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Abstract—In this paper (Part I and Part II), we investigate
the optimal dynamic mode selection and resource allocation
to minimize the average end-to-end delay under dropping
probability constraint for an Orthogonal Frequency Division
Multiple Access (OFDMA) cellular network with device-to-device
(D2D) communications. Different from the previous studies which
mostly focus on infinite backlog traffic model, we consider
dynamic data arrival with non-saturated buffers and formulate
the resource control problem in D2D communications into an
infinite horizon average reward constraint Markov decision
process (CMDP) in Part I. The CMDP characterizes the dynamic
interference between D2D links and cellular links based on
their varying backlogged states, the dynamic route selection, and
the coupled interactions between uplink and downlink resource
allocations. We propose the general form of the optimal policy.
In particular, it is proved that the optimal delay respective to all
feasible randomized policies is attained by either a deterministic
policy or a simple mixed policy which randomizes between two
deterministic policies. Therefore, the determination of optimal
randomized policy essentially becomes the determination of
one or two deterministic policies, which can be obtained by
an equivalent Bellman’s equation with reduced state space.
Simulation results show that the optimal policy based on the
CMDP model outperforms the conventional CSI-only scheme and
throughput-optimal scheme in stability sense.

Index Terms—Device-to-Device Communication; Mode Selec-
tion; Resource Allocation; Markov Decision Process

I. INTRODUCTION

Device-to-device (D2D) communications commonly refer
to a type of technologies that enable devices to communicate
directly with each other without the communication infras-
tructure, e.g., access points (APs) or base stations (BSs).
Bluetooth and WiFi-Direct are the two most popular D2D
techniques, both working in the unlicensed industrial, scientific
and medical (ISM) bands. Cellular networks, on the other
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hand, do not support direct over-the-air communications be-
tween user devices. However, with the emergence of context-
aware applications and the accelerating growth of Machine-
to-Machine (M2M) applications, D2D communications play
a more important role since it facilitates the discovery of
geographically close devices and enables direct communi-
cations between these proximate devices so as to increase
communication capability and reduce communication delay
and power consumption [1]–[4]. To seize the emerging market
that requires D2D communications, the mobile operators and
vendors are accepting D2D as a part of fourth generation
(4G) Long Term Evolution (LTE)-Advanced standard in 3rd
Generation Partnership Project (3GPP) Release 12 [5]. More-
over, as the future fifth generation (5G) cellular networks are
envisioned to support 100 times higher number of connecting
devices and user data rate, D2D is also considered as one of
the pieces of the 5G jigsaw puzzle in order to offload prox-
imity services from the cellular networks [6], [7]. Compared
with traditional D2D techniques, e.g., Bluetooth and WiFi-
Direct, network assisted D2D communications can work in
the licensed band of cellular networks with more controllable
interference. Moreover, the network infrastructure can assist
the user equipments (UEs) in various key functions of D2D
communications, such as new peer discovery, physical layer
procedures, and radio resource control, which make it different
from traditional D2D technologies, such as WiFi direct.

Mode selection and resource allocation are two important
resource control functions in network assisted D2D commu-
nications. Compared with the resource control problem in
traditional cellular networks, there are a number of unique
issues to address to obtain resource optimization in D2D
communications.

1) Route Selection and intra-cell resource reuse: A pair
of D2D user equipments (UEs) can either communicate
directly over-the-air using the D2D Mode, or communi-
cate via the base station (BS) using the Cellular Mode.
Specifically, the data between the D2D UEs will be rout-
ed along a one-hop route of D2D link (direct over-the-
air link) in D2D Mode and a two-hop route of cellular
links in Cellular Mode. Moreover, if a pair of D2D UEs
work in the D2D Mode, the D2D link may reuse radio
resources with other cellular or D2D links in order to
improve resource utilization, if the interference between
these links is acceptable. Two resource sharing modes
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are defined as D2D overlay Mode and D2D underlay
Mode, depending on whether D2D links and cellular
links use orthogonal or non-orthogonal resources. There-
fore, mode selection is needed to select the optimal mode
(i.e., D2D overlay/D2D underlay/Cellular Mode) for a
pair of D2D UEs either semi-statically at the time-scale
of connection establishement/release, or dynamically per
time slot [8]. Dynamic mode selection can capture and
utilize the fast fading effects of wireless channels op-
portunistically to improve performance, while it involves
more computation complexity and communication over-
head. Dynamic mode selection is performed jointly with
resource allocation, which is responsible for selecting
the set of links for data transmissions at the beginning
of each time slot. This poses new challenges for resource
allocation function to deal with the route selection and
intra-cell interference problems, which do not exist in
current fourth generation (4G) Long Term Evolution
(LTE) cellular networks.

2) Joint uplink and downlink resource optimization: If a
pair of D2D UEs work in the Cellular Mode, the end-
to-end performance of the two-hop route including one
cellular uplink and one cellular downlink should be
optimized, instead of separately optimizing the perfor-
mance of each hop. This joint resource optimization of
uplink and downlink transmissions are not considered in
traditional cellular networks.

When dealing with the above issues, most related research
works assume that the D2D and cellular users are saturated
with infinite backlogs and focus only on optimizing the
PHY layer performance metrics such as sum throughput and
power consumption, where the resource control functions only
consider the Channel State Information (CSI) information. In
practice, data arrival process at the users is dynamic, and
performance metrics such as delay and dropping probability
are also very important, especially for real-time and delay-
sensitive services, such as voice conversation, video streaming,
and interactive gaming [9]. Existing research on resource
allocation and scheduling in wireless networks [10] show that
algorithms under the infinite backlog traffic model considering
only the channel state information are not sufficient to ensure
queue stability or guarantee packet delay/Quality-of-Service
(QoS) requirement under the dynamic packet arrival setting.
Therefore, both the CSI and queue state information (QSI)
should be taken into account in the resource control policies.
By making use of the QSI information, the resources can
be allocated more judiciously as the users’ instantaneous
transmission requirements are also considered in addition to
their transmission capabilities. For example, we can avoid
allocating resources to a user with a good channel state but
few data in the queue. Therefore, system performance in terms
of throughput, delay and dropping probability etc. can all be
improved.

Delay-aware resource control with bursty traffic has re-
ceived little attention in network assisted D2D communica-
tions, since it is a non-trivial problem involving both queueing
theory (to model the queue dynamics) and information theory

(to model the physical layer dynamics). In this paper, we
consider an Orthogonal Frequency Division Multiple Access
(OFDMA) cellular network with one BS, multiple D2D UE
pairs, and cellular UEs with uplink or downlink transmission.
Our objective is to design an optimal dynamic mode selection
and resource allocation algorithm to minimize the average
end-to-end delay under the constraint of packet dropping
probability for network assisted D2D communications with
bursty traffic. Specifically, the contributions of this paper
mainly lie in the following aspects:

1) Queuing Model Formulation: We develop a queuing
model whose underlying system state dynamics evolves
as a controlled Markov chain, where the system state
includes the joint queue state of the queues at the
UEs for uplink transmission and the queues at the BS
for downlink transmission as well as the joint channel
state of all the D2D links, cellular uplinks and cellular
downlinks. The main contribution of the queuing model
lies in the introduction of two important concepts to
characterize the unique features of D2D communica-
tions. The first concept is radio resource group (RRG),
which defines a group of links that may reuse radio
resources to characterize the intra-cell resource reuse.
Therefore, the channel state of a link can be represented
by a tuple including its Adaptive Modulation and Coding
(AMC) states in all the RRGs that this link belongs to.
The second concept is link constraint set of a queue,
which defines the set of servers for the queue in different
routes to characterize route selection.

2) CMDP Framework: Based on the queuing model, a
general constrained Markov Decision Process (CMD-
P) framework for the dynamic optimization of mod-
e selection and resource allocation in D2D com-
munications over frequency-selective fading channel
with AMC scheme in the physical layer under
bursty traffic model is provided. The main contri-
butions of the CMDP framework include: (1) The
transition kernel of the controlled Markov chain
takes into account the coupling relationship between
the uplink and downlink resource allocation, which is a
unique feature in D2D communications. (2) The cost
function is given based on the closed-form expression-
s for end-to-end performance metrics such as average
delay and dropping probability as functions of steady-
state probabilities of the controlled Markov chain. (3)
Although we focus on the delay-optimal resource control
with dropping probability constraint in this paper, the
framework can also be applied to study other CMDP
problems with different optimization objectives and con-
straints, e.g., maximize the sum throughput subject to
the delay constraint.

3) General Form of Optimal Policy: We utilize the La-
grangian approach to turn the CMDP problem into
an unconstraint Markov Decision Process (MDP) prob-
lem, and establish the strong duality result over the
space of randomized policy. The contribution related
to the determination of the optimal policy mainly lies
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in providing its general form, which allows us to solve
the MDP problem over the space of deterministic policy
instead of the space of randomized policy. Specifically,
we prove the existence of an optimal policy, which is
either a deterministic policy or a mix of two determin-
istic policies, equivalent to choosing independently one
of two deterministic policies at each epoch by the toss
of a (biased) coin. To solve the MDP model over the
space of deterministic policy, we derive an equivalent
Bellman’s equation with reduced state space. We show
by simulations that the optimal policy based on the
equivalent Bellman’s equation achieves significant gain
compared to various baselines such as the conventional
CSI-only control and the throughput optimal control
(MaxWeight algorithm).

The remainder of the paper is organized as follows. The
related work is summarized in Section II. We develop a general
network model for network assisted D2D communications
with nodes, links, connections and queues in Section III.
In Section IV, we formulate a queuing model and identify
the system state space and action space for the underlying
controlled Markov process, whose transition kernel is derived.
In Section V, we elaborate the MDP problem formulation for
dynamic mode selection and resource allocation and derive the
optimal control policy by offline value iteration algorithm. In
Section VI, we discuss the simulated performance. Finally, we
highlight the main results in Section VII.

