
Definitions of the Laplace Transform, Laplace 
Transform Examples, and Functions)



• 1.  Using the Laplace Transform, differential equations can be 
solved algebraically.

• 2. We can use pole/zero diagrams from the Laplace Transform 
to determine the frequency response of a system and whether or 
not the system is stable.

• 3. We can transform more signals than we can with the Fourier 
Transform, because the Fourier Transform is a special case of the 
Laplace Transform.

• 4. The Laplace Transform is used for analog circuit design.

• 5. The Laplace Transform is used in Control Theory and 
Robotics

In this lesson, we'll introduce our last transform, the 
Laplace Transform. The Laplace Transform is useful in a 
number of different applications:



The Bilateral Laplace Transform of a signal x(t) is defined as:

The complex variable s = σ + jω, where ω is the frequency variable of the Fourier 
Transform (simply set σ = 0). The Laplace Transform converges for more functions than 
the Fourier Transform since it could converge off of the jω axis. Here is a plot of the s-
plane: 

The Inverse Bilateral Laplace Transform of X(s) is:



Notice that to compute the inverse Laplace Transform, it requires a contour 
integral. (When taking the inverse transform, the value of c for the contour integral 
must be in the region where the integral exists.) Fortunately, we will see more 
convenient ways (namely, Partial Fraction Expansion) to take the inverse transform 
so you are not required to know how to do contour integration.

If we define x(t) to be 0 for t < 0, this gives us the unilateral Laplace transform:

As we'll see, an important difference between the bilateral and unilateral Laplace 
Transforms is that you need to specify the region of convergence (ROC) for the 
bilateral case.



We point out (without proof) several features of ROCs: 

 A right-sided time function (i.e. x(t) = 0, t < t0 where t0 is a constant) has an ROC that 
is a right half-plane.
 A left-sided time function has an ROC that is a left half-plane.
 A 2-sided time function has an ROC that is either a strip or else the ROC does not 
exist, which means that the Laplace Transform does not exist.
 If the ROC contains the jω- axis, then if x(t) were used as an impulse response, the 
system would be BIBO stable. If the boundary of the ROC is the jω-axis (i.e. Re(s) > 0 or 
Re(s) < 0), the system would be BIBO unstable. 

Taking the Laplace Transform is clearly a linear operation: 

L[ax1(t) + bx2(t)] = aX1(s) + bX2(s)

where X1(s) is the Laplace Transform of x1(t) and X2(s) is the Laplace Transform of x2(t). 



Example 1 Find L[u(t)]

In Example 1, we needed to specify that Re(s) > 0. If this is not the case, the integral 
would have not converged at the upper limit of infinity.



Example 2 Find the Laplace Transform of 1( ) ( )tx t e u t

The general Laplace Transform for an exponential function is:



Example 3 Find the Laplace Transform of 



Example 4 Find the Laplace Transform of   sin(bt)u(t)



As we saw from the Fourier Transform, there are a number of properties that can 
simplify taking Laplace Transforms. I'll cover a few properties here and you can read 
about the rest in the textbook.

Derive this:
Plugging in the time-shifted version of the function into the Laplace Transform 
definition, we get:

Letting τ = t - t0, we get:

 Laplace Transform Properties 



Example 1 Find the Laplace Transform of x(t) = sin[b(t - 2)]u(t - 2)



Recall the equation for the voltage of an inductor:

If we take the Laplace Transform of both sides of this equation, we get:

which is consistent with the fact that an inductor has impedance sL.



1) First write x(t) using the Inverse Laplace Transform formula: 

2) Then take the derivative of both sides of the equation with respect to t (this brings 
down a factor of s in the second term due to the exponential): 

3) This shows that x'(t) is the Inverse Laplace Transform of s X(s): 

The Differentiation Property is useful for solving differential equations.



Recall the equation for the voltage of a capacitor turned on at time 0:

If we take the Laplace Transform of both sides of this equation, we get: 

which is consistent with the fact that a capacitor has impedance      .



Derive this:

Take the derivative of both sides of this equation with respect to s:

This is the expression for the Laplace Transform of -t x(t). Therefore, 



(Given without proof)

(Given without proof)



Derive this:
Plugging in the definition, we find the Laplace Transform of x(at -b):

Let u = at - b and du = adt, we get:


