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PREFACE

String theory is the greatest scientific quest of all time. Its goal is nothing other than 
a complete description of physical reality—at least at the level of fundamental 
particles, interactions, and perhaps space-time itself. In principle, once the 
fundamental theory is fully known, one could derive relativity and quantum theory 
as low-energy limits to strings. The theory sets out to do what no other has been 
able to since the early twentieth century—combine general relativity and quantum 
theory into a single unified framework. This is an ambitious program that has 
occupied the best minds in mathematics and physics for decades. Einstein himself 
failed, but he lacked key ingredients that are necessary to pull it off. 

String theory comes attached with a bit of controversy. As anyone who is reading 
this book likely knows, experimentally testing it is not an immediately accessible 
option due to the high energies required. It is, after all, a theory of creation itself—
so the energies associated with string theory are of course very large. Nonetheless, 
it now appears that some indirect tests are possible and the timing of this book may 
coincide with some of this program. The first clue will be the continued search for 
supersymmetry, the theory that proposes fermions and bosons have superpartners, 
that is, a fermion like an electron has a sister superpartner particle that is a boson. 
Superparticles have not been discovered, so if it exists supersymmetry must be 
broken somehow so that the super partners have high mass. This could explain why 
we haven’t seen them so far. But the Large Hadron Collider being constructed in 
Europe as we speak may be able to discover evidence of supersymmetry. This does 
not prove string theory, because you can have supersymmetry work just fine with 
point particles. However, supersymmetry is absolutely essential for string theory to 
work. If supersymmetry does not exist, string theory cannot be true. If supersymmetry 
is found, while it does not prove string theory, it is a good indication that string 
theory might be right.

Recent theoretical work also opens up the intriguing possibility that there might 
be large extra dimensions and that they might be inferred in experimental tests. 
Only gravity can travel into the extra space scientists call the “bulk.” At the energies 
of the Large Hadron Collider, it might be possible to see some evidence that this is 
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happening, and some have even proposed that microscopic black holes could be 
produced. Again, you could imagine having extra dimensions without string theory, 
so discoveries like these would not prove string theory. However, they would be 
major indirect evidence in its favor. You will learn in this book that string theory 
predicts the existence of extra dimensions, so any evidence of this has to be taken 
as a serious indication that string theory is on the right path. 

String theory has lots of problems—it’s a work in progress. This time is akin to 
living in the era when the existence of atoms was postulated but unproven and 
skeptics abounded. There are lots of skeptics out there. And string theory does seem 
a bit crazy—there are several versions of the theory, and each has a myriad of 
particle states that have not been discovered (however, note that transformations 
called dualities have been discovered that relate the different string theories, and 
work is underway on an underlying theory believed to exist called M-theory). The 
only serious competitor right now for string theory is loop quantum gravity. I want 
to emphasize I am not an expert, but I once took a seminar on it and to be honest I 
found it incredibly distasteful. It seemed so abstract it almost didn’t seem like 
physics at all. It struck me more as mathematical philosophy. String theory seems a 
lot more physical to me. It makes outlandish predictions like the existence of extra 
dimensions, but general relativity and quantum theory make predictions that defy 
common sense as well. Eventually, all we can do is hope that experiment and 
observation will resolve the controversy and help us decide if loop quantum gravity 
or string theory is on the right track. Regardless of what our tastes are, since this is 
science we will have to follow where the evidence leads. 

This book is written with the intent of getting readers started in string theory. It 
is intended for self-study and to make the real textbooks on the subject more 
accessible after you finish this one. 

But make no mistake: This is not a “popular” book—it is written for readers who 
want to learn string theory. 

The presentation has been simplified in some places. I have left out important 
topics like path integration, differential forms, and partition functions that are 
necessary for advanced study. Even so, there has been an attempt to give the reader 
a good overview of the basics of string physics. Unlike other introductory texts, I 
have decided to include a discussion of superstrings. It is more complicated, but my 
feeling is if you understand the bosonic case it’s not too much of a leap to include 
superstrings. What you really need as background for this is some exposure to Dirac 
spinors. If you don’t have this background, read Griffiths’ Elementary Particles or 
try Quantum Field Theory Demystified. The bottom line is that string theory is an 
advanced topic, so you will need to have the background before reading this book. 
Specifically, from mathematics you need to know calculus, linear algebra, and partial 
and ordinary differential equations. It also helps to know some complex variables, 
and my book Complex Variables Demystified is being released at about the same 
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time as this one to help you with this. This sounds like a long list and if you’re just 
starting out it is. But you don’t have to be an expert—just get a grasp of the topics 
and you should do fine with this book.

From physics, you should start off with wave motion if you’re rusty with it. Open 
up a freshman physics book to do this. The core concepts you need for string theory 
are going to include wave motion on a string, boundary conditions on a string (from 
basic partial differential equations), the harmonic oscillator from quantum 
mechanics, and special relativity. Brush up on these before attempting to read this 
book. Due to limited space in the book, I did not include all of the background 
material from ground zero like Zweibach does in his fine text. I have attempted to 
present as accessible a presentation as possible but assume you already have done 
some background study. The three areas you need are quantum mechanics, relativity, 
and quantum field theory. Luckily there are three Demystified books available on 
these topics if you haven’t studied them elsewhere. 

In the short space allotted for a Demystified book, we can’t cover everything 
from string theory. I have tried to strike a balance between building the basic physics 
and laying down the necessary mathematical machinery and being too advanced 
and introducing the most exciting topics. Unfortunately, this is not an easy program 
to pull off. I cover bosonic strings, superstrings, D-branes, black hole physics, and 
cosmology, among other topics. I have also included a discussion of the Randall-
Sundrum model and how it resovles the hierarchy problem from particle physics. 

I want to conclude by recommending Michio Kaku’s popular physics books. I 
was actually “converted” from engineering to physics by reading one of his books 
that introduced me to the amazing world of string theory. It’s hard to believe that 
picking up one of Kaku’s books would have led me on a path such that I ended up 
writing a book on string theory. In any case, good luck on your quest to understand 
the universe, and I hope that this book makes that task more accessible to you. 

David McMahon
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CHAPTER 1

Introduction

General relativity and quantum mechanics stand out as the pillars of twentieth- 
century science, able to describe almost all known phenomena from the scale of 
subatomic particles all the way up to the rotations of galaxies and even the history 
of the universe itself. Despite this grand success, which includes stunning agreement 
with experiment, these two theories represent physics at a crossroads—one that is 
plagued with crisis and controversy.

The problem is that at fi rst sight, these two theories are at complete odds with 
each other. The general theory of relativity (GR), Einstein’s crowning achievement, 
describes gravitational interactions, that is, interactions that occur on the largest 
scales that we know. But it not only stands out as Einstein’s greatest contribution to 
science but it also might be called the last classical theory of physics. That is, 
despite its revolutionary nature, GR does not take quantum mechanics into account 
at all. Since experiment indicates that quantum mechanics is the correct description 
for the behavior of matter, this is a serious fl aw in the theory of general relativity. 

We don’t think about this under normal circumstances because quantum effects 
only become important in gravitational interactions that are extremely strong or 
taking place over very small scales. In the situations where we might apply general 
relativity, say to the motion of the planet mercury around the sun or the motion of 
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 2 String Theory Demystifi ed

the galaxies, quantum effects are not important at all. Two places where they will 
be important are in black hole physics and in the birth of the universe. We might 
also see quantum effects on gravity in very high energy particle interactions.

On the other hand, quantum mechanics basically ignores the insights of relativity. 
It basically pretends gravity doesn’t exist at all, and pretends that space and time are 
not on the same footing. The notion of space-time does not enter in quantum 
mechanics, and although special relativity plays a central role in quantum fi eld 
theory, gravitational interactions are nowhere to be found there either.

A Quick Overview of General Relativity
This isn’t a book on GR, but we can give a very brief overview of the theory here 
(see Relativity Demystifi ed for details). The central ideas of general relativity are 
the notion that geometry is dynamic and that the speed of light limits the speed of 
all interactions, including gravity. We start with the notion of the metric, which is 
a way of describing the distance between two points. In ordinary three-dimensional 
space the metric is 

 ds dx dy dz2 2 2 2= + +   (1.1)

This metric follows from the pythagorean theorem by making the distances 
involved infi nitesimal. Note that this metric is invariant under rotations. Something 
that is key to relativistic thinking is focusing on those quantities that are invariant. 

To move up to a relativistic context, we extend the notion of a measure of distance 
between two points to a notion of distance between two events that happen in space 
and time. That is, we measure the distance between two points in space-time. This 
is done with the metric

 ds c dt dx dy dz2 2 2 2 2 2= − + + +    (1.2)

This metric extends the idea of geometry to include time as well. But not only that, 
it also extends the notion of a distance measure between two points that is invariant 
under rotations to one that is also invariant under Lorentz transformations, that is, 
Lorentz boosts between one inertial frame and another.

While adding time to the mix certainly extends the notion of geometry into an 
unfamiliar realm, we still have a fi xed geometry that does not take into account 
gravitational fi elds. To extend the metric in a way that will do this, we have to enter 
the domain of non-euclidean geometry. This is geometry which does not require 



fl at spaces. Instead we generalize to include spaces that are curved, like spheres or 
saddles. Now, since we are in a relativistic context, we need to include not just 
curved spaces but time as well, so we work with curved space-time. A general way 
to write  Eq. (1.2) that will do this for us is

 ds g x dx dx2 = µν
µ ν( )   (1.3)

The metric tensor is the object g xµν ( ),
 
which has components that depend on 

space-time. Now we have a dynamical geometry that varies from place to place and 
from time to time, and it turns out that g xµν ( )

 
is directly related to the gravitational 

fi eld. Hence we arrive at the central truth of general relativity:

 gravity  geometryT

Gravitational fi elds are essentially the geometry of space-time. The form of the 
metric tensor g xµν ( ) actually stems from the matter—energy that is present in a 
given region of space-time—which is the way that matter is the source of the 
gravitational fi eld. The presence of matter alters the geometry, which changes the 
paths of free-falling particles giving the appearance of a gravitational fi eld.

The equation that relates matter and geometry (i.e., the gravitational fi eld) is 
called Einstein’s equation. It has the form

 R g R GTµν µν µνπ+ =
1

2
8   (1.4)

where G = × ⋅−6 673 10 4. /m kg s3 2 is Newton’s constant of gravitation and Tµν is the 
energy-momentum tensor. Rµν  and R are objects that depend on the derivatives of 
the metric tensor g xµν ( ) and hence represent the dynamic nature of geometry in 
relativity. The energy-momentum tensor Tµν tells us how much energy and matter 
is present in the space-time region being considered. The details of the equation are 
not important for our purposes, just keep in mind that matter (and energy) change 
the geometry of space-time giving rise to what we call a gravitational fi eld, by 
changing the paths followed by free particles.

So matter enters the theory of relativity through the energy-momentum tensor Tµν. 
The rub is that we know that matter behaves according to the laws of quantum 
theory, which are at odds with the general theory of relativity. Without going into 
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detail, we will review the basic ideas of quantum mechanics in this section (see 
Quantum Mechanics Demystifi ed for a detailed description). In quantum mechanics, 
everything we could possibly fi nd out about a particle is contained in the state of the 
particle or system described by a wave function:

 ψ ( , )x t  

The wave function is a solution of Schrödinger’s equation:

 − ∇ + =
∂
∂

?
?

2
2

2m
V i

t
ψ ψ ψ

 
(1.5)

The wave function itself is not a real physical wave, rather it is a probability 
amplitude whose modulus squared ψ ( , )x t

2
(note that the wave function can be 

complex) gives the probability that the particle or system is found in a given 
state. 

Measurable observables like position and momentum are promoted to 
mathematical operators in quantum mechanics. They act on states (i.e., on wave 
functions) and must satisfy certain commutation rules. For example, position and 
momentum satisfy

 [ , ]x p i= ?  (1.6)

Furthermore, there exists an uncertainty principle that puts constraints on the 
precision with which certain quantities can be known. Two important examples are

 
∆ ∆ ≥
∆ ∆ ≥

x p

E t

?
?

