

UPC
Universitat Politècnica de Catalunya

ETSETB

Escola Técnica Superior d‟Enginyers de
Telecomunicació de Barcelona

Demonstrating communication
services based on autonomic self-

organization

Author: Albano Bernadas Zurdo

Director: Antonio Manzalini

Co-director: Dr. Josep Solé Pareta, Dr. Salvatore Spadaro

December 2013

Demonstrating communication services based on autonomic self-organization

Demonstrating communication services based on autonomic self-organization

III

Acknowledgments Agradecimientos Gratitudine

En primer lugar quiero dar las gracias a las personas más importantes en mi

vida, que son mis padres y mi hermana Laura. Ellos me han dado la vida, me

han acompañado en todas sus etapas y me han convertido en la persona que

soy, con todos sus defectos y virtudes.

Des de mi primer año en la universidad he tenido la suerte y el placer de

compartir amistad, vivencias, apoyo y crecer en muchos sentidos con un grupo

de personas increíbles. Gracias Duran, Albert, Oscar, Raquel, Javi, Patri,

Víctor, Maite, Raúl, Ana, Roser, Chico, Pepo, Sara, Jenny y Jon por todos

estos años juntos, y por los que quedan por venir. Con vosotros he descubierto

el verdadero sentido de la amistad.

El año vivido en Italia ha sido una las experiencias que más me han

aportado de todas las que he vivido. Definirlo podría resumirse con la palabra

aventura. Aventura por todo lo que significó comenzar a vivir fuera de tu ciudad,

país, cultura e idioma. Aventura por tener la oportunidad de comenzar de cero

en un nuevo lugar y con gente desconocida. Por el reto de entrar por primera

vez en una gran empresa como Telecom Italia. Desafíos que hacen madurar

cuando pensabas que ya lo habías hecho y abrir la mente donde creías tenerla

ya abierta. Desde entonces no he podido sino recomendar a todo aquel que

estuviera en disposición de vivir una experiencia similar a no dudarlo. En esta

aventura he tenido la suerte de compartirla con grandes compañeros de

travesía. Gracias Julio, Héctor, Claudia y Santy por ser las personas generosas

y auténticas que sois. Aún no deja de sorprenderme cómo un año de nuestra

vida nos ha unido con tanta fuerza para el resto de años que llevamos. Estoy

seguro que esa fuerza seguirá intacta, de la misma manera que el tiempo

compartido en Italia.

Durante el año en Italia también he podido conocer gente muy diversa que

también se ha hecho un hueco en mi vida y me han brindado su amistad. No

quería olvidarme de Vicky, Luca, Xavi, Alex, Fabio, Miguel, Andrea y Carmelo.

Espero tener el placer de seguir compartiendo algún momento con vosotros

que, aunque los años los separen, siguen significando un recuerdo de los

buenos momentos pasados juntos.

También quería hacer especial mención a Stefano y Mauro por todo su

apoyo en el desarrollo de este proyecto y su ayuda para adaptarme al idioma y

a la empresa. Los dos fueron sin quererlo unos grandes profesores de

profesión.

Demonstrating communication services based on autonomic self-organization

IV

No podría tampoco dejarme a la persona que más ha marcado mi vida los

últimos seis años. Parte de culpa de haber finalizado este proyecto es suya.

Gracias Anna por las horas dedicadas ayudándome con la adaptación al inglés.

Sin tu ayuda y apoyo no sé cuánto tiempo más hubiera estado pendiente de

presentar. Y sobre todo gracias por los años que me has dado. Aunque en todo

hay un final, contigo he descubierto el sentido del amor y del cariño, algo que

me acompañará y con lo que espero quedarme a lo largo de mi vida.

Finalmente quiero dar las gracias a las personas que me han permitido vivir

esta experiencia: Josep Solé, Salvatore Spadaro, Antonio Manzalini y Rosario

Alfano. Gracias por vuestro apoyo, consejos y paciencia.

Este proyecto ha sido una etapa importante en el largo camino de la vida, y

espero sólo a su fin poderme sentir orgullosos de cada paso dado.

Non possiamo raccontare il momento preciso in cui si forma un'amicizia.

Come quando si riempie il vaso goccia a goccia, e alla fine c'è una goccia che

lo fà straripare, così in una serie di gentilezze ce n'è un'ultima che fa traboccare

il cuore.

J.Boswell

Demonstrating communication services based on autonomic self-organization

V

Abstract

The next generation of service framework should be able to address

challenges in the delivery of innovative service scenarios, such as high-

dynamicity, situation awareness, open “ecosystems”, high-scalability, and

reduced infrastructure and operation costs.

This thesis analyses the applicability of autonomic and self-organization

capabilities in the execution of ICT services in distributed environments.

Autonomicity is one of the key technologies able to address such requirements.

In particular, it reports the exploitation of autonomic self-organization solutions

to develop solutions for handling wireless communication services even in

critical disconnected situations (such as a catastrophic event in a city) and for

handling the gathering, correlation and distribution of data. Finally the document

describes a prototype of the service scenario, designed by means of autonomic

components enriched with an autonomic aggregation protocol.

Keywords

Distributed Service Framework, Autonomic Computing, Agents, Self-organising

system

Demonstrating communication services based on autonomic self-organization

Demonstrating communication services based on autonomic self-organization

VII

Table of Contents

CHAPTER I: Thesis environment 15

1 Thesis introduction 15

2 Objectives and results 16

CHAPTER II: Autonomic Self-Organization 19

1 Integrated Project CASCADAS 19

1.1 Project Summary 19

1.2 Technical Approach 20

1.3 Contribution 23

2 Autonomic System 24

3 Self-organising System 25

4 Emergent collective behaviour 27

5 Self-organising algorithms 28

5.1 “Passive” clustering 28

5.2 “On-demand” clustering 29

6 The digital city scenario 30

CHAPTER III: Experimental Prototype 35

1 Introduction 35

2 Agent’s Description 37

3 Prototype Architecture 41

4 Start-up Protocol 42

5.3 NTF (Notify Message) 43

5 Aggregation Protocol 44

5.1 Protocol development stages 45

5.2 Messages involved 47

6 Main architecture 50

6.1 Reasoning Part 50

6.2 Communication part 50

6.3 Specific Part 51

7 Application’s internal structure 52

7.1 Application Package (simulResc.app) 54

7.2 Communication Package (simulResc.communication) 55

7.3 Elements Package (simulResc.elements) 57

7.4 Graphics Package (simulResc.graphics) 59

Demonstrating communication services based on autonomic self-organization

VIII

7.5 GPS Positioning Package (simulResc.positioningGPS) 59

7.6 Reasoning Package (simulResc.reasoning) 60

7.7 XMLParser Package (simulResc.XMLParser) 63

8 Technological Approach 64

8.1 Prerequisites to set-up the ACE environment 64

8.2 DIET Agents Platform 65

8.3 Java 66

8.4 Required libraries 68

9 Interface 69

10 Test results 76

10.1 Experimental results 76

10.2 Prototype analysis 76

CHAPTER IV: Conclusion and Outlook 81

1 Conclusion 81

2 Outlook 83

CHAPTER V: Annex 85

1 Paper presented at CISIS 2008 85

2 New research 93

a. Autonomic Network Architecture (ANA) - February 2009 [16] 93

i. About the project 93

ii. Motivation 94

iii. Objectives 94

iv. Institutions involved into 97

b. Biologically inspired network and services (BIONETS) – March 2009 [17] 97

i. About the project 97

ii. Motivation 97

iii. Objectives 98

iv. Institutions involved into 99

c. EFIPSANS workshop – November 2010 [18] 99

i. About the workshop 99

ii. Objectives 100

iii. Institutions involved into 101

d. Self-optimization and self-configuration in wireless networks (SOCRATES) – February 2011
[19] 101

i. About the project 101

ii. Motivation 101

Demonstrating communication services based on autonomic self-organization

IX

iii. Objectives 102

iv. Institutions involved into 103

e. Generic Autonomic Network Architecture (GANA) – April 2013 [20] 103

i. About the project 103

ii. Motivation 103

i. Objectives 104

i. Institutions involved into 104

3 Topics update 105

REFERENCES 109

Demonstrating communication services based on autonomic self-organization

X

Index of Figures

Figure II.1 Vision of the CASCADAS Project 21

Figure II.2 Continuous monitoring and optimization methods help maintaining composed services
across different physical systems, service domains and vendors 24

Figure II.3 Infrastructure Requirements for Autonomic Service Composition 25

Figure II.4 Core ingredients for collective intelligence. 27

Figure II.5 Algorithms involved in rewiring operation following the “on-demand” clustering
procedure with the three roles of “initiator”, “match-maker” and “candidate”. 30

Figure II.6 A Digital City 32

Figure II.7 Jogging path scenario 33

Figure II.8 Real Time Rome project using cell phones and GPS devices to collect the movement
patterns of people and transportation systems 34

Figure III.1 Representation of the main entities involved in the Use Case 35

Figure III.2 Possible scenario of the Use Case 36

Figure III.3 Environment is formed by a set of ACEs 37

Figure III.4 Survivor’s attributes 38

Figure III.5 Survivor’s types 39

Figure III.6 Setup file for survivors and rescue teams 40

Figure III.7 City devised in terms of the DIET platform parameters 41

Figure III.8 Diagram of the messages transaction involved into the Start-up Protocol 42

Figure III.9 Structure of the HashMap in charge of storing all connections discovered mapping
them according to their type 43

Figure III.10 Structure of the Notify Message 44

Figure III.11 Diagram of the messages transaction involved into the Aggregation Protocol 45

Figure III.12 Requests Messages are re-send by the initiator agent to the different match-makers
chosen till receive an answer 46

Figure III.13 Structure of the Neighbour Request Message 47

Figure III.14 Structure of the Neighbour Reply Message 48

Figure III.15 Structure of the Link Message 48

Figure III.16 Structure of the Ack Message 49

Figure III.17 Structure of the Success Message 49

Figure III.18 Jobs’ Structure working managed by the ParallelJobManager and the
SerialJobManager which compose the Agent’s behaviour 51

Figure III.19 Class Map of all classes composing the different packages 53

Figure III.20 Table with different handle types and all the messages in charge of reception and
sending 57

Demonstrating communication services based on autonomic self-organization

XI

Figure III.21Self-model designed to configure the rules of the Rescue Team’s reasoning 61

Figure III.22 Self-model designed to configure the rules of the Survivor’s reasoning 62

Figure III.23 DIET Architecture 65

Figure III.24 Interface 69

Figure III.25 Interface 70

Figure III.26 Interface 71

Figure III.27 Interface 72

Figure III.28 Interface 73

Figure III.29 Interface 74

Figure III.30 Interface 75

Figure III.31 10 survivors into the building 77

Figure III.32 25 survivors into the building 77

Figure III.33 50 survivors into the building 77

Figure III.34 75 survivors into the building 78

Figure III.35 100 survivors into the building 78

Figure III.36 500 survivors into the building 78

Figure III.37 1000 survivors into the building 79

Figure III.38 1500 survivors into the building 79

Figure III.39 Buildings among 10 and 1000 survivors 80

Figure IV.1 Basic process of Reasoner 83

Figure IV.2 Future Survivor’s Self-Model 84

Figure IV.3 Future Rescue Team’s Self-Model 85

Figure 2.a.1 Autonomic network scenario 95

Figure 2.a.2 Architectural design 96

Figure 2.b.1 Gene network behaviour 99

Figure 2.d.1 Self-organization loop 102

Demonstrating communication services based on autonomic self-organization

Demonstrating communication services based on autonomic self-organization

13

Acronyms

Several acronyms are used throughout this document. The listing below is an
attempt to explain some of these.

ACE: Autonomic Communication Element

ANA: Autonomic Network Architecture

AP: Access Point

API: Application Programming Interface

BIONETS: Biologically inspired Network and Services

CASCADAS: Component-ware for Autonomic Situation-aware
Communications, and Dynamically Adaptable Services

CISIS: Conference on Complex, Intelligent and Software Intensive Systems

CPU: Central Processor Unit

DIET: Decentralised Information Ecosystem Technologies

GA: Goal Achievable

GANA: Generic Autonomic Network Architecture

GN: Goal Needed

GPL: General Public License

GPS: Global Positioning System

GUI: Graphical User Interface

ICT: Information and Communications Technology

IDE: Integrated Development Environment

JDK: Java Development Kit

JDT: Java Development Tools

JRE: Java Runtime Environment

JVM: Java Virtual Machine

RuleML: Rule Markup Language

R&D: Research and Development

SDK: Software Development Kit

SME: Small and Medium-sized Enterprises

SOCRATES: Self-optimization and self-configuration in wireless networks

XML: eXtensible Markup Language

UML: Unified Modelling Language

UTM: Universal Transverse Mercato

Demonstrating communication services based on autonomic self-organization

14

Demonstrating communication services based on autonomic self-organization

15

CHAPTER I: Thesis environment

1 Thesis introduction

This thesis has been developed in R&D department in Telecom Italia S.p.A
(TI) in Torino in the framework of the collaboration between UPC and TI on
Autonomic Communication research topic.

TI is a top ICT company in Italy and a Europe-wide leader in offering high
quality, value added, and innovative services. The Group is a leading
multimedia enterprise, operating in fixed and mobile telecommunications,
internet and media, office and system solutions, research and development.

Technological innovation for the Telecom Italia Group constitutes an
essential and differentiating element in the development of its competitive
advantage and in maintaining its leadership in an increasingly competitive
market.

TI technological innovation is the result of strategic partnerships with leading
producers of telecommunications equipment and systems, and with top
research centres in highly qualified national and international academic
institutions (the Polytechnics of Torino and Milan, UC Berkeley, MIT, etc.).

More specifically, the technological innovation activities range from review of
base technologies in a logic of increased operational efficiency of networks and
systems, to complex and radical reviews of the platforms, services and
architectures; intense efforts in the operations and business units is therefore
essential in ensuring that new services meet customer services and
requirements and for constant improvement in service quality levels.

This thesis, as a part of the work carried out for Telecom Italia, is included
inside a European level project called CASCADAS [1], as a part of the survey
about Autonomic Communication carried by this project.

Next generation Web 3.0 and Telco 2.0 give a great chance to develop new
services, applications and different types of content. The evolution of ICT‟s
needs to overcome current limitations and address emerging trends including:
mobility, the mass digitization of media, the emergence of software as services,
new models of services and their interaction, etc. These trends offer a
motivation and opportunity to develop the thesis.

The purpose of the thesis is to contribute to keep updated the state-of-art of
autonomic agents/components technologies at the same time as designing and
developing a prototype for demonstrating the applicability of autonomic
technologies/solutions for innovative services in a specific use-case of interest.

Demonstrating communication services based on autonomic self-organization

16

2 Objectives and results

This chapter will explain the objectives of this thesis and the results carried
out.

Technology is currently offering a wide set of portable digital devices (e.g.
smartphones, tablets, laptops, digital cameras, music players) at relatively low
cost. Penetration of these and other miniaturized digital devices is becoming
deeper and deeper in modern cities. This driver is opening new opportunities to
produce and access ubiquitously cross-media applications and services.

The next generation of service framework should be able to address
challenges in the delivery of innovative service scenarios, such as high-
dynamicity, situation awareness, open “ecosystems”, high-scalability, and
reduced infrastructure and operation costs. For instance Web 3.0 refers to a
next generation of services on the Web allowing people to collaborate and
share information and data online, and in the telecommunication service
context, Telco 2.0 is emerging to embrace the principles of this Web getting
models from the Internet world.

Objectives

In order to meet the challenges and the opportunities offered by this service
context, innovative technologies and solutions are required for exploiting highly
distributed environments.

- In particular, this document analyses the applicability of autonomic and
self-organization capabilities in the execution of ICT services in distributed
environments.

The aim of this thesis would like to address one of the autonomic
characteristics that should be provided by the innovative distributed service
frameworks: namely the autonomic self-organization and aggregation.