II. RELATED WORK

A. Resource Control for D2D Communications

Resource control for D2D communications has been widely
studied in recent years [11]–[19]. The authors in [11] consider
the case where one cellular UE and a pair of D2D UEs share
the the radio resources, and propose to make mode selection
decision based on the estimated throughput performance of
D2D overlay, D2D underlay and Cellular Modes, assuming
the optimum power control and resource allocation algorithms
are adopted under every mode. A more general network model
with multiple cellular UEs and D2D UE pairs is considered
in [12], where the UE positions are modeled by random
spatial Poisson point process. The authors in [12] derive an
optimal distance threshold for choosing between D2D Mode
and Cellular Mode that minimizes the transmit power, and
an optimal fraction of spectrum that should be dedicated
to/shared with D2D links for D2D overlay/D2D underlay
Mode under a weighted proportional fair utility function.
The authors in [13] address the problem of dynamic mode
selection and resource allocation, and mainly focus on the
interference control and management between D2D links and
cellular links such that they can efficiently reuse the radio
resources whenever the interference is small. In [14], the joint
mode selection and resource allocation problem is studied to
maximize the overall system throughput while guaranteeing
the Signal to Interference and Noise Ratio (SINR) of both
D2D and cellular links. However, all the above research works
assume the infinite backlog traffic model without considering
important QoS metrics such as delay and dropping probability.

B. Delay-Aware Resource Control in Wireless Networks

In general, there are various approaches to deal with delay-
aware control problem. The first approach converts average
delay constraints into equivalent average rate constraints using
the large deviation theory and solves the optimization problem
using a purely information theoretical formulation based on
the rate constraints [20]. While this approach allows poten-
tially simple solutions, the resulting control policies are only
functions of the CSI and such policies are good only for the
large delay regime where the probability of empty queues is
small. The second approach utilizes the notion of Lyapunov
stability [10] and the derived MaxWeight algorithm can be
directly adapted to the D2D scenario. Compared with the
first approach, the derived policies in the second approach are
adaptive to both the CSI and QSI and are throughput-optimal
(in stability sense). However, stability is only a weak form of
delay performance and derived policies may not have good de-
lay performance especially in the small delay regime. A more
systematic approach in dealing with delay-optimal resource
control in general delay regime is the MDP approach [21].
However, there is little work in existing literature that applies
the MDP model to address the resource control problem in
network assisted D2D communications [9], [22].

III. NETWORK MODEL

In this section, we develop a general network model for
dynamic mode selection and resource allocation in network
assisted D2D communications. We consider a Frequency Di-
vision Duplex (FDD) OFDMA system. The whole uplink or
downlink spectrum is divided into NF equal size subchannels.
A subchannel in the uplink (resp. downlink) spectrum shall be
referred to as uplink (resp. downlink) subchannel in the rest of
the paper. Moreover, we assume that D2D links share uplink
resources with cellular uplinks [1]. We focus on the intra-cell
interference between D2D links and cellular links, and adopt
the static inter-cell interference model [23], which assumes
that inter-cell interference is randomized and/or fractional
frequency reuse is used to mitigate inter-cell interference, so
that the sum of total inter-cell interference power can be simply
treated as another Gaussian-like noise. The important symbols
used in this paper is summarized in Table I.

A. Nodes, Links, and Connections

Consider an OFDMA cellular network with D2D com-
munications capability, where there are D D2D UE pairs,
Cu cellular UEs (CUEs) with uplink communications and
Cd CUEs with downlink communications in a single cell.
A D2D UE pair consists of a source D2D UE (src. DUE)
and a destination D2D UE (dest. DUE) within direct over-the-
air communications range with each other, which is formed
through the various neighbor/peer/service discovery mecha-
nisms proposed in literature. Fig.1 illustrates a simple example
with D = Cu = Cd = 1, i.e., there are one pair of DUEs (src.
DUE 1 and dest. DUE 2), one uplink CUE (CUE 3), and one
downlink CUE (CUE 4). Time is slotted and each time slot
has an equal length.
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TABLE I
SUMMARY OF IMPORTANT SYMBOLS USED

Category Symbol Definition

Constant NF The number of subchannels in the uplink or downlink spectrum
D The number of D2D UE pairs
Cu The number of cellular UEs with uplink communications
Cd The number of cellular UEs with downlink communications
C The number of connections
NQ The queue capacity in number of bits or packets

Set N The set of nodes i, N := {0, 1, ..., N} = {0}
∪

ND
∪

NCu
∪

NCd

ND The set of D pairs of DUEs, ND := {1, . . . , 2D}
NDs The set of D src. DUEs, NDs := {1, 3, . . . , 2D − 1}
NDd The set of D dest. DUEs, NDd := {2, 4, . . . , 2D}
NCu The set of Cu uplink CUEs, NCu := {2D + 1, . . . , 2D + Cu}
NCd The set of Cd downlink CUEs, NCd := {2D + Cu + 1, . . . , 2D + Cu + Cd}
L The set of eligible transmission links (i, j), L := LD

∪
LCu

∪
LCd

LD The set of D eligible D2D links, LD := {(i, i+ 1)|i ∈ NDs}
LCu The set of eligible cellular uplinks, LCu := {(i, 0)|i ∈ NCu

∪
NDs}

LCd The set of eligible cellular downlinks, LCd := {(0, i)|i ∈ NCd
∪

NDd}
C The set of connections C := {1, . . . , C} = CD

∪
CCu

∪
CCd

CD The set of D D2D connections, CD = {1, . . . , D}
CCu The set of Cu cellular uplink connections, CCu = {D + 1, . . . , D + Cu}
CCd The set of Cu cellular downlink connections, CCd = {D + Cu + 1, . . . , D + Cu + Cd}
Lc The set of all links (i, j) that connection c data is allowed to use
Θ The set of queues in the system

L(c)
i The set of links (i, j) that serve queue q

(c)
i

Bu A RRG, which is a set of links that can be scheduled for transmission simultaneously
U The index set of RRGs
Uij The index set of RRGs that contain link (i, j), Uij := {u|(i, j) ∈ Bu, u ∈ U}
S The system state space
H The channel state space
Q The queue state space
Ax The action space

Variable (i, j) A transmission link from node i to node j

Ac,t The amount of new connection c data arrived to its source node during time slot t
λc The mean arrival rate of connection c

q
(c)
i The queue maintained at node i for connection c

Q
(c)
i,t The length of q(c)i at the beginning of time slot t

x
(m)
u,t The subchannel allocation for RRG Bu at time slot t, x(m)

u,t ∈ {0, 1}
r
(c)
i,t The instantaneous data rate of queue q

(c)
i during time slot t

r
(m,u)
ij,t The instantaneous data rate of link (i, j) on subchannel m when RRG Bu is scheduled

SINR
(m,u)
ij,t The SINR of link (i, j) on subchannel m when RRG Bu is scheduled

State St The global system state at time slot t, St = (Ht,Qt)

Qt The QSI at time slot t, Qt := {Q(c)
i,t |q

(c)
i ∈ Θ}

Ht The CSI at time slot t, Ht := {Hij,t|(i, j) ∈ L}
Hij,t The CSI of link (i, j) at time slot t

Action x The subchannel allocation action, x := {x(m)
u ∈ {0, 1}|m ∈ {1, 2, . . . , NF}, u ∈ U}
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Fig. 1. A simple OFDMA cellular network with D2D communications.

The above OFDMA cellular network with D2D commu-
nications can be formulated as a general network model
with a set N of nodes and a set L of transmission links.
Define N := {0, 1, . . . , N}, where node 0 represents the
base station (BS) and nodes 1, . . . , N represent the UEs. Let
ND := {1, . . . , 2D} be the set of DUEs of the D D2D pairs.
Let NDs := {1, 3, . . . , 2D−1} and NDd := {2, 4, . . . , 2D} be
the sets of src. DUEs and dest. DUEs, respectively, where node
i ∈ NDs (resp. j ∈ NDd) is the src. DUE (resp. dest. DUE) of
D2D pair ⌈i/2⌉ (resp. j/2). Let NCu := {2D + 1, . . . , 2D +
Cu} and NCd := {2D + Cu + 1, . . . , 2D + Cu + Cd} be the
set of Cu uplink CUEs and Cd downlink CUEs, respectively
(with N = 2D+Cu+Cd). We use i or j to denote the index
of a node within N (i.e., i, j ∈ N ) in the rest of the paper.

Each transmission link represents a communication channel
for direct transmission from a given node i to another node j,
and is labeled by (i, j) (where i, j ∈ N ). Note that link (i, j)
is distinct from link (j, i). The link set L is composed of three
non-overlapping subsets, where LD := {(i, i+1)|i ∈ NDs} is
the set of D2D links, LCu := {(i, 0)|i ∈ NCu

∪
NDs} is the

set of cellular uplinks, and LCd := {(0, i)|i ∈ NCd

∪
NDd}

is the set of cellular downlinks.
All data that enter the network are associated with a

particular connection which defines the source and destination
of the data. Let CD = {1, . . . , D} represent the set of D D2D
connections, CCu = {D + 1, . . . , D + Cu} represent the set
of Cu cellular uplink connections, and CCd = {D + Cu +
1, . . . , D+Cu+Cd} represent the set of Cd cellular downlink
connections. Define C := {1, . . . , C} = CD

∪
CCu

∪
CCd

(with C = D + Cu + Cd) as the set of all connections in
the network. We use c to denote the index of a connection
within C (i.e., c ∈ C) in the rest of the paper.

Define the link constraint set for a connection c as the set of
all links that the connection data is allowed to use. Obviously,
Lc = {(D+c, 0)} for any cellular uplink connections c ∈ CCu,
and Lc = {(0, D+ c)} for any cellular downlink connections
c ∈ CCd, since there is only a single-hop route between
the CUE and the BS for these connections. For the D2D

connection, since the data can be transmitted either via the
single hop route of D2D link or the two-hop route of cellular
links, and the decision is made dynamically at each time slot,
we have Lc = {(2c − 1, 2c), (2c − 1, 0), (0, 2c)}. The source
node and destination node of a connection along with its link
constraint set are given in Table II.