/

/

2

2  
(1.7)

So the more precisely we know the momentum of a particle, the less certain we are 
of its position and vice versa. The smaller the interval of time over which we 
examine a physical process, the greater the fl uctuations in energy. 

When considering a system with multiple particles, we have a wave function 
ψ ( , , , )x x xn1 2 …  

say where there are n particles with coordinates xi . It turns out 
that there are two basic types of particles depending on how the wave function 
behaves under particle interchange x xi jT . Considering the two-particle case for 
simplicity, if the sign of the wave function is unchanged under 

 ψ ψ( , ) ( , )x x x x1 2 2 1=
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we say that the particles are bosons. Any number of bosons can exist in the same 
quantum state. On the other hand, if the exchange of two particles induces a minus 
sign in the wave function

 ψ ψ( , ) ( , )x x x x1 2 2 1= −

then we say that the particles in question are fermions. Fermions obey a constraint 
known as the Pauli exclusion principle, which says that no two fermions can occupy 
the same quantum state. So while boson number can assume any value nb = ∞0, ,…
the number of fermions that can occupy a quantum state is 0 or 1, that is, nf = 0 1,
and not any other value. 

The fi rst move at bringing quantum theory and relativity together in the same 
framework is done by combining quantum mechanics together with the special 
theory of relativity (and hence leaving gravity out of the picture). The result, called 
quantum fi eld theory, is a spectacular scientifi c success that agrees with all known 
experimental tests (see Quantum Field Theory Demystifi ed for more details). In 
quantum fi eld theory, space-time is fi lled with fi eldsϕ( , )x t  that act as operators. A 
given fi eld can be Fourier expanded as

 ϕ
π ω

ϕ ϕω( )
( )

( ) (
/

( ) *x
d k

k e
k

i x k xk= +− − ⋅
3

3 22 2

0I II I
kk ei x k xk) ( )ω 0 − ⋅⎡

⎣
⎤
⎦∫

I I

We then express the fi elds in terms of creation and annihilation operators by making 
the transition ϕ( ) ˆ( )

I I
k a k→  and ϕ * †( ) ˆ ( )

I I
k a k→  giving

 ˆ( )
( )

ˆ( ) ˆ
/

( )ϕ
π ω

ωx
d k

a k e a
k

i x k xk= +− − ⋅
3

3 22 2

0I I I
†† ( )( )
I I I
k ei x k xkω 0 − ⋅⎡

⎣
⎤
⎦∫

The fi eld then creates and destroys particles that are the quanta of the given fi eld. 
We require that all quantities be Lorentz invariant. To get quantum theory more 

into the picture, we impose commutation relations on the fi elds and their conjugate 
momenta

 

ˆ( ), ˆ( ) ( )

ˆ( ), ˆ( )

ˆ(

ϕ π δ

ϕ ϕ

π

x y i x y

x y

[ ] = −

[ ] =

I I

0

xx y), ˆ( )π[ ] = 0
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where ˆ( )π x is the conjugate momenta obtained from the fi eldϕ( , )x t using standard 
techniques from lagrangian mechanics. 

From the commutation relations and from the form of the fi elds (i.e., the creation 
and annihilation operators) you might glean that particle interactions take place at 
specifi c, individual points in space-time. This is important because it means that 
particle interactions take place over zero distance.  Particles in quantum fi eld theory 
are point particles represented mathematically as located at a single point. This is 
illustrated schematically in Fig. 1.1.

Now, calculations in quantum fi eld theory can be done using a perturbative 
expansion. Each term in the expansion describes a possible particle interaction and it 
can be represented graphically using a Feynman diagram. For example, in Fig. 1.2, 
we see two electrons scattering off each other.

The Feynman diagram in Fig. 1.2 represents the lowest-order term in the series 
describing the amplitude for the process to occur. Taking more terms in the series, 
we add diagrams with more complex internal interactions that have the same 

Two particles
come in to
interact  

The interaction occurs at a single
point in space-time

Figure 1.1 In particle physics, interactions occur at a single point.

e
e

e e

γ

Figure 1.2 A Feynman diagram illustrating the scattering of two electrons.
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initial and fi nal states. For example, the exchanged photon might turn into an 
electron-positron pair, which subsequently decays into another photon. This is 
illustrated in Fig. 1.3.

Interior processes like that shown in Fig. 1.3 are called virtual. This is because 
they do not appear as initial or fi nal states. To fi nd the actual amplitude for a given 
process to occur, we need to draw Feynman diagrams for every possible virtual 
process, that is, take all the terms in the series. In practice we can take only as many 
terms as we need to get the accuracy desired in our calculations.

This type of procedure works well in the electromagnetic, weak, and strong 
interactions. However, the overall procedure has some big problems and they 
cannot be dealt with when gravity is involved. The problem comes down to the fact 
that interactions occur at a single space-time point. This leads to infi nite results in 
calculations (aptly called infi nities). Technically speaking, the calculation of a 
given amplitude which includes all virtual processes involves an integral over all 
possible values of momentum. This can be described by a loop integral that can be 
written in the form

 I p d pJ D∼ 4 8−∫   (1.8)

Here p is momentum, J is the spin of the particle, and D, which is seen in the 
integration measure, is the dimension of space-time. Now consider the quantity

 λ = + −4 8J D   (1.9)

If the momentum p → ∞  and

 λ < 0

e e

e
e

γ

Figure 1.3 The photon turns into an electron-positron pair (the circle) that
 subsequently annihilate producing another photon.
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then I in Eq. (1.8) is fi nite and calculations give answers that make sense. On the 
other hand, if the momentum p → � but 

 λ > 0

the integral in Eq. (1.8) diverges. This leads to infi nities in calculations. Now if 
I → � but does so slowly, then a mathematical technique called renormalization 
can be used to get fi nite results from calculations. Such is the case when working 
with established theories like quantum electrodynamics.

The Standard Model
In its fi nished form, the theoretical framework that describes known particle 
interactions with quantum fi eld theory is called the standard model. In the standard 
model, there are three basic types of particle interactions. These are

• Electromagnetic

• Weak

• Strong (nuclear)

There are two basic types of particles in the standard model. These are

• Spin-1 gauge bosons that transmit particle interactions (they “carry” the 
force). These include the photon (electromagnetic interactions), W ±  and Z 
(weak interactions), and gluons (strong interactions).

• Matter is made out of spin-1/2 fermions, such as electrons.

In addition, the standard model requires the introduction of a spin-0 particle called the 
Higgs boson. Particles interact with the associated Higgs fi eld, and this interaction 
gives particles their mass. 

Quantizing the Gravitational Field
The general theory of relativity includes gravitational waves. They carry angular 
momentum J = 2, so we deduce that the quantum of the gravitational fi eld, known 
as the graviton, is a spin-2 particle. It turns out that string theory naturally includes 
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a spin-2 boson, and so naturally includes the quantum of gravity. Returning to 
Eq. (1.8), if we let J = 2 and consider space-time as we know it D = 4, then

 4 8 4 2 8 4 4J D− + = − + =( )

So in the case of the graviton,

 p pJ4 8 0 1− → =

and

 I d p∼ ∫ →4 �

when integrated over all momenta. This means that gravity cannot be renormalized 
in the way that a theory like quantum electrodynamics can, because it diverges 
like p4. In contrast, consider quantum electrodynamics. The spin of the photon is 
1, so

 4 8 4 1 8 4 0J D− + = − + =( )

and the loop integral goes as

 I p d p p d pJ D∼ 4 8 4 4− −∫ ∫= ⇒

Goes like

 ≈ =p0 1

This tells us that incorporating gravity into the standard quantum fi eld theory 
framework is an extremely problematic enterprise. The bottom line is nobody really 
had any idea how to do it for a very long time. 

String theory gets rid of this problem by getting rid of particle interactions that 
occur at a single point. Take a look at the uncertainty principle

 ∆ ∆x p ∼ ?

If momentum blow up, that is, ∆ → ∞p , this implies that ∆ →x 0 . That is, large 
(infi nite) momentum means small (zero) distance. Or put another way, pointlike 
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interactions (zero distance) imply infi nite momentum. This leads to divergent loop 
integrals, and infi nities in calculations.

So in string theory, we replace a point particle by a one-dimensional string. This 
is illustrated in Fig. 1.4.

Some Basic Analysis in String Theory
In string theory, we don’t go all the way to ∆ →x 0 but instead cut it off at some 
small, but nonzero value. This means that there will be an upper limit to momentum 
and hence ∆ /→ ∞p . Instead momentum goes to a large, but fi nite value and the loop 
integral divergences can be gotten rid of.

If we have a cutoff defi ned by the length of a string, then the uncertainty relations 
must be modifi ed. It is found that in a string theory uncertainty in position ∆x is 
approximately given by

 ∆ =
∆

+ ′
∆

x
p

p?
?

α    (1.10)

A new term has been introduced into the uncertainty relation, ′ ∆α ( / )p ? which can 
serve to fi x a minimum distance that exists in the theory. The parameter ′α is related 
to the string tension TS

 as

 ′ =α
π
1

2 TS

  (1.11)

The minimum distance scale we can see in string theory is given by

 xmin ∼ 2 ′α   (1.12)

Old quantum field theory:
A particle is a mathematical
point, with no extension

. 

String theory: Particles are strings,
with extension in one dimension.
This gets rid of infinities

Figure 1.4 In string theory, particles are replaced by strings, spreading out interactions 
over space-time so that infi nities don’t result.
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So if ′ ≠α 0 , then the problems that result from pointlike interactions are avoided 
because they cannot take place. Interactions are spread out and infi nities are avoided.

String theory proposes to be a unifi ed theory of physics. That is, it is supposed to 
be the most fundamental theory that describes all particle interactions (known and 
perhaps currently unknown), particle types, and gravity. We can gain some insight 
into the unifi cation of all forces into a single framework by building up quantities 
from the fundamental constants in the theory.

If you have studied quantum fi eld theory then you know that a dimensionless 
constant called the fi ne structure constant can be constructed out of e c, ,?  and 
where e is the charge of the electron, ? is Planck’s constant, and c is the speed of 
light. The fi ne structure constantα gives us a measure of the strength of the 
electromagnetic fi eld (through the coupling constant). It is given by

 α
πEM = ≈ <
e

c

2

4

1

137
1

?
   (1.13)

The fact that αEM < 1 is what makes perturbation theory possible, since we can 
expand a quantity in powers of αEM to obtain approximate answers. 

A similar procedure can be applied to gravity. We consider the gravitational 
force because it is the only force not described in a unifi ed framework based on 
quantum theory. The other known forces, the electromagnetic, the weak, and the 
strong forces are described by the standard model, while gravity sits on the sidelines 
relegated to the second string classical team. The constants important in gravitational 
interactions include Newton’s gravitational constant G, the speed of light c, and if 
we are talking about a quantum theory of gravity, then we need to include Planck’s 
constant ?. Two fundamental quantities can be derived using these constants, a 
length and a mass. This tells us the distance and energy scales over which quantum 
gravity will start to become important.

First let’s consider the length, which is aptly called the Planck length. It is given by

 l
G

cp = −?
∼3

3510  m   (1.14)

This is one very small distance. For comparison, the dimension of a typical atomic 
nucleus is

 lnucleus  m∼10 15−

Unifi cation and Fundamental Constants
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which  is bigger than the Planck length by a factor of 1020! This means that quantum 
gravitational effects can (naively at least) be expected to take place over very 
small distance scales. To probe such small distance scales, you need very high 
energies. This is confi rmed by computing the Planck mass, which turns out to be 
given by

 M
Gcp = −?

∼10 8  kg    (1.15)

While this is a small value to what might be measured when considering your 
waistline, it’s pretty large compared to the masses of the fundamental particles. 
This tells us, again, that high energies are needed to probe the realm of quantum 
gravity. The Planck mass also turns out to be the mass of a black hole where its 
Schwarzschild radius is the same as its Compton wavelength, suggesting that this is 
a length scale at which quantum gravitational effects become signifi cant.