- The thesis would like to demonstrate, through the development of a
prototype, the applicability of the key principles of autonomic self-
organization to the development of solutions for handling wireless
communication services even in critical disconnected situations (such as a
catastrophic event in a city) and for handling the gathering, correlation and
distribution of data.

As autonomicity is one of the key technologies able to address such
requirements, the use-case is a city where some catastrophic event has
impacted the communication infrastructure causing faults limiting normal wire
and wireless connectivity, but with the premise that all agents are endowed with
mobile devices with wireless capacity [2].

Demonstrating communication services based on autonomic self-organization

17

- The prototype therefore describes a distributed adaptable complex
system, realized by means of a population of lightweight autonomic
components interacting with each other through self-organizing algorithms.

Results

The demonstration prototype shows the collaborative ambient among
elements (survivors and rescue teams) in a critical situation with limited
connectivity, such as mobility, data distribution and high probability of
disconnection.

- It reports how these factors represent strong challenges for current
software architecture and how the distributed lightweight components can
self-organize themselves in order to face these challenges.

In addition, the thesis reports the main results achieved in the development
of the prototype. The achieved results have demonstrated that the solution,
designed by means of autonomic components enriched with self-organising
protocols, is meeting some challenging requirements such as adaptability to
dynamic situations and robustness, even in environments with high churn rate
and/or disconnected situations.

- Mainly, this work has proved the efficiency of to include a self-organising
protocol of communication in autonomic agent environments. It makes
possible to communicate the autonomic agents in a distributed
environment in order to create a totally decentralized organization, making
more achievable next digital cities.

This thesis, as a part of the work carried out for Telecom Italia, is included
inside a European level project called CASCADAS [1]. The results reported by
this document are under further investigations.

The purpose of CASCADAS is to define a new generation of composite,
highly-distributed, pervasive services, with underlying technology, that
addresses configuration and complexity problems. Its central objective is to
identify, develop and evaluate a general-purpose abstraction for autonomic
communication services, in which components autonomously achieve self-
organization and self-adaptation towards the provision of adaptive and situated
communication-intensive services.

- Finally, a paper with the results of the thesis has been written and
presented in Second International Conference on Complex, Intelligent and
Software Intensive Systems (CISIS 2008): “Demonstrating Communication
Services Based on Autonomic Self-organization” ¡Error! No se encuentra
el origen de la referencia.. The aim of the conference is to deliver a
platform of scientific interaction between the three interwoven challenging
areas of research and development of future ICT-enabled applications:

o Software Intensive Systems

Demonstrating communication services based on autonomic self-organization

18

o Complex systems

o Intelligent Systems

Demonstrating communication services based on autonomic self-organization

19

CHAPTER II: Autonomic Self-Organization

1 Integrated Project CASCADAS

1.1 Project Summary

CASCADAS is a three-year European integrated project driven by a clear
research vision, which is to define a new generation of composite, highly-
distributed, pervasive services, with underlying technology, that addresses
these configuration and complexity problems. It is proactive in seeking to carry
out research encompassing security, resilience, and the interaction of new
paradigms on society, which are all key call focuses. Important universities and
companies like Telecom Italia, British Telecommunications, Institut Eurecom,
Universität Kassel, Fraunhofer Institute, Politecnico di Milano, etc. are working
together to develop this project.

The overall goal of CASCADAS is identifying, developing, and evaluating
architectures and solutions based on a general-purpose component model for
autonomic communication services; specifically in such context autonomic
service components autonomously achieve self-organization and self-
adaptation towards the provision of adaptive and situated communication-
intensive services. In other words, the project is driven by the ambition of
identifying a fundamental, uniform abstraction for situated and autonomic
communication entities, at all levels of granularity. This abstraction is called an
ACE (Autonomic Communication Element), and it represents the cornerstone of
the component model, in which the four driving scientific project principles
(situation awareness, semantic self-organization, self-similarity, autonomic
component-ware) will properly converge.

The study of ACEs is also the basis for achieving a number of other
ambitious objectives that will be explicitly tackled by the project. These
objectives derives from the need of providing ACEs with the necessary support
of algorithms, knowledge, tools and infrastructures (to be realized again as sorts
of ACE based middle-services) to make ACEs a practical and trust-worth
paradigm. On the other hand, they derives from the willingness to attack and
explore some crucial aspects related to the complexity and dynamism
challenges that stand in situated and autonomic communication vision. These
main research objectives, each conceived in terms of a separated scientific WP
and each aimed at delivering specific methodological and software tools,
include:

 The development of pervasive supervision functionalities across
ensembles of interacting ACEs;

 The development of algorithms and techniques to achieve dynamic
adaptation and enforce given service;

http://www.cascadas-project.org/index.html

Demonstrating communication services based on autonomic self-organization

20

 Properties through self-organized component aggregation of ACEs;

 The development of trust, security and self-preservation techniques;

 The identification of models and tools for the organization, correlation
and composition of knowledge networks, according to which ACEs can
exploit all the available information about their situation, however sparse
and diverse.

1.2 Technical Approach

The technical approach is based on four key scientific principles as key
enablers for the CASCADAS vision, and around which the future
communication services infrastructures should be designed and built:

 Situation awareness: the capability of services to autonomously adapt to
the context from which they are requested and in which they execute
demands the technologies to capture situational data and at the same
time the ability of the system to effectively exploit it. What is still missing
is the investigation of the principles and the algorithms with which such
growing amount of distributed information can be organized in proper,
strongly distributed “networks of knowledge”, and exploited for the
purpose of situated and adaptive service provisioning.

 Semantic Self-organization: Self-organization and the algorithms
underlying the emergence of global patterns in complex systems have
been (and still are) extensively studied in communications, e.g., in P2P
computing, ant-based optimization, social networks. There is the need to
explore their potential as enablers for service composition and
aggregation, drawing inspiration from biological models, and employing
proven techniques to abstract from their “organic” implementation and
derive design principles adapted to the requirements of artificial systems.

 Self-similarity: to realize the vision and make its embodiment
manageable, the communication infrastructure and services must be fully
scalable. One promising option is to explore the potential of self-
similarity, whereby individual components self-organize and self-
aggregate so as to reproduce nearly identical structures over multiple
scales. Self-similarity may indeed be a key enabler also for the
composition of complex communication-intensive services and for the
structuring of the possibly enormous and multi-faceted networks of
knowledge items they will have to exploit.

 Autonomic Component-ware: All the above principles are to be federated
by a sound “autonomic component” model, to provide both a general
model and a robust framework for building autonomic, self-organizing,
semantic services. This component model will supply the basic
mechanisms and interfaces to support self-similarity, self-organization
and situation awareness. Therefore, our autonomic service components
will be explicitly conceived as situated in a knowledge network, fitted with
mechanisms for self-aggregation and composition, and designed so as

Demonstrating communication services based on autonomic self-organization

21

to promote the emergence of high-level ensembles that exhibit self-
similarity independently of scale.

The project is structured into 5 work packages (Figure II.1), each dealing with
specific research thrusts recognized to be critical elements for the situation-
aware and autonomic communication services of the future.

Figure II.1 Vision of the CASCADAS Project

CASCADAS considers a scenario in which dynamic and heterogeneous
networks, possibly enriched with sensors and devices connecting with the
physical world, have to host the dynamic deployment and execution of
applications and services. Such applications and services have to serve users
according to both their social situation and the current network and physical
situations.

a) Autonomic Communication Elements

The key idea is to identify and rely on a new model of distributed
components (ACEs), able to autonomously self-organize with each other
towards the provisioning of specific user communication services, and able to
self-adapt such provisioning to social and network contexts. These features
are likely to dramatically reduce the costs associated to the development and
configuration of complex communication services, to leverage the
exploitation of distributed computing and communication resources, and to
make services more usable and more fitted to user needs. The most
important result of the project will be an Open Source toolkit with a set of
well-integrated abstractions, algorithms, tools, and application
demonstrations.

b) Pervasive supervision

Demonstrating communication services based on autonomic self-organization

22

Pervasive supervision addresses the runtime construction of an ad hoc
and dynamic runtime structure that encompasses a set of cooperating ACEs,
and exerts a fully automated and de-centralized control of the
communication-intensive service provisioned collectively by those ACEs.

c) Component aggregation

The development of algorithms and techniques to achieve dynamic
adaptation and enforce given service properties through self-organized
component aggregation of ACEs. That kind of aggregation will be the basis
for identifying and exploring opportunities for co-operation within ensembles
of ACEs, which would allow the collective system to exhibit certain desired
properties, for example hit situation dependent QoS targets.

d) Trust, security and self-preservation

The development of trust, security and self-preservation techniques,
which are of are paramount importance because of the very assumptions
upon which the idea of ACEs relies: the heterogeneous nature of the
network, the varied capabilities of ACEs, their ability to self-organize and
cooperatively supervise each other, which implies the lack of centralized
administrative control. Since an ensemble of ACEs possesses those highly
dynamic adaptation characteristics, we intend to exploit them to make sure
that the resulting system is highly robust and secure, and trust-worth.

e) Knowledge networks

The identification of models and tools for the organization, correlation
and composition of knowledge networks, according to which ACEs can
exploit all the available information about their situation, however sparse and
diverse. Situation is intended here as context, considered in the broadest
sense, relating to both (i) the social-organizational context from which
services are invoked; (ii) the technological and physical environment in which
ACEs live and execute.

Demonstrating communication services based on autonomic self-organization

23

1.3 Contribution

The contribution of this thesis within CASCADAS project has been a theoretical
follow-up of the implementation of the ACE Toolkit and collaboration in the
development of the Self-Organised Component (WP3) with the self-organising
algorithm implemented in this thesis.

A set of clearly defined requirements are demanded to be fulfilled by the ACE
Toolkit of the CASCADAS project. This includes, as major points, that the
Toolkit should enable autonomic, situation-aware, and self-similar development
of services based on ACEs as core components.

The ACE Toolkit offers components and mechanisms to develop lightweight
Autonomic Communication Elements that support the concepts of self-similarity,
semantic self-organization, and situation-aware behaviour. Service developers
can use this framework to create distributed, modular, and reusable
applications.

The work of this thesis has been developed to analyse algorithms and
techniques to achieve dynamic adaptation and enforce given service properties
through a self-organized aggregation component include into the ACEs. That
kind of component will be the basis for identifying and exploring opportunities
for co-operation within ensembles of ACEs, which would allow the collective
system to exhibit certain desired properties.

In order to achieve this aim, an aggregation protocol has been designed. The
protocol contains the rules and interactions to implement the basic
communication behaviour of the ACE. These interactions and rules are included
following the “On-demand” clustering basis, in order to preserve homogeneous
node degree in the realistic, local rules-based scenario.

The prototype designed in this thesis develops the aggregation protocol and
it has been used to include a communication part in the ACEs, making possible
introduce real-time interactions to face changes in the environment conditions.

Chapter III explains in great detail the Communication prototype.

Demonstrating communication services based on autonomic self-organization

24

2 Autonomic System

The definition of the autonomic system is taking inspiration from the self-
governing behaviours of some natural autonomic systems, such as the human
autonomic nervous system. Once launching the Autonomic Computing initiative,
IBM defined four general properties a system should have to constitute self-
management: self-configuring, self-healing, self-optimizing and self-protecting.
Since the launch of Autonomic Computing initiative, the self-* list of properties
has grown substantially. Now it includes also features such as self-anticipating,
self-adapting, self-critical, self-defining, self-destructing, self-diagnosis, self-
governing, self-organized, self-recovery, self-reflecting and so on.

The extension of the autonomic technology principles from computing to
network and services resources has still the meaning of developing solutions
that are capable of hiding operational complexity to both Operators and Users.
Autonomic systems are capable of making decisions on their own, by using
high-level policies from operators, checking and optimizing their status in order
to adapt themselves to change environment conditions at the same time (Figure
II.2).

Figure II.2 Continuous monitoring and optimization methods help maintaining
composed services across different physical systems, service domains and

vendors

Autonomic systems are typically distributed, complex and concurrent,
comprised of multiple interacting autonomic elements and all the resultant
issues have already been faced in different fields of autonomous agents [5].

 This autonomic scenario cannot be developed in a hybrid network, as
usually the today‟s networks are. Then, the infrastructure-based mode that has
been a great success of service composition in infrastructure-based
environments should turn into an infrastructure-based mobile mode (Figure II.3).

Demonstrating communication services based on autonomic self-organization

25

Figure II.3 Infrastructure Requirements for Autonomic Service Composition

As it has already said there is a great need of autonomic behaviour in order
to hide complexity and minimize the human intervention. An autonomic system
should realize an efficient communication in distributed environments without
centralized control, and a reduction of complexity through autonomic and self-
managed behaviour.

3 Self-organising System

A key challenge of the autonomic computing initiative has been to draw upon
self-* properties in systems other than computational ones in order to develop
new computing systems. Biology has been a key source of inspiration. Group-
living animals have provided inspiration for the field of collective, or swarm
intelligence which models problems through the interactions of a collection of
agents cooperating to achieve a common goal. For example, eusocial insects
(ants, bees, wasps, termites, etc.) form colonies presenting a high degree of
social organization. In these systems, problems are “self-solved” in real time
through the emergence of the appropriate collective behaviour, which arises
from the sum of all interactions occurring between the agents and with their
environment.

Demonstrating communication services based on autonomic self-organization

26

The mechanisms that lead to self-organization in biological systems differ
from those occurring in physical systems in that they are influenced by
biological evolution. Thus there is the possibility of using algorithms inspired by
biological evolution. These are part of what has been described as biologically-
inspired or “nature-inspired” computing (the latter term chosen because of the
breadth of natural complexity that does not usually fall into the area of biology).
A diverse range of fields have been analysed, including evolution and genetics,
bacterial adaptive mechanisms, morphogenesis and self-organising principles
more broadly.

Further interest in developing self-organising systems has considered the
role that decentralized control of distributed systems can play in self-
organization. Peer-to-peer networks can be used as a basis for self-
organization among elements, in order to develop complex adaptive systems or
self-organising multi-agent systems. These draw upon the emergence of novel
properties at the whole system level when many elements are brought together
automatically, without being programmed in by system developers and
inspiration is drawn from biological systems.

Many recent developments in distributed computing has been the move from
centralised to decentralised systems, with the understanding that
decentralisation may not mean complex loss of control. Decentralised
approaches have attracted a lot of interest as it has become possible to run
highly flexible applications over complex networks in a reliable manner. This is
important when demand for services or applications may be unpredictable and
network properties may be heterogeneous.

The Agent-based approach has been, and remains, a rich area for the study
of the emergence of self-organization. For example, “artificial markets” have
been studied for their potential in market-based control. The aspiration is that if
the appropriate interaction/trading rules are encoded into a population of
agents, then the agents will be able to self-organise into “useful”
structures/networks, where “useful” is defined in terms of an application context
e.g. Supply chains, or trading markets.

Di Marzo et al.[6] review different aspects of self-organization in Multi-Agent
Systems. They show how inspiration derives from natural systems (complex
physical systems as well as natural systems). For example, the concept of
stigmergy, derived from the behaviour of social insects, has also been important
in inspiring the design of Multi-Agent Systems. Bernon et al. [7] review several
examples of applications of self-organising multi-agent systems. They show
how Multi-Agent Systems can self-organise to carry out tasks, even though
individual agents have very simple properties. The emergent properties of the
self-organising system support each application.

Another important area of investigation of self-organization has focused upon
how individuals can cooperate to produce self-organising behaviour. Like other
aspects of the analysis of self-organization, this has been inspired by
cooperation in nature, in systems ranging from microorganisms to human
beings.

Overall the concept of self-organization has motivated a great deal of
research that promises to have considerable impact on emerging autonomic
computing and communications technologies.

Demonstrating communication services based on autonomic self-organization

27

4 Emergent collective behaviour

Self-organized behaviour represents collective behaviour that emerges at the
level of the group from the numerous interactions among individuals and
between the individuals and the environment. Moreover, the rules presiding to
the interactions among individuals and between the individuals and the
environment are executed by using only local and/or incomplete information,
without reference to the global pattern (i.e. without relying on global maps or
global representations) [8][9].

