OBJECTIVES OF THE COURSE

Mathematics is a key to success in the field of science and engineering. Mathematics plays an important role in the context of globalization of Indian economy, modern technology, and computer science and information technology. Today, students need a thorough knowledge of basic principles, methods, results and a clear perception of the power of mathematical ideas and tools to use them effectively in modeling, interpreting and solving the real world problems. The syllabus of this program is aimed at preparing the students with the latest developments and put them on the right track to fulfill the present requirements.

COMMENCEMENT OF THIS REGULATION

This regulation shall take effect from the academic year 2017 - 2018, i.e, for the students who are admitted to the first year of the course during the academic year 2017 2018 and thereafter.

ELIGIBILITY FOR ADMISSION

A Pass in the Higher Secondary Examination of Tamil Nadu Higher Secondary Board or some other Board accepted by the Syndicate as equivalent thereto with Mathematics (other than Business mathematics) as one of the subjects.

DEFINITIONS

Programme : Program means a course of study leading to the award of the degree in a discipline.

Course : Course refers to the subject offered under the degree programme.

SYLLABUS

> The syllabus of the UG degree has been divided into the following five categories:
> Part I: Tamil / Other Languages.
> Part II: English Language.
> Part III: Core Courses, Elective Courses and Allied Courses.

Part IV: Skill Based Elective Courses, Non-Major Course, Environmental Studies and Value Education.

Part V: Extension Activity.

- Elective Course: There are 3 Elective Courses offered for B.Sc. Mathematics students. One course from each set should be selected for each elective course.
- Skill Based Elective Course: This course aims to impart advanced and recent developments in the concerned discipline.
- Non-Major Course: Irrespective of the discipline the student can select papers that are offered by other disciplines as non-major course.
- Extension Activity: Participation in NSS / NCC / YRC / RRC / Sports or other co-circular activities are considered for Extension activity.

CREDITS

Weightage given to each course of study is termed as credit.

CREDIT SYSTEM

The weightage of credits are spread over to different semester during the period of study and the cumulative credit point average shall be awarded based on the credits earned by the students.A total of 140 credits are prescribed for the under graduate programme.

DURATION OF THE COURSE

The candidates shall complete all the courses of the programme within 5 years from the date of admission. The programme of study shall consist of six semesters and a total period of three years with 140 credits. The programme of study will comprise the course according to the syllabus.

EXAMINATIONS

The course of study shall be based on semester pattern with Internal Assessment under Choice Based Credit System.

The examinations for all the papers consist of both Internal (Continuous Internal Assessment-CIA) and External (end semester) theory examination. The theory
examination shall be conducted for three hours duration at the end of each semester. The candidates failing in any subjects(s) will be permitted to appear for the same in the subsequent semester examinations.

SCHEME OF EXAMINATIONS

The scheme of examinations for different semesters shall be as follows:

Sem.	Part	Paper Code	Course	Hours/Week			Credit	Exam. Hrs.	Marks		
				Lect.	Prac.	Total			CIA	Uni. Exam	Total
I	I	17UFTA01	Language/ Tamil - I	6	-	6	3	3	25	75	100
	II	17UEN01	English - I	6	-	6	3	3	25	75	100
	III \#	17UMA01/17 UMACA01	Core-I Classical Algebra	5	-	5	4	3	25	75	100
	\#	17UMA02/17 UMACA02	Core-II Differential Calculus	4	-	4	4	3	25	75	100
Sem	Part	Paper Code	Course	Hours/Week			Credit	Exam. Hrs.	Marks		
				Lect.	Prac.	Total			CIA	Uni. Exam	Total
			First Allied: Allied Paper -I (Theory)	5	-	5	4	3	25	75	100
			First Allied: Allied Paper -III	-	2	2	-	*	-	-	-

| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

	IV		NMEC-II	2	-	2	2	3	25	75	100	

Allied Statistics - II Allied Statistics - Practical	
Allied Electronics - I	
Allied Electronics - II	
Allied Electronics - Practical	
Allied Accountancy - I	
Allied Accountancy - II	
Allied Accountancy - Practical	

ELECTIVE COURSES:

Select one paper from Group -A for Elective Course-I and one paper from Group -B for Elective Course II and one paper from Group - C for Elective Course III.

Table 1

NAME OF THE COURSE	PAPER CODE
Group A:	
Operations Research	17UMAE01
Astronomy	17UMAE02
Discrete Mathematics B:	17UMAE03
Number Theory	17UMAE04
Group C:	
Numerical Analysis	
Java Programming	17UMAE05

SKILL BASED ELECTIVE COURSE:

NAME OF THE COURSE	PAPER CODE
Office Automation	17UMAS01
Quantitative Aptitude Examination	17UMAS02
C Programming Theory	17UMAS03
C Programming Practical	17UMAS04
Latex Theory	17UMAS05
Latex Practical	17UMAS06

NON - MAJOR ELECTIVE COURSES:

Non - Major Elective Course -I (III- SEMESTER)	PAPER CODE
1.Quantitative Aptitude - I	17UMAN01
2.Matrix Algebra	17UMAN02
3.Linear Programming	17UMAN03
Non - Major Elective Course- II (IV- SEMESTER)	
1.Quantitative Aptitude - II	17UMAN04
2.Numerical Methods	17UMAN05
3.Operations Research	17UMAN06

ALLIED MATHEMATICS

Note: Select either Group - I or Group - II

ALLIED MATHEMATICS - GROUP I

NAME OF THE COURSE	PAPER CODE
Paper I: Allied Mathematics - I	17UMAA01
Paper II: Allied Mathematics - II	17UMAA02
Paper III: Allied Mathematics - Practical	17UMAAP01

ALLIED MATHEMATICS - GROUP II

NAME OF THE COURSE	PAPER CODE
Paper I - Discrete Mathematics	17UMAA03
Paper II - Numerical Method	17UMAA04
Paper III - Graph Theory	17UMAA05

UNIFORMITY IN THE NUMBER OF UNITS IN EACH PAPER:

Each theory paper shall consist of five units. The Question paper shall consist of questions uniformly distributed among all the units.

1. QUESTION PAPER PATTERN FOR THE THEORY PAPERS

Part A: (10 X $2=20$ marks $)$

Answer ALL Questions
(Two Questions from Each Unit)

Part B: (5 X $5=25$ marks $)$

Answer ALL Questions
(One Question from Each Unit with internal choice)

Part C: (3 X $10=30$ marks $)$

Answer Any THREE Questions out of Five Questions
(One Question from Each Unit)

2. MARKS AND QUESTION PAPER PATTERN FOR PRACTICALS

MAXIMUM:100 Marks
INTERNAL MARK: 40 marks

EXTERNAL MARK: 60 marks
(Practical Exam -45 marks + Record - 15 marks)

QUESTION PATTERN FOR THE PRACTICAL EXAM PAPERS

Answer any THREE questions out of 5 questions ($3 \times 15=45$ marks)

PASSING MINIMUM

i) The Candidates shall be declared to have passed the examination if he/she secures not less than 40 marks in total (CIA mark + Theory Exam mark) with minimum of 30 marks in the Theory Exam conducted by the University.
ii) The Candidates shall be declared to have passed the examination if he/she secures not less than 40 marks in total (CIA mark + Practical Exam mark) with minimum of 18 marks out of 45 marks in the Practical Exam conducted by the University.