Next we can form a Planck time. This is given by

 t
l

cp
p= −∼10 44  s   (1.16)

This is a small time interval indeed. So if you think quantum gravity, think small 
distances, small time intervals, and large energies. At these high energies gravity 
becomes strong. To see how this works think about the following. In a freshman 
physics course you learn that the electromagnetic force is something like 1040 times 
as strong as the gravitational interaction. But at the high energies we are describing, 
where quantum gravity becomes important, the strength of gravitational interactions 
is comparable to that of the other forces—gravity becomes strong and hence is 
important in particle interactions. Since the particle accelerators that are currently 
in existence (or that can even be dreamed up) probe energies that fall on a much 
smaller scale, gravity can be considered to be extremely weak at presently accessible 
energies.

String Theory Overview
So far we’ve seen why strings can be useful in developing a fi nite quantum theory 
of gravity, and we’ve seen the energy scales over which such a theory might be 
important. Let’s close the chapter by looking at some basic notions included in 
string theory. The fi rst is that fundamental particles are not points, they are strings, 
as shown in Fig. 1.5.



CHAPTER 1 Introduction 13

Strings can be open (Fig. 1.5) or closed (Fig. 1.6), the latter meaning that the 
ends are connected. 

Excitations of the string give different fundamental particles. As a particle moves 
through space-time, it traces out a world line.  As a string moves through space-
time, it traces out a worldsheet (see Fig. 1.7), which is a surface in space-time 
parameterized by ( , )σ τ . A mapping xµ τ σ( , ) maps a worldsheet coordinate 
( , )σ τ to the space-time coordinate x.

So, in the world according to string theory, the fundamental objects are tiny 
strings with a length on the order of the Planck scale (10 33−  cm). Like any string, 

Figure 1.5 Fundamental particles are extended one-dimensional objects 
called strings.

Figure 1.6 A closed string has no loose ends.

x

t

Schematic representation of a
string moving through space-
time, it is represented by a
worldsheet (a tube for a closed
string)

x

t

A particle moving through
space-time has a world
line 

Figure 1.7 A comparison of a worldsheet for a closed string and a world line 
for a point particle. The space-time coordinates of the world line are parameterized 
as x xµ µ= ( )τ , while the space-time coordinates of the worldsheet are parameterized 

as xµ( , )τ σ  where ( , )σ τ give the coordinates on the surface of the worldsheet.
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these fundamental strings can vibrate and vibrations at different resonant frequencies 
(excitations of the string) give rise to particles with different properties. For a 
particle with spin J and mass mJ, the mass and spin of the particle are related to the 
string tension through ′α as

 J mJ= ′α 2   (1.17)

Think of a vibrating string having different modes in the way that a violin string can 
vibrate at different frequencies. Instead of having a plethora of “fundamental 
particles” with mysterious origin, there is only one fundamental object—a string 
that vibrates with different modes giving the appearance that there are multiple 
fundamental objects. Each mode appears as a different particle, so one mode could 
be an electron, while another, different mode could be a quark.

It is possible for strings to split apart and to combine. Let’s focus on strings 
splitting apart. Suppose that a parent string is vibrating in a mode corresponding to 
particle A. It splits in two, with resulting daughter strings vibrating in modes 
corresponding to particles B and C respectively. This process of splitting corresponds 
to the particle decay:

 A B C→ +

Conversely, strings can join up as well, combining to form a single string. This 
is a process that until now we have thought of as particle absorption. So processes 
that seemed more on the mysterious side, such as particle decay, are explained with 
a simple conceptual framework.

TYPES OF STRING THEORIES
There appear to be fi ve different types of string theory, but it has been shown that 
they are different ways of looking at the same theory, with the different types related 
by dualities. The fi ve basic types are

• Bosonic string theory  This is a formulation of string theory that only 
has bosons. There is no supersymmetry, and since there are no fermions 
in the theory it cannot describe matter. So it is really just a toy theory. 
It includes both open and closed strings and it requires 26 space-time 
dimensions for consistency.

• Type I string theory  This version of string theory includes both 
bosons and fermions. Particle interactions include supersymmetry and a 
gauge group SO( )32 .This theory and all that follow require 10 space-time 
dimensions for consistency.
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• Type II-A string theory  This version of string theory also includes 
supersymmetry, and open and closed strings. Open strings in type II-A 
string theory have their ends attached to higher-dimensional objects called 
D-Branes. Fermions in this theory are not chiral.

• Type II-B string theory  Like type II-A string theory, but it has chiral 
fermions.

• Heterotic string theory  Includes supersymmetry and only allows 
closed strings. Has a gauge group called E E8 8× . The left- and right-
moving modes on the string actually require different numbers of space-
time dimensions (10 and 26). We will see later that there are actually two 
heterotic string theories.

M-THEORY
All these string theories might seem confusing, and make the whole enterprise seem 
like a stab in the dark. However, as we go through the book we will learn about the 
different dualities that connect the different types of string theories. These go by the 
names of S duality and T duality. 

Since these dualities exist, there has been speculation that there is an underlying, 
more fundamental theory. It does by the odd name of M-theory but “M” does not 
really have any agreed upon or specifi c meaning (perhaps mother of all theories). 
One concept in M-theory is that the space-time manifold (i.e., its structure) is not 
assumed a priori but rather emerges from the vacuum. 

One concrete manifestation of M-theory is based on matrix mechanics, the kind 
you are used to from ordinary quantum mechanics. In this context “M” really means 
something, and we call it matrix theory. In this theory, if we compactify (i.e., make 
really tiny) n spatial dimensions on a torus, we get out a dual matrix theory that is 
just an ordinary quantum fi eld theory in n + 1 space-time dimensions.

D-BRANES
A D-brane, mentioned in our discussion of string theory types, is an extension of 
the common sense notion of a membrane, which is a two-dimensional brane or 
2-brane. A string can be though of as a one-dimensional brane or 1-brane. So a 
p-brane is an object with p spatial dimensions.

D-branes are important in string theory because the ends of fundamental strings 
can attach to them. It is believed that quantum fi elds described by Yang-Mills 
type theories (such as electromagnetism) involve strings that are attached by 
D-branes. This idea has great explanatory power, because gravitons, the quantum 
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of gravity, are not attached to D-branes. They can travel or “leak off” a D-brane, 
so we don’t see as many of them. This explains what until now has been a great 
mystery, why electromagnetism (and the other known forces) is so much stronger 
than gravity. 

So this picture of the universe has a three-dimensional brane (or 3D-brane) 
embedded in a higher-dimensional space-time called the bulk. Since we interact 
with the physical world primarily through electromagnetic forces (light, chemical 
reactions, etc.), which are mediated by particles that are really strings stuck to the 
brane, we experience the world as having three spatial dimensions. Gravity is 
mediated by strings that can leave the brane and travel off into the bulk, so we see 
it as a much weaker force. If we could probe the bulk somehow, we would see that 
gravity is actually comparable in strength.

HIGHER DIMENSIONS
We live in a world with three spatial dimensions. In a nutshell this means that there 
are three distinct directions through which movement is possible: up-down, left-
right, and forward-backward. In addition, we have the fl ow of time (forward only as 
far as we know). Mathematically, this gives us the relativistic description of 
coordinates ( , , , )x y z t .

It is possible to imagine a world where one of the spatial directions or dimensions 
have been removed (say up-down). Such a two-dimensional world was described by 
Edward Abbott in his classic Flatland. What if instead, we added dimensions? This 
idea is actually pretty useful in physics, because it provides a pathway toward 
unifying different physical theories. This kind of thinking was originally put forward 
by two physicists named Kaluza and Klein in the 1920s. Their idea was to bring 
gravity and electromagnetism into a single theoretical framework by imagining that 
these two theories were four-dimensional limits of a fi ve-dimensional supertheory. 
This idea did not work out, because back then people did not know about quantum 
fi eld theory and so did not have a complete picture of particle interactions, and did 
not know that the fully correct description of electromagnetic interactions is provided 
by quantum electrodynamics. But this idea has a lot of appeal and reemerged in 
string theory.

Kaluza and Klein had to explain why we don’t see the higher dimension, and hit 
upon the idea of compactifi cation—a procedure where we make the higher 
dimensions so small they are not detectable at lower energy (i.e., on the kind of 
energy scales that we live in). If they are small enough, the extra dimensions can’t 
be noticed or detected scientifi cally without the existence of the appropriate 
technology. If they are so small that they are on the Planck scale, we might not be 
able to see them at all. This concept is illustrated in Fig. 1.8. 
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String theory requires the existence of extra spatial dimensions for technical 
reasons that we will discuss in later chapters. An interesting side effect of these 
extra dimensions is that another mystery of particle physics is done away with. 
Experimentalists have worked out that there are three families of particles. For 
example, when considering leptons, there is the electron and its corresponding 
neutrino. But there are also the “heavy electrons” known as the muon and the tau, 
together with their corresponding neutrinos, that are really just duplicates of the 
electron. The same situation exists for the quarks. Why are there three particle 
families? And why are there the types of particle interactions that we see? It turns 
out that higher spatial dimensions together with string theory may provide an 
answer.

The way that you compactify the extra dimensions (the topology) determines the 
numbers and types of particles seen in the universe. In string theory this results 
from the way that the strings can wrap around the compactifi ed dimensions, 
determining what vibrational modes are possible in the string and hence what types 
of particles are possible. 

One important compactifi ed manifold that we will see is called the Calabi-Yau 
manifold. A Calabi-Yau manifold that compactifi es six spatial dimensions and 
leaves three spatial dimensions “macroscopic” plus time gives a ten-dimensional 
universe as required by most of the string theories. A key aspect of Calabi-Yau 
manifolds is that they break symmetries. Thus another mystery of particle physics 
is explained, so-called spontaneous symmetry breaking (see Quantum Field Theory 
Demystifi ed for a description of symmetry breaking).

Close up, we see the full
dimension of a cylinder  

If the radius of the cylinder
is very small, from far away
the cylinder appears one-
dimensional, as a line  

Figure 1.8 Compactifi cation explains why we may not be aware of extra 
spatial dimensions even if they exist. If the radius of a cylinder is very 

small, from far away it looks like a line. 
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Summary
Quantum mechanics and general relativity were the major developments in 
theoretical physics in the twentieth century. Unifying them into a single theoretical 
framework has proven extremely challenging, if not impossible. This is because the 
resulting quantum theories are plagued by infi nities that result from the fact that 
interactions take place at a single mathematical point (zero distance scale). By 
spreading out the interactions, string theory offers the hope of developing not only 
a unifi ed theory of particle physics, but a fi nite theory of quantum gravity.

         Quiz
 1. If λ = + − >4 8 0J D and p → � then

 (a) the loop integral is convergent.

 (b) the loop integral diverges.

 (c) the loop integral can be calculated, but the results are meaningless.

 2. The scale of the Planck length and Planck mass tell us that quantum gravity

 (a) operates on small-distance and high-energy scales.

 (b) is nonsensical.

 (c) operates on small-distance and small-energy scales.

 (d) operates on large-distance and small-energy scales.

 3. Perturbation theory is possible in quantum electrodynamics because

 (a) αEM > 1

 (b) αEM = 1

 (c) αEM < 1

 (d) Perturbation theory is not possible in quantum electrodynamics

 4. The quantum uncertainty relations are modifi ed in string theory as

 (a) ∆
∆

+
∆

x
p

p
∼
?

?

 (b) ∆
∆

+ ′
∆

x
p

p
∼
?

?
α

 (c) ∆
∆

− ′
∆

x
p

p
∼
?

?
α

 (d) ∆
′∆

x
p

∼
?

α
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 5. The minimum distance scale in string theory is about

 (a) xmin ∼
1

2 ′α
 (b) x TSmin ∼ 2

 (c) xmin ∼ 0

 (d) x
TS

min =
2

π
 6. The topology of compactifi ed dimensions

 (a) determines the types of particles seen in the universe.