The mechanisms that lead to self-organization in biological systems differ
from those occurring in physical systems in one important respect: the rules that
determine the interactions among the agents and between the agents and the
environment are influenced by biological evolution, i.e. the properties emerging
from these interactions are shaped by natural selection. In effect, evolution
simply favours individuals following rules that give rise to adaptive behaviour,
thus increasing their fitness.

Figure II.4 Core ingredients for collective intelligence.

The essential features in collective intelligent systems are:

 Dynamical non-linear interactions between agents.

 Random variations.

 Positive and negative feedback mechanisms (Figure II.4).

In short, the dynamical interactions within agents and between the agents
and the environment constitute the basis for the synthesis of emergent
properties. Random fluctuations lead to innovations that might constitute
potential effective solutions. Positive feedback mechanisms promote
macroscopic changes by reinforcing modifications that “push” the system in the
same direction as initial variations. Negative feedback mechanisms keep the
amplification process resulting from positive feedback under control. The
combination and the interaction between these fundamental mechanisms can
lead to ”real-time” selection of self-organized solutions. Communication or
interactions are essential to obtain cooperation between individuals. For

Demonstrating communication services based on autonomic self-organization

28

example, the combination of these mechanisms can lead to a collective
decision process in which an optimal or close to optimal decision is made by the
collective, even though no single agent has enough information to make the
decision on its own, and despite agents not even being „aware‟ that a collective
choice is being made . In fact, individual behaviour is impossible to understand
(and would often be highly damageable to fitness) if considered outside of the
social context, which defines its purpose.

The notion of “local” information or rules is also confusing. In real biological
(or physical) systems the information used by individuals is often local in the
literal, physical sense. But in many cases what the word really means in the
context of emergent collective behaviour is that the information used by the
agents is incomplete, i.e. that it doesn‟t contain accurate details on the global
pattern.

Finally, it is also important to understand that collective phenomena don‟t
necessarily involve a large number of individuals but rather a large number of
interaction events involving the agents and their environment. There are
experimental biological examples of self-organized collective behaviour
emerging in small groups of animals comprising only around ten individuals.

5 Self-organising algorithms

This section describes two examples of self-organizing algorithms [6]:
passive clustering and on-demand clustering. In the context of this thesis the
term “aggregation” refers to the process by which nodes form associations
(“links”) with each other. It is a “clustering” process during which each node,
characterised by a certain “type” establish links with nodes of the same type.
From this point of view, the efficiency of a self-aggregation algorithm can be
read in terms of convergence capabilities of increasing the fraction of links
connecting nodes of the same type.

5.1 “Passive” clustering

A first set of basic local rules has been devised requiring only direct
interaction between first neighbours yet susceptible to give rise over time to
spontaneous system-wide aggregation of elements. The basic idea involves two
nodes being notified by a third (the “match-maker”), which are interconnected
through an overlay network, even if those two nodes have no direct part in the
decision process (“passive” clustering). The rules are as follows:

 match-maker node is randomly selected. This is equivalent to say that
every node in the system has a chance of “waking-up” and initiating a
rewiring procedure, provided that this procedure is brief enough (and/or
infrequent enough) that a situation in which two concurrent rewiring affect
the same nodes is extremely unlikely, and so every attempt can be
considered as an independent event.

Demonstrating communication services based on autonomic self-organization

29

 match-maker randomly selects two of its own neighbours and, if they
happen to belong to the same type, instructs them to link together

 if the two chosen nodes were not already directly connected (through the
overlay) a new link is established between them (i.e. they become first
neighbour of each other).

 if conservation of the total number of links is in force (optional) and a new
connection is successfully established, the match-maker terminates one
of its own links with one of its two selected neighbours.

5.2 “On-demand” clustering

In passive clustering technique, in order to preserve homogeneous node
degree in the realistic, local rules-based scenario, the rewiring procedure has to
be modified: there is the need of eliminating the indirect positive feedback
leading to the emergence of scale-free topology. It may be objected that the
heterogeneous node degree can be highly beneficial to the network operation if
the higher connectivity of some vertices can be made to reflect their superior
capability. However, in our case, such correlation is effectively absent: the
emergence of hubs in the “passive rewiring scenario” results from the
amplification of random fluctuations. As it cannot be guaranteed that those
nodes ending up with a higher degree effectively have some specific features
that designate them as efficient “super-peers”, the result could be disastrous
and generate critical bottlenecks, which is why we aimed at maintaining node
degree as homogeneous as possible throughout the system‟s history.

This has been achieved by distinguishing between the initiator of a rewiring
procedure and the match-maker. Basically, upon “waking-up”, the initiator
requests a new link from one of its existing neighbours, which will then act as
the match-maker. Since with this logic, the probability for a node to be
appointed match-maker is obviously a direct function of its own degree (and the
match-maker still ends losing one neighbour in the process of a successful
rewiring operation), it introduces a negative, “rich becomes poorer” feedback
similar to the one observed in the abstract model.

The detailed algorithm governing key node behaviour in the three roles of
“initiator”, “match-maker” and “candidate” involved in a rewiring operation
following the “on-demand” clustering procedure is shown in Figure II.5. It
involves exchanging five types of messages (plus the link termination message
which isn‟t discussed here). The “neighbour request” (NRQ) message is sent by
the initiator to the chosen match-maker and specifies the type of node desired.
The “neighbour reply” (NRP) message is sent by the match-maker to the
initiator to inform it to a potential candidate. The “link” (LNK) message is sent by
the initiator to the candidate to ask for the establishment of a new link, which will
only be effectively created if it is compatible with the goals of the candidate, as
evidenced by the receipt of an “acknowledgement” (ACK) message by the
initiator. Notice that, for most of the results presented in this section, this will
always be the case as all nodes in the system share the same objective, i.e.
they are all assumed to be simultaneously in clustering (or reverse-clustering)
mode. Finally, after a successful handshake between the initiator and the
candidate, the match-maker is informed via the “success” (SCC) message so

Demonstrating communication services based on autonomic self-organization

30

that the match-maker can be able to determine whether or not its own
connection to the candidate has to be terminated, in order to conserve the total
number of links.

This last communication algorithm described is chosen from the whole sort of
self-organising algorithms defined in the WP3 [10] of IST CASCADAS by has
one of the best statistics behaviours to define our communication protocol.
Therefore, implement “On-demand” clustering algorithm into our has been one
of the strong reasons.

Figure II.5 Algorithms involved in rewiring operation following the “on-demand”
clustering procedure with the three roles of “initiator”, “match-maker” and

“candidate”.

6 The digital city scenario

A digital city is a possible scenario where autonomic and self-aggregation
capabilities can be exploited in order to enable service providers to offer
innovative situated services to end-users. The identified scenario is a dynamic

Demonstrating communication services based on autonomic self-organization

31

and data intensive digital environment, such as a city with pervasive digital
devices. In such a scenario citizens can retrieve and process information and
use them to collaborate with each other. This scenario requires technologies
and solutions to manage large amounts of highly distributed data items, which
need to be transformed into meaningful, reliable and available information for
each mobile user. An example is “wikicity”, scenario under study by the
Sensible Consortium [11].

Such a scenario is enabled by the technology evolution which is offering
today a wide set of portable digital devices (e.g., smartphones, tablets, laptops,
digital cameras, music players, etc.) at relatively low cost. This is fostering a
wider and wider adoption of such devices by people. Moreover also sensors
and other tiny digital devices are being more and more distributed in our cities
to monitor the environments and providing several services. This is a trend that
will gain even further intensity in the future. The use of all these digital devices
during human (and machine) daily activities is generating huge data-clouds
describing the activities and the environmental contexts in our cities: dynamics
of a city can be captured in real-time by collecting and correlating data and
information (anonymous localization, traffic, pollution, cultural sites, events, etc)
provided by heterogeneous sources.

This information becomes an instrument for city inhabitants, enabled to base
their actions and decisions on such better and more synchronized information.
For instance, on a “digital” city map the different information and data layers that
coexist can be represented by:

 Events occurring around the city indicated at the corresponding location
and time;

 How people is concentrated and moving in the town following the cell
phone usage;

 The public transportations‟ real time position and time;

 Location tagged news feeds from different places in town.

People moving and acting in a city base their decisions on information that is
in most cases not synchronized with the time and place they find themselves in
when taking those decisions. Experiencing a shift between decisions and
information it is very common in everyone experience: arriving at the airport just
to find out that the flight has been delayed, being surprised by a traffic jam. The
dynamic city is concerned with the real-time mapping of city dynamics and data:
real-time requirements are relevant for controlling entities in an environment
characterized by uncertainty and dynamic evolution, and for collecting and
elaborating information acquired by sensors on entities and environment states.
Moreover, relevance of some information could depend on time, and therefore,
data should be associated with the relevant time information (e.g., acquisition
time, deadline, etc.).

As example, Figure II.6 shows a Digital City where it is explored different
interface modalities that create connections between the virtual data and the
actual physical world where users access these data. The system is based on a

Demonstrating communication services based on autonomic self-organization

32

common, semantically defined format for interchange of location data and a
distributed platform that can collect and manage such data in real time.

Figure II.6 A Digital City

The potential benefits of such a “digital city” can be observed from different
angles:

 Citizens: better knowledge of events, opportunities and environmental
conditions concerning their local surroundings. Figure II.7 shows an
example;

 Local authorities: better understanding of the urban system and its
dynamic evolution, e.g. distribution of pedestrians, vehicles, tourists,… in
the city at different times of the day and their correlation with the events
happening at specific locations (based on communication network
analysis);

 Companies: ability to better promote and distribute their
services/products to the local population (location and time based
eBusiness);

 Mobility: better use of public and private transports based on real time
information about schedules, paths, delays, traffic condition.

Demonstrating communication services based on autonomic self-organization

33

Figure II.7 Jogging path scenario

Deployment of a system implementing a Digital City requires different thread
of research (ranging from sensors to dynamics maps, from
semantics/folksonomies for tagging information to access modalities to situated
services, etc.); autonomic and self-aggregation technologies could contribute in
order to handle the dynamicity of data-clouds overlooking a “real” city, and the
complexity of their relationship.

In fact, a digital city is the environment of dynamic and evolutionary
processes. Its dynamics can be captured and monitored in real-time by
collecting and correlating data (anonymous localization, traffic, pollution, cultural
events, etc.) provided by heterogeneous sources. By observing these
dataclouds overlooking a “real” city, it can be realized how a real city is like an
ecosystem with self-adaptive and self-organizing properties. Social patterns,
generated by human relationships, can be thus explained in terms of the
organization processes of complex self-adaptive systems. Also these social
patterns represent valuable information for providing situated services and even
anticipating citizen‟s needs.

In such a context, autonomic and self-aggregation solutions could be used to
address real time correlation of huge amount of real time, and dynamically
changing data associated to a digital city: self-aggregation and autonomic
capabilities can be used in order to provide the right information, at the right
level of details and/or aggregation, and at the right time, to services and end-
user devices. Pieces of data and information, also associated to location, time,
semantics information, can be dynamically retrieved from heterogeneous
sources, including end-user devices, correlated, elaborated, and routed to the
service components and end-users devices requiring them. Moreover,
autonomic capabilities could be used also in order to provide optimized
communication services needed for information retrieval, aggregation and
distribution among digital devices.

As a simple use-case that involves a distributed collection and elaboration of
data and information, Citizens in a city may want to run services on their mobile
handsets that require digital maps (e.g. of the area where the Users are

Demonstrating communication services based on autonomic self-organization

34

located). In particular maps can be downloaded either from distributed access-
points or from neighbour devices (avoiding access to any centralized server).
Standards maps are downloadable from access points; richer Maps, containing
also other contents and information personally created (audio files, images,
commercial text), can be shared by Citizens in peer-to-peer mode in each area.
Real time information (e.g. traffic jam) can be further added and correlated to
maps. Let‟s assume a Citizen would like to find the nearest restaurant and the
best route to reach it. The map of the area (containing also commercial
information of restaurants) is downloaded from the device of a neighbour. Best
route, taking also into account traffic information, may be correlated to its
location (Figure II.8).

Figure II.8 Real Time Rome project using cell phones and GPS devices to
collect the movement patterns of people and transportation systems

In this Digital City scenario, the prototype developed in this thesis tries to
analyse and demonstrate the applicability and the benefits of autonomic and
self-aggregation capabilities in wireless communication services, in critical
unpredictable situations (e.g. catastrophic event in a city causing faults that are
limiting normal mobile and fixed services). In above conditions, factors such as
users‟ mobility, data disperse distribution and high probabilities of disconnection
represent challenges for current software service architecture.

http://senseable.mit.edu/realtimerome/

Demonstrating communication services based on autonomic self-organization

35

CHAPTER III: Experimental Prototype

1 Introduction

The use-case considers a city where some catastrophic event has impacted
the communication infrastructure causing faults limiting normal wire and
wireless connectivity, but with the premise that all the involved entities are
endowed with mobile devices with wireless capacity [2]. Such a use-case is
ideal for demonstrating how autonomic self-organization meets requirements for
communications in critical situations between the survivors and rescue teams,
with the aim of providing first aid as soon as possible.

Two basic groups are involved in the service: the rescue teams and the
survivors, as Figure III.1 shows. The interaction between groups of survivors
and between survivors and rescue teams should test the efficiency of the self-
management system. Rescue teams and survivors are placed in two
differentiated interaction environments.

Figure III.1 Representation of the main entities involved in the Use Case

Inside each building the communication is managed in a completely
distributed way without any central control. This is likely to be a communication
network between peers based on an ad-hoc system. The last objective is to
achieve the major spread degree of available information in the environment, in
order to make each survivor able to provide and gather the information from its
neighbours.

Moreover, the rescue teams will interact with the different environments
where the survivors are situated. Therefore, a rescue team will be able to
communicate with a group of survivors when it is in the covering area where
some of them are situated.

Demonstrating communication services based on autonomic self-organization

36

Figure III.2 provides a possible representation of the scenario, the map of a
city with groups of survivors inside buildings and rescue teams running around
the town.

Figure III.2 Possible scenario of the Use Case

The basic rules that the agents must fulfil are:

 Survivors: communicate the information to each other in the same
environment.

 Rescue Teams: decide between a group of environments (buildings)
which rescue first according to the rang of priorities (survivors, ages,
healthy state, etc.).

Rescue
Team

Building

Survivors

Streets

Demonstrating communication services based on autonomic self-organization

37

2 Agent‟s Description

Each agent is composed by an autonomic component named ACE
(Autonomic Communication Element). Then, the environment will be formed by
a population of ACEs capable to offer different kind of services, i.e. ACEs are
building as blocks of autonomic self-organising services (Figure III.3).

Figure III.3 Environment is formed by a set of ACEs

Each ACE includes the main self-* principles, paying special attention to
support the concepts of self-similarity, semantic self-organization, self-
description, self-healing and situation-aware behaviour:

 Self-Similarity

- Lightweight simple components with common interface and
functionalities

- Transparent aggregation into complex services

 Self-Organization

- Completely distributed way without any central control

 Self-Description

- Self-Model describes ACEs possible states, transitions and
reaction to events

 Self-Healing

- Pervasive supervision allows to monitor and control ACE
behaviour

 Self-Awareness and Situation Awareness

- Knowledge of current execution state and contextual conditions

- Knowledge network integration

Demonstrating communication services based on autonomic self-organization

38

Two Kinds of ACEs have been developed in the prototype: survivors and
rescue teams. Each one shares a Common Part and adds a Specific Part with
its own Self-Model (diagram state) and functions. Thus, as many ACEs as
survivors and rescue teams are defined.

Every survivor tries to find others to share information and collaborate with
each other, searching for the GPS position, identifying a doctor and making a
list with the main characteristics like blood type, age, health state, etc. Once the
(ACE associated to a) rescue team starts, it searches for buildings in its signal
coverage and decides which building rescue. This decision is taken from the
lists received, making a scale of importance according the survivors‟ age, health
state, etc.

