JAVA

AN INTRODUCTION TO

PROBLEM SOLVING
AND PROGRAMMING

WALTER SAVITCH

Defining Classes
and Methods

Chapter 5
Modified by James O’Reilly

JAVA: An Introduction to Problem Solving & Programming, 7t Ed. By Walter Savitch
ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Class and Method Definitions

* OOP- Object Oriented Programming — Big ldeas:
* Group data and related functions (methods) into Objects (Encapsulation)
* Objects are normally “Noun” concepts which have class types
* Objects can be made from (composed of) primitive data types and Objects

* Objects can often be treated as abstractions (interface separate from
implementation— information hiding)

* Objects can inherit traits from other Objects (one is a subtype of the other)

* Java programs typically consist of multiple objects of class types
* The Objects interact with one another where necessary

* These Objects can make it easier to understand the interactions between
parts of a program — a Person class stores information about people, Car
about cars...

* Program objects can represent Objects in real world and Abstractions

JAVA: An Introduction to Problem Solving & Programming, 7" Ed. By Walter Savitch
ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Class Files and Separate Compilation

* Each class definition usually in a file by itself
* File begins with name of the class

* Ends with

* Class can be compiled separately
* Helpful to keep all class files used by a program in the same directory

JAVA: An Introduction to Problem Solving & Programming, 7" Ed. By Walter Savitch
ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Class and Method Definitions (the Type)

* Figure 5.1 A class as a blueprint

Class Name: Automobile

Data:
amount of fuel
speed
license plate

Methods (actions):
accelerate:
How: Press on gas pedal.
decelerate:
How: Press on brake pedal.

JAVA: An Introduction to Problem Solving & Programming, 7" Ed. By Walter Savitch
ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Class Definitions and Instantiations

* Figure 5.1 ctd.

First Instantiation:

When you define a Ohject name: patsCar
class : amount of fuel: 10 gallons
] speed: 55 miles per hour
you define the type license plate: "135 XJK"

Second Instantiation:

Object name: suesCar

amount of fuel: 14 gallong
speed: 0 miles per hour

license plate: "SUES CAR"
Third Instantiation:

Object name: ronsCar

amount of fuel: 2 gallons Objects are
speed: 75 miles per hour) o
license plate: "351 WLF" Instantiations of the

class

JAVA: An Introduction to Problem Solving & Programming, 7" Ed. By Walter Savitch
ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Encapsulation

* Consider example of driving a car

* We see and use break pedal, accelerator pedal, steering wheel — know what
they do

* We do not see mechanical details of how they do their jobs

* Encapsulation divides class definition into
* Class interface
 Class implementation

* (good example of abstraction too),
* (possibly good example of info hiding)

JAVA: An Introduction to Problem Solving & Programming, 7" Ed. By Walter Savitch
ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Encapsulation

* A class interface
* Tells what the class does/provides
* Gives headings for public methods and comments about them
* Helps manage complexity as a project grows
e Can always make a member public easily, which is not true for private

* A class implementation
» Contains private variables
* Includes definitions of public and private methods

JAVA: An Introduction to Problem Solving & Programming, 7" Ed. By Walter Savitch
ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Information Hiding

* Programmer using a class method need not know details of
implementation
* Only needs to know what the method does
* Can mark items as private (and others...) to indicate who should access

* Information hiding:
* Designing a method so it can be used without knowing details

 Also related to abstraction and encapsulation

* Method design should separate what from how, this allows changes
to methods to be done without modifying dependent code — great
for fixes and optimization

* Abstraction: the parts that are hidden can be ignored by
programmers using — not modifying -- the class. The generally visible
public parts represent a simplification of the whole.