CONVERSION OF MARKS TO GRADE POINTS AND LETTER GRADE (Performance in a

 Course/Paper)| RANGE OF
 MARKS | GRADE
 POINTS | LETTER
 GRADE | DESCRIPTION |
| :---: | :---: | :---: | :--- |
| $90-100$ | $9.0-10$. | O | Outstanding |
| $80-89$ | $8.0-8$. | $\mathrm{D}+$ | Excellent |
| $75-79$ | $7.5-7.9$ | D | Distinction |
| $70-74$ | $7.0-7.4$ | $\mathrm{~A}+$ | Very Good |
| $60-69$ | $6.0-6.9$ | A | Good |
| $50-59$ | $5.0-5.9$ | B | Average |
| $40-49$ | $4.0-4.9$ | C | Satisfactory |
| $00-39$ | 0.0 | U | Re-appear |
| ABSENT | 0.0 | AAA | ABSENT |

$\mathrm{Ci}=$ Credits earned for course i in any semester
$\mathrm{Gi}=$ Grade Point obtained for course i in any semester
$\mathrm{n}=$ refers to the semester in which such course were credited

Grade point average (for a Semester):

Calculation of grade point average semester-wise and part-wise is as follows:

GRADE POINT AVERAGE [GPA] $=\Sigma \mathrm{i} \mathrm{Ci} \mathrm{Gi} / \Sigma \mathrm{i} \mathrm{Ci}$
GPA $=$ Sum of the multiplication of grade points by the credits of the courses offered under each part

Calculation of Grade Point Average (CGPA) (for the entire programme):

A candidate who has passed all the examinations under different parts (Part-I to V) is eligible for the following part wise computed final grades based on the range of CGPA.

CUMULATIVE GRADE POINT AVERAGE [CGPA] = $\Sigma n \Sigma i \operatorname{Cni} G n i / \Sigma n \Sigma i \operatorname{Cni}$
Sum of the multiplication of grade points by the credits of the entire programme under each part

Sum of the credits of the courses of the entire programme under each part

CGPA	GRADE
$9.5-10.0$	$\mathbf{O +}$
9.0 and above but below 9.5	\mathbf{O}
8.5 and above but below 9.0	D++
8.0 and above but below 8.5	D+
7.5 and above but below 8.0	D
7.0 and above but below 7.5	A++

Classification of Successful candidates

A candidate who passes all the examinations in Part I to Part V securing following CGPA and Grades shall be declared as follows for Part I or Part II or Part III:

CGPA	GRADE	CLASSIFICATION OF FINAL RESULT
$9.5-10.0$	O+	First Class - Exemplary *
9.0 and above but below 9.5	O	First Class with Distinction*
8.5 and above but below 9.0	D++	First Class
8.0 and above but below 8.5	D+	
7.5 and above but below 8.0	D	
7.0 and above but below 7.5	A++	
6.5 and above but below 7.0	A+	
6.0 and above but below 6.5	A	
5.5 and above but below 6.0	B+	Second Class
5.0 and above but below 5.5	B	
4.5 and above but below 5.0	C+	Third Class
4.0 and above but below 4.5	C	

Conferment of the Degree

No candidate shall be eligible for conferment of the Degree unless he / she
i. has undergone the prescribed course of study for a period of not less than six semesters in an institution
approved by/affiliated to the University or has been exempted from in the manner prescribed and has
passed the examinations as have been prescribed therefor.
ii. Has completed all the components prescribed under Parts I to Part V in the CBCS pattern to earn
140 credits.
iii. Has successfully completed the prescribed Field Work/ Institutional Training as evidenced by certificate
issued by the Principal of the College.

Ranking

A candidate who qualifies for the UG degree course passing all the examinations in the first attempt, within
the minimum period prescribed for the course of study from the date of admission to the course and secures
I or II class shall be eligible for ranking and such ranking shall be confined to 10% of the total number of candidates qualified in that particular branch of study, subject to a maximum of 10 ranks. The improved marks shall not be taken into consideration for ranking.

NOTE:

\rightarrow All the Papers (including computer papers) specified in this syllabus should be handled and valued by faculty of Mathematics Department only.
> Both Internal and External Examiners for University Practical Examination should be appointed (including computer papers) from faculty of Mathematics only.

DIFFERENTIAL CALCULUS

Paper Code: 17UMA02 / 17UMACA02
Max.Mark :75 Marks
Credit : 4

Unit - I

Partial derivatives, Higher derivatives, Homogeneous function, Total differential co efficient, Implicit function - Problems Chapter - 3 (Page 3.1 to Page 3.45).

Unit - II

Jacobians, Maxima and Minima of functions of two variables, Necessary and sufficient conditions (without proof), Method of Lagrange's multipliers (no derivation) - Simple problems Chapter - 3 (Page 3.46 to Page 3.77).

Unit - III

Polar coordinates - Angle between Radius vector and the tangent, Angle of intersection of two curves, Length of perpendicular from the pole to the tangent, Pedal Equation, Asymptotes: Definition - Methods of finding asymptotes to plane algebraic curves - Problems (Chapter 5 and Chapter 7)

Unit - IV
Curvature and radius of curvature - Definitions, Cartesian formula for radius curvature, Parametric formula for radius of curvature - Radius of curvature in polar co- ordinates, Radius of curvature for pedal curves, Radius of Curvature for polar tangential curves - problems. (Chapter 6.)

Unit - V

Envelope of the one parameter family of curves. Definition, necessary and sufficient condition (without proof) Envelope for two parameter family co-ordinates of the center of curvature, Chord of curvature - Evolutes: Definition, Properties for evolute (without proof) - Problems. (Chapter 8 and Chapter 9.)

Text Book:

1.Calculus - By P.R. Vittal and Malini, Margham Publications, Chennai - 17. Third edition- 2000, Reprint 2010.

Reference Books:

1.Calculus: S. Narayanan and others ,S. Viswanathan Publications
2.Calculus: Dr. S. Sudha ,Emerald Publishers.

SEMESTER : II

CORE PAPER - IV

VECTOR ANALYSIS

Paper Code :17UMA04 / 17UMACA04

Max.Mark :75 Marks

Credit :4

Unit - I

Vector differentiation - Limit of a Vector function - Continuity and derivative of Vector function - Geometrical and Physical significance of Vector differentiation Gradient - Directional derivative of Scalar point functions - Equations of Tangent plane and normal line to a level surface.

Unit - II

Vector point function: Divergence and curl of a vector point function - Solenoidal and irrotational functions - Physical interpretation of divergence and curl of a Vector point function.

Unit - III
Vector identities - Laplacian operator.
Unit - IV
Integration of Vector functions - Line, Surfaces and volume integrals

Unit - V

Gauss-Divergence Theorem - Green's Theorem - Stoke's theorem (Statements only) - Verification of theorems- simple problems.

Text Book

1.Vector Analysis, Dr.P.R. Vittal, Margham Publication, Chennai - 17.

Reference Books

1.T.K. Manickavasagam and others, Vector Analysis, Vijay Nicole Imprints Pvt. Ltd., Chennai - 29, 2004.
2.P. Duraipandian and others, Vector Analysis, S. Viswanathan and Co.,Chennai- 31

DIFFERENTIAL EQUATIONS AND LAPLACE TRANSFORMS

Paper Code :17UMA06/17UMACA06
SEMESTER:III

Max.Marks:75
Credit : 3

Unit - I

Ordinary Differential Equations - Second order Differential Equations with constant co-efficients - Particular Integrals of the form $\mathrm{e}^{\mathrm{x}} \mathrm{V}$, where V is of the form x , $\mathrm{x}^{2}, \sin a \mathrm{x}, \cos a \mathrm{x}, \mathrm{x} \sin a \mathrm{x}$ and $\mathrm{x} \operatorname{cosax}$.

Unit - II
Second order differential Equations with variable co - efficients - both homogeneous linear equations and homogeneous non - linear equations.

Unit - III

Partial Differential Equations -Definition - Complete solution, Singular solution and general solution - Solution of equations of standard types $f(p, q)=0, f(x, p, q)=0$, $f(y, p, q)=0, f(z, p, q)=0$ and $f_{1}(x, p)=f_{2}(y, q)$ - Clairaut's form - Lagrange's equation $\mathrm{Pp}+\mathrm{Qq}=\mathrm{R}$.

Unit - IV

Laplace Transforms - Definition - Laplace transforms of Standard functions Elementary theorems - Problems.

Unit - V

Inverse Laplace transforms - Standard formulae - Elementary Theorems Applications to Second order linear differential equation (Problems with only one differential equation).

Text Books

1.T.K. Manickavasagam Pillai and S. Narayanan, Calculus, Vijay Nicole Imprints Pvt. Ltd., C - 7, Nelson Chambers, 115 Nelson Manickam Road, Chennai - 600 029, 2004.
2.Dr.P.R. Vittal, Differential Equations, Fourier Series and Analytical Solid Geometry, Margham Publications, 24, Rameswaram Road, T. Nagar, Chennai 600 017, 2000.

Reference Books

1. Differential equations and its applications by S.Narayanan \& T.K. Manichavasagam Pillay S.Viswanathan PVT. LTD - 2001 Edition
2. Engineering Mathematics by M.K. Venkatraman,National Publishing company, Chennai.

SEMESTER : III
 SKILL BASED ELECTIVE COURSE - I OFFICE AUTOMATION - PRACTICALS

Paper Code :17UMASP01

Max.Marks :60
Credit :2

LIST OF PRACTICALS

MS Word

$>$ Preparation of word document (Typing, aligning, Font Style, Font Size, Text editing, colouring, Spacing, Margins)
$>$ Creating and Editing a table (Select no of rows, Select no of columns, row heading, column heading, column width, row width, row height, spacing text editing)
$>$ Formatting a table (insert rows/columns, delete rows/columns, cell merging/ splitting, Cell alignment)
$>$ Preparation of letters using mail merge.
$>$ Demonstration of Find, Replace, Cut, Copy and paste texts in a word document.

MS Excel

$>$ Preparation of a Table using Excel.
$>$ Creation of Charts, Graphs and Diagrams

MS Power Point

> Preparation of slides in power point.
$>$ Creation of Animation Pictures.

MS Access

$>$ Creation of simple reports using MS Access.

General

$>$ Export a given graph from Excel to word.
$>$ Sending an Email.
$>$ Download a document from internet.
$>$ Import a picture from internet to word document.

Create a Power point presentation when a word document is given.

Text Book

1.Andy Channelle, "Beginning Open Office 3: From Novice to Professional" A Press series, Springer-Verlog, 2009

Reference Books

1.Perry M. Greg, "Sams Teach Yourself Open Office.org All In One", Sams Publications, 2007.

Note:

* This paper should be handled and valued by the faculty of Mathematics only.
* Both Internal and External Examiners for University Practical Examination should be appointed from faculty of Mathematics Department only. ****

SEMESTER:IV

SKILL BASED ELECTIVE COURSE - II

QUANTITATIVE APTITUDE

Paper Code :17UMAS02

Unit - I
Chain rule - Time and work.

Unit - II

Time and Distance.

Unit - III

Problems on Trains.

Unit - IV

Boats and Streams.

Unit - V

Calendar and Clocks.

Text Book

1.R.S. Aggarwal, Quantitative Aptitude for Competitative Examinations, S. Chand co. Ltd., 152, Anna Salai, Chennai, 2001.

Reference Books:

1.Quantitative Aptitude "by Abhijit Guha, Tata McGraw Hill Publishing Company Limited, New Delhi (2005).

SEMESTER-V

CORE PAPER - IX MODERN ALGEBRA - I

Paper Code :17UMA09/ 17UMACA09

Max.Mark :75 Marks
Credit :5

Unit - I

Group Theory: Definition of Group, Examples of Groups, Some preliminary Lemmas and Subgroups - Definition - Lemmas - Theorems (Lagrange's, Euler and Fermat) Examples. (Sections 2.1 to 2.4)

Unit - II

Group Theory (Continuation): A Counting Principle - Normal Sub Groups and Quotient groups and Homomorphism - Definitions - Lemmas - Theorems - Examples.(Sections 2.5 to 2.7).

Unit - III

Group Theory (Continuation): Automorphism, Cayley's Theorem and permutation groups - definition - Lemmas - Theorems - Examples. (Sections 2.8 to 2.10.)

Unit - IV

Ring Theory: Definition and Examples of Rings, some special classes of Rings, Homomorphisms, Ideals and Quotient Rings and more ideals and Quotient Rings - Definition - Lemmas - theorems - Examples. (Sections 3.1 to 3.5).

Unit - V

Ring theory (Continuation): The field of quotient of an integral Domain, Euclidean Rings, A particular Euclidean ring and polynomial rings - Definition - Lemmas - theorems -Examples.- Polynomials over the rational field- polynomial rings over the commutative rings .(Sections 3.6 to 3.11)

Text Books

1I.N. Herstein, Topics in Algebra, John Wiley, New York, 1975.