An agent, such as a survivor or rescue team, has to be uniquely specified by
its address, and depending on the kind of the agent, it will have more attributes.
A rescue team only is specified by its address, while a survivor has the following
attributes (Figure III.4):

Figure III.4 Survivor’s attributes

 Environment identity. The identity of the environment (building) where
the agent resides in. It would change if the agent migrates to a different
environment.

 Agent identity. The identity is established when an agent is created, and
it remains fixed throughout its lifetime.

 Type identity. Element to describe the agent‟s type according to its
capabilities. Next Figure III.5 describes with a numerical classification the
utilities and services for each type.

 Profile. In order to prioritize the rescue, each survivor has a profile with
its age, health state, allergies and blood type.

Environment_ID

Agent_ID

Type_ID

Profile (age, health state, allergy, blood type)

Demonstrating communication services based on autonomic self-organization

39

Figure III.5 Survivor’s types

Setup files

XML is the format of the file‟s structure that has been chosen to setup all the
elements of the prototype. In it there are described the number of rescue teams,
survivors and their proprieties. The two following files have been devised for
that scope:

1. MapGps.xml: It is a definitions file with an xml structure where all the
elements that appear in the map are defined but the rescue teams.
Within this file the vertex and the lines that make them join are defined
as well, in order to give a logical description of the different streets and
avenues that the chosen map‟s section has. The definition is very simple
in order to be possible to apply an enrouting GPS algorithm [12]. We also
have the buildings‟ locations, as well as the agents located there. In the
area of each agent their profile features (age, heath, medical data and so
on) are defined as attributes. Finally, the number or positions of the
different Access Points, which are distributed all around the city, are
defined. A sample of the used typology can be seen in the picture below
(Figure III.6).

2. Elements.xml: In this file we can find a definition of all the different
Rescue Teams that will be involved in the simulation as well as its
starting position point. As its starting position, we must refer to one of the
different kinds of vertex, where two ways meet and that is defined within
the MapGps.xml file.

Demonstrating communication services based on autonomic self-organization

40

Figure III.6 Setup file for survivors and rescue teams

The files can be found in the path Reasoning/conf/.

Demonstrating communication services based on autonomic self-organization

41

3 Prototype Architecture

A prototype has been designed and developed in order to demonstrate the
applicability of the main principles of autonomic self-organization in terms of
interactions of a population of autonomic components through self-organizing
algorithms.

The scenario used for demonstrating the prototype is a dynamic and data
intensive digital environment, such as the city described above with pervasive
digital devices, where everyone can exchange information and collaborate with
each other. A scenario like this requires technologies and solutions to manage
large amounts of highly distributed data items, which need to be transformed
into meaningful, reliable and available information for each mobile user.

World
(City)

Survi
vors

Environment
(Building)

 (Building)

Survivors
s

Environment
(Building)

 (Building)

Survivors
s

Environment
(Building)

 (Building)

Survivors
s Environment

(Building)

 (Building)

Survivors
s

Figure III.7 City devised in terms of the DIET platform parameters

In order to be platform independent to a certain extend, the Java
programming language is used to develop the prototype. The prototype
provides all the components necessary to build ACEs which are the core
elements used to develop services.

As Java has been chosen as the language to develop the prototype, Eclipse
[13] is the Integrated Development Environment (IDE) selected for building,
deploying and managing the software. It is an open source software framework

Demonstrating communication services based on autonomic self-organization

42

for Java developers, although it is able to extend its capabilities by installing
plug-ins, such as development toolkits for other programming languages.

4 Start-up Protocol

This protocol is defined as messages‟ transaction produced when agent is
created (Figure III.8). Using this protocol, the agent gives to know its existence
and capability, as well as it scans devices that has within its reach. This
notification only takes place with agents who are within the action area,
therefore, its neighbours. The connections created will be useful to make work
the Aggregation Protocol, as the Aggregation Protocol needs some pre-existent
connections to be able to destroy old connections and create new ones.

It is possible to make a parallelism by activating the WIFI device that every
single simulated agent has in the practise case, in which, they perform a
broadcasting of their presence in order to localize the closest agents. The peer
to peer connections created towards these agents allow us to reach our
objectives.

NTF

connection_map

Holds agent's type and
return message with
own type

Holds agent's type

Sends notify

message

NTF

connection_map

Survivor 1 Survivor 2

Figure III.8 Diagram of the messages transaction involved into the Start-up
Protocol

Agent uses a Hashtable mapping connections to type the new connections
added (Figure III.9). So, in the moment when the agent creates a new
connection, it checks whether the connection is included within its Hashtable,
checking through its functionality, which is indicated by the type_id value, if it is
included inside the proper Connectionlist. If it is not included, the new
connection will be included.

Demonstrating communication services based on autonomic self-organization

43

Figure III.9 Structure of the HashMap in charge of storing all connections
discovered mapping them according to their type

The description and structure of the message involved into is described
below:

5.3 NTF (Notify Message)

Message that is in charge of notify the existence of the agent to other
attainable agents, likewise ordering the identification of the attainable agents.
There are two types of notify messages, the go ones and the return ones. The
go messages are the ones who start the discovery process and are identified by
a “return_needed” value, which is equal to one, that indicates the necessity of
an answer provided by the receptor agent. The messages with a
“return_needed” value equal to zero indicate that they are the answer to a Notify
message so they do not need any answer. Apart from the direction already
included in the issuer agent by the DIET platform, the other information included
in that message is the integer identifier, which indicates the type of funtionality
of the agent (Figure III.10).

connection_map

Connectionlist[]

type 2

Connectionlist[]

type 3

…

…

…

…

…

…

Connectionlist[] type 4

Connectionlist[] type 1

Value
ArrayList connectionlist

Key
Integer type_id

Connection “to Survivor 3”

Connection “to Survivor 24”

Connection “to Survivor 37”

HashMap

Demonstrating communication services based on autonomic self-organization

44

Figure III.10 Structure of the Notify Message

5 Aggregation Protocol

This protocol is defined as messages‟ transaction produced when agent is
requesting a certain type of functionality. It is based in “On-demand” clustering
algorithm from WP3 of CASCADAS‟ Project [10].

The Figure III.11 shows the interaction among the three behaviours included
in the “On-demand” clustering protocol and implemented in each agent.

String
"NTF"

Integer
type_id

Integer
return_needed

Object []

Notify Message

NTF

Demonstrating communication services based on autonomic self-organization

45

Figure III.11 Diagram of the messages transaction involved into the Aggregation
Protocol

5.1 Protocol development stages

The protocol starts to work once an agent has been initialized by the Start-up
Protocol and has a certain number of initial connections, so that it can start
working. These connections will be modified, created and destroyed, according
to the agent needs. The aggregation protocol is developed throughout the six
following stages:

1. An agent wakes up and, according to the orders of its state machine, it
may need to find another agent able to give an information or service.
This is the moment when the protocol starts. In order to develop the
requests, the protocol uses the NRQ message (Neighbour Request), in
which, the agent required is described. That message is dedicated to a
match-maker agent randomly chosen between all the available
connections. If, after a while, the match-maker agent does not give any
response with a candidate, the request is re-sent by the initiator agent to
another match-maker randomly chosen between the rests of available

Holds initiator's type and

returns ack

connection_map

INITIATOR MATCH-MAKER CANDIDATE

NRQ

NRP

LNK

ACK

SCC

connection_map

Connection

removed

Sends an address from a

candidate with requested

type of between its own

connections

Starts connection process to

candidate

Holds candidate’s type

and sends success to

matchmaker

Destroys connection to

candidate

connection_map

connection_map

connection_map

Chooses a random

matchmaker from all its own

connections and requests for

a type

Demonstrating communication services based on autonomic self-organization

46

connections. This process will be repeated successively, as many times
as needed, until an answer is obtained (Figure III.12).

Figure III.12 Requests Messages are re-send by the initiator agent to the
different match-makers chosen till receive an answer

2. When the NRQ message reaches the agent selected as match-maker by
the initiator, the match-maker checks through its connection map if the
agent contains any connection referring to an agent with the required
typology. If that occurs, the match-maker will return a NRP message
(Neighbour Reply) including the address of that agent.

3. Once the initiator agent gets the NRP message containing the address of
the candidate proposed by the match-maker, the initiator sends to that
candidate a LNK (link) message for the connection creation and keeps
waiting an affirmative answer ACK. In the case of no response, and after
waiting for a while, the aggregation algorithm is re-started.

4. When the candidate receives the LNK message it consults its internal
reasoning machine in order to decide if it is able to create the connection
with the candidate y, consequently, allow its creation by sending the ACK
message. In the simulation, the no sending of the message only happens
if those moments coincide with the creation of other connection with
another agent, which depends on the power of the machine in which the
process is executed and the internal limitations of the DIET platform [X].

5. Once the initiator receives the ACK message, allowed by the candidate
agent, the connection is finally established and then it will be kept in the
connection map of the two implicated agents. After that, the initiator will
send a SCC (success) message to the match-maker. That is the moment
when the match-maker role ends within the process.

6. When the SCC message is received by the match-maker, it will destroy
the connection previously established with the candidate agent, the one
who had proposed before to the initiator. This action is also framed
inside "On-demand" clustering algorithm to conserve the homogeneity
through the maintenance of number of connections in the system.

ACE
1

ACE
2

ACE
3

ACE
4

SEND (NRQ)

SEND (NRQ)

SEND (NRQ)

SEND ANSWER (NRP)

Demonstrating communication services based on autonomic self-organization

47

5.2 Messages involved

This section includes an explanation of the main messages that are involved
in the protocol previously described.

All the messages are formed by two main parts:

 A String: defines and classifies the messages by its name.

 An objects array: includes the pointers to the information that takes part
in the communication between two agents.

By the way the DIET platform works, all the messages are accompanied by
the address of the agent who sends the message. Then, all the agents are able
to know who sends every single message and, consequently, able to give an
answer it that was necessary.

NRQ (Neighbour Request Message)

This message is in charge of ordering agents of a certain typology. It is sent
by the agent whose role is initiator within the Aggregation Protocol.

As the information, it sends an integer message including a number that
identifies the kind of agent required. That number indicates the functionality of
the agent.

Figure III.13 Structure of the Neighbour Request Message

NRP (Neighbour Reply Message)

This message is in charge of answering an order about the type of agent.
This is the answer to the NRQ message sent by the initiator. The NRP message
is sent by the agent whose role is match-maker.

NeighbourRequest Message

String
"NRQ"

Integer

Object []

NRQ

candidate

Demonstrating communication services based on autonomic self-organization

48

Figure III.14 Structure of the Neighbour Reply Message

LNK (Link Message)

This message is sent by the initiator agent and is in charge of the connection
establishment with the agent selected by the match-maker (candidate). As
identification, information about the initiator agent‟s functionality is included so
that it can be taken and memorized by the candidate by the moment in which
the connection is created.

Figure III.15 Structure of the Link Message

ACK (Ack Message)

This message is in charge of transmitting the acceptation and availability of
the Candidate message to the Initiator in order to establish the connection. The
Candidate agent, the one who send the message, will take the last decision to
finish with the establishment of the connection. Therefore, if the Initiator agent
does not receive that message it should restart the search of other agent with
the same functionality.

String
"NRP"

Integer
type_candidate

AgentAddress

Object []

NeighbourReply Message

NRP

String

"LNK"

Integer
type_id

Object []

Link Message

LNK

Demonstrating communication services based on autonomic self-organization

49

As information, that message includes the number that identifies the
functionality of the Candidate agent, which is the one that sends the message

Figure III.16 Structure of the Ack Message

SCC (Success Message)

This message is in charge of introducing to the Match-Maker the
connection‟s establishment on behalf of the Initiator and Candidate agents. So,
following the steps for the connection‟s global maintenance, established by the
Aggregation Protocol, the Match-Maker can finish the connection with the
Candidate. The information included in that message is just formed by the
candidate‟s address.

Figure III.17 Structure of the Success Message

String
"ACK"

Integer
type_id

Object []

Ack Message

ACK

String
"SCC"

AgentAddress
candidate

Object []

Success Message

SCC

Demonstrating communication services based on autonomic self-organization

50

6 Main architecture

The architecture of each agent is structured into the following functional
blocks.

6.1 Reasoning Part

It has the task of managing the lifecycle of an agent. It describes the possible
state and invokes the proper specific features, if specified, running all of them
as a state machine. It works within the system as a DIET‟s job, in a parallel
execution way.

6.2 Communication part

It is in charge of implementing communication among the agents. It includes
the three behaviours described before in the “On-demand” clustering algorithm
(“initiator”, “match-maker” and “candidate”). It also includes blocks that are in
charge of the information exchange contemplated in Reasoner‟s logic
(messages including survivor‟s list, GPS position and so on). Jobs are the way
of distributing the functionalities of an agent. Therefore, agents can compose
their behaviour by combining multiple jobs. To implement the behaviour that
responds to the communication protocol mentioned a structure of different jobs
has been created. The main jobs‟ that intervenes in management of the
communication protocol are described below:

 NotifyNeighboursJob: Job that on the start-up notifies in broadcast of
its type of ID to the neighbours by creating connections. It also handles
notifications of the neighbours.

 RandomNeighbourRequestJob: Job that initiates the request process
for type items (Initiator behaviour).

 HandleNeighbourRequestJob: It handles requests, returning a random
address of a candidate with the type requested (Match-Maker
behaviour).

 HandleNeighbourReplyJob: It handles notifications of the type
requested, starting the link process with the chosen candidate (Initiator
behaviour).

 HandleLinkJob: It handles “link” requests from the initiator in the link
process (Candidate behaviour).

 HandleAckJob: It handles “ack” responses from the candidate finishing
the link process (Initiator behaviour).

 HandleSuccessJob: It handles “successful links” notifications to the
candidate from the initiator agent destroying the connection with the
candidate (Match-Maker behaviour).

Demonstrating communication services based on autonomic self-organization

51

Figure III.18 Jobs’ Structure working managed by the ParallelJobManager and
the SerialJobManager which compose the Agent’s behaviour

.

The created jobs works to the unison in two different forms: in serial or in
parallel, controlled through DIET by their corresponding job manager:

 The SerialJobManager is used to execute several jobs in sequence.
Once the first job has finished, it will start the second job, the third, the
fourth and so on. This is useful when an agent's behaviour can be split
into various stages. This sequence system is used to implement all the
steps of the initiator agent behaviour ("wake-up", link creation, send
success and so on).

 The ParallelJobManager is used to run multiple jobs concurrently. For
instance, an agent may use a scheduler job to manage its schedule
events, and another job that implements the specific behaviour to the
agent which requires scheduling functionality. Therefore, the system
designed in the simulation is served by this scheduler job to manage the
tree jobs structure because it requires combinations of sequence and
parallel execution.

A correct implementation of these jobs provides us an important feedback
about the applied behaviour of the algorithm. Figure III.18 shows the tree
structure distribution of the different jobs for the proper work of the
communication algorithm.

6.3 Specific Part

It executes a normal code, depending on Reasoning Part‟s decisions, and
returns the results so that they can be checked and sent back. For instance,
there are specific functions for the survivors' list managing that confronts the
information contained in them as well as the management of information that
refers to the GPS positioning.

 NotifyNeighborsJob

 HandleAckJob

 HandleNeighbourReplyJob

 RandomNeighbourRequestJob HandleNeighbourRequestJob HandleLinkJob HandleSuccessJob

 RescSimApp
 (agent's behaviour)

 Survivor

SerialJobManager
(execute several jobs in sequence)

ParallelJobManager
(run multiple jobs concurrently)

Demonstrating communication services based on autonomic self-organization

52

7 Application‟s internal structure

To look for a more efficient mode of operation we have divided the
development of application in different functional parts (packages). Each one
takes charge of vital parts in the simulation like for instance: communication,
positioning, graphic representation... Later we have united all these parts
managed by a main class, to work in a cooperative way.

In the future the part relative to the reasoning will be added as another
extension of the program.

Within the following points an explanation of the different packages is
included, as well as a description the different kinds and main functions of them.
Therefore, we could see an overview about how the internal application works.

The Figure III.19 represents the distribution of different parts including all of
their classes.

