Demonstration of a unified and flexible coupling environment for nonlinear fluidstructure interaction problems

David THOMAS, Marco Lucio CERQUAGLIA, Romain BOMAN, Grigorios DIMITRIADIS, Vincent E. TERRAPON

Department of Aerospace and Mechanical Engineering, University of Liège, Belgium

Collaborative Conference on Physics Series CCPS 2018 – Fluid Dynamics September 11-13, 2018, Barcelona, Spain

Motivations

Fluid-structure interaction

- Nonlinear behavior
- Large range of physics
- High fidelity models
- Development of a computational environment for research and design

Primary target application : aeroelasticity

Computational approach

Monolithic

• One single framework to solve the coupled problem

Partitioned

- Coupling of independent codes
- Each code is optimized for a particular physics

Computational approach

Monolithic

One single framework to solve the coupled problem

Partitioned

- Coupling of independent codes
- Each code is optimized for a particular physics

→ Need an interfacing tool
flexible
performant

FSI : governing physics & formulation

Governing equations $\mathcal{F} \leftrightarrow$ Fluid operator $\mathcal{S} \leftrightarrow \text{Solid operator}$ + **Coupling conditions** $egin{aligned} m{d}_{\mathrm{f}}^{\Gamma} &= m{d}_{\mathrm{s}}^{\Gamma} &= m{d}^{\Gamma} \ m{t}_{\mathrm{f}}^{\Gamma} &+ m{t}_{\mathrm{s}}^{\Gamma} &= m{0} \end{aligned}$ = **Fixed-point formulation**

 $d^{\Gamma} = \mathcal{S}\left(-\mathcal{F}(d^{\Gamma})
ight)$

Interface loads : $\begin{aligned} \boldsymbol{t}_{\mathrm{f}}^{\Gamma} &= -p\boldsymbol{n}_{\mathrm{f}} + \overline{\boldsymbol{\tau}}\boldsymbol{n}_{\mathrm{f}} \\ \boldsymbol{t}_{\mathrm{c}}^{\Gamma} &= \overline{\boldsymbol{\sigma}}\boldsymbol{n}_{\mathrm{c}} \end{aligned}$

Coupling simulations – strong coupling

Multi-codes coupling technology : CUPyDO

Examples of coupled solver

Fluid solvers

- SU2 FV unstructured (Stanford)
- PFEM particle FE (ULiège)

Structural solvers

- Metafor NLFEM (ULiège)
- GetDP LFEM (ULiège)
- RBM integrator (ULiège)

- Ready-to-use interfaces
- No technical restriction for coupling other software, even commercial packages

Isogai wing section

0

0.7

0.75

0.8

 M_{∞}

0.85

- Determine flutter conditions as a function of M_{∞}
- Transonic dip is captured
- S-shape curve is well recovered
- Inviscid fluid

0.95

0.9

SUZXRBIN

Isogai wing section

- Moving shock interacting with the motion of the airfoil
- Existence of a LCO due to nonlinear aerodynamics

SUZ*RBN

Stall flutter of a flat plate

- Airfoil motion rapidly turns into stall flutter
- Induced by dynamic flow separation
- Nonlinearities lead to LCO

SUZXRBA ||U|| [m/s]: 8 10 12 14 16 18 20 Time:0s $U_{\infty} \neq 13$ m/s

"X. Amandolese et al., Journal of Fluids and Structures, 43, 2013."

VIV of a flexible cantilever

- Solid motion is generated by vortex shedding
- Large displacement amplitude (nonlinear)
- Laminar flow at Re = 333

VIV of a flexible cantilever

- From dense to light material
- Low mass ratios = numerical coupling instabilities → relaxation needed in coupling
- Number of coupling iterations per time step increases

SU2+NIetaFor

- Literature : $V_f^* = 0.243 0.327$
- Computed : $V_f^* = 0.281$ •

AGARD 445.6 wing

- Post-critical conditions at $M_{\infty} = 0.96$ and $V^* = 0.300$
- Significant motion of the supersonic region

Bending of a flat plate submitted to cross flow

- Inspired from drag reconfiguration of aquatics plants
- Laminar flow at Re = 1600
- Relatively soft and light solid material : $\frac{\rho_s}{\rho_f} = 0.678$

➔ transient response is numerically unstable

SUZXINICTATOR

Cantilever flat wing

- Material : aluminium | Fluid : air
- High aspect ratio plate with very small thickness
- Very flexible structure

- Two perturbation amplitudes
- Two distinct limit cycles

SU2+NIetaror

Cantilever swept flat wing

Wind tunnel test under the same conditions

SU2+Metafor

Dam break with flexible obstacle

Large structural displacement

DFENIR NICITION

Conclusions

- Developed for research and design
- Interfacing tool for strong coupling of independent solvers
- High fidedility models for nonlinear FSI
- Flexible partitioned tool for large range of physics
- Validated on typical benchmarks

Acknowledgements