 (b) has no impact on particle interactions.

 (c) restores symmetries in quantum fi eld theories.

 7. Heterotic string theory has the gauge group

 (a) E E6 6×
 (b) SU( )32

 (c) E E8 8×
 (d) SO( )16

 8. String theory explains the difference between electromagnetism and gravity as

 (a) String theory provides the unifi cation energy of gravity and electromagnetism.

 (b) Gravitons are not connected to the brane, so can leak off into the bulk 
making gravity appear much weaker than electromagnetism. 

 (c) Photons leak off into the bulk, making electromagnetic phenomena 
more prominent.

 9. Bosonic string theory is not realisitic because

 (a) it includes 26 space-time dimensions.

 (b) it does not allow Calabi-Yau compactifi cation.

 (c) it does not include fermions, so cannot describe matter.

 (d) it lacks a E E8 8× symmetry group.

 10. In string theory particle decay is explained by

 (a) a string splitting apart into multiple daughter strings.

 (b) it remains poorly understood.

 (c) quantum tunneling through the string potential.

 (d) strong vibrational modes that decouple the string.
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The Classical String I: 
Equations of Motion

When you studied classical mechanics and quantum fi eld theory, you learned about 
the action and deriving the equations of motion from the Euler-Lagrange equations. 
This can be done in the case of the string, and it can be done relativistically. If we 
are going to consider a unifi ed theory of physics, this is a good place to start—
ensuring that we understand how to describe the dynamics of strings in a manner 
that is fully consistent with relativity before moving on to introduce the quantum 
theory. 

When we quantize our strings, our fi rst foray into a fully relativistic, quantum 
theory will be an instructive but unrealistic case, the bosonic string. As the name 
implies, we are going to look at a theory consisting exclusively of bosons—that is, 
states with integral spin. We know that this cannot be a realistic theory because in 

CHAPTER 2
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the actual universe while force-carrying particles are indeed bosons, fundamental 
matter particles (like electrons) have half-integral spin, that is, they are fermions. 
So a theory that describes a world consisting entirely of bosons does not describe 
the real universe. 

Nonetheless, we start here because it is an easier way to approach string theory 
and we can learn the nuts and bolts in a slightly simpler context. We are going to 
approach bosonic strings in three steps. In this chapter, we will develop the theory 
of classical, relativistic strings starting with the action principle and deriving the 
equations of motion.  In Chap. 3, we will learn about the stress-energy tensor and 
conserved currents, specifi cally conserved worldsheet currents. Finally, in the last 
chapter of this part of the book, we will quantize the strings using a procedure of 
fi rst quantization (i.e., fi rst quantization of point particles gives single-particle 
states). In the end you have a quantized relativistic theory.

To this end, we begin our journey into the world of classical relativistic point 
particle moving in space-time to illustrate the techniques used.

The Relativistic Point Particle
The task at hand is to describe the motion of a free (relativistic) point particle in 
space-time. One way to approach the problem is by using an action principle. 
Before we do that, let’s set up the arena in which the particle moves. Let its motion 
be defi ned with respect to space-time coordinates X µ where X 0 is the timelike 
coordinate (i.e., X ct0 = ) and X i where i ≠ 0 are the spacelike coordinates (say x, y, 
and z). While you are probably used to lowercase letters like xµ to represent 
coordinates, in string theory uppercase letters are used, so we will stick to that 
convention.

Anticipating the fact that string theory takes place in a higher-dimensional arena, 
rather than the usual one time dimension and three spatial dimensions we are used 
to, we consider motion in a D-dimensional space-time. There is one time dimension 
but now we allow for the possibility of d D= − 1 spatial dimensions. We reserve 0 
to index the time dimension hence our coordinates range over µ = 0, ,. . . d . 

Now, the motion or trajectory of a particle is described such that the coordinates 
are parameterized by τ , which parameterizes the world-line of the particle. That is, 
this is the time given by a clock that is moving or carried along with the particle 
itself. We can emphasize this parameterization by writing the coordinates as 
functions of the proper time:

 X Xµ µ τ= ( )  (2.1)
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To describe distance measurements, we are going to need a metric, that is, a function 
which allows us to defi ne the distance between two points. Here we will stick with 
special relativity and use the fl at space Minkowski metric which is usually denoted 
by ηµν . You may recall that the time and spatial components of the metric have 
different sign; the choice used is referred to as the signature of the metric. In string 
theory, it is convenient to place the negative sign with the time component, so in the 
case of d = 3  spatial dimensions we can write the Minkowski metric as a matrix

 

ηµν =

−⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (2.2)

More compactly, we can write ηµν = − + + +( , , , ). Generalizing to D-dimensional 
Minkowski space-time, we simply associate a plus sign with products of spatial 
coordinates. So the Lorentz invariant length squared of a vector is

 ( ) ( ) ( ) ( )X X X X X X dµ
µν

µ νη2 0 2 1 2 2= = − + + +  (2.3)

Infi nitesimal lengths or distances are described by

 ds dX dX dX dX dX d2 0 2 1 2 2= − = − −ηµν
µ ν ( ) ( ) ( )  (2.4)

We include the minus sign out in front of the metric in Eq. (2.4) to ensure that 

ds dX dX= −ηµν
µ ν  is real for timelike trajectories. With these notations in hand, 

we are ready to describe the trajectory of a free relativistic particle using the action 
principle.

The action principle tells us that the relativistic motion of a free particle is 
proportional to the invariant length of the particles trajectory. That is,

 S ds= − ∫α  (2.5)

First let’s fi gure out what the constant of proportionality is.

EXAMPLE 2.1
Given that the action of a free, non-relativistic particle is S dt mv0

21 2= ∫ ( / ) , where 
m is the mass of the particle and v is the particle velocity, determine the nature of 
the constant in Eq. (2.5).
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SOLUTION
For simplicity, we consider motion in one spatial dimension. Now

 

S ds

dt dx

dt
dx

dt

dt

= −

= − −

= − −

= − −

∫
∫

∫

α

α

α

α

2 2

2

2
1

1 v2∫  

Now recall the binomial theorem. This tells us that

 
1 1

1

2
± ≈ ±x x

 

Hence,

 
1 1

1

2
2 2− ≈ −v v

 

Therefore

 

S dt v

dt v dt dt v

= − −

≈ − −⎛
⎝⎜

⎞
⎠⎟ = − +

∫

∫ ∫

α

α α α

1

1
1

2

1

2

2

2 2∫∫

Comparison of the second term in this expression with S dt mv0
21 2= ∫ ( / )  tells us   

that α  must be the mass of the particle.
We can also determine the units of α  and deduce that it is the mass of the 

particle from dimensional analysis. First, what are the units of action? Recall from 
your studies of quantum theory that the units of action from Planck’s constant  are 
mass times length squared per time: 

 [ ] =
ML

T

2

 (2.6)
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Now let’s look at S ds= − ∫α . From the integral, we have length L, so we have

 
ML

T
L

2

= [ ]α

So it must be the case that

 [ ]α =
ML

T

We can obtain this result using the mass of the particle together with the speed of 
light c, which is of course a length over time. That is,

 

α

α

=

⇒ =

m

c
ML

T
[ ]

In units where c = = 1, which are commonly used in particle physics and string 
theory, the action is dimensionless. Hence mass is inverse length and 

 

α

α

=

⇒ = =

m

M
L

[ ]
1  (2.7)

Now let’s see how to write down the action and obtain the equations of motion 
from it. We start with the defi nition of infi nitesimal length given in Eq. (2.4). This 
gives the action as

 
S m dX dX= − −∫ ηµν

µ ν  (2.8)

Let’s rewrite the integrand:

 

− = − ⎛
⎝⎜

⎞
⎠⎟

= −

η η τ
τ

τ η

µν
µ ν

µν
µ ν

µν

µ

dX dX
d

d
dX dX

d
dX

d

2

ττ τ
τ η

ν

µν
µ νdX

d
d X X= −
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This allows us to write the action in the form

 S m d X X= − −∫ τ ηµν
µ ν  (2.9)

This action is a nice compact form that allows us to derive the equations of motion. 
As you recall from your studies of classical mechanics or quantum fi eld theory, the 
quantity in the integrand is called the lagrangian:

 
L m X X m X= − − = − −ηµν

µ ν 2

There are two problems with the action so far developed in Eq. (2.9). First, think 
about what happens in the case of a massless particle. Setting m = 0  leaves us with 
S → 0 and so there is nothing to vary to obtain the equations of motion. So this 
action isn’t very helpful in the case of a massless particle. Also, it turns out that 
quantization is not easy when we have a square root in the action. For these reasons, 
we introduce an auxiliary fi eld that we will denote a( )τ  and consider the 
lagrangian

 L
a

X
m

a= −
1

2 2
2

2

We can use this to defi ne an alternative expression for the action

 ′ = −⎛
⎝⎜

⎞
⎠⎟∫S d

a
X m a

1

2

1 2 2τ    (2.10)

We can vary this action to fi nd an equation of motion for the auxiliary fi eld a( )τ . We 
fi nd

 

δ δ τ

τ δ

′ = −⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

∫

∫

S d
a

X m a

d
a

X

1

2

1

1

2

1

2 2

2 −−
⎛
⎝⎜

⎞
⎠⎟

= − −⎛
⎝⎜

⎞
⎠⎟∫

δ

τ

( )m a

d
a

X m

2

2
2 21

2

1
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Now we set δ ′ =S 0. Since this means that the integrand must be 0, we obtain the 
equation

 

− − =

⇒ + =

1
0

0

2
2 2

2 2 2

a
X m

X m a

This is the equation of motion for the auxiliary fi eld. From this we fi nd an expression 
for the auxiliary fi eld given by

 a
X

m
= −

2

2
   (2.11)

Using Eq. (2.11), we can show that the action in Eq. (2.10) is equivalent to Eq. (2.8), 
which we do in the next example.

EXAMPLE 2.2
Show that if a X m= −( / ) /2 2 1 2, the action ′ = −∫S d a X m a1 2 1 2 2/ [( / ) ]τ  can be recast 

in the form S m dX dX= − −∫ ηµν
µ ν.

SOLUTION
Let’s start by recalling that X X X2 = ηµν

µ ν . So we can rewrite the action ′S  in the 
following way:

 

′ = −⎛
⎝⎜

⎞
⎠⎟

=
−

− −

∫

∫

S d
a

X m a

d
m

X
X m

1

2

1

1

2

2 2

2

2
2 2

τ

τ XX

m

d
m

X
X m X

d

2

2

2

2
2 21

2

1

2

⎛

⎝
⎜

⎞

⎠
⎟

=
−

− −
⎛

⎝
⎜

⎞

⎠
⎟

=

∫ τ

τ∫∫
−

− −
⎛

⎝
⎜

⎞

⎠
⎟

m

X
X m X X

2

2
2 ηµν

µ ν
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Now, let’s use a simple algebraic trick to rewrite the fi rst term. Remember from 
complex variables that i2 1= − . This means that

 

−
= − −

−

= −
−

= −
−

m

X
X

m

X
X

m

X
i X

2

2
2

2

2
2

2

2
2 2

1 1( )( )

mm

X
i X

m i X

m i X

2

2
4 4

2 4 2

4 2

= − −

= − −

But i4 1= + , and so − − = − − = − −m i X m X m X X4 2 2 ηµν
µ ν . Therefore the 

action is

 

′ =
−

− −
⎛

⎝
⎜

⎞

⎠
⎟

= −

∫

∫

S d
m

X
X m X X

d m

1

2

1

2

2

2
2τ η

τ

µν
µ ν

ηη η

τ η

µν
µ ν

µν
µ ν

µν
µ ν

X X m X X

m d X X

− −( )
= − −( ) =∫ SS

This demonstrates that the two actions are equivalent.