Reference Books

1.Mathematics for Degree Students (B.Sc. $3^{\text {rd }}$ Years), Dr.U.S. Rana, S. Chand, 2012.
2.A first course in Modern Algebra, A.R. Vasistha, Krishna Prekasan Mandhir, 9, Shivaji Road, Meerut (UP), 1983.
3.Modern Algebra, M.L. Santiago, Tata McGraw Hill, New Delhi, 1994.
4.Modern Algebra, K. Viswanatha Naik, Emerald Publishers, 135, Anna Salai, Chennai, 1988.

CORE PAPER - X

Paper Code :17UMA10/ 17UMACA10

REAL ANALYSIS - I

Max.Mark: 75 Marks

Credit :4

Unit - I

Functions - Real Valued functions - Equivalence countability - Real numbers - Least upper bound (Sections 1.3 to 1.7) Sequence of real numbers - definition of sequence and subsequence - Limit of a sequence - Convergent sequences - divergent sequences. (Sections2.1 to 2.4)

Unit - II

Bounded sequences - Monotone sequences - operations on convergent sequences operations on divergent sequences - Limit superior and limit inferior - Cauchy sequences (Sections 2.5 to 2.10).

Unit - III

Convergent and divergent series of real numbers - series with non-negative terms Alternating series - conditional convergence and absolute convergence - Rearrangements of series - Test for absolute convergence - series whose terms form a non increasing sequence (Sections 3.1 to 3.7)

Unit - IV

The Class l^{2} - Limit of a function on the real line - metric spaces - Limit in metric spaces. (Sections 3.10, 4.1 to 4.3).

Unit - V

Functions continuous at a point on the real line - Reformulation - Functions continuous on a metric space - open sets - closed sets - Discontinuous functions on R^{1}. (Sections 5.1 to 5.6)

Text Book

1.Richard R. Goldberg, Methods of Real Analysis - Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi.

Reference Books

1.D. Somasundaram and B.Choudhary, A First Course in Mathematical Analysis, Narosa Publishing House, New Delhi, Third Reprint, 2007.
2.Tom. M. Apostel, Mathematical Analysis, Narosa Publications, New Delhi, 2002.

SEMESTER-V

ELECTIVE PAPER - I

ASTRONOMY

Paper Code :17UMAE02

Max.Mark :75 Marks
 Credit :5

Unit - I

Standard formulae in spherical Trigonometry - Statements only - celestial sphere celestial co-ordinates and their conversions - Diurnal Motion - Problems Connected with Diurnal Motion - Zones of Earth - DIP - Twilight - Problems.

Unit - II

Astronomical refraction - Tangent and Cassini's formulae - Geocentric Parallax Heliocentric Parallax - Problems.

Unit - III

Kepler's laws of planetary motion - Newton's deductions from kepler's Laws - Equation of Time - Seasons - Calender conversion of time - problems.

Unit - IV

Fixing the Ecliptic - Fixing the position of the first point of Aries (Flamsteed's Method) - The moon - Different phases - Metonic cycle - Tides - Problems.

Unit - V

Eclipses - Solar eclipses - Lunar eclipses - General description of Solar system and stellar universe - Problems.

Text Book:

1.Kumaravelu and Susila Kumaravelu, 1984, Astronomy, K.Kumaravelu, Muruga Bhavanam, Chidambara Nagar, Nagarkoil - 2 .

Reference Books

1. V. Thiruvenkatacharya, A Text Book of Astronomy, S. Chand and Co., Pvt Ltd., 1972.

SEMESTER-V

 ELECTIVE PAPER - II

 ELECTIVE PAPER - II

 NUMBER THEORY

 NUMBER THEORY}

Paper Code :17UMAE04

Max.Mark :75 Marks
 Credit :5

Unit - I

The Division Algorithm - The g.c.d. - The Eucliden Algorithm - The Diophantine $a x+b y=c$.

Unit - II
The Fundamental Theorem of arithmetic, the sieve of Eratesthenes - The Goldbach conjecture - basic properties of congruence.

Unit - III
Special Divisibility tests - Linear congruences - The little Fermat's theorem - Wilson's Theorem.

Unit - IV

The Functions μ and σ the Mobius inversion Formula - The Greatest integer function.

Unit - V

Euler's Phi-Function - Euler's Theorem - Some Properties of the Phi - Function.

Text Book

1.David M. Burton, 2001, Elementary Number Theory, Universal Book Stall.

Reference Book

1. Elementary Theory of Numbers, cy. Hsiung, Allied Publishers, 1995.
2. Elmentary Number Theory, Allyn and Bacon lnc.,Boston, 1980.
3. Introduction to Analytic Number Theory, Tom.M.Apostal, Narosa Publishing House, New Delhi, 1989.

SEMESTER - VI
 CORE PAPER - XII
 MODERN ALGEBRA - II

Paper Code:17UMA12/17UMACA12

Max.Mark :75 Marks
 Credit :5

Unit I: Vector Spaces and Modules

Elementary Basic concepts and Linear Independence \& Bases - definition - lemmas -theorems -examples.- Dual spaces- Inner Product Spaces - definition - lemmas -theorems - examples.Modules (Sections 4.1 to 4.5)

Unit II : Fields

Extension fields - The Trancedence of e - roots of polynomials - constructions with straightedge and compass - more about roots - the elements of Galois theory. (Sections 5.1 to 5.6)

Unit III : Linear Transformations.

The Algebra of linear transformations, Characteristic roots and Matrices - definition -lemmas-theorems-examples. (Sections 6.1 to 6.3)

Unit IV: Linear Transformations

Canonical forms: Triangular form and Nilpotent Transformations - definition - lemmas -theorems examples. (Sections 6.4 \& 6.5)

Unit V : Linear Transformations(continuation)

Trace and Transpose and Determinants - Definitions - Properties - Theorems - Cramer's Rule -Problems. (Sections 6.8 \& 6.9)

Text Book

1.I.N. Herstein, Topics in Algebra-2nd Edition, John Wiely, New York, 1975.

Reference Books

1. Dr. U S Rana, Mathematics for Degree Students (B.Sc $3^{\text {rd }} \quad$ Years), S.Chand, 2012.
2. A.R.Vasistha, A first course in modern algebra, Krishna PrekasanMandhir, 9, Shivaji Road, Meerut (UP), 1983.
3. K.Viswanatha Naik, Modern Algebra, Emerald Publishers, 135, Anna Salai, Chennai -2, 2001.
4. K.Viswanatha Naik, ModemAlgebra, Emerald Publishers, 135, Anna Salai, Chennai -2, 1988.