B. Queues

The data from a connection c is transmitted hop by hop
along the route(s) of the connection to its destination node.
Each node i along the route(s) of connection c maintains a
queue q

(c)
i for storing its data except for the destination node,

since the data is considered to exit the network once it reaches
the destination. Define Θ as the set of queues in the system.
We assume each queue has a finite capacity of NQ < ∞ (in
number of bits or packets).

The set of queues can be divided into two non-overlapping
disjoint sets according to whether a queue is maintained by
an UE or the BS. Every src. DUE (i = 2c − 1) and uplink
CUE (i = c+D) maintains a queue q

(c)
i for the corresponding

D2D connection or uplink cellular connection c ∈ CD
∪
CCu,

which is referred to as an uplink queue. On the other hand, the
BS maintains a set of queues q(c)0 for all the downlink cellular
connections c ∈ CCd and D2D connections c ∈ CD, which are
referred to as downlink queues. Let Θu and Θd denote the set
of uplink queues and downlink queues, respectively.

1) Mapping between connections and queues: Every cellu-
lar connection has only one queue. Define ΘCu = {q(c)(c+D)|c ∈
CCu} and ΘCd = {q(c)0 |c ∈ CCd} as the set of queues for
cellular uplink connections and cellular downlink connections,
respectively. On the other hand, every D2D connection has two
queues including one uplink queue and one downlink queue.
Define ΘD−u = {q(c)(2c−1)|c ∈ CD} and ΘD−d = {q(c)0 |c ∈ CD}
as the set of uplink queues and downlink queues for D2D con-
nections, respectively. Obviously, we have Θu = ΘCu

∪
ΘD−u

and Θd = ΘCd

∪
ΘD−d.

2) Mapping between queues and links: Define the per
queue link constraint set of a queue q

(c)
i as L(c)

i = {(i, j) ∈
Lc}, i.e., all the links from node i within link constraint set Lc.
The data from a queue q

(c)
i can only be transmitted via links in

L(c)
i , which is given for different queues in Table III. Note that

there is only one link in L(c)
i for all the queues except those

q
(c)
i ∈ ΘD−u, i.e., the uplink queues for D2D connections,

which can be served by either D2D link (2c−1, 2c) or cellular
uplink (2c− 1, 0).

C. Resource Reuse Group

We define a Resource Reuse Group (RRG) Bu as the subset
of links (i, j) ∈ L that can be scheduled for transmission
simultaneously on any subchannel in a time slot. Therefore,
a RRG for an uplink subchannel may contain at most one
cellular uplink and one or more D2D links. On the other hand,
an RRG for a downlink subchannel can contain one and only
one cellular downlink. Let U represent the set of RRG indexes,
Uu and Ud represent the subsets of RRG indexes for uplink
and downlink subchannels, respectively. Therefore, we have
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TABLE II
CONNECTIONS, NODES AND LINK CONSTRAINT SETS

Connection c Node i Link Constraint Set Lc

Source Node Destination Node

D2D connection c ∈ CD 2c− 1 2c {(2c− 1, 2c), (2c− 1, 0), (0, 2c)}
Cellular uplink connection c ∈ CCu c+D 0 {(c+D, 0)}

Cellular downlink connection c ∈ CCd 0 c+D {(0, c+D)}

TABLE III
CONNECTIONS, QUEUES AND PER QUEUE LINK CONSTRAINT SETS

Connection c Uplink Queue Per Queue Link Downlink Queue Per Queue Link

q
(c)
i ∈ Θu Constraint Set L(c)

i q
(c)
0 ∈ Θd Constraint Set L(c)

0

Cellular uplink connection c ∈ CCu q
(c)
c+D ∈ ΘCu {(c+D, 0)}

Cellular downlink connection c ∈ CCd q
(c)
0 ∈ ΘCd {(0, c+D)}

D2D connection in Hybrid RM c ∈ CD q
(c)
2c−1 ∈ ΘD−u {(2c− 1, 2c), (2c− 1, 0)} q

(c)
0 ∈ ΘD−d {(0, 2c)}

U = {Uu,Ud}. We use u to denote the index of a RRG within
U (i.e., u ∈ U ) in the rest of the paper. For any link (i, j) ∈ L,
define Uij := {u|(i, j) ∈ Bu, u ∈ U} as the index set of RRGs
that contain link (i, j).

Assumption 1 (assumption on resource reuse group). The
set of RRGs in the network are determined and updated at
the time scale of connection setup/release, when there are
links added/deleted from the network. Therefore, it is static
at the time scale of subchannel allocation as considered in
this paper, where the nodes, links, and connections are fixed
in the network model.

Remark 1 (resource reuse group partitioning). Since no
resource reuse is allowed between cellular downlinks, there is
a one-to-one mapping between downlink RRGs and cellular
downlinks, i.e., there are |Ud| = |LCd| downlink RRGs,
and |Uij | = 1, ∀(i, j) ∈ LCd. On the other hand, since
resource reuse is allowed between a cellular uplink and
multiple D2D links, the total number of uplink RRGs is
|Uu| = (|LCu| + 1) × 2|LD| − 1, which is much larger
than the total number of cellular uplinks and D2D links.
Therefore, it is desirable to reduce |Uu| in order to reduce
the complexity of subchannel allocation algorithm. This can
reasonably be achieved by deleting those uplink RRGs with too
much interference between the links from Uu. For example, one
simple method is to delete any RRG from Uu if the average
Signal to Interference and Noise Ratio (SINR) of any link
within the RRG is below a certain threshold after resource
reuse.

D. Dynamic Mode Selection and Subchannel Allocation

In each time slot, an uplink (resp. downlink) subchannel can
be allocated to at most one uplink (resp. downlink) RRG for
uplink (resp. downlink) transmission. Let m ∈ {1, . . . , NF}
denote the index of a subchannel. Note that subchannel m can
be either the m-th uplink subchannel or the m-th downlink
subchannel. In the rest of the paper, we will not explicitly
indicate whether m denotes an uplink or downlink subchannel
when no ambiguity shall be caused. Let x(m)

u,t ∈ {0, 1} denote
the subchannel allocation for RRG Bu, u ∈ U at time slot

t, where x
(m)
u,t = 1 if subchannel m is allocated to RRG

Bu, and x
(m)
u,t = 0 otherwise. Note that when RRG Bu is an

uplink (resp. downlink) RRG, i.e., u ∈ Uu (resp. u ∈ Ud), m
denotes the m-th uplink (resp. downlink) subchannel in x

(m)
u,t .

Therefore, we have the constraint that
∑

u∈Uu
x
(m)
u,t ≤ 1 and∑

u∈Ud
x
(m)
u,t ≤ 1 for any m ∈ {1, . . . , NF}. We assume that

a RRG is scheduled for transmission only when all its links
have non-empty queues.

A queue q
(c)
i is scheduled in time slot t when at least

one RRG Bu containing a link (i, j) in its link constraint
set L(c)

i is scheduled on any subchannel. From Table III we
know that except for the uplink queues of D2D connections
{q(c)(2c−1)|c ∈ CD}, the per-queue link constraint set L(c)

i of
every other queue contains only one link. When mode selec-
tion of a D2D connection c is performed dynamically at each
time slot, the problem becomes deciding whether to schedule
the D2D link (2c − 1, 2c) or the cellular uplink (2c − 1, 0)

to serve the queue q
(c)
(2c−1), which can be solved by designing

a subchannel allocation function. Therefore, the delay-optimal
dynamic mode selection and subchannel allocation problem
can be solved by only considering the design of delay-optimal
subchannel allocation algorithm.

Remark 2 (simultaneous selection of D2D Mode and Cel-
lular Mode). Both D2D link (2c − 1, 2c) and cellular uplink
(2c−1, 0) may be scheduled simultaneously to serve the queue
q
(c)
(2c−1) at any time slot, since orthogonal subchannels may be

allocated to both links. From the mode selection perspective,
this means that both D2D Mode and Cellular Mode can be
selected simultaneously at a time slot, although only one of
the modes can be selected for a single subchannel.

E. Instantaneous Data Rate

1) Potential Interference Link: For any link (i, j) ∈
LD

∪
LCu, we define its potential interfering link as the

communication channel from the transmitter of any link that
belongs to the same RRG with link (i, j) to the receiver of
node j. Define Iij := {Ii′j |(i′, j′) ∈ Bu\{i, j}, u ∈ Uij}
as the set of potential interfering links of link (i, j), where
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Ii′j denotes the potential interfering link from the transmitter
of node i′ to the receiver of node j. An interfering link is
‘potential’ since it only exists when the corresponding RRG
is scheduled for transmission. Since there are two categories
of links, i.e., transmission links and potential interfering links,
all links mentioned are referred to the transmission links by
default in the rest of the paper.

2) Instantaneous SINR of Link (i, j): Assume that the
instantaneous channel gain comprising the path loss, shadow-
ing and fast fading effects of the wireless channel from the
transmitter of node i ∈ N to the receiver of node j ∈ N on
any subchannel m remains constant within a time slot and i.i.d.
between time slots, the value of which at time slot t is denoted
by G

(m)
ij,t . Let p(m)

ij,t be the transmission power of link (i, j) ∈ L
on subchannel m at time slot t. Assume that every scheduled
link on a downlink subchannel always transmits at constant
power p

(m)
ij,t = PBS

max/NF, where PBS
max is the maximum

transmit power of the base station. Moreover, assume that
every scheduled link on an uplink subchannel always transmits
at constant power p

(m)
ij,t = PUE

max/NF, where PUE
max is the

maximum transmit power of a UE. Let γ
(m)
ij,t :=

p
(m)
ij,tG

(m)
ij,t

N
(m)
ij

represent the Signal to Noise Ratio (SNR) of link (i, j) ∈ L
on subchannel m, where N

(m)
ij is the noise power. The SINR

value of a link (i, j) on a subchannel m may or may not
equal its SNR value, depending on whether there are any
other links that are scheduled simultaneously with link (i, j)
on that subchannel and thus causing interference to each other.
Specifically, considering that RRG Bu is scheduled at time slot
t on subchannel m, i.e., x(m)

u,t = 1, we have

SINR
(m,u)
ij,t =

p
(m)
ij,t G

(m)
ij,t

N
(m)
ij,t +

∑
(i′,j′)∈Bu\{(i,j)} p

(m)
i′j′,tG

(m)
i′j,t

=
γ
(m)
ij,t

1 +
∑

(i′,j′)∈Bu\{(i,j)} γ
(m)
i′j,t

, ∀ (i, j) ∈ Bu.