Strings in Space-Time
At this point we have reviewed some basic techniques that help us calculate the 
equations of motion for a free relativistic point particle. We are going to extend this 
work to the case of a string moving in space-time. A point particle has no extent 
whatsoever, so can be described as a zero-dimensional object. We have seen that its 
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motion can be described by saying that a point particle (zero-dimensional) sweeps 
out a path or line in space-time (one dimension) that we call the world-line. A 
string, unlike a point particle, has some extension in one dimension, so it’s a one-
dimensional object. As it moves, the string (one-dimensional) sweeps out a two-
dimensional surface in space-time that scientists call a worldsheet. For example, 
imagine a closed loop of string moving through space-time. The worldsheet in this 
case will be a tube, as shown in Fig. 2.1.

We can summarize this in the following way:

• The path of a point particle is a line in space-time. A line can be 
parameterized by a single parameter, which is the proper time.

• As a string moves through space-time it sweeps out a two-dimensional 
surface called a worldsheet. Since the worldsheet is two-dimensional, we 
need two parameters, which we can generally denote by ξ ξ1 2and .

Locally the coordinates ξ ξ1 2and  can be thought of as coordinates on the worldsheet. 
Or, another way to look at this is to parameterize the worldsheet, we need to 
account for proper time and the spatial extension of the string. So, the fi rst parameter 

ct

Figure 2.1 The world-sheet of a closed string is a tube in space-time.
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is once again the proper time τ , and the second parameter, which is related to the 
length along the string, is denoted by σ :

 ξ τ ξ σ1 2= =

Coordinates on the worldsheet ( , )τ σ  are mapped onto space-time by the functions 
(called the string coordinates) 

 X µ τ σ( , )  (2.12)

So time and spatial position on the string are mapped onto the spatial coordinates in 
(d + 1) dimensional space-time as

 
{ ( , ), ( , ), , ( , )}X X X d0 1τ σ τ σ τ σ…

Now, we need to write down the action for the string which will generalize 
Eq. (2.8) to our new higher-dimensional world, that is, to the case of the worldsheet. 
This is done in the following way. Recall that the action of a point particle is 
proportional to the length of its world-line [Eq. (2.5)]. We just noted that a string 
sweeps out a two-dimensional worldsheet in space-time. This tells us that if we are 
going to generalize the notion of the action of a point particle, we might expect that 
the action of a string is proportional to the surface area of the worldsheet. This is in 
fact the case. Anticipating that the constant of proportionality will turn out to be the 
string tension, we can write this action as

 S T dA= − ∫  (2.13)

where dA is a differential element of area on the worldsheet. To fi nd the form of 
dA, we start by considering a differential line element ds2  and introduce coordinates 
on the worldsheet as ξ τ ξ σ1 2= =and . Doing a little algebra we have

 

ds dX dX

X X
d d

2 = −

= −
∂
∂

∂
∂

η

η
ξ ξ

ξ ξ

µν
µ ν

µν

µ

α

ν

β
α β

 

This allows us to defi ne an induced metric on the worldsheet. This is given by

 γ η
ξ ξαβ µν

µ

α

ν

β=
∂
∂

∂
∂

X X
   (2.14)
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This metric determines distances on the worldsheet. We say that this metric is 
induced because it includes the metric of the background space-time in its defi nition 
(we are taking space-time to be fl at, so are using ηµν ). That is to say, on the surface 
of the worldsheet, there is a new measure of distance, but that measure of distance 
is determined by the background space-time through its metric (which in general, 
is not ηµν). Proceeding, we now have

 
ds d d2 = γ ξ ξαβ

α β

Using the notations

 
X

X
X

Xµ
µ

µ
µ

τ σ
=
∂
∂

′ =
∂
∂

We can write the components of the induced metric (for the case of fl at space-
time) as

 

γ η
τ τ

γ η
σ τ

ττ µν

µ ν

στ µν

µ ν

=
∂
∂

∂
∂

=

=
∂
∂

∂
∂

= ⋅ ′

X X
X

X X
X

2

XX
X X

X X
X

= =
∂
∂

∂
∂

=
∂
∂

∂
∂

= ′

γ η
τ σ

γ η
σ σ

τσ µν

µ ν

σσ µν

µ ν
2

 (2.15)

Using Eq. (2.15), we can write the induced metric as a matrix in ( , )τ σ  space

 γ αβ =
⋅ ′

⋅ ′ ′
⎛

⎝⎜
⎞

⎠⎟
X X X

X X X

2

2
 (2.16)

Notice that the determinant of this matrix is given by

 γ γ αβ= = ′ − ⋅ ′det ( )X X X X2 2 2  (2.17)

Let’s go back to where we started, seeking an expression for the action

 
S T dA= − ∫
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From elementary calculus, we know that in a given space described by a metric Gαβ, 
an element of surface area is written as

 dA G d= −det αβ ξ2

In our case, the metric we need is the induced metric [Eq. (2.15)]. So we take 

dA d d= −γ τ σ . If we integrate from some initial proper time τ
i
 to some fi nal 

proper time τ f  and over the length of the string (which we’ll denote as ) then the 
action can be written as

 S T d d
i

f= − −∫ ∫τ σ γ
τ

τ

0  (2.18)

Or explicitly, using Eq. (2.17)

 S T d d X X X X
i

f= − ′ − ⋅ ′∫ ∫τ σ
τ

τ

0

2 2 2( )  (2.19)

The actions in Eqs. (2.18) and (2.19) are called the Nambu-Goto action, which 
describes the dynamics of a (classical) relativistic string. As the motion of a point 
particle in space-time serves to minimize the length of the world-line, the motion of a 
classical string in space-time acts to minimize the surface area of the worldsheet. 

Before moving ahead to a quantum theory of strings, we need to fi nd the equations 
of motion for the string which we can then later quantize.

Equations of Motion for the String
Now that we have the action in place (and hence the lagrangian) we can obtain the 
equations of motion for the string. We do this using the action principle, which tells 
us to vary the action and set the result to 0

 δS = 0

When computing the variation of the action, we will derive the equations of motion that 
will be a partial differential equations—meaning that we will need to specify boundary 
conditions in order to solve them. There are two different types of strings we need to 
consider when looking at boundary conditions: open strings and closed strings.

If a string is open, this means exactly what it says, that the string is a free piece 
of string with loose ends moving through space-time. The worldsheet in this case 
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is a strip, and by convention we write the endpoint as σ π= .  There are two types 
of boundary conditions that are possible for open strings. The fi rst is called Neumann 
or free endpoint boundary conditions. We can write this boundary condition in 
terms of the lagrangian or the conjugate momentum:

 δ
δ µ

σ π
µ
σ

σ π

L

X
P

′
= =

=
=

0
0

0 0
,

,
or (Neumann)  (2.20)

Another way to write Neumann boundary conditions for the open string is

 
∂
∂

= =
X µ

σ
σ π0 0when ,  (2.21)

In this case, no momentum can fl ow off the ends of the string. This indicates that 
the ends of the string are free to move about space-time. On the other hand, suppose 
that the ends of the string are fi xed instead. In that case we have Dirichlet or fi xed 
point boundary conditions. These are given by

 δ
δ τµ

σ π

µ

σ π

L

X

X

= =

=
∂
∂

=
0 0

0 0
, ,

or (Dirichlet)  (2.22)

A closed string is a little loop moving through space-time. In this case, the worldsheet 
is a cylinder or a tube. The boundary conditions are periodic, described by

 X Xµ µτ σ τ σ π( , ) ( , )= +  (2.23)

Now let’s write down the conjugate momenta for the string. First recall the 
lagrangian

 L T X X X X= − ⋅ ′ − ′( ) ( ) ( )2 2 2

The conjugate momentum corresponding to the coordinate s is

 

P
L

X X
T X X X X

T

µ
σ

µ µ=
∂
∂ ′

=
∂

∂ ′
− ⋅ ′ − ′( )

= −

( ) ( ) ( )2 2 2

2
(( ) ( ) ( ) ( )

/
X X X X X X X X⋅ ′ − ′⎡⎣ ⎤⎦ ⋅ ′ −

−2 2 2 1 2
2 2µ

22

2

2 2

′⎡⎣ ⎤⎦

= −
⋅ ′ − ′

⋅ ′ −

X

T
X X X X X

X X X

µ

µ µ( )

( ) ( ) (( )′X 2

 (2.24)
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and we also have a conjugate momentum corresponding to the coordinate τ :

 

P
L

X X
T X X X X

T

µ
τ

µ µ=
∂
∂

=
∂

∂
− ⋅ ′ − ′( )

= −

( ) ( ) ( )2 2 2

2
(( ) ( ) ( ) ( )

/
X X X X X X X X⋅ ′ − ′⎡⎣ ⎤⎦ ⋅ ′ ′ − ′

−2 2 2 1 2
2 2µ

22

2

2 2

X

T
X X X X X

X X X

µ

µ µ

⎡⎣ ⎤⎦

= −
⋅ ′ ′ − ′

⋅ ′ −

( )

( ) ( ) (( )′X 2

 (2.25)

Now, let’s vary the action to obtain the equations of motion for the string. First, if 
it’s been awhile since you’ve had fi eld theory, convince yourself that

 

δ δ
τ τ

δ

δ δ
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µ
µ

µ

µ
µ

X
X

X

X
X

=
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⎛
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Then, we can vary the action, and using the conjugate momenta we get
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µS T d d
L

X
X

L

X
X

i

f= −
∂
∂

∂
∂

+
∂
∂ ′

∂
∂∫ ∫0

( ) ( µµ

τ

τ

µ
τ µ

µ
στ σ

τ
δ

σ
δ

)

( ) (

⎡
⎣⎢

⎤
⎦⎥

= −
∂
∂

+
∂
∂∫ ∫T d d X

i

f

0
Π Π XX µ )
⎡
⎣⎢

⎤
⎦⎥

We can rewrite this expression so that we can get terms multiplied by δ µX  by using 
the product rule from calculus. For example,

 

∂
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∂
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P X
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P
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Similarly,

 
P X P X X

P
µ
σ µ

µ
σ µ µ µ

σ

σ
δ

σ
δ δ

σ
∂
∂

=
∂
∂ ( ) − ∂

∂

This means that the variation of the action can be written as
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Recall from classical mechanics that a variation is defi ned such that variation at 
the endpoints is 0, that is, at the initial and fi nal times δ µX = 0. In the case of the 
endpoints of the string, we can apply either Neumann or Dirichlet boundary 
conditions so we will have to handle each case differently (more on this as we go 
along). For now, let’s take δ µX = 0 for simplicity. This means that we can throw 
away the terms in the above expression which are integrals of total derivatives:

 
d P X d P X

i
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This leaves us with
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∫ ∫

∂
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σ

This gives us the equation of motion for the string, derived from the Nambu-Goto 
action:

 
∂
∂

+
∂
∂

=
P Pµ
τ

µ
σ

τ σ
0  (2.26)
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The Polyakov Action
Quantization using the Nambu-Goto action is not convenient due to the presence of 
the square root in the lagrangian. It is possible to write down an equivalent action, 
equivalent in the sense that it leads to the same equations of motion—that does not 
have the cumbersome square root. This action goes by the name of the Polyakov 
action or by the more modern term the string sigma model action. 

Look back to the start of the chapter when we considered the point particle. There 
too, we ran into a situation where the action had a square root and we dealt with it by 
introducing an auxiliary fi eld a( )τ . We can use the same procedure here, to rewrite the 
action for the string in a more convenient form. This is done by introducing an intrinsic 
metric hαβ τ σ( , ), which acts like the auxiliary fi eld. We use the notation hαβ because 
the metric can be written as a matrix. We use the indices to denote rows and columns in 
this matrix. Then, using the notation h h= det αβ, the Polyakov action can be written as

 S
T

d h h X X
P
= − − ∂ ∂∫2

2σ ηαβ
α

µ
β

ν
µν  (2.27)

A historical aside: While Polyakov did important work with this action, it was 
actually proposed by Brink, Di Vecchia, and Howe and independently by Desser 
and Zumino. Polyakov got his name attached to it by using it in a path integral 
quantization of the string. It is also called the string sigma action.