SEMESTER-VI

CORE PAPER - XIII
REAL ANALYSIS - II

Paper Code :17UMA13/17UMACA13

Max.Mark :75 Marks

Credit :5

Unit - I

More about open sets - connected sets - bounded sets and totally bounded sets complete metric spaces. (Sections 6.1 to 6.4)

Unit - II

Compact metric spaces - continuous functions on compact metric spaces - continuity of the inverse function - uniform continuity. (Sections 6.5 to 6.8)

Unit - III

Sets of measure zero - definition of the Riemann integral - Existence of the Riemann integral - Properties of the Riemann integral (Sections 7.1 to 7.4)

Unit - IV

Derivatives - Rolle's theorem - The law of the mean - Fundamental theorem of calculus. (Sections :7.5 to 7.8)

Unit - V

Pointwise convergence of sequences of functions - uniforms convergence of sequences of functions - consequences of uniform convergence - convergence and uniform convergence of series of functions (Sections :9.1 to 9.4)

Text Book

1.Richard R. Goldberg, Methods of Real Analysis - Oxford and IBH Publishing co, Pvt. Ltd., New Delhi.

Reference Books

1.D. Somasundaram and B.Choudhary, A First Course in Mathematical Analysis, Narosa Publishing House, Third Reprint, 2007.
2.Tom. M. Apostel, Mathematical Analysis, Narosa Publications, New Delhi, 2002.

SEMESTER -VI ELECTIVE PAPER- III NUMERICAL ANALYSIS

Paper Code :17UMAE05

Max.Mark :75 Marks
 Credit :5

Unit I

Method of successive approximation - The Bisection method - The method of false position Newton Raphson Method - Generalized Newton's Method - Muller's Method.

Unit II

Finite Differences - Forward Differences - Backward Differences - Symbolic relations and separation of symbols - Detection of Errors using difference tables - Differences of a polynomial - Newton's formulae for Interpolation - Central Difference Interpolation formulae - Gauss's central difference formulae -Stirling's formulae - Bessel's formulae - Everett's formulae.

Unit III

Numerical Differentiation: Newton's forward and backward difference formulas - Errors in Numerical Differentiation. Numerical Integration: Trapezoidal rule - Simpson's 1/3 rule Simpson's $3 / 8$ rule - Boole's and Weddle's rule.

Unit IV

Solution of Linear systems : Direct Methods - Gaussian elimination method - Gauss Jordan method, LU decomposition method. Iterative methods - Jacobian's method - Gauss Seidal Method.

Unit V

Solution of Ordinary Differential Equations(First Order Differential Equations only): Taylor's series - Picard's method of successive approximations - Euler's method -Runge-Kutta Methods - II and IV order.

Text Books:-

1. Introductory Methods of Numerical analysis by S.S.Sastry,, Prentice Hall of India Pvt Ltd, New Delhi

2000

Reference Books:-

1. Numerical Methods by.Balagurusamy, Tata Me Graw Hill Publishing Company Ltd, NewDelhi, 2002
2.Numerical Analysis by GShanker Rao,New Age International Publishers Fourth Edition
3.Engineering Numerical Methods by T.K.Manickavasagam and Narayanan S.Viswanathan \& Co, Chennai 1998

SEMESTER-VI

SKILL BASED ELECTIVE PAPER - V: LATEX - THEORY

Paper Code :17UMAS05 / 17UMACAS05

Max.Mark :75 Marks Credit :2

Unit - I

Basic LaTex - Sample document and Key Concepts - type style - environments - Lists Contering - tables - verbatim - vertical and horizontal spacing.(Chapter 2 Sections 2.1. to 2.4.)

Unit - II

Typesetting Mathematics - Examples - Equation environments - Fonts, hats and underlining - braces - arrays and matrices - Customized commands - theorems like environments. (Chapter 3 Sections3.1. to 3.7.)

Unit - III

Math miscellaxy - Math Styles - Bold Math - Symbols for number sets - binomial coefficient. (Chapter 3 Sections 3.8. to 2.4.)

Unit - IV

Further essential LaTex - Document classes and the overall structure - titles for documents - Sectioning commands. (Chapter 4 Sections 4.1. to 4.3.)

Unit - V

Miscellaneous extras - Spacing - Accented characters - Dashes and hyphens - quotation marks - trouble shooting - Pinpointing the error - common errors - warning messages. (Chapter 4 Sections42.4. to 4.5.)

Text Books

1.David F Griffiths and Desmond J. Higham, Learning LaTex, SIAM (Society for Industrial and Applied Mathematics) Publishers, Phidel Phia, 1996.

Reference Books

1.Martin J. Erickson and Donald Bindner, A Student's Guide to the Study, Practice, and Tools of Modern Mathematics, CRC Press, Boca Raton, FL, 2011.
2. L. Lamport. LATEX: A Document Preparation System, User's Guide and ReferenceManual. Addison-Wesley, New York, second edition, 1994

Note: This paper should be handled and valued by the faculty of Mathematics only.
> Both Internal and External Examiners for University Practical Examination should be appointed from faculty of Mathematics only.

SEMESTER-II/IV
 ALLIED MATHEMATICS - III(GROUP-B)

 Graph Theory (Group-B)

 Graph Theory (Group-B)}

Paper Code :17UMAA05

Max.Mark :75 Marks
Credit : 3

Unit I

Graph - Definition 1.2-Applications of Graph - 1.3 Finite and Infinite Graphs - 1.4. Incidence and Degree - 1.5. Isolated Vertex - Pendant Vertex - Null Graph.

Unit II

Isomorphism - 2.2 Sub graphs - 2.3 A Puzzle with multicoloured - 2.4 Walks, paths and circuits - 2.5 Connected Graphs - Disconnected Graphs and components.

Unit III

2.6 Euler Graphs - 2.7 operations on Graphs ~2.8 More on Euler Graphs - 2.9 Hamiltonian and circuit-2.10 The Travelling salesman problem.

Unit IV

Trees 3.2 Properties of Trees - 3,3 Pendent Vertices in a Tree-3.4. Distance and centers in a Tree - 3.5 Rooted and Binary Trees.

Unit V
On Counting Trees - 3.7 Spanning Trees - 3.8-Fundamental circuits - 3.9 finding all spanning Trees Text Book:

1 Narasingh Deo, Graph Theory with applications to Engineering and computer science, Ptentice Hall of India Private Ltd ,New Delhi.

Reference Book:

1. Harary, Graph Theory, Narosa publications, New Delhi.
2. John Clark, A First look at Graph Theory, Allied Publications Ltd, Madras.

Square roots and cube roots
Unit - V
Averages.

Tex Book

1.Dr. R.S. Aggarwal, Quantitative Aptitude, S. Chand and Company Ltd., New Delhi, Re Print 2013.

Reference Book:

1.Abhijit Guha, Quantitative Aptitude Tata McGraw Hill Publishing Company Limited, New Delhi (2005).