(1)

3) CSI of Link (i, j): Define r
(m,u)
ij,t to be the instanta-

neous data rate of link (i, j) on subchannel m when RRG
Bu, ∀u ∈ Uij is scheduled. We assume that AMC is used,
where the SINR values are divided into K non-overlapping
consecutive regions [24]. For any k ∈ {1, . . . ,K}, if the SINR
value SINR

(m,u)
ij,t of link (i, j) falls within the k-th region

[Γk−1,Γk), the corresponding data rate r
(m,u)
ij,t of link (i, j)

is a fixed value Rk according to the selected modulation and
coding scheme in this state. Obviously, Γ0 = 0 and ΓK = ∞.
Also, we have R1 = 0, i.e., no packet is transmitted in channel
state 1 to avoid the high transmission error probability.

Definition 1 (definition of CSI). Define the CSI of link (i, j)

to be Hij,t := {H(m,u)
ij,t |m ∈ {1, . . . , NF}, u ∈ Uij}, where

H
(m,u)
ij,t denotes the channel state of link (i, j) on subchannel

m when RRG Bu is scheduled. Specifically, H
(m,u)
ij,t = k if

SINR
(m,u)
ij,t is between [Γk−1,Γk). Therefore, we have

r
(m,u)
ij,t = R

H
(m,u)
ij,t

. (2)

Remark 3 (CSI per cellular downlink). Since each downlink
RRG contains only one cellular downlink and there is no
interference between the cellular downlinks, the SINR value
of a cellular downlink equals to its SNR value, and H

(m,u)
ij,t =

H
(m)
ij,t = k if γ(m)

ij,t ∈ [Γk−1,Γk).

4) Instantaneous Data Rate of Queues and Links: Let r(c)i,t

be the instantaneous data rate of queue q
(c)
i during time slot

t1, which is equal to the sum of the instantaneous data rate
rij,t of the scheduled link (i, j) ∈ L(c)

i on all the NF uplink
or downlink subchannels at time slot t, i.e.,

r
(c)
i,t =

∑
(i,j)∈L(c)

i

rij,t, (3)

rij,t =

NF∑
m=1

r
(m)
ij,t , (4)

where r
(m)
ij,t is the instantaneous data rate of link (i, j) on

subchannel m at time slot t

r
(m)
ij,t =

∑
u∈Uij

x
(m)
u,t r

(m,u)
ij,t , (5)

and r
(m,u)
ij,t can be determined by the CSI of link (i, j) accord-

ing to (2). Therefore, r(m)
ij,t = r

(m,u)
ij,t if RRG Bu containing link

(i, j) is scheduled on subchannel m, and r
(m)
ij,t = 0 if none of

the RRGs containing link (i, j) is scheduled on subchannel
m.

F. Queuing Dynamics

Let Ac,t denote the amount of new connection c data2 that
exogenously arrives to its source node during time slot t.
We assume that the data arrival process is i.i.d. over time
slots following general distribution fA(n) with average arrival
rate E[Ac,t] = λc. Let A

(c)
i,t denote the amount of data

arrived to node i for connection c during time slot t. When
q
(c)
i ∈ Θu

∪
ΘCd, node i is the source node of connection

c, and A
(c)
i,t = Ac,t. Otherwise, when q

(c)
0 ∈ ΘD−d, it is

the second-hop queue of connection c, and A
(c)
0,t depends

on the data departure process of the corresponding uplink
transmission on cellular uplink ((2c− 1), 0).

Only when a queue is scheduled shall it move the data out
of the queue for transmission. Let Q(c)

i,t denote the length of
q
(c)
i at the beginning of time slot t. If Q

(c)
i,t is less than r

(c)
i,t

during time slot t, padding bits shall be transmitted along with
the data. However, the amount of useful data transmitted from
q
(c)
i during time slot or the throughput of q(c)i is defined as

T
(c)
i,t = min[Q

(c)
i , r

(c)
i ]. (6)

Moreover, the amount of useful data transmitted via link (i, j)
during time slot or the throughput of link (i, j) is defined

1The instantaneous data rate can take units of bits/slot or packets/slot. The
latter is appropriate when all the packets have fixed length and the achievable
data rates are constrained to integral multiples of the packet size.

2The data can take units of bits or packets. The latter is appropriate when
all the packets have fixed length.
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for any link within the link constraint set of queue q
(c)
i ∈

Θd

∪
ΘCu as

Tij,t = min[Q
(c)
i , rij,t], ∀(i, j) ∈ L(c)

i . (7)

For any queue q
(c)
i ∈ ΘD−u, there are two links (2c − 1, 0)

and (2c− 1, 2c) within its link constraint set L(c)
i as given in

Table III. Both links may be scheduled simultaneously since
different sets of subchannels may be allocated to them. We
assume that the data in the queue is first assigned to link
(2c − 1, 0) and then the remaining data left in the queue (if
any) shall be assigned to link (2c − 1, 2c). According to the
above data assignment rule, we have that T(2c−1)0,t obeys (7),
while ∀q(c)(2c−1) ∈ ΘD−u

T(2c−1)(2c),t = min[Q
(c)
i − T(2c−1)0,t, r(2c−1)(2c),t]. (8)

Arriving data are placed in the queue throughout the time slot
t and can only be transmitted during the next time slot t +
1. If the queue length reached the buffer capacity NQ, the
subsequent arriving data will be dropped. According to the
above assumption, the queuing process evolves as follows:

Q
(c)
i,t+1 = min

[
NQ,max[0, Q

(c)
i,t − r

(c)
i,t ] +A

(c)
i,t

]
. (9)

IV. QUEUING MODEL

A. Model Description

Based on the above network model, a queuing model is
developed as illustrated in Fig.2. With a slight abuse of
notation, we use (i, j) to denote the server in the queuing
model corresponding to link (i, j). We also use a black circle
and a white circle to illustrate a server corresponding to a
cellular link and a D2D link, respectively.

As the set of connections can be divided into three non-
overlapping subsets, i.e., CD, CCu, and CCd, the queues and
servers in the general queuing model can also be divided
accordingly. For any cellular uplink or downlink connection,
i.e., c ∈ CCu

∪
CCd, since there is only one single-hop route,

its queuing model has a single queue with a data arrival process
of mean λc, and a single server. For any D2D connection
c ∈ CD, since the data can be either transmitted via the one-
hop route or two-hop route, the system can be formulated as
a two-stage tandem queuing model. Specifically, there is a
queue q

(c)
2c−1 having two stage-1 servers corresponding to link

(2c − 1, 2c) and link (2c − 1, 0), respectively, and a queue
q
(c)
0 having a stage-2 server corresponding to link (0, 2c). The

packets arrive with mean λc at the queue q
(c)
2c−1, and those

served by server (2c−1, 0) will join q
(c)
0 immediately after they

receive service from the stage-1 server, and upon completion
of service at the stage-2 server left the system. On the other
hand, the packets in q

(c)
2c−1 served by server (2c − 1, 2c) will

leave the system directly upon completion.

B. System State

The global system state of the above queuing model at time
slot t can be characterized by the aggregation of the system
CSI and system QSI, i.e., St = (Ht,Qt). The system QSI is

...

...

... ...

...

...

...

...

Stage-1 

Servers
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Connections
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cλ
( )c

i
q ( ,0)i

cλ
( )c

i
q

( ,0)i

( , 1)i i +

( )

0

c
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c
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Stage-2 
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Fig. 2. Queuing model for the general network model.

defined as Qt :=
{
Q

(c)
i,t |q

(c)
i ∈ Θ

}
, which is a vector consist-

ing of the lengths of all the queues at the beginning of time
slot t. The system CSI is defined as Ht := {Hij,t|(i, j) ∈ L},
where Hij,t denotes the channel state of link (i, j) in time slot
t as given in Definition 1.

The global system state can be represented as the union of
uplink system state Su,t and downlink system state Sd,t, i.e.,
St = Su,t

∪
Sd,t. The uplink system state (resp. downlink

system state) can be characterized by the aggregation of
the uplink CSI (resp. downlink CSI) and the uplink QSI
(resp. downlink CSI), i.e., Su,t = (Hu,t,Qu,t) (resp. Sd,t =
(Hd,t,Qd,t)), where uplink CSI (resp. downlink CSI) is a
vector consisting of the channel states of all the cellular
uplinks and D2D links (resp. cellular downlinks) denoted
as Hu,t := {Hij,t|(i, j) ∈ LCu

∪
LD} (resp. Hd,t :=

{Hij,t|(i, j) ∈ LCd}); while uplink QSI (resp. downlink QSI)
is a vector consisting of the lengths of all the uplink queues (re-
sp. downlink queues), denoted as Qu,t :=

{
Q

(c)
i,t |q

(c)
i ∈ Θu

}
(resp. Qd,t :=

{
Q

(c)
i,t |q

(c)
i ∈ Θd

}
). For every queue q

(c)
i ∈ Θ,

we define its local system state as S(c)
i,t :=

(
H

(c)
i,t , Q

(c)
i,t

)
, where

H
(c)
i,t :=

{
Hij,t|(i, j) ∈ L(c)

i

}
. Note that

∪
q
(c)
i ∈Θu

S
(c)
i,t =

Su,t and
∪

q
(c)
i ∈Θd

S
(c)
i,t = Sd,t.

Let S = H × Q be the full system state space, Su be the
uplink system state, Sd be the downlink system state, and
S(c)
i = H(c)

i ×Q(c)
i be the local system state space of queue

q
(c)
i . For any downlink queue q

(c)
i ∈ Θd, the cardinality of its

local system state space is |S(c)
i | = KNF × (NQ + 1). For

any uplink queue q
(c)
i ∈ Θu, |S(c)

i | =
∏

(i,j)∈L(c)
i

KNF|Uij | ×
(NQ + 1), since the channel state space size for any link
(i, j) ∈ LCu

∪
LD depends on the number of RRGs that it

belongs to. Therefore, the cardinalities of the downlink and
uplink system state spaces, and full system state space can be
derived as |Sd| = (KNF ×NQ)

|Θd|, |Su| =
∏

q
(c)
i ∈Θu

(|S(c)
i |)

and |S| = |Sd| × |Su|, respectively.