JAVA: An Introduction to Problem Solving & Programming, 7" Ed. By Walter Savitch
ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Encapsulation, Info. Hiding, Abstraction

* Figure 5.3 A well encapsulated class definition
« Remember that the interface may represent a form of abstraction

Class Definition

Implementation:

Private instance variables Interface:

Private constants Comments Programmer who
Private methods - Headings of public methods uses the class
Bodies of public methods Public named constants

JAVA: An Introduction to Problem Solving & Programming, 7" Ed. By Walter Savitch
ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Methods

* When you use a method you "invoke" or "call" it
* Generally a verb (it is an action)

* Two kinds of Java methods
* Return a single item (can be primitive, array or other Object). Can be used to
get a value (e.g. String methods)

* Perform some other action —a method. Will do something but
not return a value (a method should do something or return something or be
deleted).

* The method isa method

* Invoked by the system
* Not by the application program (the general case)

JAVA: An Introduction to Problem Solving & Programming, 7" Ed. By Walter Savitch
ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Methods That Return a Value

* Consider method getAgeInHumanYears ()

public int getAgeInHumanYears()

humanAge = 0;
(age <= 2)

-

humanAge

age * 11;

}

else

{

humanAge = 22 + ((age-2) * 5);

}

return humanAge;

* Heading declares type of valueto be returned

« Last statement executed is Y@ TC1U1rn

JAVA: An Introduction to Problem Solving & Programming, 7" Ed. By Walter Savitch
ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Defining Methods

* Consider method from

Listing 5.1 public void writeOutput()
{

System.out.println('"Name: + name);
System.out.println("Breed: " + breed);
System.out.println("Age in calendar years: +
age);
System.out.println("Age in human years: " +
getAgeInHumanYears());
System.out.printin();

}

* Method definitions appear inside class definition

* Can be used only with objects of that class (or the class name, for static
methods)

» Can return in a void method (just return;), ends execution of that method.

JAVA: An Introduction to Problem Solving & Programming, 7" Ed. By Walter Savitch
ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

The Keyword

» Referring to instance variables outside of the class — must use
* Name of an object of the class
* Followed by a dot
* Name of instance variable

Inside the class,
e Use name of variable alone
* The object (unnamed) is understood to be there from the context
* Do not use within static methods (such as main())

Inside the class the unnamed object can be referred to with the name

Example

The keyword stands for the receiving object

We will see some situations later that require the

JAVA: An Introduction to Problem Solving & Programming, 7" Ed. By Walter Savitch
ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Local Variables

e Variables declared inside a method are called local variables
* May be used only inside the method

* All variables declared in method are local to

* Must be initialized before being read (other variables have defaults)

* Local variables having the same name and declared in different methods
are different variables

JAVA: An Introduction to Problem Solving & Programming, 7" Ed. By Walter Savitch
ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Blocks

* Recall compound statements
* Enclosed in braces

* When you declare a variable within a compound statement
 The compound statement is called a block
* The scope of the variable is from its declaration to the end of the block

e Variable declared outside the block usable both outside and inside the
block

JAVA: An Introduction to Problem Solving & Programming, 7" Ed. By Walter Savitch
ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Parameters of Primitive Type

* Note the declaration
public int predictPopulation (int years)

* The formal parameteris yeaxrs

* Calling the method
int futurePopulation =
speciesOfTheMonth.predictPopulation (10) ;

* The actual parameter, also called the argument, is the integer 10

JAVA: An Introduction to Problem Solving & Programming, 7t Ed. By Walter Savitch
ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Parameters of Primitive Type

e Parameter names are local to the method

* When method invoked
* Each parameter initialized to value in corresponding actual parameter
* Primitive actual parameter cannot be altered by invocation of the method —
pass by value

* Automatic type conversion performed

JAVA: An Introduction to Problem Solving & Programming, 7" Ed. By Walter Savitch
ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Automatic Documentation

* Generates documentation for class interface

e Comments in source code must be enclosed in

e Utility will include

* These comments
* Headings of public methods

e Qutput of is HTML format (webpage format).