SEMESTER - III
 NON- MAJOR ELECTIVE COURSE - I
 2. MATRIX ALGEBRA

Paper Code :17UMAN02

Max.Mark :75 Marks Credit :2

Hours: 2 Hrs/Week

Unit - I

Definition of matrices- Addition, Subtraction and Multiplication of matrices-problems only.
Unit - II
Transpose of a matrix- Adjoint of a matrix - Inverse of a matrix - problems only.
Unit - III
Definitions of Symmetric, Skew symmetric, Hermitian and Skew Hermitian matrices problems only,

Unit - IV

Rank of a matrix: Definition- Finding the rank of a matrix- problem upto 3×3 matrix only,

Unit - V

Characteristic equation of matrix- Cayley Hamilton Theorem (statement only)-Verification of Cayley Hamilton Theorem - simple problems only.

Text Book :

1. Dr.P.R .Vittal ,Allied Mathematics, Margham publication, Chennai-17, Reprint 2012

Reference Book:

1.S.G.Venkatachalapathi, Allied Mathematics, Margham publication, Chennai-17,Reprint 2011.

SEMESTER - III

 NON - MAJOR ELECTIVE COURSE - I

 NON - MAJOR ELECTIVE COURSE - I}

3. LINEAR PROGRAMMING

Paper Code :17UMAN03

Max.Mark :75 Marks
Credit :2
Hours: $\mathbf{2}$ Hrs/Week

Unit I

Definition of O.R. - Graphical Method .

Unit II

Simplex Method using Slack and Surplus Variables.

Unit III

Transportation Problem - Definition - Finding initial basic feasible solution only by using North -West corner Rule - Vogel's Approximation Method - Lowest cost entry Method. (Minimization with balanced problems only).

Unit IV

Assignment Problem - Definition -Finding optimal solution by using Hungarian Method Unit V

Sequencing Problem - Definition -N jobs to be operated on Two Machines-Problems.

Text Book :

1.G.V Shenoy, Linear Programming Methods and Applications, New Age International Publishers,Second Edition.

Reference Book:

1. Gauss S.1., Linear Programming, McGraw-Hill Book Company.
2. Gupta P.K. and Hira D.S., Problems in Operation Research, S.Chand \& Co.,
3. Kanti Swaroop, Gupta P.K. and Manmohan, Problems in Operation Research, Sultan Chand \& Sons.

SEMESTER - IV
 NON MAJOR ELECTIVE COURSE - II
 1.QUANTITATIVE APTITUDE - II

Paper Code :17UMAN04

Max.Mark :75 Marks

Credit :2

Hours : 2 Hrs/Week

Unit - I
Surds and Indices
Unit - II
Logarithms
Unit-III
Permutations and Combinations

Unit - IV

Probability
Unit - V
Tabulation

Tex Book

1.Dr. R.S. Aggarwal, Quantitative Aptitude, S. Chand and Company Ltd., New Delhi, Re Print 2013.

Reference Book:

1.Abhijit Guha, Quantitative Aptitude Tata McGraw Hill Publishing Company Limited, New Delhi (2005).

SEMESTER-IV

NON MAJOR ELECTIVE COURSE - II
 2. NUMERICAL METHODS

Paper Code :17UMAN05

Max.Mark :75 Marks
Credit :2
Hours : 2 Hrs/Week

Unit - I

Solutions to Algebraic equations only: By (i) Bisection Method (no proof) and (ii) Newton Raphson's Method (no proof) - Simple Problems only.

Unit - II

Finite Differences: Definition- First difference -Higher differences- Construction of difference Table- Operator Δ, and E only- Interpolation of missing value-Expression of any value of y in terms of the initial value y_{0}-Simple problems.

Unit - III

Newton's Forward difference Formula (without proof) - Construction of difference Table - Simple problems only.

Unit - IV
Newton's Backward difference Formula (without proof) - Construction of difference Table-Simple problems only.

Unit - V
Central difference Formula: Gauss's Forward and Gauss's Backward difference formula (without proof)- Stirling formula (without proof) - Simple problems only.

$\underline{\text { Tex Book }}$

1P.Kandasamy K.Thilagavathi, Calculus of Finite Differences and Numerical Analysis, S.Chand \&. Company PVT.LTD, New Delhi-55,2003.

Reference Book:

1. M.K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering Computation, New Age International Private Limited, 1999.
2. C.E. Froberg, Introduction to Numerical Analysis, II Edn., Addison Wesley, 1979.

SEMESTER-IV
 NON MAJOR ELECTIVE COURSE - II
 3.OPERATIONS RESEARCH

Paper Code :17UMAN06

Max.Mark :75 Marks

Credit :2

Hours : 2 Hrs/Week

Unit - I

Inventory Models - Introduction - Definition of Inventory Models - EOQ with Uniform demand, infinite rate of production with no shortages-problems only

Unit-II

Inventory Models - Probabilistic Type - News paper Boy Problem -Discrete case Problems only.

Unit-III
Queuing Theory - Definition - Model (M/M/1): ($\infty /$ /FCFS) - Problems.
Unit-IV
Network - Definition of Network, Event, Activity, Critical Path - Critical Path Method. Problems.

Unit - V
Network -Definition PERT, Three time estimates - PERT Algorithm -Problems.

Tex Book

1. P.K,Gupta, Man Mohan and Kanti Swarup, Operations Research, Sultan Chand and sons, NewDelhi,2001, -9th Edition

Reference Book:

1. Prem Kumar Gupta and D.S. Hira, Operations Research : An Introduction, S. Chand and Co., Ltd. New Delhi.
2. Hamdy A. Taha, Operations Research (7th Edn.), McMillan Publishing Company, New Delhi, 1982.

Model question paper

 MODERN ALGEBRA - I

 MODERN ALGEBRA - I}

Paper code:
Time: 3 hrs
Maximum Marks: 75
SECTION-A
(10 X $2=20$ marks $)$
Answer all the questions
1.Define Abelian group?
2. Define Sub group.
3. Define Question group
4.Define Normal sub group
5. What is commutative ring?
6. Define Isomorphism?
7. Define Kernal of \varnothing
8. Define Integral domain.
9. Define Euclidean Ring.
10. Define $\operatorname{gcd}(a, b)$.

$$
\text { Section }-B \quad(5 \times 5=25 \text { marks })
$$

Answer all the question
11. a) State and prove Fermat theorem.
b) If G is a finite group and $a \in G$ prove that $a^{0(G)}=e$
12.a)Prove that the sub group N of G is a normal sub group of $G \Leftrightarrow$ every left to set of N in G is a right coset of N in G .
b) If G is a finite group and N is a normal subgroup of G, Prove that $O(G / N)=O(G) / O(N)$.
13.a) Let \varnothing be a homomorphism of G onto G with kernel R, prove that $G / R \quad G$.
b) If G is a group prove that (the set of automorphisms of G), $\mathrm{A}(\mathrm{G})$ is also a group.
14.a) Show that a finite integral domain is a field.
b) Let R be a Commutative Ring with unit element whose only ideals are (0) and R itself.prove that R is a field.
15.a) Let R be a Euclidean Ring, for $\mathrm{a}, \mathrm{b}, \mathrm{c} € \mathrm{R}$, and a / bc but $(\mathrm{a}, \mathrm{b})=1$, prove that a / c.
b) Prove that every integral domain can be imbedded in a field.