Assumption 2 (observation of system state in BS). We assume
that the BS maintains the global system state. Specifically, the
BS measures the CSI of cellular uplinks. The downlink CUEs
and dest. DUEs measure the CSI of cellular downlinks and
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D2D links and report these information to the BS. The BS
has the knowledge of downlink QSI, while the src. DUEs and
uplink CUEs report the uplink QSI information to the BS.
Compared with the existing 4G LTE system, the only additional
signaling overhead is for reporting the CSI of D2D links from
dest. DUEs to the BS.

C. Control Policy

As discussed in Section II.D, dynamic mode selection
is implicitly determined by the subchannel allocation func-
tion, so that we only focus on the latter. In each time
slot, the resource controller observes the system state St

and chooses a subchannel allocation action from the set
of allowable actions in the action space Ax. A subchannel
allocation action x is composed of an uplink subchannel
allocation action xu ∈ Axu and a downlink subchannel
allocation action xd ∈ Axd, i.e., x := (xu,xd), where
xu :=

{
x
(m)
u ∈ {0, 1}|u ∈ Uu,m ∈ {1, . . . , NF}

}
∈ Axu and

xd :=
{
x
(m)
u ∈ {0, 1}|u ∈ Ud,m ∈ {1, . . . , NF}

}
∈ Axd.

Since at most one RRG Bu can be allocated on any up-
link or downlink subchannel, there are (|Uu| + 1)NF (resp.
(|Ud|+ 1)NF ) actions in the set Axu (resp. Axd).

A control policy prescribes a procedure for action selection
in each state at all decision epoches t. We consider stationary
Markovian control policies. A control policy can be either
deterministic or randomized. Let HD and HR be the space
of deterministic policy and randomized policy, respectively. A
deterministic control policy Ω ∈ HD is a mapping S → A
from the state space to the action space, which is given by
Ω(S) = a ∈ A, ∀S ∈ S . A randomized control policy Ω ∈
HR is a mapping S → P(A) from the state space to the set of
probability distributions on the action space, which is given by
ΩR(S) = {ϕS(a)|a ∈ A}, ∀S ∈ S . A deterministic control
policy may be regarded as a special case of a randomized
control policy in which the probability distribution on the set
of actions is degenerate.

D. State Transition Probability and Steady-State Probability

The system behavior of the above queuing model can
be represented by the discrete-time Markov chain (DTMC)
{St}t=0,1,... := {(Ht,Qt)}t=0,1,.... Given a system state St

and an action x at time slot t, the state transition probability
of the DTMC is given by

Pr.{St+1|St,x} = Pr.{Ht+1|Ht}Pr.{Qt+1|St,x}
= Pr.{Ht+1}Pr.{Qt+1|St,x}. (10)

First, we derive the queue state transition probability
Pr.{Qt+1|St,x}. According to (9), the conditional probability
of Q

(c)
i,t+1 given the system state St and an action x can be

derived as

Pr.{Q(c)
i,t+1|St,x} = Pr.(A

(c)
i,t = n),

if Q
(c)
i,t+1 = min

[
NQ,max[0, Q

(c)
i,t − r

(c)
i,t ] + n

]
. (11)

The value of Pr.(A
(c)
i,t = n) in (11) depends on the

queue q
(c)
i ∈ Θ. As discussed in Section II.F, for any

queue q
(c)
i ∈ Θu

∪
ΘCd where node i is the source node

of connection c, its data arrival process equals Ac,t, which
has a general distribution fA(n) with mean λc. Otherwise, for
any q

(c)
0 ∈ ΘD−d, its data arrival process depends on the data

departure process of link (2c−1, 0) in the uplink transmission.
Therefore, we examine the probability that n units of data are
transmitted via link (2c − 1, 0). Given the local system state
S
(c)
(2c−1) of q(c)(2c−1) and the subchannel allocation action x, the

throughput of link (2c− 1, 0) during a time slot T(2c−1)0,t is
known according to (7).

Therefore, we have

Pr.(A
(c)
i,t = n)

=


fA(n), if q(c)i ∈ Θu

∪
ΘCd,

1, if q(c)i ∈ ΘD−d and n = T(2c−1)0,t,

0, if q(c)i ∈ ΘD−d and n ̸= T(2c−1)0,t.

(12)

The queue state transition probability Pr.{Qt+1|St,x} can be
derived as the product of Pr.{Q(c)

i,t+1|St,x} over all queues
q
(c)
i ∈ Θ as

Pr.{Qt+1|St,x} =
∏

q
(c)
i ∈Θ

Pr.{Q(c)
i,t+1|St,x}. (13)

Next, we derive the channel state transition probabili-
ty Pr.{Ht+1}. When Hij,t = {H(m)

ij,t }m∈{1,...,NF} where
H

(m)
ij,t = k

(m)
ij = {k(m,u)

ij }u∈Uij with k
(m,u)
ij ∈ {1, . . . ,K},

we have SINR
(m,u)
ij,t ∈

[
χ
(k

(m,u)
ij −1)

, χ
k
(m,u)
ij

)
. From (1),

it can be seen that for any given m ∈ {1, . . . , NF} and
u ∈ Uij , the SINR value SINR

(m,u)
ij,t and thus the channel

state H
(m,u)
ij,t = k

(m,u)
ij of link (i, j) depends on the SNR

value γ
(m)
ij,t of link (i, j) and the ‘virtual SNR’ values γ

(m)
i′j,t

of its interfering links Ii′j , (i′, j′) ∈ Bu\{(i, j)}. Define
γ⃗
(m,u)
ij,t := {γ(m)

i′j |(i′, j′) ∈ Bu} as the (virtual) SNR vector
of link (i, j) on subchannel m considering only its potential
interfering links when RRG Bu is scheduled. Therefore, given
SINR

(m,u)
ij,t ∈

[
χ
(k

(m,u)
ij −1)

, χ
k
(m,u)
ij

)
, γ⃗

(m,u)
ij,t at time slot t

belongs to the convex polyhedron Υ
k
(m,u)
ij

:= {γ⃗(m,u)
ij,t |γ(m)

ij −

χ
(k

(m,u)
ij −1)

∑
(i′,j′)∈Bu\{(i,j)} γ

(m)
i′j ≥ χ

(k
(m,u)
ij −1)

, γ
(m)
ij −

χ
k
(m,u)
ij

∑
(i′,j′)∈Bu\{(i,j)} γ

(m)
i′j < χ

k
(m,u)
ij

, γ⃗
(m,u)
ij,t ≥ 0}. The

(virtual) SNR regions corresponding to the channel state
k
(m,u)
ij and k

(m,u)
ij + 1 are separated by the hyperplane

γij − χ
k
(m,u)
ij

∑
(i′,j′)∈Bu\{(i,j)} γ

(m)
i′j = χ

k
(m,u)
ij

. Next, define

γ⃗
(m)
ij,t := {γ(m)

i′j |(i′, j′) ∈
∪

u∈Uij
Bu} as the (virtual) SNR vec-

tor of link (i, j) on subchannel m considering all its potential
interfering links in the set Iij . Since H

(m)
ij,t = k

(m)
ij , γ⃗

(m)
ij,t

belongs to the convex polyhedron Υ
k
(m)
ij

=
∩

u∈Uij
Υ

k
(m,u)
ij

.

Therefore, the steady-state probability that H(m)
ij,t = k

(m)
ij can
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be derived as

Pr.(H
(m)
ij ) =

∫
Υ

k
(m)
ij

f(γ⃗
(m)
ij )dγ⃗

(m)
ij

=

∫
Υ

k
(m)
ij

∏
(i′,j′)∈

∪
u∈Uij

Bu

(f(γi′j)dγi′j). (14)

where f(γ⃗
(m)
ij ) is the joint probability distribution function

(pdf) of {γi′j,t}(i′,j′)∈∪
u∈Uij

Bu
, and f(γi′j) is the pdf of

γi′j,t. The second equality is due to the independence between
the r.v. elements in the set γ⃗(m)

ij . Given Pr.(H
(m)
ij ), the global

channel state transition probability can be derived as

Pr.{Ht+1} =
∏

(i,j)∈L

∏
m∈{1,...,NF}

Pr.(H
(m)
ij ). (15)

Given a deterministic control policy Ω ∈ HD, since
the action xt under every system state St is determined,
we can directly derive Pr.{St+1|St,Ω(St)}. On the oth-
er hand, given a randomized control policy Ω ∈ HR,
we can derive the system state transition probability as
Pr.{St+1|St,Ω(St)} =

∑
a∈A Pr.{St+1|St,a}ϕSt(a). Let

S(y) denote the y-th system state within the state space.
Define the transition probability matrix PΩ = [Pr.{St+1 =
S(y)|St = S(z),Ω(S(z))}], y, z ∈ {1, . . . , |S|} and the steady-
state probability matrix πΩ = [πΩ

S(z) ], z ∈ {1, . . . , |S|},
where πΩ

S(z) = limt→∞ Pr.{St = S(z)}. Each element of the
transition probability matrix PΩ can be derived. Then, the
stationary distribution of the ergodic process {St}t=0,1,... can
be uniquely determined from the balance equations.

E. Performance Metrics
Given πΩ, the end-to-end performance measures such as

the mean throughput, the average delay and the dropping
probability for all the connections can be derived.

1) Average queue length: The average queue length of
queue q

(c)
i equals

Q
(c)

i = Eπ(Ω)[Q
(c)
i ]. (16)

2) Mean throughput: Denote T c as the end-to-end mean
throughput of connection c ∈ C and T ij as the mean through-
put of link (i, j). The relationships between the throughput of
a connection c and those of the links in its link constraint set
Lc are given below

T c =


T (c+D)0, if c ∈ CCu,
T 0(c+D), if c ∈ CCd,
T (2c−1)(2c) + T 0(2c), if c ∈ CD.