Demonstrating communication services based on autonomic self-organization

53

Figure III.19 Class Map of all classes composing the different packages

PositioningGPS package

RescueTeam

Survivor

AP

MyArgumentParser

HandleAckJob

HandleLinkJob

HandleNeighbourReplyJob

HandleNeighbourRequestJob

HandleSuccessJob

NotifyNeighborsJob

RandomNeighbourRequestJob

Survivor Agent

DIET

Panel

Gui

InfoPanel

Status

InfoGPS

ConnectionsSurvivorsChart

ConnectionsSurvivorsTable

WindowAp

MapApp

C
o
m

m
u
n
ic

at
io

n
 p

ac
k
ag

e

ListaRectas

Camino

NodoCamino

Calibrar

Vertice

GPSJava

Graphic package

Application

package

Building E
le

m
en

ts
 p

ac
k
ag

e

ReasonerRescJob

ReasonerSurvivorJob

Reasoning package

ListaOrdenadas

VerticeAsociado

UTMCoord

XMLParserElements

XMLParserMap

XMLParser package

APTable

Recta

DatosMapa

InformationSurvivorsChart

ConnectionsRescTeamTable

ListaAristas

Demonstrating communication services based on autonomic self-organization

54

7.1 Application Package (simulResc.app)

In this package lies the main class, “RescSimApp.java”, from
where the thread that controls the rest of the classes born and
dies. A deep description of the parts of this main class will be
included, as it is the class of which they spread the others. In this
class there are located the global variables that form the
following principal parameters:

 String map_file/elements_file: variable where the XML
configuration file‟s path can be found. It is read by the
“XMLParser” package.

 double Vel1/Vel2: variable where it is located the
numerical value for the displacement speed of the rescue teams‟
agents (value expressed in pixels per time refresh). The first
variable indicates the speed with the refresh deactivated
acceleration and in the second activated variable.

 int SLEEP: variable that configures the repaint speed in
milliseconds.

 int scope_ap: variable that indicate scope of the Access
points distributed on the simulation map. It indicates the radius of
a circular coverage, expressed in pixels. Actually, it is an
approximation of a WiMax coverage carried out without bearing
in mind the extenuation provoked by the buildings and the other
elements, as well as obviating the losses of spread.

 int wall: it indicates the numerical value for the of the
margin of thickness of the external walls of the buildings in order
to get a major random distribution of the survivor agents in it.
This value is proportional to the thickness of the graphical
representation of the survivors.

 boolean debug_survivors/debug_resc_teams: boolean
variable that control the visualization of the process information
for its monitoring.

This class is also responsible for the creation of all the
elements that will take part in the simulation (e.g. survivors,
rescue teams, buildings, access points…) throughout the reading
of the XML configuration files, where their number and attributes
are described. It also includes some interesting functions in order
to obtain information about the elements as well as the
interaction between all of them. Within the following lines we can
find a description of the most important functions:

Demonstrating communication services based on autonomic self-organization

55

 RescSimApp(): It is the builder class. It is in charge of reading the XML
configuration files, starting with the DIET type that implement all the
communication part and the GPSJava class that is in charge of the
information‟s process and positioning routes of the different elements.

 create_elements(): This function is in charge of creating all the
elements that take part in the simulation. The XML configuration files
contains all the information of the structure of the simulation map, which
serve to construct the vertexes that represent the crossings of streets,
the lines that represents the streets, the buildings spread around the
city‟s map, the survivors who are located in the map as well as the
access points and rescue teams in the indicated position.

 checkAPCollisions(): This function controls the rescue team‟s access
to any access point network area. That information its being updated
inside the content_ap[j][i] counterfoil, where the j elements are the
access points and the i elements the rescue teams.

7.2 Communication Package (simulResc.communication)

This is the package that is in charge of establishing all the part that refers to
the agent‟s communication that takes part in the simulation, the survivors and
the rescue teams. Within the package, all the classes in charge of the reception
and emission of messages are included, once per type. The whole functioning
of all these classes gives the shape to the Self-organising communication
protocol used by the agents.

The most important types of this package are described as follows:

DIET.java

This is the main class included in the package. It comes from the BasicApp
class included in the DIET package that, as commented before, it is the open
source application chosen that gives the support to establish the Self-organising

protocol. Its function consists of creating the
communicative elements associated to every
single agent. In other words, it creates the
communication part of each agent. This part is
established following the functioning DIET
directives. Therefore, it is focused by following
the rules established on the tutorials and existing
applications. A brief explanation of the main
general variables would be the following:

 SURVIVOR_FRIENDLY_NAME: String variable that defines the visible
name for the agent‟s survivor user.

 String RESCUETEAM_FRIENDLY_NAME: String variable that defines
the visible name for the recue team‟s user.

Demonstrating communication services based on autonomic self-organization

56

The main functions of the type are:

 createAgents(): This function is in charge of creating the DIET part of all
agents. It creates as many agents as it is indicated in the XML
configuration files and, within each one, every Job class in charge of the
reception and sending of a specific type of message. As commented
before, the jobs are arranged inside a functioning hierarchy in which they
have to work in parallel and series according to their participation within
the general protocol of communication. Consequently, and before the
Jobs‟ class creation, the different JobManagers are created (parallel and
serial) in order to be able later to arrange all the different types in a
specific order. Once all the Jobs and its respective variables of access
and information mapping are created, the following step is to create the
correspondent DIET agent throughout the DIET function called
createAgent.

This process will be repeated for the rescue team agents as well as for
the survivors, not forgetting the fact that each of them has a 128 bits Tag
that tells the difference between them.

 createArgumentParser(): It creates a new class called
MyArgumentParser, which is in charge of reading all the configuration
data throughout the XMLParser to be only used from the
communications package. The class configure many variables which
spread from the DIET library, like number of environments (as buildings
in our prototype), as well as other variables regarding to the agents‟ type
of communication, the agent‟s friendly name, its message buffer‟s size,
etc…

Handle + type of message +Job.java

These classes are in charge of managing the kind of messages that its own
name indicates, as well as replying with the specific answer in case of being
required. The Figure III.20 shows a list including the different handle types and
all the messages it is in charge of, both reception and sending.

All of them have a similar structure in which they do the superior function
handleMessage from the DIET package. They detect the arrival of every new
message throughout events, but they only deal with the message they are
ready to deal with. By reading the internal string of the message and checking
the structure of its contents, they are only able to serve the message they are
programmed to attend. From that moment, they extract the information of the
message, process the information of that message and reply with an answer if
necessary, a message.

Demonstrating communication services based on autonomic self-organization

57

Java class Message received Message replied

RandomNeighbourRequestJob

HandleNeighbourRequestJob

HandleNeighbourReplyJob

HandleLinkJob

HandleAckJob

HandleSuccessJob SCC
Success Message

NRP
NeighbourReply Message

LNK
Link Message

LNK
 Link Message

ACK
Ack Message

NRQ
NeighbourRequest Message

NRP
NeighbourReply Message

NRQ
NeighbourRequest Message

ACK
 Ack Message

SCC
Success Message

 Figure III.20 Table with different handle types and all the messages in charge
of reception and sending

7.3 Elements Package (simulResc.elements)

This is the package where we can find the different classes related to all the
simulation elements. All of them are created at the beginning of the application
from the RescSimApp.java, once the configuration XML files have been read,
and there are as much classes as elements are in the map. All of them are
equipped with getter and setter methods in order to manipulate the data,
besides other certain functions. The classes we can find are the following:

 AP.java: It refers to the Access Points allocated all around the city. They
include information of their location, scope and, also, an arraylist
containing all the environment addresses corresponding to every building
they serve according to the DIET description.

 Building.java: it refers to the buildings that are allocated in the map.
Every single object that it creates by the main class refers to every single
building of the simulation. This class includes information referring to the
location, size and number of survivors as well as the environment
addresses that define the building.

Demonstrating communication services based on autonomic self-organization

58

 RescueTeam.java: This class refers to the existing rescue teams. It
includes information about its GPS position, environment address as well
as the objective and it state. That state may vary whether it goes to an
objective or comes back to the hospital. This class implements the
functions of its movement by using the positioningGPS package.

 Survivor.java: This class refers to the survivor agents. The class
contains information about their position in pixels inside the map,
supplied randomly by the main class within the frame that define the area
where the building is located. It also includes information about each
survivor profile, their type defined by the service it is able to provide, their
age, health condition, blood type…

Through the GPS package functions, the agent will have its positioning
from the moment of its creation, just if the agent has the GPS capability
built-in. Also, a survivors list is included, which refers to the knowledge of
the survivors‟ agents about the rest of agents that are located inside the
same building where the agent is located. In order to manage, it
disposes the corresponding functions to confront the survivors‟ list that
have been acquired by its neighbours, throughout the Aggregation
Protocol, and thus be able to include the new found agents in the list.
Finally, we cannot fail to mention that, we can also find the function to
find out the percentage of knowledge of each survivor, being the
following its calculation:

 GPS positioning: 40% knowledge

 Complete survivors list: 60% knowledge, being calculated
through as an average between the number of the new found

Demonstrating communication services based on autonomic self-organization

59

agents and the number of the total of agents that we can find
inside the building:

 [

]

7.4 Graphics Package (simulResc.graphics)

This is the package where the different classes corresponding to the
graphical data output elements are, as well as the interface application. The
data collection represented in the screen includes different data like data to
control the number of connections, the status list of the survivor agents, status
of the rescue teams‟ agents, survivors‟ environment knowledge chart, graph
including the section of the city we are studying, agents movement routes, GPS
positioning data… up to the access points coverage data.

Within the interface section a description of its functioning will be included, as
well as the data output interpretation. The main class of this package is the
WindowAp.java, where the rest of classes are created. The java classes
included are the following:

 APTable.java

 ConnectionsRescTeamTable.java

 ConnectionsSurvivorChart.java

 ConnectionsSurvivorTable.java

 DatosMapa.java

 Gui.java

 InfoGPS.java

 InfoPanel.java

 InformationSurvivorsChart.java

 ListaAristas.java

 Panel.java

 Recta.java

 Status.java

 WindowAP.java

7.5 GPS Positioning Package (simulResc.positioningGPS)

The GPS positioning Package includes classes that help the rest of the
application classes. The agents use it in order to obtain a GPS positioning in

Demonstrating communication services based on autonomic self-organization

60

UTM (Universal Transverse Mercator) coordinates as well as a route calculation
to get to a certain position through an algorithm.

In order to obtain a more or less realistic positioning of the agents, an initial
calibration is needed, using the section edges data from the map used within
the Calibrar.java class. Thus, by squaring, a transformation of the position into
pixels can be done (the number of horizontal and vertical pixels from the top-left
corner) within the graphical representation of the agents to another represented
by UTM coordinates (longitude, latitude), regardless the altitudes in this case.

The calculation for the quickest routes to get to a position in the map is the
assistance to the rescue teams‟ agents in order to reach their aims in the most
efficient way. In order to do that, an algorithm inspired by the Dijkstra [12]
algorithm has been used, as weights for every section of the street between
junctions, depending on their distance, have been assigned. In this case, the
distance has been the only variable taken into account, regardless realistic
algorithms where the kind of lane (quick and slow), information about the traffic,
road works and so on are taken into account. Our algorithm has been called “a-
star algorithm” and it is located within the GPSJava.java class.

The classes that are included in this package are the following:

 Calibrar.java

 Camino.java

 GPSJava.java

 ListaOrdenada.java

 ListaRectas.java

 NodoCamino.java

 UTMCoord.java

 Vertice.java

 VerticeAsociado.java

7.6 Reasoning Package (simulResc.reasoning)

This is the package where the reasoning of the agents that take part in the
application is. Depending on the existing types of agents, there are two
behavioural models, which are defined by two classes of java:

 ReasonerRescTeam.java: Refers to the rescue teams‟ behaviour
design. We can see the status diagram about the logic that has been
used in figure III.21:

Demonstrating communication services based on autonomic self-organization

61

Figure III.21Self-model designed to configure the rules of the Rescue Team’s
reasoning

 ReasonerSurvivor.java: refers to the survivors‟ behaviour design. We
can see the status diagram about the logic that has been used in figure
III.22:

Initial State

Emergency situacion?

Searching any survivor

Get SurvivorList from
one or more survivors

Take a decision between
all lists received from
differents buildings

Go to rescue the buiding
that has been selected

Emergency

actived

Survivor

detected

searching

waiting

Demonstrating communication services based on autonomic self-organization

62

Figure III.22 Self-model designed to configure the rules of the Survivor’s
reasoning

These classes work as jobs within the DIET architecture. Therefore, they
work in parallel and independently from the rest of the internal modules of the
agent. They are in charge of evaluating the environment and the agent‟s
situation in order to take the proper decision to attain their objectives.

This first development has been done in a relatively simple way in which a
status pattern has been defined, where the transitions occur once the needed
features have been reached. In future implementations, as it will be defined with
all details within the future work section, the basis to give more dynamism and
flexibility to that logic have been established, introducing the so-called an
environment‟s adaptation in which the system will be able to vary its status
machine before any unexpected situation. This will be done throughout the
introduction of a logical programming language (Rule Markup Language [4]).

Initial
State

Discover
neighbors

(Startup Protocol)

Do I have GPS
localization?

Search GPS
Localization

Completing
Survivor List

(Agreggation Protocol)

NO

YES

Demonstrating communication services based on autonomic self-organization

63

7.7 XMLParser Package (simulResc.XMLParser)

In this package we can find the two different classes that are in charge of get
back the XML configuration files‟ data. Its methods are in charge of, through an
intelligent way, recover, process and provide to the application all the data
contained in the configuration files. Most of the methods are called from the
main class RescSimApp.java at the beginning of the application, given that it is
in that concrete moment when the simulation map including all the elements
(streets, buildings, Access Points, Rescue Teams, survivors and so on) is set
up.

The two classes that form this package are the following:

XMLParserMap.java

This class is in charge of both get back and process all the data that is
included in the configuration file MapGps.xml. Within its methods, the most
important are the following:

 getAP(): brings back the Access Points list taken
from the configuration file with all its position details.

 getAgeSurvivor(): brings back the survivor age
value, from the indicated survivor.

 getBuilding(): brings back the position and shape
of the indicated building.

 getLine(): brings back the start and end vertex of
the indicated line. That line corresponds to a certain street
in the map.

 getStateSurvivor(): brings back the health status
of the indicated survivor.

 getSurvivors(): brings back a vector including all
survivors that are included in the configuration file, as well
as its location building.

 getTypeSurvivor(): brings back the type of
functionality that the indicated survivor is able to develop.

 getVertex(): brings back a vector including all
vertex that form the map, as well as the position of each of
them with high and wide pixels value. The vertexes
correspond to the street‟s junctions in the map, which
allow establishing the start and end of all the streets.

 nAPs(): brings back the number of Access Points.

 nBuildings(): brings back the number of buildings.

Demonstrating communication services based on autonomic self-organization

64

 nCrossings(): brings back the number of junctions in the map.

 nRoads(): brings back the number of streets.

 nSurvivors(): brings back the number of survivors

XMLParserElements.java

This class is in charge of both get back and process all the data included in
the configuration file Elements.xml. Within its methods,
the most important are the following:

 getRescueTeams(): brings back a vector
including all the rescue teams included within the
configuration file. Within the data that brings back, we
can find the initial position where they will appear in the
simulation. That information is included in a concrete
vector that forms the map.

 nRescueTeams(): brings back the number of
rescue teams that are detailed in the configuration file.

8 Technological Approach

This section provides a description of the technology and algorithms used for
the prototype development, as well as the necessary steps for the configuration
of the prototype.

8.1 Prerequisites to set-up the ACE environment

The prototype requires an installation of the Java programming language
runtime environment [14] in the version 6.0 SE; it is recommended to install the
most recent JDK, as well as the source files and the API documentation for
debugging purposes. This software can be found at
http://java.sun.com/javase/downloads/index.jsp.

The prototype has been developed with the integrated development
environment Eclipse [13], but other tools should also be fine.

