Regular Expressions

Definitions
Equivalence to Finite Automata

RE’ s: Introduction

Regular expressions are an
algebraic way to describe languages.

They describe exactly the regular
languages.

If E is a regular expression, then L(E) is
the language it defines.

We' |l describe RE’ s and their
languages recursively.

RE’ s: Definition

- Basis 1: If @ is any symbol, then a is a
RE, and L(a) = {a}.
« Note: {a} is the language containing one
string, and that string is of length 1.

- Basis 2: € isa RE, and L(e) = {€}.
« Basis 3: ¢ isa RE, and L(@) = o.

RE’ s: Definition — (2)

« Induction 1: If E; and E, are regular
expressions, then E,+E, is a regular
expression, and L(E;+E,) =
L(E,)UL(E,).

» Induction 2: If E, and E, are regular
expressions, then E,E, is a regular
expression, and L(E;E,) = L(E,)L(E,).

/

Concatenation : the set of strings wx such that w
Isin L(E,) and x is in L(E,).

RE’ s: Definition — (3)

« Induction 3: If E is a RE, then E* is a
RE, and L(E*) = (L(E))*.

/

Closure, or “Kleene closure” = set of strings
W;W,...w,, for some n > 0, where each w; is
in L(E).

Note: when n=0, the string is €.

Precedence of Operators

- Parentheses may be used wherever
needed to influence the grouping of
operators.

 Order of precedence is * (highest), then
concatenation, then + (lowest).

 RE’ s

L(01) = {01}.
L(01+0) = {01, 0}.

L(0(1+0)) = {01, 00}.

- Note order of precedence of operators.
L(0*) = {€, 0, 00, 000,... }.
L((0+10)*(e+1)) = all strings of 0" s
and 1’ s without two consecutive 1’ s.

 RE’ s

* L((0+1)*101(0+1)*) = all strings of 0’s
and 1’s having 101 as a substring.

* L((0+1)*1(0+1)*0(0+1)*1(0+1)*) = all
strings of 0's and 1's having 101 as a
subsequence.

« L(1*(1*01*01*01*)*1*) =all strings of
0’s and 1's having a number of 0’s that
is @ multiple of 3.

Equivalence of RE’ s and
Automata

- We need to show that for every RE,
there is an automaton that accepts the
same language.

* Pick the most powerful automaton type: the
e-NFA.

- And we need to show that for every
automaton, there is a RE defining its
language.

 Pick the most restrictive type: the DFA.

Converting a RE to an e-NFA

 Proof is an induction on the number of
operators (+, concatenation, *) in the
RE.

- We always construct an automaton of a
special form (next slide).

10

Form of e-NFA’ s Constructed

Start state: “Final” state:
Only state Only state
with external with external

predecessors SUCCEesSors

11

RE to e-NFA: Basis
+ Symbol a: O—2—0O
. € ()=)
. @ O O

RE to e-NFA: Induction 1 — Union

For E;, U E,

RE to e-NFA: Induction 2 —
Concatenation

() Forg;, (4) Forg, ()

For E,E,

RE to e-NFA: Induction 3 — Closure

DFA-to-RE

A strange sort of induction.

 States of the DFA are assumed to be
1,2,...,Nn.

« We construct RE’ s for the labels of
restricted sets of paths.

- Basis: single arcs or no arc at all.

- Induction: paths that are allowed to
traverse next state in order.

16

k-Paths

A k-path is a path through the graph of
the DFA that goes through no state
numbered higher than k.

» Endpoints are not restricted; they can
be any state.

17

: k-Paths

0-paths from 2 to 3:
RE for labels = 0.

1-paths from 2 to 3:
RE for labels = 0+11.

2-paths from 2 to 3:
RE for labels =
(10)*0+1(01)*1

3-paths from 2 to 3:
RE for labels = ?? 18

k-Path Induction

Let R;* be the regular expression for the
set of labels of k-paths from state i to

state j.
Basis: k=0. R; 0 = sum of labels of arc

from i to j.
. @ if no such arc.

. But add e if i=j.

19

: Basis

* Ri\"'=02 +€=¢€.

20

k-Path Inductive Case

* A k-path from i to j either:
1. Never goes through state k, or
2. Goes through k one or more times.

Rk = Rkt + Rk (R k1) R KL,

[)
Goes from

. Then, from
Doesn’t go ito k the

k to j
through k first time £€ro or J
more times

from k to k

21

Illustration of Induction

Path to k
Paths not going
through k From k to k
Several times P

ol]
"
LR}
L]
LR]
LN]
o

Q
R
»>

States < k

22

Final Step

The RE with the same language as the
DFA is the sum (union) of R;", where:

1. nis the number of states; i.e., paths are
unconstrained.

2. 11is the start state.
3. jis one of the final states.

23

R,3% = Ry3% + Ry3%(Ry3%)*Ry3% =
Ry3%(R33%)*

R,.2 = (10)*0+1(01)*1

R;5%2 = 0(01)*(1+00) + 1(10)*(0+11)
R,.3 = [(10)*0+1(01)*1]
[(0(01)*(1+00) + 1(10)*(0+11))]*

24

Summary

- Each of the three types of automata
(DFA, NFA, e-NFA) we discussed, and
regular expressions as well, define
exactly the same set of languages: the
regular languages.

25