(17)

The first two equations are due to fact that every cellular
connection consists of one hop. The third equation is because
the data of a D2D connection can be transmitted either via the
single-hop route or the two-hop route, and thus its throughput
should be the sum throughput of the two routes.

According to the discussion above, we need to derive the
mean throughput of related links in order to obtain the end-to-
end mean throughput of a connection c . The mean throughput
of a link (i, j) ∈ L can be derived as

T ij = Eπ(Ω)
[
Tij

(
S
(c)
i ,Ω(S)

)]
, (18)

where Tij(S
(c)
i ,Ω(S)) is the throughput of link (i, j) given in

(7) and (8).
3) Average delay: Denote Dc as the end-to-end average

delay of connection c ∈ C and D
(c)

i as the average delay of
queue q

(c)
i . The relationships between the average delay of a

connection c and those of the queues along its route(s) are
given below

Dc =


D

(c)

c+D, if c ∈ CCu,

D
(c)

0 , if c ∈ CCd,

D
(c)

2c−1 +D
(c)

0
T 0(2c)

T (2c−1)(2c)+T 0(2c)
, ifc ∈ CD.

(19)
Similar to derivation of mean throughput, it is straightfor-

ward to see that the first two equations are due to the fact
that every cellular connection consists of one hop, while the
third equation is because among all the served data for a D2D
connection c, T (2c−1)(2c)

T (2c−1)(2c)+T 0(2c)
fraction of data are transmitted

via the single hop route which has an average delay of D
(c)

2c−1,

while T 0(2c)

T (2c−1)(2c)+T 0(2c)
fraction of data are transmitted via the

two-hop route which has an average delay of D
(c)

2c−1 +D
(c)

0 .
The average delay D

(c)

i for any queue q
(c)
i can be calculated

according to Little’s Law as

D
(c)

i = Q
(c)

i /T
(c)

i , (20)

which is the average amount of time between the arrival and
departure of a data unit in queue q

(c)
i , where

T
(c)

i = Eπ(Ω)
[
T

(c)
i

(
S
(c)
i ,Ω(S)

)]
, (21)

is the mean throughput of queue q
(c)
i , which equals the

effective arrival rate of queue q
(c)
i , i.e., the average rate at

which the packets enter queue q(c)i . Note that T (c)
i (S

(c)
i ,Ω(S))]

can be derived from (6).
4) Dropping probability: Denote dc as the dropping prob-

ability of connection c ∈ C, which can be estimated as

dc =
Average # of data units dropped in a time slot

Average # of data units arrived in a time slot

= 1− Average # of data units transmitted in a time slot

Average # of data units arrived in a time slot

= 1− T c

λc
, (22)

where the mean throughput T c of connection c can be derived
from (17).

V. PROBLEM FORMULATION AND SOLUTION

A. Problem Formulation

Our objective is to optimize the subchannel allocation policy
so as to minimize the average weighted sum delay of all
the connections subject to dropping probability constraints.
Note that the dropping probability is an important QoS metric
indicating the reliability of the system, and has also been used
as QoS constraint in other works [21], [25]. On the other hand,
the problem formulation and solution method in this section
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and also that in Part II of this work can also be applied to study
other CMDP problems with different optimization objectives
and constraints, e.g., maximize the sum throughput subject to
the delay constraint.

Problem 1. The delay-optimal subchannel allocation design
can be formulated as the constrained optimization problem in
(23)

min
Ω∈HR

C∑
c=1

ωcD̄c (23)

s.t. dc ≤ dmax, ∀c ∈ C,

where ωc (c = 1, . . . , C) are the weights of the delays of
connections c. D̄c and dc can be derived from (19) and (22),
respectively.

In Problem 1, the subchannel allocation policy Ω influences
the behavior of a probabilistic system as it evolves through
time. The goal is to choose a sequence of actions which causes
the system to perform optimally with respect to the time-
average or expected system performance. Therefore, it is a
dynamic optimization problem and we would like to formulate
and solve it as a CMDP model. To apply the CMDP model,
we need to define four elements, i.e., state space S, action
space Ax, state transition probability Pr.{S(y)|S(z),x}, and a
set of cost functions, which include one cost function g0(S,x)
related to the optimization objective and an additional set of
cost functions gc(S,x), c ∈ C related to the C constraints
in Problem 1. Suppose the above elements are defined, the
infinite horizon CMDP model for problem 1 can be formulated
as

min
Ω∈HR

lim
T→∞

1

T

T∑
t=1

EΩ[g0(St,Ω(St))] (24)

s.t. lim
T→∞

1

T

T∑
t=1

EΩ[gc(St,Ω(St))] ≤ dmax, ∀c ∈ C,

where under any unichain policy we have

lim
T→∞

1

T

T∑
t=1

EΩ[gc(St,Ω(St))] = Eπ(Ω)[gc(S,Ω(S))], ∀c ∈ C,

and Eπ(Ω)[x] denotes the expectation operation taken w.r.t. the
unique steady-state distribution induced by the given policy Ω.

The former three elements of the CMDP model have been
defined in Section III.B-D, respectively. Comparing (23) with
(24), we cannot directly derive the cost function g0(S,x), since
the form E[x]

E[y] exists when combining (19), (20), (21) and (16)
in order to derive the average delay D̄c of every connection
in (23). To solve this problem, we replace the denominator in
the R.H.S. of (19) which is in the form of E[y] with λc(1 −
dmax). This approximation is reasonable because the term E[y]
represents the average throughput of either a connection or its
stage-1 server, and we thus have E[y] ≥ λc(1 − dmax) due
to the constraint on dropping probability. In this way, we can
define

g0(S,x) =
Q

(c)
i

λc(1− dmax)
, (25)

gc(S,x) =


1− T(c+D)0

λc
, if c ∈ CCu,

1− T0(c+D)
λc

, if c ∈ CCd,

1− T(2c−1)(2c)+T0(2c)

λc
, if c ∈ CD.

(26)

In the rest of paper, we will refer to the CMDP problem
defined in (24) whenever we refer to Problem 1.

In order to solve the CMDP Problem 1, we cast this dynamic
optimization problem as an abstract ‘static’ optimization prob-
lem over a close convex set of measures. It is shown in [27]
that the MDP problem belongs to the convex programming
(in fact, infinite dimensional linear programming) problems,
so that Lagrangian duality method can be used to take the
constraints of CMDP problem into account by augmenting
the objective function with a weighted sum of the constraint
functions.

For any given nonnegative Lagrangian Multipliers (LMs)
η = {ηc|c ∈ C}, we define the Lagrangian function of Problem
1 as

L(Ω, η) = Eπ(Ω)[g(S,Ω(S))] +
∑
c∈C

λcηc(1− dmax)
2, (27)

where

g(S,Ω(S)) =
∑

c∈CCu

(
ωcQ

(c)
(c+D) − ηc(1− dmax)T(c+D)0

)
+

∑
c∈CCd

(
ωcQ

(c)
0 − ηc(1− dmax)T0(c+D)

)
+

∑
c∈CD

(
ωc(Q

(c)
(2c−1) +Q

(c)
0 )

− ηc(1− dmax)(T(2c−1)(2c) + T0(2c))
)
. (28)

Therefore, Problem 1 can be decomposed into the following
two subproblems:

Subproblem 1-1: G(η) = min
Ω∈HR

L(Ω,η),

Subproblem 1-2: G(η∗) = max
η

G(η).

where G(η) is the corresponding Lagrange dual function and
Subproblem 1-2 is the dual problem.

The following theorem establishes the strong duality result
of the CMDP Problem 1 over the space of randomized policy
HR.

Theorem 1 (Strong Duality Over HR). If there exists a strictly
feasible policy Ω ∈ HR in Problem 1 such that

dc = Eπ(Ω)[gc(S,Ω(S))] < dmax, ∀c = {1, . . . , C}, (29)

then there exists an optimal stationary randomized policy
Ω∗ and a vector of finite nonnegative LMs η∗ such that
Ω∗ minimizes the ergodic cost L(Ω∗,η∗) and the following
‘saddle point condition’ holds:

L(Ω,η∗) ≥ L(Ω∗,η∗) ≥ L(Ω∗,η). (30)

Therefore, Ω∗ is the primal optimal (i.e., solving Problem 1),
η∗ is the dual optimal (i.e., solving the dual problem) and
the duality gap is zero. By solving the dual problem (i.e.,
Subproblem 1-2), we can obtain the primal optimal Ω∗.
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Proof: The CMDP problem 1 is an infinite dimensional
linear programming problem [27], which is a special type of
convex problem. Moreover, (29) guarantees that the slater’s
condition is satisfied. Thus, Theorem 1 is proved using stan-
dard optimization theory.

In the above discussion, we focus on randomized policies.
However, deterministic policies are much simpler to imple-
ment and evaluate. The following theorem shows that if the
constraint can be satisfied by any randomized policy, the
optimization over all randomized policies is attained by either
a deterministic policy or a simple mixed policy. Before we
introduce Theorem 2, two optimal deterministic policies Ω∗

1

and Ω∗
2 with respect to two unconstraint MDP problems are

introduced, where Ω∗
1 = minΩ∈HD

Eπ(Ω)[g0(S,Ω(S))] and
Ω∗

2 = minΩ∈HD Eπ(Ω)[maxc∈C gc(S,Ω(S))]. Note that the
first unconstraint MDP problem is the unconstraint version of
Problem 1 to minimize the average delay, while the second
unconstraint MDP problem is to minimize the maximum
dropping probability of all the connections. We will refer to
Ω∗

1 as the unconstraint delay optimal policy and Ω∗
2 as the

unconstraint drop optimal policy in the rest of the paper.

Lemma 1. There exists two open sets Λ1 and Λ2 with 0 ∈
Λ1 ⊆ Λ2 ⊂ RC+, such that the boundaries of Λ1 and Λ2

are defined by all the mean arrival rate vector λ = {λc}c∈C
that result in maxc∈C dc = dmax using policy Ω∗

1 and Ω∗
2,

respectively.