The code source of the prototype and all the libraries required can be found
attached to this document.

http://java.sun.com/javase/downloads/index.jsp

Demonstrating communication services based on autonomic self-organization

65

8.2 DIET Agents Platform

DIET (Decentralised Information Ecosystem
Technologies) is a platform for developing agent-
based applications created in Java. DIET
platform [15], developed in the EU-founded DIET
project, is an Open Source framework released under GPL license and
downloadable from source forge web site.

DIET goal is providing an ecosystem-inspired approach to the design of
agent applications. A bottom-up design was used to ensure that the platform is
lightweight, scalable, robust, adaptive and extensible. It is especially suitable for
rapidly developing peer-to-peer prototype applications and/or adaptive,
distributed applications that use bottom-up, nature-inspired techniques. It is
scalable at a local and at a global level. Local scalability is achieved because
DIET agents can be very lightweight. This makes it possible to run large
numbers of agents, up to several hundred thousands, in a single machine. DIET
is also globally scalable, because the architecture is such that it does not
impose any constraints on the size of distributed DIET applications. This is
mainly achieved because the architecture is fully decentralised, thus not
imposing any centralised bottlenecks.

The architecture of DIET software is layered, incorporating modularity that
allows for the flexible extension of the framework (Figure III.23). The kernel of
the DIET software resides in the bottom layer, the Core Layer. It provides the
fundamental functionality available to all implementations in the DIET
architecture, but also embodies the constraints under which all DIET agents
must operate. The application reusable component layer (ARC Layer) includes
optional components that are useful to various applications. It also contains
general components that allow for the validation and testing of DIET
applications. The Application Layer is the third layer and contains application -
specific code. Associated with this layer may be validation components, to
enable validation of applications developed using the DIET platform.

Figure III.23 DIET Architecture

Demonstrating communication services based on autonomic self-organization

66

Moreover it is robust and supports adaptive applications. The DIET kernel
itself is robust to hardware failure and/or system overload. The effects of these
failures are localised, and the kernel provides feedback when failure occurs
allowing applications to adapt accordingly. The decentralised nature of DIET
also makes the platform less susceptible to failure.

DIET Agents are not assumed to be highly intelligent and/or to use complex
communication protocols. Instead, agents can be very small and simple,
allowing intelligent behaviour to emerge from the interactions between large
numbers of agents. Although the capability of each lightweight component itself
may be very simple, the collective behaviours and the overall functionality
arising from their interactions exceed the capacities of any individual organism.

Key features of the platform are:

 A clean layered architecture, with a kernel that is lightweight, simple and
general.

 The fail-fast kernel constrains and minimises the use of threads, sockets
and memory.

 Agents are autonomous yet lightweight, making it possible to run
100,000s of agents in a single VM.

 A model-event infrastructure provides sophisticated visualisation support.

 A thread-safe agent execution model makes programming new agent
behaviours straightforward.

 Provision of extensible and modular agent behaviours, using jobs and
event managers.

 Various implementations of remote communication are provided, built on
top of the kernel.

 Because of all these features, DIET is an appropriate platform to develop
the test and implementation of the communication protocol required in
the prototype.

8.3 Java

The whole application has been developed taking Java [14] as programming
language in its version 6.0 SE and the Java Development Kit (JDK) J2SE 6.0.

Java is a programming language originally developed by Sun Microsystems
and released in 1995 as a core component of Sun's Java platform. The
language derives much of its syntax from C and C++ but has a simpler object
model and fewer low-level facilities. Java applications are typically compiled to
bytecode which can run on any Java virtual machine (JVM) regardless of
computer architecture.

Demonstrating communication services based on autonomic self-organization

67

Sun distinguishes between its Software Development Kit (SDK) and Runtime
Environment (JRE) which is a subset of the SDK, the primary distinction being
that in the JRE the compiler is not present.

The Java Runtime Environment or JRE is the software required to run any
application deployed on the Java Platform. End-users commonly use a JRE in
software packages and Web browser plugins. The SDK, more commonly known
as the JDK, includes development tools such as the Java compiler, Javadoc,
and debugger.

Java Platform, Standard Edition or Java SE (formerly known up to version
6.0 as Java 2 Platform, Standard Edition or J2SE), is a collection of Java
programming language APIs useful to many Java platform programs. The
prototype is implemented using J2SE JDK1.6.0_01, which represents J2SE 6.0.

The prototype also uses different tools to implement and improve its
characteristics:

Java Reflection

Reflection is commonly used by programs which require the ability to
examine or modify the runtime behaviour of applications running in the Java
virtual machine. This is a relatively advanced feature and should be used only
by developers who have a strong grasp of the fundamentals of the language.
With that caveat it mind, reflection is a powerful technique and can enable
applications to perform operations which would otherwise be impossible.

The prototype uses Java Reflection to call an action when a transition is
running.

Java Swing

Swing is a GUI toolkit for Java and it is one part of the Java Foundation
Classes (JFC). It provides facilities to help to the developer to construct
Graphical User Interfaces (GUIs). For that, Swing includes GUI widgets such as
text boxes, buttons, split-panes, and tables.

Refactoring

 Refactoring a source code module often means modifying without changing
its external behaviour, and is sometimes informally referred to as "cleaning it
up". In extreme programming and other agile methodologies, refactoring is an
integral part of the software development cycle: developers alternate between
adding new tests and functionality and refactoring the code to improve its
internal consistency and clarity. Automatic unit testing ensures that refactoring
does not make the code stop working.

Refactoring neither fixes bugs nor adds new functionality. Rather it improves
the intelligibility of the code or changes its internal structure and design, and
removes dead code, to make it easier for human maintenance in the future. In
particular, adding new behaviour to a program might be difficult with the

Demonstrating communication services based on autonomic self-organization

68

program's given structure, so a developer might refactor it first to make it easier,
and then add the new behaviour. Refactoring is also a tool for removing bad
code smells that exist in code.

Code refactoring alone does not change or add functionality to a system, but
it can simplify future additions, application of design patterns, and reuse through
polymorphism, which otherwise could be impractical, expensive, or
unmaintainable.

Thinking about the future developers and to facilitate the intelligibility of the
code, refactoring has been used in the prototype development.

8.4 Required libraries

After initial check-out the project needs to be configured: make sure to add
the existing JUnit4 library to the build path plus all libraries from the lib folder of
the distribution and to set the project‟s java version to 6.

Following libraries are used by the prototype and provided attached to this
document:

 diet-agents-0_97.jar – DIET Agents platform library;

 elvis.jar – Needed by DIET Agents platform to run the agent‟s connection
representation;

 jdom-B9.jar – An API to provide a complete, Java-based solution for
accessing, manipulating, and outputting XML data from Java code;

 xercesImpl.jar – Needed by Jdom;

 jfreechart-1.0.5.jar – Free Java chart library that makes easy for
developers to display professional quality charts in their applications;

 jcommon-1.0.9.jar – Needed by JFreeChart.

Demonstrating communication services based on autonomic self-organization

69

9 Interface

For development of the application we have chosen Java as programming
language, so we take the advantages that its flexibility and its easy
development capacity offers. Taking profit of these advantages we have
designed a user-friendly interface to monitor all the variables that intervene in
the simulation.

The interface will be described by means the real progress of the simulation
so we will see the interaction between the simulation and the interface, and to
realize the provided information by the different tables and graphs.

Start–up state

This is the initial state of the simulation. All elements are situated in its initial
location as are determined in the configuration XML file. The Init button makes
start the Start-up communication protocol.

The figure III.24 shows the graphical representation of real time simulation‟s
main characters and belongs to the Map‟s lash. Moreover positioning UTM
coordinates of each rescue teams are shown, as well as information about
buildings‟ number, survivor‟s number and so on.

Figure III.24 Interface

Demonstrating communication services based on autonomic self-organization

70

Into the figure III.25 is possible to observe the initial knowledge of survivors
with location capability. Therefore the GPS positioning is granted by a forty
percent of knowledge. The rest of knowledge belongs to the number of
survivors discovered from total which are placed in the same building as it‟s
described before.

Figure III.25 Interface

First connections state

The image in figure III.26 corresponds to the lash in charge to show
variations of connections‟ number that each agent has. That information come
represented both a graph and a table. Their temporary variation can give us
information about correct functioning of the communication protocol as well as
the evolution of every agent. They also indicate the number of initial
connections created by the Start-up protocol which are necessary to be ready to
start the aggregation protocol into the survivor‟s devices.

Demonstrating communication services based on autonomic self-organization

71

Figure III.26 Interface

Searching state

In figure III.27 we can observe the lash corresponding to the information table
of the percentage of survivor„s knowledge.

The calculation of this percentage has already been explained previously. In
outline, the growth of every agent‟s bar represents an increase in the
environment‟s knowledge which, in the current simulation devised, is the
discovery of a new building‟s agent.

Demonstrating communication services based on autonomic self-organization

72

Figure III.27 Interface

Emergency situation

It is possible to activate the emergency status at any moment, being
advisable to do it once the first interactions between the survivors have been
produced. That occurs because the process times have been designed for its
study, not being a real representation of how the real devices will be used.

In order to activate that status, the interface has a radio-button with the
indications “alarm on” and “alarm off”. As a concept, they make a simulation of
the emergency system‟s activation, so all the rescue teams start to work. From
the Map flap we can state that it has started working. Following the logic we
have designed in the Reasoning package, they start to circulate through the
streets in the map, which we are going to study, in order to identify possible
survivors.

Demonstrating communication services based on autonomic self-organization

73

Figure III.28 Interface

Once the buildings that contain the survivors have been identified, they contact
with any of them in order to get the information about the number and status of
those survivors. Once the have got that information, they evaluate and decide
which building from all the building‟s information gathered will be the objective to
rescue. This decision can be seen in the table, which contains the flap, in picture
III.28. As well as we can affirm that, in this simulation, the rescue team is able to
gather all information from the buildings that are included within the Access Point‟s
action scope.

Demonstrating communication services based on autonomic self-organization

74

Figure III.29 Interface

Elvis

It is also possible to control network topology formed in each instant thanks
to Elvis application included in DIET. In the figure III.30 is possible to observe
different survivors distributed in groups (environments) just as it has been
described previously.

Demonstrating communication services based on autonomic self-organization

75

Figure III.30 Interface

Demonstrating communication services based on autonomic self-organization

76

10 Test results

This section provides some results carry out through different tests of the
prototype. The first chapter presents the results of a validation test and the
second analyses some features of the prototype.

10.1 Experimental results

This case-study has been chosen due to the fact digital city is one of the
main scenarios to develop this technology.

In the digital city scenario, we find a mass of heterogenic and highly
distributed information. The first objective set within each surviving building is to
centralize information from all the media in each of the individuals.

Therefore, one of the purposes is measure the information propagation to get
the full environment knowledge for each survivor. Finally, we calculate the
efficiency of the communication protocol used (on-demand clustering) in
environments with decentralized connections and self-organizing algorithms.

10.2 Prototype analysis

In an autonomic computing system, the prototype created expects to be a
scale and functional model of the self-aggregation protocol.

The tests that have been realized show the information average distribution
according to the execution cycles. As explained above, the function to find out
the percentage of knowledge of each survivor, being the following its
calculation:

- GPS positioning: 40% knowledge
- Complete survivors list: 60% knowledge, being calculated through

as an average between the number of the new found agents and the
number of the total of agents that we can find inside the building:

 [

]

The number of survivors who have available GPS positioning has remained
stable within the 25% in all tests.

Each execution cycle corresponds to a send or response action within the
exchange described in the communication protocol, and the actions involved in
the message.

Demonstrating communication services based on autonomic self-organization

77

To see how information can flow in environments with varying population,
results are drawn below with a different number of survivors:

Figure III.31 10 survivors into the building

Figure III.32 25 survivors into the building

Figure III.33 50 survivors into the building

Demonstrating communication services based on autonomic self-organization

78

Figure III.34 75 survivors into the building

Figure III.35 100 survivors into the building

Figure III.36 500 survivors into the building

Demonstrating communication services based on autonomic self-organization

79

Figure III.37 1000 survivors into the building

Figure III.38 1500 survivors into the building

Visualizamos ahora una gráfica con los diferentes datos recogidos de
manera superpuesta, focalizado en mostrar entornos con un número de
supervivientes entre 10 i 1000:

Next graph has been collected in a different data manner. Graph shows
superimposed display environments focused on a number of survivors among
10 and 1000:

Demonstrating communication services based on autonomic self-organization

80

Figure III.39 Buildings among 10 and 1000 survivors

Where we can quantify the number of survivors to the building which interact
them (environment) as follows:

- Building 1: 10 survivors.
- Building 2: 25 survivors.
- Building 3: 50 survivors.
- Building 4: 75 survivors.
- Building 5: 100 survivors.
- Building 6: 500 survivors.
- Building 7: 1000 survivors.

Regarding the data shown we can conclude that the growth curve of the
average distributed information slows down when the number of agents climbed
to 500 elements involved. Once passed the 500 survivors in the same
environment, the curve moves into delimited margins. Accordingly, the
degradation rate has an asymptotic distribution and not exceeds a number
greater than 500 cycles of execution to move between 90% 100% of the
information distribution target.

Finally, for the objective in simulation and for a large number of elements in
the same environment, the communication protocol used to implement the self-
organising algorithms presents a good and strong performance.

Demonstrating communication services based on autonomic self-organization

81

CHAPTER IV: Conclusion and Outlook

1 Conclusion

This document described the applicability of autonomic and self-organization
capabilities in the execution of ICT services in distributed environments. It
exemplified the exploitation key principles of autonomic self-organization to the
development of solutions for handling wireless communication services even in
critical disconnected situations (such as a catastrophic event in a city) and for
handling the gathering, correlation and distribution of data.

In addition, the preceding chapters reported the main results achieved in the
development of a prototype. The achieved results have demonstrated that the
solution, designed by means of autonomic components enriched with reasoning
capabilities, is meeting some challenging requirements such as adaptability to
dynamic situations and robustness, even in environments with high churn rate
and/or disconnected situations. Mainly, the prototype has proved the efficiency
to include a reasoning module in autonomic agent environments. It makes
possible introduce real-time reactions to changes in the environment conditions,
making more achievable next digital cities.

Beside the description of the Autonomic Communications Element (ACE)
design principles, its internal structure and applied communication paradigms
which are given in chapter III, the document provides comprehensive overview
of how to develop distributed applications using the reasoning module. As
example, a rescue teams and survivors‟ environment has been presented.

This is a first version of a Reasoner. In its current implementation it provides
all basic ACE functionalities which allow creating ACEs providing basic
services. From the lifecycle point of view, the basic lifecycle functionalities
starting, stopping and interaction of ACEs are supported, whereas migration will
be implemented in the future. Therefore, in the current implementation ACEs
are stationary components. They will remain in the environment of the initial
creation.

The ACE autonomic behaviour is specified by the ACE developer within the
Self-Model and carried out by the Facilitator. RuleML is used for specifying Plan
creation and modification rules. The Facilitator reads the Self Model and creates
the Plan accordingly.

ACE Plans are executed by the Reasoner which translates them into RuleML
and performs the specified actions. Actions can either invoke a service from a
remote ACE with the GN/GA protocol, or local functionalities from the
Functionality Repository.

ACE specific functionalities are loaded and maintained by the Functionality
Repository. The Functionality Repository invokes specific functionalities when
requested by the Reasoner and delivers the results to the requesting party.

Communication among ACEs is event based. It is provided by the ACE organ
called Bus and allows implementing the GN/GA protocol.

Demonstrating communication services based on autonomic self-organization

82

All of the ACE organs listed above have been implemented. Some of them
are in an advanced stage like for example Reasoner, Facilitator and
Functionality Repository, whereas the Bus requires additional development and
improvement. Nevertheless, with the current prototype it is able to implement
ACEs which provide services of a limited complexity.

The current implementation of the prototype has been tested and evaluated
with an example scenario following the Digital City idea. It presents a city with
two kinds of ACEs: survivors and rescue teams where all interact with each
other after a catastrophic situation. Survivors inside buildings try to share all the
information between them and rescue teams to take a priority decision about
which building to rescue. A brief video clip (Simulation.swf) of the demonstrator
and audio guide (Audio_Simulation.wma) are available attached to this
document.

