Savitch

ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Accessor and Mutator Methods

• Using a mutator method

• View sample program, listing 5.12

class Species

Sample

screen

output

CodeSamples2.htm

JAVA: An Introduction to Problem Solving & Programming, 7th Ed. By Walter Savitch

ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Unit Testing

• A methodology to test correctness of individual units of code
• Typically methods, classes

• Collection of unit tests is the test suite

• The process of running tests repeatedly after changes are make sure
everything still works is regression testing

JAVA: An Introduction to Problem Solving & Programming, 7th Ed. By Walter Savitch

ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Method Parameters of a Class Type

•When assignment operator used with objects of
class type
• Only memory address is copied

•Similar to use of variables of class type
• Memory address of actual parameter passed to formal

parameter
• Formal parameter may access public elements of the class
• Actual parameter thus can be changed by class methods

JAVA: An Introduction to Problem Solving & Programming, 7th Ed. By Walter Savitch

ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

References

• [1]
https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.h
tml (last accessed 10/19)

https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html
https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html