Proof: The proof is straightforward since for any given
policy Ω, the dropping probability of every connection increas-
es with the increasing mean arrival rate vector3 λ, and the
value of maxc∈C dc achieved by Ω∗

2 is the minimal value over
all randomized policies by definition and no larger than that
achieved by Ω∗

1.
Now, we introduce a third deterministic policy Ω∗

3 which is
the optimal policy of Problem 1 over the space of deterministic
polices HD, i.e., Ω∗

3 = argminΩ∈HD L(Ω,η∗).

Theorem 2 (General Form of Optimal Policy for Problem 1).
For CMDP Problem 1, there exists two open sets Λ1 ⊆ Λ2 ⊂
RC+ as defined in Lemma 1, such that

1) When λ ∈ Λ1, the optimization of Problem 1 over
all randomized policies is attained by the deterministic
policy Ω∗

3 or equivalently Ω∗
1, since the two policies are

essentially the same in this case.
2) When λ ∈ Λ2

∩
Λ1, the optimization of Problem 1 over

all randomized policies is attained by
a) a deterministic policy Ω∗

3, if maxc∈C dc(Ω
∗
3) =

dmax;
b) a mixed policy, if maxc∈C dc(Ω

∗
3) < dmax, which

is equivalent to choosing independently at each
time slot between the two deterministic policies
Ω∗

1 and Ω∗
2 by the throw of a biased coin with

probability p such that pmaxc∈C dc(Ω
∗
1) + (1 −

p)maxc∈C dc(Ω
∗
2) = dmax.

3) When λ ∈ Λ2, there exists no strictly feasible policy for
Problem 1.

3vector inequalities in this paper are understood as pointwise

Proof: The proof is given in Appendix A.

B. Problem Solution

According to Theorem 2, the optimal policy for Problem 1
Ω∗ is either a deterministic policy Ω∗

3 or a simple mix of two
deterministic policies Ω∗

1 and Ω∗
2. Therefore, we will first focus

on solving Problem 1 over the space of deterministic policy
HD to derive Ω∗

3. The solution method can also be applied to
obtain the optimal policies Ω∗

1 and Ω∗
2 for the unconstraint

MDP problems. Then, an algorithm (Algorithm 1) will be
proposed to derive the optimal policy Ω∗ for Problem 1 based
on the deterministic policies Ω∗

1, Ω∗
2 and Ω∗

3.
1) Solving Problem 1 over the space of deterministic policy

to derive Ω∗
3: Given the LMs η∗, Subproblem 1-1 is a classical

infinite horizon average reward MDP problem, which can be
solved by the Bellman’s equation [21].

θ + V (S(z)) = min
Ω(S(z))∈HD

{
g(S(z),Ω(S(z)))

+
∑

S(y)∈S

Pr.[S(y)|S(z),Ω(S(z))]V (S(y))

 , ∀S(z) ∈ S,

(31)

where V (S(z)) is the value function representing the average
reward obtained following policy Ω from each state S(z), while
θ represents the optimal average reward per period for a system
in steady-state.

As a remark, note that the Bellman’s equation (31) repre-
sents a series of fixed-point equations, where the number of
equations are determined by the number of value functions
V (S(z)), which is |S|. Theoretically, the BS can use the brute
force value iteration method to offline solve (31) and derive
the optimal control policy, in which |S| value functions need
to be stored and the computation complexity is O(|S|2|Ax|) in
one iteration. Therefore, the offline value iteration algorithm
is too complicated to compute due to curse of dimensionality,
i.e., the exponential growth of the cardinality of the system
state space and the large dimension of the control action space
involved.

In order to reduce the state space of the above MDP, we
construct an equivalent Bellman’s equation. Let Q(ỳ) and Q(z̀)

denote the ỳ-th and z̀-th queue states within the queue state
space, respectively, where ỳ, z̀ ∈ {1, . . . , |Q|}. We first define
the partitioned actions of a policy Ω as follows.

Definition 2 (definition of partitioned actions). Given a con-
trol policy Ω, we define

Ω(Q(z̀)) = {Ω(H,Q(z̀))|∀H} ⊆ Ax

as the collection of |H| actions, where every action is mapped
by policy Ω from a system state with given QSI Q(z̀), and a
different realization of CSI H ∈ H.

Lemma 2. The control policy obtained by solving the original
Bellman’s equation (31) is equivalent to the control policy
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obtained by solving the reduced-state Bellman’s equation (32)

θ + V (Q(z̀)) = min
Ω(Q(z̀))∈HD

{
g(Q(z̀),Ω(Q(z̀)))

+
∑

Q(ỳ)∈Q

Pr.[Q(ỳ)|Q(z̀),Ω(Q(z̀))]V (Q(ỳ))
}
,∀Q(z̀) ∈ Q,

(32)

where V (Q(ỳ)) = EH

[
V (H,Q(ỳ))|Q(ỳ)

]
=∑

H∈H Pr.[H]V (H,Q(ỳ)) is the conditional expectation
of value function V (S) taken over the channel
state space H given the queue state Q(ỳ), while
g(Q(z̀),Ω(Q(z̀))) = EH

[
g(H,Q(z̀),Ω(H,Q(z̀)))|Q(z̀)

]
and Pr.[Q(ỳ)|Q(z̀),Ω(Q(z̀))] =

EH

[
Pr.[Q(ỳ)|H,Q(z̀),Ω(H,Q(z̀))]|Q(z̀)

]
are conditional

expectations of cost function g(H,Q(z̀),Ω(H,Q(z̀))) and
transition probability Pr.[Q(ỳ) |H,Q(z̀),Ω(H,Q(z̀))] taken
over the channel state space H given the queue state Q(z̀),
respectively.

Proof: The proof is given in Appendix B.

Remark 4 (complexity of solving equivalent Bellman’s equa-
tion with offline value iteration). If we use the offline value
iteration algorithm to solve (32), the BS needs to store |Q| val-
ue functions and the computation complexity is O(|Q||S||Ax|)
in one iteration. The amount of information stored on BS and
the computation complexity is greatly reduced compared to
the original Bellman’s equation in (31), so that it is possible
to obtain the optimal policy in a simple network such as the
one in Fig.1 and study its properties. However, since the state
space still grows exponentially with the number of queues, we
will propose a practical solution in Part II of this work using
linear value approximation and online stochastic learning to
deal the curse of dimensionality problem in solving Problem
1.

In order to learn the correct η∗, we use a gradient ascent in
the dual (i.e., Lagrange multiplier) space in view of subprob-
lem 1-2. Therefore, the LM vector η is initiated as η0 = 0
and updated iteratively. In the l-th iteration, the LM vector ηl

is updated according to

ηc,l+1 = ηc,l+(Eπ(Ω∗(ηl))[gc(S,Ω(S))]−dmax), ∀c = 1, . . . , C,
(33)

where Ω∗(ηl) is the optimal policy obtained by solving
the unconstraint Subproblem 1-1 using the value iteration
algorithm based on the equivalent Bellman’s equation with
LM vector ηl.

2) Optimal policy Ω∗ for Problem 1: The following Algo-
rithm 1 can be used to derive Ω∗ according to Theorem 2,
given the deterministic policies Ω∗

1,

VI. SIMULATION RESULTS

In this section, we compare the performance of optimal
policy for Problem 1 derived by Algorithm 1 with two other
reference subchannel allocation algorithms. One is the CSI-
only algorithm, in which the RRG selection is only adaptive
to CSI and a subchannel is allocated to the RRG with the

Algorithm 1 Derive the optimal policy for Problem 1 (Ω∗)
Derive Ω∗

3 based on the reduced-state Bellman’s equation
if no feasible policy exists then

End
else if maxc∈C dc(Ω

∗
3) = dmax then

Ω∗ ⇐ Ω∗
3

else if maxc∈C dc(Ω
∗
3) < dmax then

Derive Ω∗
1 based on the reduced-state Bellman’s equation

if maxc∈C dc(Ω
∗
1) = maxc∈C dc(Ω

∗
3) then

Ω∗ ⇐ Ω∗
3 = Ω∗

1

else if maxc∈C dc(Ω
∗
1) > dmax then

Derive Ω∗
2 based on the reduced-state Bellman’s equa-

tion
Ω∗ ⇐ a mixed policy which randomizes between Ω∗

1

and Ω∗
2 as given in Theorem 2.

end if
end if

maximum sum over all its link transmission rates at every
time slot. The other is the MaxWeight algorithm [10], which is
adaptive to both CSI and QSI and a subchannel is allocated to
the RRG with maximum sum over all its links of the product of
the corresponding differential backlog and transmission rate.
We develop discrete event system-level simulator for D2D
communications system with dynamic packet arrivals using
Matlab, and all experiments are run on 3.4GHz PC with 8GHz
RAM. In the simulations, we consider Poisson packet arrival
with mean arrive rate λ and fixed packet size of 1080 bits at
the source node. Moreover, we consider a wireless network
employing adaptive M -ary quadrature amplitude modulation
(M -QAM) with convolutional coding which has six channel
states for all transmission links. The SINR thresholds for the
channel states are given in Table II of [26]. We assume the
Rayleigh fading channel and the number of packets transmitted
in a time slot under different channel states, i.e., Rk with
k = 1, 2, 3, 4, 5, 6 are set to 0, 1, 2, 3, 6, 9, respectively. The
carrier frequency and the time slot duration ∆T are set to
2GHz and 1ms, respectively. Due to the complexity and the
large required memory of solving even the reduced-state equiv-
alent Bellman’s equation, we consider the simple network in
Fig.1 with one D2D connection, one cellular uplink connection
and one cellular downlink connection. The buffer size is set to
be NQ = 3 packets and only one subchannel is considered. In
this case, the cardinality of the state space |S| and action space
|Ax| are 1536 and 9, respectively. Therefore, the computation
complexity of the original Bellman’s equation is O(2e7) in one
iteration, and the computation complexity of the equivalent
Bellman’s equation is O(3e6) in one iteration. We assign equal
weights of the delays on each connection.

