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Motivations

Fluid-structure interaction

Nonlinear behavior

Large range of physics

High fidelity models

Development of a computational
environment for research and design

Primary target application : aeroelasticity

Flutter




Computational approach

Monolithic
* One single framework to solve the coupled problem

Partitioned
* Coupling of independent codes
e Each code is optimized for a particular physics
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FSI : governing physics & formulation

Governing equations

F <> Fluid operator
S < Solid operator

+

Coupling conditions
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ti +t5 =0

Fixed-point formulation
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Coupling simulations — strong coupling
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Structural loads
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Multi-codes coupling technology : CUPyDO

Interpolator
Algorithm Core
enericfluid

OpenMPI

CUPyDO C++ kernel

e Multi-languages
e C++ for computationally
intensive tasks
e Python for high-level
management

Interface

FLUID SOLVER SOLID SOLVER



Examples of coupled solver

Fluid solvers
e SU2 - FV unstructured (Stanford)
 PFEM — particle FE (ULiege)

Structural solvers
 Metafor — NLFEM (ULiege)
 GetDP — LFEM (ULiege)
 RBM integrator (ULiege)

Ready-to-use interfaces

No technical restriction for coupling
other software, even commercial
packages



|sogal wing section

3
K, - Ch C,
U (x(t) — 2.5
—_———— — —_ U
2
h(1)
X 0
y ~1.5
1 -
| | | | f
s 7
0.5r
 Determine flutter conditions as a function of M,

A Current calculations
— Spline interpolation
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Unstable

* Transonic dip is captured 0
e S-shape curve is well recovered
* Inviscid fluid

“K. Isogai. AIAA Journal, 17, 1979”
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Stall flutter of a flat plate

UlI[m/s]: 0 2 4 6 8 10 12 14 16 18 20

* Airfoil motion rapidly turns into stall flutter
* Induced by dynamic flow separation

 Nonlinearities lead to LCO

“X. Amandolese et al., Journal of Fluids and Structures, 43, 2013/ 11



VIV of a flexible cantilever

|U|[[m/s]: 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

)

e Solid motion is generated by vortex shedding
e Large displacement amplitude (nonlinear)

e Laminar flow at Re = 333

“C. Habchi et al. , Computer & Fluids, 71, 2013 L2




VIV of a flexible cantilever

|Ul[[m/s]: 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

* From dense to light material
* Low mass ratios = numerical coupling instabilities = relaxation needed in coupling
* Number of coupling iterations per time step increases
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AGARD 445.6 wing "
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* Determine flutter conditions at Mo, = 0.96 U U
* Consider inviscid fluid 0-06 02 04 08 03 | -
* Literature : Vy = 0.243 — 0.327 t [s]

* Computed : V' = 0.281

“E.C. Yates, AGARD Report 765, 1988.” 14



AGARD 445.6 wing

Supersonic region Time : 0.005 s
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“E.C. Yates, AGARD Report 765, 1988. 15



Inspired from drag reconfiguration of

aquatics plants
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Laminar flow at Re =

Relatively soft and light solid material :
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“F-B. Tian et al. , J. of Computational Physics, 258, 2014.”



Cantilever flat wing

* Material : aluminium | Fluid : air
* High aspect ratio plate with very small thickness
* Very flexible structure
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* Two perturbation amplitudes
e Two distinct limit cycles
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Cantilever swept flat wing
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Dam break with flexible obstacle

Pressure (Pa)
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Conclusions

Developed for research and design

Interfacing tool for strong coupling of independent solvers

High fidedility models for nonlinear FSI

Flexible partitioned tool for large range of physics

Validated on typical benchmarks
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