Demonstrating communication services based on autonomic self-organization

83

2 Outlook

Further investigation and development will be based on the enhancing of the
Reasoner. In particular, the enhancements (by adding a rule engine with a set
of rules) will improve the behaviour of the survivors and rescue teams in order
to obtain the highest efficiency. Added rules can be created, deleted and
modified by the previous rules if necessary so the rule engine is able to adapt
itself to the changes in the environment. It can also be seen as a rule engine
that has a set of states that an agent must achieve by fulfilling some goals.

Figure IV.1 Basic process of Reasoner

The state machine tries to understand the different changes in the
environment and it gives orders to change some of the internal behaviours.
Every survivor and rescue team will have his own state machine implemented in
RuleML and attended by the reasoning. RuleML is a shared Rule Markup
Language, which allows both forward (bottom-up) and backward (top-down)
rules in XML for deduction, rewriting, and further inferential-transformational
tasks.

The Figure IV.1 shows the basic state-machine process of the Reasoner.

Above, the simplified state-machine shows the main mechanism used by the
agent to fulfil a ServiceCallEvent. The Reasoner for each plan, provided by the
Facilitator, extracts a GA, representing the goal the agent achieve after the
execution of the plan.

When a Reasoner with an active plan receives a ServiceCallEvent
transforms the ServiceCallEvent in a GA and tries to match it with the GA of its
active Plan. If the two GAs match, the reasoning on the active Plan starts. In

Cre a te d Re a d y to

e xe cu te Pla n

Re ce ive An n u n ce P la n Eve n t / Lo a d

t h e P la n a n d s e t t h e

Go a lAch ie v a b le

Se rvice Ca ll

re ce ive d

Re ce ive

An n u n ce P la n Eve n t / Lo a d t h e

P la n a n d s e t t h e

Go a lAch ie v a b le

Re ce ive

S e rv ice Ca llEve n t / ch e ck if t h e

S e rv ice Ca ll co rre s p o n d s t o it s

Go a lAch ie v a b le

Go a lAch ie ve d

[S e rv ice Ca ll

d o e s n 't

m a t ch]

[S e rv ice Ca ll

m e t ch e s] /S t a r t

ru n n in g p la n

Demonstrating communication services based on autonomic self-organization

84

this way, the ServiceCallEvent will be completely fulfilled when the Reasoner
reach the GA.

Within the Reasoner, development has been oriented to modify the plan
using a RuleML version and to introduce refactoring in the reasoning. So,
Reasoning capabilities allow the agent to take the proper actions in terms of
sending GAs (Goal Achievable) and GNs (Goal Needed), invoking specific
functions and checking internal conditions, in order to achieve a given Goal.

The Figures IV.2 and IV.3 corresponds to the state machines devised for
both survivor and rescue team agents respectively.

Emergency situation? Health State? Search doctor

Search GPS Localization

(in case of not have it)

Complete emergency list persons

disabled

healthy

yes

Init State

no

St 4St 2 St 3

St 1

St 5

St 6

Figure IV.2 Future Survivor’s Self-Model

Demonstrating communication services based on autonomic self-organization

85

Detected Groups of

survivors

Emergency

degree

Building 4 6

Building 2 9

Building 5 8

Search survivors

Survivor detected?

Get emergency list persons

from survivor detected

Take a decision between all

emergency situations received

Scale of importance from 1 to 10

Go to decided group

and rescue it

Emergency situation?

yes

Init State

no

St 2

St 1

yes

no

St 3

St 5

St 4

St 6

 Figure IV.3 Future Rescue Team’s Self-Model

CHAPTER V: Annex

1 Paper presented at CISIS 2008

A paper with the results of the thesis has been written and presented in
Second International Conference on Complex, Intelligent and Software
Intensive Systems (CISIS 2008): “Demonstrating Communication Services
Based on Autonomic Self-organization” ¡Error! No se encuentra el origen de
la referencia.. The aim of the conference is to deliver a platform of scientific
interaction between the three interwoven challenging areas of research and
development of future ICT-enabled applications:

a. Software Intensive Systems

b. Complex systems

c. Intelligent Systems

Demonstrating communication services based on autonomic self-organization

86

Demonstrating communication services based on autonomic self-organization

87

Demonstrating communication services based on autonomic self-organization

88

Demonstrating communication services based on autonomic self-organization

89

Demonstrating communication services based on autonomic self-organization

90

Demonstrating communication services based on autonomic self-organization

91

Demonstrating communication services based on autonomic self-organization

92

Demonstrating communication services based on autonomic self-organization

93

2 New research

Since 2008, the ending year of this thesis, when results and conclusions
were presented in CISIS conference, new researches and workshops has been
realized in order to continue the progress in the applicability of autonomic and
self-organization capabilities.

The main challenge addressed is the growing of complex and dynamic
scenarios of network evolution, while the same time, reduce costs and increase
revenue. In order to face this challenge, autonomic network architecture allows
dynamic adaptation and re-organization of the network according to the
working, economic and social needs of the users. This is expected to be
especially challenging in a mobile context where new resources become
available dynamically, administrative domains change frequently, and the
economic models may vary.

As explained above, the self-organization autonomic systems have some
common features:

 High-dynamicity

 Situation awareness

 Open “ecosystems”

 High-scalability

 Reduced infrastructure and operation costs

Some of the projects and events involved into autonomic self-organization
research are the following:

a. Autonomic Network Architecture (ANA) -
February 2009 [16]

i. About the project

The ANA is a project funded by the European Union Information Society
Technologies Framework Programme 6.

The project aims at exploring novel ways of organizing and using networks
beyond legacy Internet technology. The ultimate goal is to design and develop a
novel autonomic network architecture that enables flexible, dynamic, and fully
autonomous formation of network nodes as well as whole networks. Universities
and research institutes from Europe and Northern America participated in this
project.

The scientific objective of this proposal is to identify fundamental autonomic
network principles. Moreover, the ANA project build, demonstrate, and test such

Demonstrating communication services based on autonomic self-organization

94

autonomic network architecture. The key attribute is that such a network scales
in a functional way that is, the network can extend both horizontally (more
functionality) as well as vertically (different ways of integrating abundant
functionality).

The challenge addressed in this project is to come up with network
architecture and to fill it with the functionality needed to demonstrate the
feasibility of autonomic.

This integrated project aims at exploring novel ways of organizing and using
networks beyond legacy Internet technology. The ultimate goal is to design and
develop a novel network architecture that enables flexible, dynamic, and fully
autonomic formation of network nodes as well as whole networks. This is
expected to be especially challenging in a mobile context where new resources
become available dynamically, administrative domains change frequently, and
the economic models may vary.

ii. Motivation

The success of the existing Internet architecture is a testimony of the wise
design decisions of the early days of the Internet. Indeed, the closely specified
protocol suite and the simple basic mechanisms paved the way of this success.
However, for today‟s and future challenges, this architecture may not suffice
with the continuous growth of the number of networking devices and their
increased diversity in functionality, the role and the properties of the networking
elements become challenged.

iii. Objectives

The project has two complementary objectives that iteratively provide
feedback to each other: a scientific objective and a technological one.

To identify fundamental autonomic networking principles that enable
networks to scale not only in size but also in functionality. The main premise of
the project work is that a functionally scaling network is a synonym for an
evolving network which includes the various self-x attributes essential to
autonomic communication such as self-management, self-optimization, self-
monitoring, self-repair, and self-protection. The hypothesis is that, due to these
self-x attributes, such functional scaling naturally lead to networks that are not
only richer in functionality but which also scale in size. Scientific research in
ANA explores the “Internet de-construction” trends of functional atomization,
diffusion and sedimentation that replace the current static layering approach.

Demonstrating communication services based on autonomic self-organization

95

Figure 2.a.1 Autonomic network scenario

New autonomic network architecture emerges as a result of this research.
This architecture provides the framework for network function re-composition.
The goal is to produce an architectural design that enables flexible, dynamic
and fully autonomic formation of large-scale networks in which the
functionalities of each constituent network node are also composed in an
autonomic fashion. Moreover, it must support mobile nodes and multiple
administrative domains.

The second premise is that the only way to make new ideas and concepts
succeed is to put them into practice. Therefore, ANA takes on the challenge of
not only producing original scientific research results and a novel architectural
design, but also showing that they work in real situations, and using the
experience gained experimentally as feedback to refine the architectural models
and other research results.

The technological objective is therefore to build experimental autonomic
network architecture, and to demonstrate the feasibility of autonomic
networking.

As a first step, a network based on the predominant infrastructure of Ethernet
switches and wireless access points are built. The goal is to demonstrate self-
organization of individual nodes into a network. The design of such network
should potentially scale to large network meshes in the range of 105 active
(routing) elements. Obviously, the consortium alone has not resources to
literally build a network of 105 nodes. In order to show scalability, three
approaches are envisaged:

http://www.ana-project.org/web/_detail/about/0-objectives/ana-overview.png?id=about:0-objectives:start&cache=cache

Demonstrating communication services based on autonomic self-organization

96

a) Overlay for interconnecting the participating sites.
b) Simulations.
c) A distributed open collaborative approach similar to successful

initiatives such as “SETI@Home”, “Folding@Home”, to include
external experimentations and to disseminate ANA results.

The second step, using insights from the first effort, has lost the constraints
and permit wired and multi-hop wireless heterogeneous devices to be
integrated in an autonomic way. Here the focus is on the self-organization of
networks into a global network. The rationale for a two phase approach is that
an architecture can only be developed and its quality be validated if more than
one case is explored.

These two (scientific and technical) objectives complement and reinforce
each other in a tight feedback loop: Prototypes of research results are
implemented in the test bed at an early stage, such that preliminary
experimental results can be used as a feedback to steer and refine the
architectural design and to obtain more accurate and realistic research results.
The research part shapes the test bed in order to maintain it at the fore-front of
technology. To help the long term visions to materialize, ANA uses the test bed
as an investigative research vehicle while remaining committed to the far
looking character of the situated and autonomic networking initiative.

Figure 2.a.2 Architectural design

http://www.ana-project.org/web/_detail/about/1-motivation/internet-hourglass.png?id=about:1-motivation:start&cache=cache
http://www.ana-project.org/web/_detail/about/1-motivation/internet-ana.png?id=about:1-motivation:start&cache=cache
http://www.ana-project.org/web/_detail/about/1-motivation/internet-hourglass.png?id=about:1-motivation:start&cache=cache
http://www.ana-project.org/web/_detail/about/1-motivation/internet-ana.png?id=about:1-motivation:start&cache=cache

Demonstrating communication services based on autonomic self-organization

97

iv. Institutions involved into

ETH Zurich Communication Systems Group Autonomic Networking,
University of Basel, NEC Europe Ltd. Network Laboratories (NEC), University of
Lancaster (ULanc), Fraunhofer Gesellschaft, zur Förderung der angewandten
Forschung (FOKUS), Université de Liége (ULg), Université Paris VI, Pierre et
Marie Curie (UPMC), National and Kapodistrian University of Athens (NKUA),
Universitetet I Oslo (UiO) and Telekom Austria and University of Waterloo.

b. Biologically inspired network and services
(BIONETS) – March 2009 [17]

i. About the project

BIONETS project is a novel bio-inspired approach to the design of localized
services in pervasive communication/computing environments. Conventional
networking approaches are not suitable for such scenarios, where they face
three main issues, namely:

1. Heterogeneity
2. Scalability
3. Complexity

The proposed solution draws inspiration from the living world in terms of
evolutionary paradigms able to drive the adaptation process of autonomic
services and social paradigms for the provisioning of the necessary cooperation
mechanisms. The net result is the introduction of autonomic self-evolving
services that are able to adapt to localized needs and conditions while ensuring
the maintenance of a purposeful system. Such a system requires scalable
support from the communication standpoint. In networking terms, this results in
the introduction of a two-tier architecture based on localized opportunistic
exchanges of information. The presented approach is able to achieve better
scalability properties when compared to more conventional communication
approaches.

ii. Motivation

The motivation for BIONETS comes from emerging trends towards pervasive
computing and communication environments, where myriads of networked
devices with very different features enhance our five senses, our
communication and tool manipulation capabilities. The complexity of such
environments does not be far from that of biological organisms, ecosystems,
and socio-economic communities. Traditional communication approaches are
ineffective in this context, since they fail to address several new features: a
huge number of nodes including low-cost sensing/identifying devices, a wide

Demonstrating communication services based on autonomic self-organization

98

heterogeneity in node capabilities, high node mobility, the management
complexity, and the possibility of exploiting spare node resources. BIONETS
aims at a novel approach able to address these challenges. Nature and society
exhibit many instances of systems in which large populations are able to reach
efficient equilibrium states and to develop effective collaboration and survival
strategies, able to work in the absence of central control and to exploit local
interactions. The project seek inspiration from these systems to provide a fully
integrated network and service environment that scales to large amounts of
heterogeneous devices, and that is able to adapt and evolve in an autonomic
way.

BIONETS overcomes device heterogeneity and achieves scalability via an
autonomic and localized peer-to-peer communication paradigm. Services in
BIONETS are also autonomic, and evolve to adapt to the surrounding
environment, like living organisms evolve by natural selection. Biologically-
inspired concepts permeate the network and its services, blending them
together, so that the network moulds itself to the services it runs, and services,
in turn, become a mirror image of the social networks of users they serve. This
new paradigm breaks the barrier between service providers and users, and sets
up the opportunity for "mushrooming" of spontaneous services, therefore paving
the way to a service-centric ICT revolution.

iii. Objectives

A new concept of information exchange has been presented in pervasive
networks. The major conceptual shift is the use of networks of occasional
information exchanges between mobile users, helping to spread information
rather than forwarding data packets. The use of genetic models leads to a
population of service instances on a set of user nodes. This population can
grow if the service is successful or decline if it is not. In addition to the growth of
populations BIONETS allow for the evolution of the service itself through
mutations and selection of the fittest. The specific fitness criteria are still to be
elaborated.

In order to examine the behaviour of the proposed model in a day-to-day
scenario the project considers the case of a parking lot application. In such
scenario the city is split into blocks and each gene contains the information on
the status of a parking spot (free or occupied). The service guides the users
towards the nearest free parking place and evolves according to the
environment where the users are moving. Since first simulations indicated the
great potential of this idea, BIONETS expands the model towards more realistic
user behaviour.

Demonstrating communication services based on autonomic self-organization

99

Figure 2.b.1 Gene network behaviour

iv. Institutions involved into

Consiglio Nazionale delle Ricerche - Pisa, University of Trento, Technion,
University of Basel, Technische Universitaet Berlin, Institute of IT-Security and
Security Law at the University of Passau, Budapest University of Thechnologie
and Economics, Nokia Corporation, Valtion Teknillinen Tutkimuskeskus, Institut
National de Recherche en Informatique et Automatique, National and
Kapodistrian University of Athens, Telecom Italia, London School of Economics
and Political Science, and Sun Microsystems Iberica SA.

c. EFIPSANS workshop – November 2010 [18]

i. About the workshop

On November 15th 2010, EFIPSANS has been organized a workshop on the
Benefits and Deployment of Autonomics & Self-Management Technologies
based on IPv6, and Methodologies Network Operators and Service Providers.

The event aimed to bring together network technology seniors, developers
and experts, coming from vendors, operators and ISPs for exchanging
knowledge on the possible ways and compatible means to deploy and utilize
advanced IPv6-based autonomic mechanisms and Self-Management

Demonstrating communication services based on autonomic self-organization

100

methodologies coming from EFIPSANS project in existing networking and
service delivery systems. More information can be found on the workshop
website.