Mathematical Aside: The Euler Characteristic
The Euler characteristic χ  is a number which describes the shape of a topological 
space. Consider a polyhedron, and let V be the number of vertices, E be the number 
of edges, and F be the number of faces. Then the Euler characteristic is

 χ = − +V E F  (2.28)

In string theory, we often want to know whether or not two geometric shapes or 
topologies are similar to one another in a specifi c way. In particular, we want to 
know if we can continuously deform one shape into another (imagine working with 
clay and deforming one shape into another without breaking the clay apart, or 
introducing or losing any holes). Formally, a homeomorphism is a deformation of a 
geometric object into a new shape by stretching or compressing and being it, without 
tearing or breaking it. For instance, the quintessential example is a donut and a 
coffee cup (conveniently paired for police offi cers). You could use a continuous 
deformation to transform one into the other or vice versa. So we say that a coffee 
cup and a donut are homeomorphic. On the other hand, a sphere and a donut are not 
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homomorphic—the donut has a hole but a sphere does not. The bottom line is there 
is no way to transform the donut into the sphere. 

If a geometric shape is homeomorphic to a sphere, then the Euler characteristic is

 χ = − + =V E F 2  (2.29)

Many shapes have an Euler characteristic which vanishes. Some examples of this 
include a torus, a möbius strip, and a Klein bottle. Another example is a cylinder, 
which also has χ = 0 (see Fig. 2.2). Why is this interesting for us? If the worldsheet 
of a string has a vanishing Euler characteristic, then it is possible to write the 
auxiliary fi eld hαβ  as a two-dimensional fl at space metric. That is, we take [using 
the choice of coordinates for the worldsheet as ( , )τ σ ]

 hαβ =
−⎛
⎝⎜

⎞
⎠⎟

1 0

0 1
 (2.30)

Klein bottle

Tours Mobius strip

Cylinder

Figure 2.2 Some surfaces with a vanishing Euler characteristic. When the Euler 
characteristic vanishes, we can defi ne the auxiliary fi eld such that it has 

a representation of the fl at space Minkowski metric. 
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Now notice that with this choice, h h= = −det αβ 1. We also have 

 h X X X X X X X Xαβ
α β τ τ σ σ∂ ⋅∂ = −∂ ⋅∂ + ∂ ⋅∂ = − + ′2 2

 

In this case, we are able to write the Polyakov action in the remarkably simple 
form

 S
T

d X XP = − ′∫2
2 2 2σ ( )  (2.31)

EXAMPLE 2.3
Find the equations of motion using the Polyakov action as written in Eq. (2.27) 
when the auxiliary fi eld takes the form of the fl at space metric.

SOLUTION
In this case we have
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So, we can write the lagrangian as
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X X X
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τ
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µ
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The Euler-Lagrange equations are

 ∂
∂
∂

⎛
⎝⎜

⎞
⎠⎟
+ ∂

∂
∂ ′

⎛
⎝⎜

⎞
⎠⎟
=τ µ σ µ

L

X

L

X
0  (2.32)

Hence, we fi nd that the equations of motion for the relativistic string are

 
∂

∂
−
∂

∂
=

2

2

2

2
0

X Xµ µ

τ σ
 (2.33)

It will be convenient to call upon light-cone coordinates in string theory. First, let’s 
look at how light-cone coordinates can be defi ned in Minkowski space-time in 
general and then consider having them in the context of the worldsheet and the 
equations of motion of the string. As we will see, this will simplify the way we 
write the action and the resulting equations of motion.

For simplicity, let’s take ordinary (3 + 1) dimensional space-time. The contravariant 
coordinates are

 
x x x x xµ = ( , , , )0 1 2 3

 

where x ct0 =  and x x x y x z1 2 3= = =, ,  say. We form light-cone coordinates by 
choosing one spatial direction, which in this case we take to be x1, and forming 
linear combinations of it with x0 as follows:

 x
x x

x
x x+ −=

+
=

−0 1 0 1

2 2
 (2.34)

These are two null or lightlike coordinates, but you can think of x+ as a timelike 
coordinate and x– as a spacelike coordinate. Hence when we use indices and 
summations, we will treat + as a “0” index and – as a “1” index. The other 
coordinates x2 and x3 are left alone.

It is easy to derive the inverse relationship using Eq. (2.34). We have

 x
x x

x
x x0 1

2 2
=

+
=

−+ − + −

 

Light-Cone Coordinates
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Using the Minkowski metric, we have seen that infi nitesimal distances in space-
time can be defi ned according to

 ds dx dx dx dx dx dx2 0 2 1 2 2 2= − = − − −ηµν
µ ν ( ) ( ) ( ) ( 33 2)  

Since,

 dx
dx dx

dx
dx dx0 1

2 2
=

+
=

−+ − + −

 (2.35)

we can rewrite ds2 in terms of light-cone coordinates as

 ds dx dx dx dx2 2 2 3 22= − −+ − ( ) ( )  (2.36)

So, we can defi ne distances in terms of a light-cone Minkowski metric

 η̂µν =

−
−
⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

 (2.37)

Using Eq. (2.37), distances can be written compactly as

 ds dx dx2 = −η̂µν
µ ν  (2.38)

Working with vectors is a simple extension of what we’ve written for coordinates. 
That is, defi ne light-cone components of a vector vµ as

 v
v v

v
v v+ −=

+
=

−0 1 0 1

2 2
 (2.39)

Using the metric from Eq. (2.37) the inner product between two vectors can be 
calculated as

 v w v w v w v w v w v wi i

i

⋅ = = = − − ++ − − + ∑η̂µν
µ ν µ

µ  (2.40)
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where generally, i d= −1 1, ,… . We can apply index raising and lowering to the 
light-cone components of vectors using a sign change

 v v v v+
−

−
+= − = −

The other components of the vector are left unchanged, that is, v vi
i

= . 
Now that we’ve seen how to defi ne light-cone coordinates for space-time, let’s 

see how to defi ne them for the worldsheet and hence for the string. In this case, we 
defi ne

 σ τ σ σ τ σ+ −= + = −  (2.41)

Now since d d dσ τ σ+ = +  and d d dσ τ σ− = − , it should be clear that

 ds d d2 = − + −σ σ  (2.42)

This tells us that we can write the induced metric in Eq. (2.30) indexing a matrix as  
( , , , )+ + + − − + − −  giving

 hαβ =
−

−
⎛
⎝⎜

⎞
⎠⎟

0 1 2

1 2 0

/

/
 (2.43)

You can quickly verify that the determinant is h h= = −det /αβ 1 4 and the inverse of 
Eq. (2.43) is

 hαβ =
−

−
⎛
⎝⎜

⎞
⎠⎟

0 2

2 0  

A relationship can also be written down between the derivatives with respect to the 
coordinates τ σ,  and the light-cone coordinates. For notational convenience, we 
use the relativistic shorthand notation for derivatives

 ∂ =
∂
∂i ix

and write

 ∂ = ∂ + ∂ ∂ = ∂ − ∂+ −

1

2

1

2
( ) ( )τ σ τ σ  (2.44)
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Let’s see how the action for the string is written using light-cone coordinates. 
The Polyakov action, which we reproduce here for your convenience, is

 S
T

d h h X X
P
= − − ∂ ∂∫2

2σ ηαβ
α

µ
β

ν
µν

Using Eq. (2.43), we fi nd that

 
− ∂ ∂ = − ∂ ∂ − ∂+−

+ −
−+h h X X h X X hαβ

α
µ

β
ν

µν
µ ν

µνη η1 4 1 4/ / −− +

+ −

∂

= − ∂ ∂

X X

X X

µ ν
µν

µ ν
µν

η

η2

Hence, using light-cone coordinates we fi nd the Polyakov action can be written as

 S T d X X
P
= ∂ ∂∫ + −

2σ ηµ ν
µν

 (2.45)

We can fi nd the equations of motion by varying S
P
. We have

 

δ δ σ η

σ δ η

µ ν
µν

µ ν
µν

S T d X X

T d X X

T

P
= ∂ ∂

= ∂ ∂

=

∫
∫

+ −

+ −

2

2 ( )

dd X X T d X X2 2σ δ η σ δ ηµ ν
µν

µ ν
µν∫ ∫∂ ∂ + ∂ ∂+ − + −( ) ( )

The following fact helps us proceed:

 δ
σ

δ
σ

µ µ∂
∂

=
∂
∂± ±

X X( )

Therefore,

 δ σ δ η σ δ ηµ ν
µν

µ ν
µνS T d X X T d X XP = ∂ ∂ + ∂ ∂+ − + −∫ ∫2 2( ) ( )

Now integrate by parts to move the derivative away from the δ µX  term. Remember 
that

 
udv uv vdu∫ ∫= −
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In our case, we get

 δ σ δ η σ δ ηµ ν
µν

µ ν
µS T d X X T d X XP = − ∂ ∂ − ∂ ∂∫ ∫+ − − +

2 2( ) ( ) νν

We’ve dropped the boundary terms, which must vanish for Neumann boundary 
conditions in the case of open strings or for the requirement of periodicity for closed 
strings. Since δ µX  is arbitrary and δS

P
= 0, it must be the case that

 ∂ ∂ =+ −X µ 0 (2.46)

This is the wave equation for relativistic strings using light-cone coordinates.

In the next chapter, we will consider the hamiltonian and stress-energy tensor and 
write down conserved charges and currents for the string. Right now, let’s focus on 
fi nding a solution of the wave equation given in Eq. (2.46).

From elementary mechanics, we know that the solution of a wave equation can 
be written in terms of a superposition of waves moving to the left on the string and 
waves moving to the right on the string. If the motion is in one dimension (call it x), 
then we can write down a solution of the form

 f t x f x vt f x vtL R( , ) ( ) ( )= − + +

We will write the equations of motion for the relativistic string in the same way. 
We have  a solution which is a superposition of left-moving components XL

µ τ σ( )+  
and right-moving components XR

µ τ σ( )− :

 X X XL R
µ µ µτ σ τ σ τ σ( , ) ( ) ( )= + + −  (2.47)

You should recall from partial differential equations that the most general solution 
can be written as an expansion of Fourier modes. Here, we denote these modes as 
αµ

k
, and write the left-moving and right-moving components as

 X
x

p i
k

eL
s s k ikµ

µ
µ

µ
ττ σ τ σ

α
( , ) ( ) (= + + + − +

2 2 2

2
σσ )

k≠
∑

0

 (2.48)

 X
x

p i
k

eR
s s k ikµ

µ
µ

µ

τ σ τ σ
α

( , ) ( ) (= + − + −

2 2 2

2
ττ σ−

≠
∑ )

k 0

 (2.49)

Solutions of the Wave Equation
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We have introduced some new terms here. First, we have included the 
characteristic length of the string which is related to the Regge slope parameter ′α  
and hence to the tension in the string via

 T s=
′

= ′
1

2

1

2
2

πα
α  (2.50)

Next, notice the coordinate xµ  and momentum pµ. These are the center of mass 
coordinate and the total momentum of the string, respectively. The “zeroth”-order 
Fourier mode is defi ned in terms of

 α αµ µ µ µ
0 0

2 2
= =s sp p  (2.51)

What does this tell us physically? The solutions imply that the string can move as a 
single unit with position and momentum through space-time. In addition, it also has 
vibrations, which are described by the modes αµ

k . When you see modes like this, 
you should think quantization (think in terms of the harmonic oscillator or fi elds in 
quantum fi eld theory). 

Remember, we are still in the realm of classical physics, even if it’s relativistic 
classical physics. So the solutions of the wave equation X X X

L R
µ µ µ, , and  must be 

real functions. This implies that xµ  and pµ are real (as they must be, given their 
physical interpretation) and allows us to relate positive and negative modes

 α α α αµ µ µ µ
− −= ( ) = ( )k k k k

* *

 (2.52)

where * represents the complex conjugate. Now, let’s take a look at the solutions of 
the wave equation with different boundary conditions.