JAVA: An Introduction to Problem Solving & Programming, 7" Ed. By Walter Savitch
ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Pre- and Postcondition Comments

* Precondition comment
* States conditions that must be true before method is invoked

e Postcondition comment
e Tells what will be true after method executed

* Example

,u"ll 7 o

Precondition: The instance variables of the calling
object have values.

Postcondition: The data stored in (the instance variables
of) the receiving object have been written to the screen.
i ,-"ll
public void writeOutput()

JAVA: An Introduction to Problem Solving & Programming, 7" Ed. By Walter Savitch
ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Access Modifiers

* For general use: specified as

* Any other class can directly access that object by name
 Classes generally specified as

* Only class should modify/access: specify

* Instance variables usually
 Make all member variables private unless you have a good reason not to.

* Also, two others

only visible within package (collection of
related files)

"The protected modifier specifies that the member can

only be accessed within its own package (as with package-private) and, in
addition, by a subclass of its class in another package.”[1]

JAVA: An Introduction to Problem Solving & Programming, 7" Ed. By Walter Savitch
ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Programming Example

* Another implementation of a Rectangle class

* View sample code, listing 5.10

class RectangleZ2

e Note SetDimensions method

* This is the only way the width and he:Lght may be altered
outside the class

JAVA: An Introduction to Problem Solving & Programming, 7t Ed. By Walter Savitch
ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

CodeSamples2.htm

Encapsulation with Information Hiding (a
recipe for making a class)

* Preface class definition with comment on how to use class
* Declare all instance variables in the class as private.
* Provide public accessor methods to retrieve data

* Provide public methods manipulating data
* Such methods could include public mutator methods.

* Place a comment before each public method heading that
fully specifies how to use method.

* Make any helping methods private.

* Write comments within class definition to describe
implementation details.

JAVA: An Introduction to Problem Solving & Programming, 7" Ed. By Walter Savitch
ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Methods Calling Methods

* A method body may call any other method

e If the invoked method is within the same class
* Need not use prefix of receiving object

* View demo program, listing 5.16
class OracleDemo

JAVA: An Introduction to Problem Solving & Programming, 7" Ed. By Walter Savitch
ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

CodeSamples2.htm

Methods Calling Methods

I am the oracle. I will answer any one-1line question.
What i1s your question?

What time 1is it?

Hmm, I need some help on that.

Please give me one Tine of advice.

Seek and ye shall find the answer.

Thank you. That helped a Tlot.
You asked the question:
What time 1is 1it?
Now, here is my answer:
The answer is in vyour heart.
Do you wish to ask another question?

JAVA: An Introduction to Problem Solving & Programming, 71 Ed. By Walter Savitch
ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

UML Class Diagrams

* Contains more than interface, less than full implementation

e Usually written before class is defined — a good design before
implementation prevents rewrites

* Used by the programmer defining the class
* Contrast with the interface used by programmer who uses the class

JAVA: An Introduction to Problem Solving & Programming, 7" Ed. By Walter Savitch
ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Class and Method Definitions

* Figure 5.2 A class outline as a UML class diagram
* + and — indicate public/private, respectively (later — Access mods)

Automobile

— fuel: double
— speed: double
— license: String

+ accelerate(double pedalPressure): void
+ decelerate(double pedalPressure): void

JAVA: An Introduction to Problem Solving & Programming, 7" Ed. By Walter Savitch
ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

UML Class Diagrams

Purchase
* Note o
- ame: String
Figure 5.4 groupCount: int
for the groupPrice:_double
umberBought: int Minus signs imply
private access

class

etName(String newName): void

etPrice(int count, double costForCount): void
etNumberBought(int number): void

eadInput(): void

vriteQutput(): void

etName(): String

etTotalCost(): double

etUnitCost(): double

etNumberBought(): int

Plus signs imply
public access

+ 4+ + + A+ A+ o+

JAVA: An Introduction to Problem Solving & Programming, 7" Ed. By Walter Savitch
ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Variables of a Class Type