$$
\text { Section }-\mathrm{C} \quad(5 \mathrm{X} 5=25 \text { marks })
$$

Answer any three questions
16. State and prove Lagrange's theorem
17. Prove that $H R$ is a sub group of $G \Leftrightarrow H R=R H$.
18. State and prove Cayley theorem.
19. If is a prime number prove that J_{p}, the ring of integers $\bmod \mathrm{p}$, is a field.
20. Let R be a Euclidean ring and $a, b, € R$, if $b \neq 0$ is not a unit in R prove that $d(a)<d(a b)$.

Model Question Paper
 Allied Paper-I : Allied Mathematics- I

Paper Code: 17UMAA 01

Time: 3 Hours
Maximum: 75 Marks
SECTION-A ($10 \times 2=20$ Marks)
Answer ALL Questions

1. Solve the equation $2 \mathrm{x}^{3}-7 \mathrm{x}^{2}+4 \mathrm{x}+3=0$ given that $1+\sqrt{2}$ is root
2. Diminish by 2 the roots of the equation $x^{4}+x^{3}-3 x^{2}+2 \mathrm{x}-4=0$ 3. Find the characteristic roots of a matrix $\mathrm{A}=\left(\begin{array}{ll}3 & 2 \\ 2 & 3\end{array}\right)$
3. Find sum and product of the eigen values of the matrix $\mathrm{A}=$ $\left(\begin{array}{ccc}1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3\end{array}\right)$
4. Write the formula for radius of curvature in cartesian coordinates.
5. Find the radius of curvature at $(1,1)$ of the curve $x^{4}+y^{4}=2$
6. Form the partial differential equation by eliminating the arbitrary contant from $\mathrm{z}=\mathrm{ax}+\mathrm{by}+\mathrm{ab}$
7. Form the partial differential equation by eliminating the arbitrary function from $\mathrm{Z}=\mathrm{f}\left(\frac{y}{x}\right)$
8. Find the value of $\int_{0}^{\frac{\pi}{2}} \sin ^{8} \theta d \theta$
9. Evaluate : $\int x e^{-x} \mathrm{dx}$.

SECTION-B (5×5=25 Marks)

Answer ALL Questions

11. (a) Show that the equation $3 x^{5}-2 x^{3}-4 x+2=0$ has at least two imaginary roots
(OR)
(b) Solve the equation $x^{4}+2 x^{3}-5 x^{2}+6 x+2=0$ given that $1+i$ is a root
12. (a) Find the characteristic roots of the matrix $\mathrm{A}=\left(\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right)$
(OR)
(b) Find the eigen values and eigen vectors for the matrix $A=\left(\begin{array}{ll}4 & 1 \\ 3 & 2\end{array}\right)$
13.(a)Find the radius of curvature at any point θ on the curve $x=a(\theta+$ $\sin \theta)$ and $y=a(1-\cos \theta)$
(OR)
(b) Find ρ for the curve $r=a(1+\cos \theta)$
13. (a) Form the partial differential equation by eliminating the arbitrary constant from $\mathrm{z}=\left(\begin{array}{ll}x & a\end{array}\right)^{2}+\left(\begin{array}{ll}y & b\end{array}\right)^{2}+z^{2}=1$
(OR)
(b) Form the partial differential equation by eliminating the arbitrary function from $f(x+y+z, x y z)=0$
14. (a) Evaluate $\int_{0}^{\frac{\pi}{2}} \log \tan x d x$.
(OR)
(b) If $I_{n}=\int_{0}^{\frac{\pi}{2}} \cos ^{n} \mathrm{x} d \mathrm{x}$ then prove that $\mathrm{I}_{n}=\frac{n-1}{n} I_{n-2}$

SECTION-C ($\mathbf{~} \times 10=30$ Marks)

Answer any THREE Questions
16. Remove the second term of the equation $x^{4}-12 x^{3}+48 x^{2}-72 x+35=0$ and Hence solve it.
17. Verify Cayley Hamilton Theorem for the matrix $\quad \mathrm{A}=\left(\begin{array}{rrr}2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1\end{array}\right)$
18. Find the radius of curvature at the point $\left(\frac{a}{4}, \frac{a}{4}\right)$ of the curve
$\sqrt{x}+\sqrt{y}=\sqrt{a}$
19. Prove that $\int_{0}^{\frac{\pi}{2}} \log \sin \theta d \theta--\frac{\pi}{2} \log 2$.
20. Solve $(m z-n y) p-(n x \quad-l z) q=1 y \quad-m x$

Model Question Paper
 Allied Paper-II: Allied Mathematics-II

Paper Code: 17UMAA 02
Time: 3hrs
Max.: 75 Marks
SECTION-A ($10 \times 2=20$ Marks)
Answer ALL Questions

1) If $u=x^{2}, v=y^{2}$ then find $\frac{\partial(u, v)}{\partial(x, y)}$
2) Write the condition for a function to attain maximum
3) Write the Newton's Forward difference formula
4) Prove that $\Delta^{2} y_{1}=y_{3}-2 y_{2}+y_{1}$
5) Solve $\left(D^{2}-4 D+4\right) y=0$
6) Find the Particular Integral of $\left(D^{2}+4\right) y=\operatorname{Sin} 2 x$
7) Find $L\left[t e^{-2 t}\right]$
8) Find $L\left[t^{n}\right]$
9) Find $L^{-l}\left[\frac{1}{s^{2}-a^{2}}\right]$
10) Find $L^{-l}\left[\frac{10}{(s+2)^{6}}\right]$

SECTION-B (5 $\times 5=25$)
Answer ALL Questions

11(a) If $x+y=u, y=u v$ then find $J(x, y)$
(OR)
(b) Find the maximum value of $f(x, y)=x^{2}+5 y^{2}-6 x+10 y+12$

12 (a) Estimate $f(5)$ from the following data:

X:	3	4	5	6
$\mathrm{f}(\mathrm{x}):$	4	13	-	43

(b) Use Newton's Forward difference formula find y when $\mathrm{x}=4$, Given

X:	3	5	7	9
Y:	180	150	120	90

13 (a) Solve: $\left(D^{2}-8 D+9\right) y=8 \sin 5 x$

(OR)