Open Strings with Free Endpoints
Open strings with free endpoints satisfy the Neumann boundary condition that we 
reproduce here:

 
∂
∂

= =
X µ

σ
σ π0 0when ,
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Now, looking at Eqs. (2.48) and (2.49) we see that

 ∂
∂

= + − +

≠
∑X

p eL s s
k

ik

k

µ
µ µ τ σ

σ
α

2

02 2
( )

    
∂
∂

= − − − +

≠
∑X

p eR s s
k

ik

k

µ
µ µ τ σ

σ
α

2

02 2
( )

Summing these as in Eq. (2.47) and setting σ = 0,

 

∂
∂

=

⇒ = − + −( ) −

≠
∑

X

p p es s
k k

ik

k

µ

µ µ µ µ τ

σ

α α

0

0
2 2

2

0

( )

This tells us that in the case of an open string with free endpoints, it must be the 
case that

 
p p

k

µ µ

µα
=
=

( )string cannot wind around itself

ααµ
k

(same modes for left- and right-moving wwaves)

Physically, this means that for an open string with free endpoints the modes 
combine to form standing waves on the string. Before we move on to our next case, 
let’s consider the other boundary condition, which is imposed at the other end of the 
string σ π= .

 

0

2 2

2

=
∂
∂

+
∂
∂

= +

= =

− +

X X

p e

L R

s s
k

ik

µ

σ π

µ

σ π

µ µ τ π

σ σ

α ( )) ( )

k

s s
k

ik

k

s
k

i

p e

e

≠

− +

≠

−

∑ ∑− −

=

0

2

02 2

2

µ µ τ π

µ

α

α kk
ik ik

k

s k
ik

e e

i
i

i e

τ
π π

µ τα

−

≠

−

−⎛
⎝⎜

⎞
⎠⎟

=

∑ 2
2

2

0

( )

siin( )k
k

π
≠
∑

0



 46 String Theory Demystifi ed

This can only be true if sin kπ = 0 , which means that k must be an integer. Denoting 
it by n, a simple exercise shows that Eq. (2.47) can be written as

 X x p i
n

e ns
s n

n

inµ µ µ
µ

ττ
α

σ= + +
≠

−∑2

02
cos( )  (2.53)

Closed Strings
In the case of closed strings, the boundary condition becomes one of periodicity, 
namely

 X Xµ µτ σ τ σ π( , ) ( , )= + 2  (2.54)

This condition restricts the solutions to those for which the wave number k takes on 
integral values. Hence,

 X
x

p i
n

eL
s s n inµ

µ
µ

µ
ττ σ τ σ

α
( , ) ( ) (= + + + −

2 2 2

2
++

≠
∑ σ )

n 0

 (2.55)

 X
x

p i
n

eR
s s n in

n

µ
µ

µ
µ

τ στ σ τ σ
α

( , ) ( ) ( )= + − + − −

2 2 2

2

≠≠
∑

0

 (2.56)

where n is an integer. In addition, periodicity enforces the condition that

 p pµ µ=  (2.57)

for closed strings. We saw that if this condition was satisfi ed in the case of open 
strings, there was no winding of the string permitted. In the case of closed strings, 
however, the situation is a little bit more involved if we allow for the possibility 
where the ambient space-time includes a compact extra dimension (then p pµ µ=  
does not hold). Then, we can consider, for example, the situation where the closed 
string is compactifi ed on a circle of radius R.

Using Eq. (2.57), we sum Eqs. (2.55) and (2.56) to obtain the complete solution, 
focusing on the momentum term–and imposing the periodicity condition of Eq. (2.54). 
This gives the total solution which can be written as

 X R X RWµ µτ σ π τ σ π( , ) ( , )+ = +2 2  (2.58)
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We call W the winding number, which literally tells us how many times the string 
has wound around the compact dimension (so W must be an integer). As we let 
σ σ π→ + 2 , notice that the momentum terms change as

 s s s sp p p
2 2 2 2

2 2 2
µ µ µτ σ π τ σ π τ σ( ) ( ) ( )+ + + − − = + +

22 2

2

p p psµ µ µτ σ
π

( ) ( )− + −

That is, the total solution changes as

 X X p psµ µ µ µτ σ π τ σ
π

( , ) ( , ) ( )+ = + −
2

2
 (2.59)

Therefore, we call ( )p pµ µ−  the winding contribution.

Finally, we consider open strings with fi xed endpoints. The boundary condition is

 X µ
σ= =0 0  (2.60)

(Dirichlet boundary condition). Using Eqs. (2.48) and (2.49), we have

 X p eL
s s

k
ik

k

µ µ µ ττ σ α( , )= = + −

≠
∑0

2 2

2

0

 (2.61)

 X p eR
s s

k
ik

k

µ µ µ ττ σ α( , )= = + −

≠
∑0

2 2

2

0

 (2.62)

So, Eq. (2.60) implies that

 
p p

p p

µ µ

µ µ

+ =

⇒ = −

0
 (2.63)

and

 α αµ µ
k k
+ = 0  (2.64)

If a dimension is noncompact for an open string, then p pµ µ= . To simultaneously 
satisfy Eq. (2.63), the total momentum of the string must vanish. In the next 
example, we consider the case where both endpoints are fi xed.

Open Strings with Fixed Endpoints
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EXAMPLE 2.4
What is the length of a string that has both endpoints fi xed?

SOLUTION
If both endpoints are fi xed, then we must also satisfy the boundary condition

 X XL R
µ µτ σ π τ σ π( , ) ( , )= + = = 0

In this case, we have

 X p eL
s s

k
ik

k

µ µ µ τ πτ σ π α( , ) ( )= = + − +

≠
∑

2

02 2

 
X p eR

s s
k

ik

k

µ µ µ τ πτ σ π α( , ) ( )= = + − −

≠
∑

2

02 2

The boundary condition can only be satisfi ed if k is an integer. The overall solution 
in this case can be written as

 X x p
n

e ns s
n

n

inµ µ µ
µ

τσ
α

σ= + −
≠

−∑2

0

2 sin( )  (2.65)

Here we applied the conditions in Eqs. (2.63) and (2.64). This expression includes 
the winding term

 w ps= 2 µ  (2.66)

Now let’s compute the string coordinates at the endpoints. We have

 
X x

X x w

µ µ

µ µ

τ
τ π π

( , )

( , )

0 =
= +

Hence, the length of the string is

 X X wµ µτ π τ π( , ) ( , )− =0
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In going from ordinary classical mechanics to quantum theory, we follow Dirac and 
use the correspondence between the Poisson brackets and commutators. In string 
theory, we consider equal τ  Poisson brackets as our starting point when we quantize 
the modes on the strings. Later, we will discuss hamiltonians and the Virasoro algebra, 
an important concept in string theory, but for now we simply introduce the important 
Poisson brackets which will allow us to quantize the string. First we note that

 { ( , ), ( , )} ( )X X
T

µ ν
µντ σ τ σ δ σ σ η′ = − ′

1  (2.67)

or, in terms of momentum

 { ( , ), ( , )} ( )P Xµ ν
µντ σ τ σ δ σ σ η′ = − ′  (2.68)

The Fourier expansion can be used to derive Poisson brackets for the modes. These 
are

 α α δ ηµ ν
σ µνm n m nim, ,{ } = − +  (2.69)

The Poisson brackets will be the starting point to quantize the theory.

         Quiz
 1. Consider the lagrangian given in the Eq. (2.10) which includes the auxiliary 

fi eld. Use the Euler-Lagrange equations to derive the equation of motion.

 2. Start with the Nambu-Goto lagrangian L X X X X= ′ − ⋅ ′2 2 2( ) and consider 
the gauge choice which gives the fl at metric hαβ. Using the constraints 
X X X X2 2 0 0+ ′ = ⋅ ′ =, , fi nd the equations of motion.

 3. Consider the Polyakov action. A Weyl transformation is one of the form 
h e hαβ

φ τ σ
αβ→ ( , )  and δ µX = 0. Determine the form of the Polyakov action 

under a Weyl transformation [hint: h e hαβ φ τ σ αβ→ − ( , ) ].

 4. Using the Polyakov action, defi ne the energy-momentum tensor on the 
worldsheet by varying the action with respect to the intrinsic metric

 
T

T h

S

h
P

αβ
αβ

δ
δ

= −
−

2 1

Poisson Brackets
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  Using the fact that δ δαβ
αβ− = − −h h h h

1

2
 fi nd an expression for the 

induced metric so that it can be eliminated from the action. This should 
allow you to recover the Nambu-Goto action.

 5. Consider an open string with free endpoints. Find the variation of the center 
of mass position of the string with τ  by calculating

 
1

0π
σ τ σ

π µd X∫ ( , )

 6. Find the conserved momentum of the open string with free endpoints by 
calculating

 P T d Xµ π µσ τ σ= ∫0
( , )

  where the dot represents differentiation with respect to τ . 



The Classical String II: 
Symmetries and 

Worldsheet Currents

In the last chapter we introduced some basic notions of classical string theory, 
including the equations of motion and boundary conditions. In this chapter we 
will expand our discussion of the classical string, discussing symmetries and 
introducing the energy-momentum tensor and conserved currents. This will fi nish 
the groundwork we need for the classical string, and in the next chapter we will 
quantize the string.

CHAPTER 3

Copyright © 2009 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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The Energy-Momentum Tensor
Let’s quickly review a few things before getting started. Recall that the intrinsic 
distance on the worldsheet can be determined using the induced metric hαβ . This is 
given by

 ds h d d2 = αβ
α βσ σ   (3.1)

where σ τ σ σ0 1= =,  are the coordinates which parameterize points on the 
worldsheet. A set of functions X µ σ τ( , ) describe the shape of the worldsheet and 
the motion of the string with respect to the background space-time, where 
µ = −0 1 1, , ..., D  for a D-dimensional space-time. To fi nd the dynamics of the 
string, we can minimize the Polyakov action [Eq. (2.27)]:

 S
T

d h h X XP = − − ∂ ∂∫2
2σ ηαβ

α
µ

β
ν

µνdet( )    (3.2)

Minimizing SP  (by minimizing the area of the worldsheet) gives us the equations 
of motion for the X µ σ τ( , ), and hence the dynamics of the string. In the quiz at the 
end of Chap. 2 in Prob. 4, you were invited to show that the Polyakov and Nambu-
Goto actions were equivalent by considering the energy-momentum or stress-energy 
tensor Tαβ which is given by

 T
T h

S

h
P

αβ
αβ

δ
δ

= −
−

2 1
  (3.3)

In this book we’ll go mostly by the name energy-momentum tensor. In a nutshell, 
the energy-momentum tensor describes the density and fl ux of energy and 
momentum in space-time. You should be familiar with the basics of what Tαβ is 
from some exposure to or study of quantum fi eld theory, so we’re just going to go 
with that and describe how it works in string theory. When working out the solution 
to Prob. 4 in Chap. 2, you should have found that

 T X X h h X Xαβ α
µ

β
ν

µν αβ
ρσ

ρ
µ

σ
ν

µνη η= ∂ ∂ − ∂ ∂( )1

2
   (3.4)

The fi rst property that we will establish for the energy-momentum tensor is that it 
has zero trace. We can calculate the trace using the induced metric:

 
Tr T T h T( )αβ

α
α

αβ
αβ= =
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The trace is easy to calculate:

h T h X X h h h X Xαβ
αβ

αβ
α

µ
β

ν
µν

αβ
αβ

ρσ
ρ

µ
σ

ν
µη η= ∂ ∂ − ∂ ∂

1

2
νν

αβ
α

µ
β

ν
µν

ρσ
ρ

µ
σ

ν
µνη η

( )
= ∂ ∂ − ∂ ∂h X X h X X (because  h h

h X X h X X

αβ
αβ α

α

αβ
α

µ
β

ν
µν

αβ
α

µ
β

ν

δ

η

= =

= ∂ ∂ − ∂ ∂

2)

ηη ρ α σ βµν (relabel dummy indices, → →

=

, )

0

So we’ve established our fi rst fact to fi le away about the energy-momentum tensor 
for the string. It’s traceless:

 T α
α = 0   (3.5)

In a moment we will learn the physical reason why the energy-momentum tensor is 
traceless. 