 All variables are implemented as a memory location

* Data, the actual value, of primitive type stored in the memory
location assigned to the variable

* Variable of class type contains memory address of object named by
the variable

» Address called the reference to the variable

* A reference type variable holds references (memory addresses) , not
all the data

JAVA: An Introduction to Problem Solving & Programming, 7" Ed. By Walter Savitch
ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Complete Programming Example

* View sample code, listing 5.19

class

* Figure 5.7
Class Diagram

Species

for the class

in listing 5.19

name: String
population: 1int
growthRate: double

+ + + +

+ + + +

readInput(): void

writeOQutput(): void

predictPopulation(int years): int

setSpecies(String newName, int newPopulation,
double newGrowthRate): void

getName(): String

getPopulation(): int

getGrowthRate(): double

equals(Species otherObject): boolean

JAVA: An Introduction to Problem Solving & Programming, 7" Ed. By Walter Savitch
ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

CodeSamples2.htm

Defining an Method

* As demonstrated by previous figures
* We cannot use == to compare two objects

* We must write a method for a given class which will make the comparison as
needed

* View sample code, listing 5.17

* The for this class method used same way as

method for

JAVA: An Introduction to Problem Solving & Programming, 7" Ed. By Walter Savitch
ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

CodeSamples2.htm

Demonstrating an equals Method

* View sample program, listing 5.18
class SpeciesEqualsDemo

* Note difference in the two comparison methods == versus

.equals()

Do Not match with ==.
Match with the method equals.
Now we change one Klingon ox to all lowercase.
Match with the method equals.

JAVA: An Introduction to Problem Solving & Programming, 71 Ed. By Walter Savitch
ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

CodeSamples2.htm

Accessor and Mutator Methods

* When instance variables are private must provide methods to access
values stored there
* Typically named

* Referred to as an accessor method

* Must also provide methods to change the values of the private
instance variable

* Typically named

* Referred to as a mutator method

* Allows us to check the values (e.g. negative width doesn’t make sense
normally)

JAVA: An Introduction to Problem Solving & Programming, 7" Ed. By Walter Savitch
ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Accessor and Mutator Methods

* Consider an example class with accessor and mutator methods
* View sample code, listing 5.11

class Species
* Note the mutator method
*setSpecies
* Note accessor methods
*getName,getPopulation,
getGrowthRate

JAVA: An Introduction to Problem Solving & Programming, 7t Ed. By Walter Savitch
ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

CodeSamples2.htm

Accessor and Mutator Methods

e Using a mutator method
* View sample program, listing 5.12
class Species

Name = Ferengie fur ball

Population = 1000

Growth rate = -20.5%

In 10 years the population will be 100
The new Species of the Month:

Name = Klingon ox

Population = 10

Growth rate = 15.0%

In 10 years the population will be 40

JAVA: An Introduction to Problem Solving & Programming, 71 Ed. By Walter Savitch
ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

CodeSamples2.htm

Unit Testing

* A methodology to test correctness of individual units of code
* Typically methods, classes

e Collection of unit tests is the test suite

* The process of running tests repeatedly after changes are make sure
everything still works is regression testing

JAVA: An Introduction to Problem Solving & Programming, 7" Ed. By Walter Savitch
ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Method Parameters of a Class Type

* When assignment operator used with objects of
class type
* Only memory address is copied

e Similar to use of variables of class type

* Memory address of actual parameter passed to formal
parameter

* Formal parameter may access public elements of the class
* Actual parameter thus can be changed by class methods

JAVA: An Introduction to Problem Solving & Programming, 7" Ed. By Walter Savitch
ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

References

* [1]
https://docs.oracle.com/javase/tutorial/java/javaOQ/accesscontrol.h
tml (last accessed 10/19)

JAVA: An Introduction to Problem Solving & Programming, 7" Ed. By Walter Savitch
ISBN 0133862119 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html
https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html