The EFIPSANS project exposes the features in IPv6 protocols that can be
exploited or extended for the purposes of designing or building autonomic
networks and services. What this means is, a study of the emerging research
areas that target desirable user behaviours, terminal behaviours, service
mobility, e-mobility, context-aware communications, self-ware, autonomic
communication /computing/ networking will be carried out, and out of these
areas desirable autonomic(self-*) behaviours in diverse environments (e.g. end
systems, access networks, wireless versus fixed network environments will be
captured and specified).

ii. Objectives

The workshop objectives were:

 To communicate vital knowledge and insights on the benefits and
usability of the emerging area of Autonomic systems and mechanisms
in Network services and Applications.

 To present to the present to the audience the EFIPSANS project
context, outcomes, achievements and results.

 To familiarize the Network technology experts and Engineers with
Autonomic Networking and Self-Management mechanisms, validation
and deployment methodologies in IPv6-based autonomic/self-
managing networks.

 To share with the audience the ideas behind the EFIPSANS proposed
Extensions to IPv6 (IPv6++) and illustrate a viable Evolution Path for
the Internet towards the Self-Managing Future Internet powered by
IPv6 and envisaged protocol & network evolution.

 To discuss ways for actual and direct deployment in existing systems
and infrastructures.

 To present the new Interface (Network Governance Interface) required
by Network Operators to interact with an Autonomic/Self-Managing
Network.

 To engage engineering community in discussing a number of crucial
issues like compatibility, expandability, security, etc., around actual
deployment.

 To get feedback on the practical applicability and usability of the
autonomic/self-management mechanisms in all different levels and
layers of Telecom industry.

 To estimate scientific trends towards autonomic systems after
evaluating the received feedback.

http://efipsans.org/easss
http://efipsans.org/easss

Demonstrating communication services based on autonomic self-organization

101

iii. Institutions involved into

Ericsson, Telefónica, Telcordia, Fujitsu, Alcatel-Lucent, Fraunhofer-Fokus,
IPv6.

d. Self-optimization and self-configuration in
wireless networks (SOCRATES) – February
2011 [19]

i. About the project

The SOCRATES (self-optimization and self-configuration in wireless
networks) project aims at the development of self-organization methods to
enhance the operations of wireless access networks, by integrating network
planning, configuration and optimization into a single, mostly automated
process requiring minimal manual intervention.

Regarding the technological scope, SOCRATES primarily concentrates on
wireless access networks, as the wireless segment generally forms the
bottleneck in end-to-end communications, both in terms of operational
complexity and network costs. As a consequence, the largest gains from self-
organization can be anticipated here. 3GPP LTE (3rd Generation Partnership
Project, Long Term Evolution) is selected as the radio interface of central radio
technology in this study. The reason for this choice is that 3GPP LTE is the
natural, highly promising and widely supported evolution of the world‟s most
popular cellular networking technologies (GSM/EDGE, UMTS/HSPA).

ii. Motivation

Bringing together a well suited, strong consortium of two of the world‟s
largest equipment vendors (Ericsson, Nokia Siemens Networks), a leading
mobile operator (Vodafone), an SME developing support tools for network
planning and operations (Atesio) and three renowned research organizations
(IBBT, TNO ICT, TU Braunschweig) with a proven record in successful
cooperation with the mobile industry, the SOCRATES project has a great
opportunity to achieve considerable impact.

The SOCRATES project influences global standardization, by developing
solutions for standardised measurements, new or adapted interfaces and new
or modified protocols sup- porting self-organization functionalities.

SOCRATES reinforces European industrial leadership by contributing to
European dominance in the development of world-wide standards, by creating a
„head start‟ in the development of self-organizing features for radio networks
and support tools, and in providing high-level consultancy. In addition, the
strong partnership creates stronger synergies between various sector actors
and contributes to new business models.

http://www.3gpp.org/

Demonstrating communication services based on autonomic self-organization

102

Measurements

„Gathering and rocessing‟

Self-

optimisation
Setting

parameters

Self-

healing

Self-
configuration

continuous
loop

triggered by

incidental

event

s

The findings from the consortium create new industrial and business
opportunities within the management and control area of existing and future
networks, and have several important spin-offs, e.g. towards the development
of new services with a reduced time-to-market.

iii. Objectives

The general objective of SOCRATES is to develop self-organization methods
in order to optimize network capacity, coverage and service quality while
achieving significant OPEX (and possibly CAPEX) reductions. Although the
developed solutions are likely to be more broadly applicable (e.g. to WiMax
networks), the project primarily concentrates on 3GPP‟s LTE radio interface (E-
UTRAN). In more detail the objectives are as follows:

 The development of novel concepts, methods and algorithms for the
efficient and effective self-optimization, self-configuration and self-healing
of wireless access networks, adapting the diverse radio (resource
management) parameters to smooth or abrupt variations in e.g. system,
traffic, mobility and propagation conditions. Concrete examples of the
radio parameters that are addressed include: power settings, antenna
parameters, neighbour cell lists, handover parameters, scheduling
parameters and admission control parameters.

 The specification of the required measurement information, its statistical
accuracy and the methods of information retrieval including the needed
protocol interfaces, in support of the newly developed self-organization
methods.

Figure 2.d.1 Self-organization loop

Demonstrating communication services based on autonomic self-organization

103

 The validation and demonstration of the developed concepts and
methods for self-organization through extensive simulation experiments.
In particular, simulations are performed in order to illustrate and assess
the established capacity, coverage and quality enhancements, and
estimating the attainable OPEX (/CAPEX) reductions.

 An evaluation of the implementation and operational impact of the
developed concepts and methods for self-organization, with respect to
the operations, administration and maintenance architecture, terminals,
scalability and the radio network planning and capacity management
processes.

 Influence on 3GPP standardization and NGMN activities.

iv. Institutions involved into

Ericsson AB, Nokia Siemens Networks-Poland/Germany, Atesio, IBBT, TNO
Information and Communication Technology, and TU Braunschweig.

e. Generic Autonomic Network Architecture
(GANA) – April 2013 [20]

i. About the project

The GANA (Generic Autonomic Network Architecture) reference model is a
unified model for autonomic networking, cognition, and self-management. It
defines generic functional blocks and associated reference points and
characteristic information that are specific to enabling autonomics, cognition,
and self-management in target architecture.

Therefore, it can be "instantiated" onto implementation-oriented reference
architecture such as the 3GPP architecture, BBF architecture or ITU-T (NGN)
architecture. The generic functional blocks and reference Points can also be
applied in designing future network architectures that exhibit self-management
capabilities from the dawn (outset) of their design.

The reference model is addressed to network architects, researchers, and
developers/implementers "refer" to the reference model when reasoning about
or applying the concepts and principles defining the domain of autonomic
communication, autonomic networking, autonomic and cognitive management
and control-all as part of the "big-picture" of self-management.

ii. Motivation

Through analysis of the state-of-the art, the existing standards and current
practices, the following have been identified as essential properties needed,
foreseen or desirable for the systems and networks intended to apply the
Generic Autonomic Network Architecture (GANA) reference model.

Demonstrating communication services based on autonomic self-organization

104

The way they shall be realized in future networks and systems is left for
further study and will be documented on in the work related to the Instantiation
of the Model onto concrete implementation-oriented reference architectures:

 Automation.

 Awareness.

 Adaptiveness.

 Stability.

 Scalability.

 Robustness.

 Security.

 Switchable.

 Federation.

i. Objectives

The general objectives of GANA in more detail are as follows:

 An autonomic system should be able to detect, reconfigure and
reregister its managed resources or managed devices such as router
or user equipment even if it is mobile and allow session continuity with
no disruption.

 An autonomic system should manage and control the mobility of an
ambient system, in order to provide session continuity, local mobility
decision should take into account the preferences, the capabilities, the
objectives of the different players involved in session in order to
identify a common decision able to provide session continuity.

 The mobility enabler will be used to retrieve the different monitoring
process, security process, configuration process in order to decide
and disseminate the mobility decision.

 A mobility enabler should be managed by different type of players. It
will avoid today incoherence decision e.g. User Equipment (UE),
Wireless Local Access Network (WLAN), 3GPP Mobile access
network (e.g. UTRAN), core network(e.g. Home Agent) or application
provider (e.g. Service Centralisation and Continuity Server AS-SCC).
Each of them takes local decision with no common knowledge.

i. Institutions involved into

European Telecommunications Standards Institute.

Demonstrating communication services based on autonomic self-organization

105

3 Topics update

A key challenge of the autonomic computing initiative has been to draw upon
self-* properties in systems other than computational ones in order to develop
new computing systems. The main objective of this thesis has been to
demonstrate how an autonomic system achieves an efficient communication in
distributed environments without centralized control. This efficiency leads to a
reduction of complexity, and therefore costs, through autonomic and self-
managed behaviour.

The self-organized behaviour represents collective behaviour that emerges at
the level of the group from the numerous interactions among individuals and
between the individuals and the environment. This biological inspiration is
applied in a digital city as a scenario where autonomic and self-aggregation
capabilities can be exploited, like the emergency use-case used in this thesis. In
order to achieve this aim, an aggregation protocol has been analysed, the “On-
demand” clustering protocol.

The “On-demand” protocol contains the rules and interactions to implement
the basic communication behaviour of the ACE. The prototype designed in this
thesis develops the aggregation protocol and it has been used to include a
communication part in the ACEs, making possible introduce real-time
interactions to face changes in the environment conditions.

One of the main changes in the investigation of self-organized networks is an
applied network orientation given the increasing number of devices that are
connecting through real Internet daily. Therefore, the research has focused on
how to transform the connection layer of Internet in a network capable of
applying the self-* properties, like as self-organization. Some of the most
important telecom operators have been involved in these new projects

For instance, the ANA‟s Project goal has been to design and develop a novel
autonomic network architecture that enables flexible, dynamic, and fully
autonomous formation of network nodes as well as whole networks. The main
premise of the project work is that a functionally scaling network is a synonym
for an evolving network which includes the various self-x attributes essential to
autonomic communication such as self-management, self-optimization, self-
monitoring, self-repair, and self-protection. The ANA‟s Project approach has
allowed study both scientific and technical, looking recompose existing layer in
the current internet connection to make it properly autonomous self-
organization. The plan consists in losing the constraints of Internet layer and
permit wired wireless heterogeneous devices to be integrated in an autonomic
way.

Moreover in a technical research line, the EFIPSANS‟ workshop has exposed
the features in IPv6 protocols that can be exploited or extended for the
purposes of designing or building autonomic networks and services. The
EFIPSANS has proposed extensions to IPv6 (IPv6++) and illustrated a viable
evolution path for the Internet towards the self-managing future Internet. It will
be powered by IPv6 and envisaged protocol & network evolution.

Demonstrating communication services based on autonomic self-organization

106

Finally, the GANA‟s Project has been searching to create a unified reference
model for autonomic networking, cognition, and self-management. This model
defines generic functional blocks and associated reference points and
characteristic information that are specific to enabling autonomics, cognition,
and self-management in target architecture. Therefore, it can be instantiated
onto implementation-oriented reference architecture such as the 3GPP
architecture.

Furthermore, some research projects have done a more extensive
investigation of the theoretical basis of the autonomic communication systems.
BIONETS is a clear example of this development.

BIONETS‟ project has drawn inspiration from the living world in terms of
evolutionary paradigms able to drive the adaptation process of autonomic
services and social paradigms for the provisioning of the necessary cooperation
mechanisms. The net result is the introduction of autonomic self-evolving
services that are able to adapt to localized needs and conditions while ensuring
the maintenance of a purposeful system. Services in BIONETS are also
autonomic, and evolve to adapt to the surrounding environment, like living
organisms evolve by natural selection. Biologically-inspired concepts permeate
the network and its services, blending them together, so that the network
moulds itself to the services it runs, and services, in turn, become a mirror
image of the social networks of users they serve.

Finally, other theoretical approach is the SOCRATES‟ project. This project
focalize on develop self-organization methods in order to optimize network
capacity, coverage and service quality while achieving significant operational
complexity and network costs reductions.

The evolution of the research has mainly change from a theoretically study to
a more practical one. This has been noticeable thought the creation of different
frameworks required to implement the new architecture. In conclusion we could
say that the foundations keys of CASCADAS‟ project have remained intact but
have been adapted to be applied in real networks.

A more practical approach to autonomic principles and device scalability has
been performed in real networks research. Therefore, it can be considered that
the different projects that have emerged are an evolution of theoretical
communication model proposed in the test case of this thesis.

The study of the current status of development on self-organized networks
has made me realize I have been part of first steps in autonomic networks
research. I‟m confidence that the use case study of this thesis may contribute
in analysis of high-level communication protocols of autonomic systems.
However, the "On-demand" communication protocol must have been notorious
transformations for being able to be adapted at the devices interactions in a real
data network.

The emerging technology based on the IBM‟s principles of autonomic system
has a promising future due the efforts of main telecom operators. The key to
their success may come from reduced operation costs in expanding data
networks as well as an improvement in the efficiency of these networks with a
large number of interconnected devices, having also a service orientation.

Demonstrating communication services based on autonomic self-organization

107

Demonstrating communication services based on autonomic self-organization

108

Demonstrating communication services based on autonomic self-organization

109

REFERENCES

[1] IP CASCADAS “Integrated Project Component-ware for Autonomic

Situation-aware Communications, and Dynamically Adaptable Services”

http://www.cascadas-project.org

[2] N. Ravi, et al., “Accessing Ubiquitous Services using Smart Phones”,

3rd International Conference on Pervasive Computing and

Communications, Kauai Island (NW), March 2005

[3] A. Manzalini, R. Alfano, A. Bernadas, J. Sole Pareta, S. Spadaro,

Demonstrating communication services based on autonomic self-

organization, in Proc. Int. Conf. on Complex, Intelligent and Software

Intensive Systems (CISIS 2008), 4-7 March, 2008, Barcelona (Spain)

[4] RuleML (Rule Markup Language), http://www.ruleml.org

[5] R. Sterritta, M. Parasharb, H. Tianfieldc, R. Unland, A concise

introduction to autonomic computing, Advanced Engineering Informatics

19 (Elsevier, 2005), 181–187

[6] G. Di Marzo Serugendo, M.-P. Gleizes, A. Karageorgos, “Self-

Organization in MAS”, Knowledge Engineering Review 20(2):165-189,

Cambridge University Press, 2005

[7] Carole Bernon, Valérie Camps, Marie Pierre Gleizes, Gauthier Picard,

“Tools for Self-Organizing Applications Engineering”. Engineering Self-

Organising Systems, 2003, pp:283-298 AAMAS 2003

[8] M. Dorigo, T. Stüzle (2004). Ant Colony Optimization. MIT Press,

Cambrige (Mass).

[9] Cl. Detrain, J.L. Deneubourg & J.M. Pasteels (1999). Information

Processing in social Insects. Birkhauser, Basel.

[10] Aggregation Algorithms, Overlay Dynamics and Implications for Self-

Organised Distributed Systems. IST CASCADAS Work Package 3

Deliverable Month.

[11] WikiCity, Sensible Consortium, http://senseable.mit.edu

[12] E. W. Dijkstra, Go To Statement Considered Harmful, Communications

of the ACM, Vol. 11 (1968)

http://www.cascadas-project.org/
http://www.ruleml.org/
http://senseable.mit.edu/
http://es.wikipedia.org/w/index.php?title=Communications_of_the_ACM&action=edit&redlink=1
http://es.wikipedia.org/w/index.php?title=Communications_of_the_ACM&action=edit&redlink=1

Demonstrating communication services based on autonomic self-organization

110

[13] Eclipse, Open Source Integrated Development Environment,

http://www.eclipse.org

[14] Java, http://java.sun.com

[15] DIET, Decentralised Information Ecosystem Technologies,

http://diet-agents.sourceforge.net

[16] ANA, Autonomic Network Architecture,

http://www.ana-project.org/

[17] BIONETS, Biologically inspired Network and Services,

http://www.bionets.eu/

[18] EFIPSANS workshop,

http://www.efipsans.org/

[19] SOCRATES, Self-optimization and self-configuration in wireless

networks,

http://www.fp7-socrates.eu/

[20] GANA, Generic Autonomic Network Architecture,

http://www.etsi.org

http://www.eclipse.org/
http://java.sun.com/
http://diet-agents.sourceforge.net/
http://www.fp7-socrates.eu/