(b) Solve: $\left(D^{2}-3 D+2\right) y=e^{5 x+2}$

14 (a) Find $L\left[\sin ^{3} 2 t\right]$
(OR)
(b) Find $\mathrm{L}\left[e^{3 t} \cos 6 t-t^{3}+e^{t}\right]$

15 (a) Find $L^{\prime}\left[\frac{s-3}{s^{2}+4 s+13}\right]$
(OR)
(b) Find the Inverse Laplace Transform of $\left[\frac{7 s-1}{(s+1)(s+2)(s+3)}\right]$

SECTION-C $\quad(\mathbf{3} \times \mathbf{1 0}=\mathbf{3 0}$ Marks $)$
Answer any THREE Questions
16) Find the maximum and minimum values of

$$
f(x, y)=2\left(x^{2}-y^{2}\right)-x^{4}+y^{4}
$$

17) By using Lagrage' formula find y when $x=2$ from the following:

$\mathrm{X}:$	6	3	5	6	8
$\mathrm{Y}:$	276	460	414	343	110

18) Solve : $\left(D^{2}-5 D+6\right) y=e^{x} \cos 2 x$
19) Find $L\left[\frac{\cos 3 t-\cos 2 t}{t}\right]$
20) Solve: $\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}-2 y=0$ given $y(0)=-2$, $y^{\prime}(0)=5$ by using Laplace Transform

Answer all the question

1. What are the limitation of operations research?
2. What is the difference between slack and surplus variable?
3. Define: degeneracy in a transportation problem?
4. Define: an assignment problem?
5. Define: Elapsed time?
6. Write the formula for the minimum total annual inventory cost TC° in the EOQ problem with no shortages?
7. Write the optimum order quantity Q° for the EOQ problems with shortages?
8. How do you calculate $\mathrm{E}(\mathrm{n})$ in (M/M/1; $/ \mathrm{FIFO}$) model?
9. Define total float of an activity in a critical path?
10. What is the value of expected time in PERT?

SECTION-B (5X5=25)
Answer all the question
11. (a) Use Graphical method, solve:

Minimum: $\mathrm{z}=2 \mathrm{x}-\mathrm{y}$
Subject to: $\mathrm{x}+\mathrm{y} \leq 5$

$$
\begin{aligned}
& x+2 x \leq 8 \\
& x, y \geq 0
\end{aligned}
$$

(or)
(b) Use Simplex method, solve:

Maximation : $\mathrm{z}=5 \mathrm{x}_{1}+7 \mathrm{x}_{2}$
Subject to: $\quad \mathrm{x}_{1}+\mathrm{x}_{2} \leq 4$

$$
3 x+8 x \leq 24
$$

$$
10 x_{1}+7 x_{2} \leq 35
$$

$$
\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0
$$

12. (a) Use North West Corner Rule, find Initial Basic Feasible Solution (IBFS) to the following transportation problem.

Destionations
Supply

Origin

Demand

8	9	6	3	18
6	11	5	10	20
3	8	7	9	18
15	16	12	13	

(or)
(b) Solve the following Assingment problem.

Job

	I	II	III	IV	V
A	6	5	8	11	16
B	1	13	16	1	10
C	16	11	8	8	8
D	9	14	12	10	10
E	10	13	11	8	16

13. (a) there are Nine jobs each of which has to go through the machines M_{1} and M_{2} in the order $\mathrm{M}_{1}, \mathrm{M}_{2}$. The processing time (in time) are given as follows:

Jobs:
Machine M_{1} :
Machine M_{2} :

A	B	C	D	E	F	G	H	I
2	5	4	9	6	8	7	5	4
6	8	7	4	3	9	3	8	11

(or)
Determine the sequence of these jobs that will minimize the total elapsed time T .
(b) Derive the fundamental EOQ problem?
14.(a) Find the optimum order quantity for a product for which the price breaks are as follows:

Quantity	Unit cast
$0 \leq \mathrm{Q}_{1}<800$	Re. 1.00
$800 \leq \mathrm{Q}_{2}$	Re. 0.98

(b) Find the average queue length and the average waiting time of an arrival in (M/M/1;N/FIFO) system.
15.(a) Write down the difference between CPM and PERT?
(b) Draw the network for the activites $\mathrm{A}, \mathrm{B}, \ldots .<\mathrm{K}$ such that $\mathrm{A}<\mathrm{C} ; \mathrm{B}<\mathrm{D} ; \mathrm{C}<\mathrm{E}, \mathrm{F} ; \mathrm{C}, \mathrm{D}<\mathrm{G} ; \mathrm{F}, \mathrm{G}<\mathrm{H} ; \mathrm{E}<\mathrm{I} ; \mathrm{I}<\mathrm{J} ; \mathrm{H}<\mathrm{K}$. The notation $\mathrm{X}<\mathrm{Y}$ means that the activity X must be finished before Y can begin.

SECTION-B (5X5=25)

16.Use Simplex method, solve:

Maximize: $\mathrm{z}=500 \mathrm{x}_{1}+20 \mathrm{x}_{2}+30 \mathrm{x}_{3}$
Subject to: $5 \mathrm{x}_{1}+\mathrm{x}_{2}+7 \mathrm{x}_{2} \leq 5$

$$
\begin{gathered}
5 x_{1}+x_{2}+6 x_{3} \leq 6 \\
3 x_{1}-x_{2}-9 x_{3} \leq 3 \\
x_{1}, x_{2}, x_{3} \geq 0
\end{gathered}
$$

17. Solve the following Assignment problem.

Job

		H_{1}	H_{2}	H_{3}	H_{4}	H_{5}
Worker	A	6	5	8	11	16
	B	1	13	16	1	10
	C	16	11	8	8	8
	D	9	14	12	10	10
	E	10	13	11	8	16

18. a) Use graphical method to determine the minimum time needed to process two jobs on five machines A , B , C , D, and E. the technological order for the these jobs on machines is as follows:

Processing time (in hours) are given as follows:

Job 1:	3	4	2	6	2
Job 2:	5	4	3	2	6

Processing time (in hours) are given as follows:

Job 1:	3	4	2	6	2
Job 2:	5	4	3	2	6

b) Find the optimal order quality for a product for which the price breaks are as follows:

$$
\begin{array}{ll}
\text { Quantity } & \text { Unit cast(Rs) } \\
0 \leq \mathrm{Q}_{1}<500 & \text { Rs. } 1000 \\
500 \leq \mathrm{Q}_{2} \leq 4000 & \text { Rs. } 925 \\
4000 \leq \mathrm{Q}_{3} & \text { Rs. } 875
\end{array}
$$

19. At a railway station only one train is handled at a time. The yard can accommodate only two trains to wait. Arrival rate is 6 per hour and the service r ate is $12 / \mathrm{hr}$. find the steady state probabilities for the various number of trains in the system. Also find the average waiting time of the train coming into the yard.
20. Find the critical path for the network given below, and find the probability of completing the project 14 days?