We simulate a circular cell with a BS (node 0) in the
center and the cell radius is 500m. All the CUEs and src.
DUEs are uniformly distributed in the cell area at random,
whereas the dest. DUEs are distributed uniformly upon a disk
centered by their corresponding src. DUEs with a radius of
R (the maximum distance of D2D links is R). The statistics
are collected over multiple realizations of the position of the
UEs. The distance between the transmitter of node i and
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Fig. 3. The average weighted sum delay and the maximum dropping
probability over all connections versus the dropping probability constraint
dmax with λ = 1 packets/slot and R = 100m.

receiver of node j is denoted by lij . We consider the path loss
channel model 28 + 40 log10 lij [m] for any wireless channel
between a pair of UEs, while the path loss channel model
15.3 + 37.6 log10 lij [m] for any wireless channel between the
BS and a UE. The transmission power of the BS and the UE
are set to be 46dBm and 23dBm, respectively. We normalize
the uplink noise power and downlink noise power, respectively,
so that the SNR is 0dB for any cellular uplink or downlink at
the cell border.

Fig.3 shows the average weighted sum delay and the max-
imum dropping probability over all connections versus the
dropping probability constraint dmax of the optimal policy
for Problem 1 with λ = 1 packets/slot and R = 100m.
Moreover, the performance of the unconstraint delay optimal
policy Ω∗

1 and unconstraint drop optimal policy Ω∗
2 are al-

so illustrated to provide bounds for the optimal policy for
Problem 1. It can be observed that the maximum dropping
probability increases and the average weighted sum delay
decreases slowly as the dropping probability constraint dmax

becomes looser. The unconstraint delay optimal policy Ω∗
1

provides the lower bound of average weighted sum delay and
upper bound of maximum dropping probability for the optimal
policy for Problem 1, since the objective functions of the
unconstraint delay optimal problem and Problem 1 are the
same, while the former has a larger domain than the latter.
As illustrated in Fig.3, when dmax exceeds the maximum
dropping probability of Ω∗

1, i.e., 0.035, the performance of
the optimal policy for Problem 1 remain the same as those
achieved by Ω∗

1, since the unconstraint delay optimal policy is
included in the domain of Problem 1 when dmax ≥ 0.035 and
will always be chosen irrespective of dmax. On the other hand,
the unconstraint drop optimal policy Ω∗

2 provides the lower
bound of maximum dropping probability and upper bound of
average weighted sum delay for the optimal policy for Problem
1 due to the objective function of Ω∗

2. When dmax is lower
than the maximum dropping probability of Ω∗

2, i.e., 0.021, no
feasible policy exists for Problem 1 and its domain is empty
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Fig. 4. The average weighted sum delay and the maximum dropping prob-
ability over all connections versus the mean arrive rate λ with dmax = 0.1
and R = 100m.
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Fig. 5. The average weighted sum delay and the maximum dropping
probability over all connections versus the maximum distance of D2D links
R with λ = 1.5 packets/slot and dmax = 0.1.

since the maximum dropping probabilities of all the other
policies must be larger than that of Ω∗

2 and thus also larger
than dmax. From Fig.3, it can be observed that the optimal
policy for Problem 1 ensures the dropping probability at the
cost of delay, and can achieve the optimal delay within the
dropping probability constraint whenever possible.

Fig.4 shows the average weighted sum delay and the
maximum dropping probability over all connections versus
the mean arrive rate λ of the optimal policy for Problem 1,
the CSI-only algorithm and the Maxweight algorithm with
dmax = 0.1 and R = 100m. It can be observed that the
performance of the optimal policy for Problem 1 achieves
lower average weighted sum delay compared with the two
reference algorithms and always keeps the maximum dropping
probability within dmax. Although the MaxWeight algorithm
achieves nearly the same maximum dropping probability in
light traffic load regime, when λ gradually increases, the
optimal policy for Problem 1 achieves a better performance.
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Fig.5 shows the average weighted sum delay and the max-
imum dropping probability over all connections versus the
maximum distance of D2D links R of the optimal policy
for Problem 1, the CSI-only algorithm and the Maxweight
algorithm with λ = 1.5 packets/slot and dmax = 0.1. The
performance of all the three algorithms deteriorates with
increasing R, since the channel quality of the D2D link
becomes worse. Moreover, the performance gaps between the
two baseline algorithms and the optimal policy for Problem 1
increase with increasing R. This is because when the DUEs
are close to each other, the D2D link will have a very good
channel quality and the D2D mode will always be chosen. In
this case, the packets of D2D connection can be transmitted
effectively leaving its queue empty most of the time, which
means that more resources can be allocated to the cellular
uplink connection. Thus, a low average delay and dropping
probability can be achieved by all the three algorithms. How-
ever, as the distance between the D2D pair increases, the link
quality of all the links may not have a distinct difference. In
this case, an effective mode selection and resource allocation
algorithm can make a significant improvement of the achieved
performance.

VII. CONCLUSION

In this paper, we studied a delay-optimal dynamic mode
selection and resource allocation problem under dropping
probability constraint for network assisted D2D communica-
tions with bursty traffic arrival, where the data are transmitted
over frequency-selective fading channel with AMC scheme
in the physical layer. To formulate the above problem into
an infinite horizon average reward CMDP, we first developed
a queuing model whose underlying system state dynamics
evolves as a controlled Markov chain, where the system
state includes the joint queue state of the queues at the
UEs for uplink transmission and the queues at the BS for
downlink transmission as well as the joint channel state of
all the D2D links, cellular uplinks and cellular downlinks.
The transition kernel of the controlled Markov chain was
derived, taking into account the coupling relationship between
the uplink and downlink resource allocation. Moreover, closed-
form expressions for end-to-end performance metrics such
as average delay and dropping probability were given as
functions of steady-state probabilities of the controlled Markov
chain, based on which the cost function of MDP model
was given. We provided two regions of mean arrival rate
vector, in which the strong duality result and the existence of
optimal deterministic policy can be guaranteed, respectively.
Moreover, we proved that the optimal policy is no more
complex than the randomization between two deterministic
policies. In order to reduce the state space of the CMDP model,
we proposed an equivalent Bellman’s equation. Simulation
results showed that the optimal control policy based on our
CMDP model outperforms the conventional CSI-only scheme
and throughput-optimal scheme (MaxWeight algorithm). In
part II of this paper, we will propose a practical solution which
uses linear value approximation and online stochastic learning
to deal the curse of dimensionality problem in solving the
CMDP and achieves near-optimal performance.

APPENDIX

A. Proof of Theorem 2

The proof is based on the following Lemma from [29].

Lemma 3. For an unconstraint MDP problem, suppose the
state space and action space are finite, the cost function are
bounded, and the model is unichain, then there exists an
optimal deterministic policy that achieves the objective over
all randomized policies.

By Lemma 3, both deterministic policies Ω∗
1 and Ω∗

2 achieve
the optimal objective over all randomized policies for their
respective unconstraint MDP problem.

We first prove Theorem 2-1), where for any λ ∈ Λ1, the
deterministic policy Ω∗

1 ∈ HD that achieves the unconstraint
minimum of Problem 1 is also a strictly feasible policy under
the constraint of Problem 1. In this case, the optimal LM η∗ =
0 and Ω∗

1 ∈ HD also achieves the minimum of Problem 1
over all the randomized policies according to Lemma 3, which
completes the proof of Theorem 2-1).

We next prove Theorem 2-2), where for any λ ∈ Λ2

∩
Λ1,

we have (i) the deterministic policy Ω∗
1 ∈ HD that achieves the

unconstraint minimum of Problem 1 is not a feasible policy
for Problem 1; (ii) there exists a deterministic feasible policy
Ω∗

2 ∈ HD for Problem 1. According to [28][Theorem 4.4],
the optimal constraint policy for a CMDP problem satisfying
condition (i) and (ii) is either a deterministic policy Ω∗

3 if
the equality of the constraint is attained by Ω∗

3 or a convex
combination of the above two deterministic policies Ω∗

1 and
Ω∗

2, which completes the proof of Theorem 2-2).
Theorem 2-3) follows directly from (29) of Theorem 1.

B. Proof of Lemma 2

θ + V (H,Q(z̀)) ∀H ∈ H, Q(z̀) ∈ Q,

= min
Ω(H,Q(z̀))

{
g(H,Q(z̀),Ω(H,Q(z̀)))

+
∑

H′,Q(ỳ)

Pr.[H′,Q(ỳ)|H,Q(z̀),Ω(H,Q(z̀))]V (H′,Q(ỳ))
}

(a)
= min

Ω(H,Q(z̀))

{
g(H,Q(z̀),Ω(H,Q(z̀))) +

∑
Q(ỳ)

Pr.[Q(ỳ)|H,Q(z̀),Ω(H,Q(z̀))]
(∑

H′

Pr.(H′)V (H′,Q(ỳ))
)}

(b)
= min

Ω(H,Q(z̀))

{
g(H,Q(z̀),Ω(H,Q(z̀)))

+
∑
Q(ỳ)

Pr.[Q(ỳ)|H,Q(z̀),Ω(H,Q(z̀))]V (Q(ỳ))
}
,

where (a) is due to (10) by the i.i.d. assumption of CSI over
time slots, (b) is due to the definition V (Q(z̀)) given in Section
V.B.

Taking the conditional expectation (conditioned on Q(z̀))
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on both sides of the equation above, we have

θ + V (Q(z̀)) ∀Q(z̀) ∈ Q,

=EH

[
min

Ω(H,Q(z̀))

{
g(H,Q(z̀),Ω(H,Q(z̀)))

+
∑
Q(ỳ)

Pr.[Q(ỳ)|H,Q(z̀),Ω(H,Q(z̀))]V (Q(ỳ))
}]

(c)
= min

Ω(Q(z̀))

{
g(Q(z̀),Ω(Q(z̀)))

+
∑
Q(ỳ)

Pr.[Q(ỳ)|Q(z̀),Ω(Q(z̀))]V (Q(ỳ))
}
,

where (c) is due to the definition of “conditional re-
ward” g(Q(z̀),Ω(Q(z̀))) and “conditional transition probabil-
ity” Pr.[Q(ỳ)|Q(z̀),Ω(Q(z̀))] given in Section IV.B.
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