In this section we will list some of the symmetries of the Polyakov action (and 
hence of the bosonic string in Minkowski space-time). There are three symmetry 
groups of the Polyakov action. These include

• Poincaré transformations

• Reparameterizations of the worldsheet coordinates

• Weyl transformations

The concept of symmetries is so important we will take a momentary digression 
to discuss the topic before describing the symmetries of the Polyakov action. 
Symmetries in physics can be global symmetries or local symmetries. These are 
defi ned as follows:

• A global symmetry is one that holds at all points in space-time. The 
parameters of the transformation will not depend on space-time.

• A local symmetry is one that acts differently at different space-time points. 
In this case, the parameters of the transformation will be functions of the 
space-time coordinates. 

You should recall from your studies of classical mechanics and quantum fi eld 
theory that a symmetry in physics leads to a conservation law. The formal statement 

Symmetries of the Polyakov Action



 54 String Theory Demystifi ed

of this fact is called Noether’s theorem. Let’s quickly review the most famous 
example of a conserved quantity, the conservation of electric charge. 

The electromagnetic fi eld tensor Fµν  is defi ned in terms of the 4-vector 
potential via

 F A Aµν µ ν ν µ= ∂ − ∂  

The Maxwell equations with source terms are written as

 ∂ =µ
µν νF J

Now it follows from the defi nition of Fµν that ∂ =ν
νJ 0  because

 

∂ = ∂ ∂ − ∂ ∂ ⇒ ∂ ∂

= ∂ ∂ ∂ − ∂ ∂ ∂
µ

µν
µ

µ ν
µ

ν µ
ν µ

µν

ν µ
µ ν

ν µ

F A A F

A νν µ

ν µ
µ ν

µ ν
ν µ

A

A A= ∂ ∂ ∂ − ∂ ∂ ∂ (partial derivatives commute)

(relabel dumm= ∂ ∂ ∂ − ∂ ∂ ∂ν µ
µ ν

ν µ
µ νA A yy indices)

= 0

Hence J µ  is a conserved quantity. This is a fact expressed in the famous continuity 
equation which tells us that

 
∂
∂

+ ∇ ⋅ =
ρ
t

J 0

where ρ is the charge density and J is the current density. It follows that charge is 
conserved. The charge Q is of course defi ned using

 Q d x= ∫ 3 ρ

Using the continuity equation and taking the surface of integration S to be at infi nity 
we get

 
dQ

dt
d x

t
d x J J dA

S

=
∂
∂

= − ∇ ⋅ = − ⋅ =∫ ∫ ∫3 3 0
ρ

Hence, charge is conserved. 
We demonstrated that charge is conserved starting with the equation of motion 

for the electromagnetic fi eld. More formally, we can determine what the conserved 
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quantities are and relate them to symmetries by looking at the action S, or more 
particularly the lagrangian. This is where Noether’s theorem comes into play—
symmetries in the lagrangian lead to conserved quantities. 

You can understand Noether’s theorem with a simple one-dimensional example. 
Consider a particle whose motion is described by a lagrangian L q q( , ) where

 q
dq

dt
=

The momentum of the particle is given by

 p
L

q
=

∂
∂

 

The Euler-Lagrange equations are the equations of motion for this system:

 
d

dt

L

q

L

q

∂
∂

−
∂
∂

= 0

Now suppose that the lagrangian is invariant under a symmetry. That is, the form 
of the lagrangian does not change under a one parameter coordinate transformation 
t s t→ ( ):

 q t q s( ) ( )→

Saying that the lagrangian is invariant under this symmetry means that

 d

ds
L q s q s[ ( ), ( )] = 0

The symmetry of the lagrangian can be written out explicitly using the chain rule as

 
d

ds
L q s q s

L

q

dq

ds

L

q

dq

ds
[ ( ), ( )] =

∂
∂

+
∂
∂

= 0

Now let’s get to the central idea. Noether’s theorem tells us that

 Q p
dq

ds
=

is a conserved quantity, that is,

 
dQ

dt
= 0
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This is very easy to prove in our one-dimensional example. The calculation is

 

dQ

dt

d

dt
p

dq

ds

dp

dt

dq

ds
p

d

dt

dq

ds

dp

d

= ⎛
⎝⎜

⎞
⎠⎟

= +

=
tt

dq

ds
p

d

ds

dq

dt
+ (commutativity of partial derrivatives)

(notati=
∂
∂

+
∂
∂

d

dt

L

q

dq

ds

L

q

dq

ds
oon, let )p

L

q

dq

dt
q

d

dt

L
dq

dt

dq

→
∂
∂

→

=
∂

∂⎛
⎝

⎞
⎠

,

dds

L

q

dq

ds

L

q

dq

ds

L

q

dq

ds

dL

ds

+
∂
∂

=
∂
∂

+
∂
∂

= = 0 (ssymmetry of the lagrangian)

 

For a fi eld ϕ µ  we defi ne a Noether current which is a conserved quantity as

 j
L

µ
α

α
µϕ

=
∂

∂ ∂( )  (3.6)

We are done with our quick and dirty review of symmetries and conserved quantities. 
Now let’s see what symmetries and conserved quantities we can describe for 
bosonic string theory in D fl at space-time dimensions. 

POINCARÉ TRANSFORMATIONS
The Poincaré group consists of the following transformations:

• Translations in space-time

• Lorentz transformations

In fl at D-dimensional space-time, the Polyakov action is invariant under Poincaré 
transformations. A space-time translation is a transformation of the form

 X X bµ µ µ→ +  (3.7)
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where δ µ µX b= . An infi nitesimal Lorentz transformation is one of the form

 X X Xµ µ µ
ν

νω→ +   (3.8)

In this case δ ωµ µ
ν

νX X= . We can combine translations and infi nitesimal Lorentz 
transformations as

 δ ωµ µ
ν

ν µX X b= +   (3.9)

Under a Poincaré transformation the worldsheet metric transforms as

 δ αβh = 0   (3.10)

The Polyakov action of Eq. (3.2) is invariant under the transformations given in 
Eqs. (3.9) and (3.10). Invariance under Eq. (3.7) leads to conservation of energy and 
momentum (energy from time translational invariance and momentum from spatial 
translation invariance). Invariance of the Polyakov action under Eq. (3.8) leads to 
conservation of angular momentum.

Recall the defi nition of a global symmetry and notice that while the transformations  
in Eqs. (3.7) and (3.8) depend on the coordinates of the embedding space-time (the 
fi elds X µ), they do not depend on the worldsheet coordinates ( , )σ τ . This means 
that on the worldsheet, these symmetries are global. Since the symmetry is global 
on the worldsheet and not over all of space-time, we say that this is a global internal 
symmetry. Put another way, in string theory a global internal symmetry is one that 
acts on the fi elds X µ but not on the two-dimensional space-time of the worldsheet, 
that is, the parameters of a global internal symmetry group are independent of the 
worldsheet coordinates ( , )σ τ .

REPARAMETERIZATIONS 
Consider a coordinate transformation that takes ( , ) ( , )σ τ σ τ→ ′ ′ , which is a 
reparameterization of the worldsheet (also called a diffeomorphism). The metric 
hαβ transforms as

 h hαβ

µ

α

ν

β µν
σ
σ

σ
σ

σ τ=
∂ ′
∂

∂ ′
∂

′ ′ ′( , )  (3.11)

(note that in this context we are using primes not to denote differentiation, but 
rather to indicate quantities like the metric in the new coordinate system). Since
∂ ∂ ′ = ∂ ∂ ′ ∂ ∂/ ( / )( / )σ σ σ σα ρ α ρ  and X Xµ µσ τ σ τ( , ) ( , )→ ′ ′ ′  it follows that

 h
X X

h
Xαβ

µ

α
µ
β

ρλ
µ

ρσ τ
σ σ

σ τ
σ

( , ) ( , )
∂
∂

∂
∂

= ′ ′ ′
∂ ′
∂ ′

∂ ′′
∂ ′

Xµ
λσ
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The jacobian for a change in coordinates σ σ→ ′ is defi ned by

 J =
∂ ′
∂

⎛
⎝⎜

⎞
⎠⎟

det
σ
σ

α

µ

The jacobian shows up in two places that turn out to cancel themselves to leave the 
form of the Polyakov action invariant. It shows up when calculating the determinant 
of the metric as

 det( ) det( )′ =h J hαβ αβ
2

You may recall from calculus that it also shows up in the integration measure:

 d J d2 2′ =σ σ

These cancel out in the terms that appear in the Polyakov action [Eq. (3.2)]. That is,

 d h d h2 2′ − ′ = −σ σdet det

Putting all of these results together, we see that a change of worldsheet coordinates 
(a reparameterization) leaves the Polyakov action invariant. Therefore a repara-
meterization is a symmetry of the action. Since a reparameterization depends on the 
worldsheet coordinates ( , )σ τ , these are local symmetries. 

WEYL TRANSFORMATIONS
A Weyl transformation or Weyl rescaling is a conformal transformation of the 
worldsheet metric (see Chap. 5) of the form:

 h e hµν
φ σ τ

µν→ ( , )   (3.12)

Since h hαβ
βγ γ

αδ= it follows from Eq. (3.12) that h e hµν φ σ τ µν→ − ( , ) . Now we recall 
two facts about determinants, where we let A, B be n n×  matrices:

 det( ) det detAB A B=

 det( ) det( ) detα α αA I A An
n= =
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In our case, we are working in two dimensions and so:

 det( ) dete h e hφ φ= 2

This means that we have

 − → − = −−det det deth h e h e h h hµν φ φ µν µν2

Therefore the Polyakov action is invariant under a Weyl transformation. Since 
Eq. (3.12) is dependent on the space-time coordinates ( , )σ τ  of the worldsheet, it is 
a local symmetry.

Gauge freedom can be used to simplify the worldsheet metric. What this means is 
that we can use the symmetries of the action (i.e., utilize the transformations that 
leave the action and hence the physics unchanged) to write the worldsheet metric in 
a more convenient form, that is sometimes called the fi ducial metric ˆ ( )hαβ σ .  Here 
we consider a worldsheet with a vanishing Euler characteristic (a cylinder is relevant 
to our interest). 

The worldsheet has only two coordinates ( , )σ τ , and this means that hαβ is a 
2 2×  matrix:

 h
h h

h hαβ =
⎛
⎝⎜

⎞
⎠⎟

00 01

10 11

   (3.13)

This is going to make things particularly easy for us. We immediately fi nd that there 
are only three independent components of the worldsheet metric. This is because, 
in general, the metric tensor gαβ is symmetric, so that

 g gαβ βα=

The fact that the metric is just 2 2× means that the symmetry requirement fi xes the 
off-diagonal components:

 h h01 10=

Transforming to a Flat Worldsheet Metric
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So, this means that we only have to specify three components of hαβ . The choice 
can be simplifi ed by using two of the local symmetries of the Polyakov action. 
From the previous section we recall that these are

• Reparameterization invariance

• Weyl transformations

The fi rst case, reparameterization invariance, that is, a coordinate transformation, 
can be used to take the metric into a form that is proportional to the two-dimensional 
fl at Minkowski metric ηαβ as follows:

 h e eαβ
φ σ τ

αβ
φ σ τη→ =

−⎛
⎝⎜

⎞
⎠⎟

( , ) ( , ) 1 0

0 1
   (3.14)

This form happens to be particularly useful, because now we can apply a Weyl 
transformation to get rid of the exponential factor. The end result is that it is possible 
to use the local symmetries of the Polyakov action to take the worldsheet metric 
into the fl at Minkowski metric:

 hαβ αβη→ =
−⎛

⎝⎜
⎞
⎠⎟

1 0

0 1
  (3.15)

This is going to really simplify the situation at hand. First let’s write down the 
Polyakov action [Eq. (2.27)] once again:

 S
T

d h h X XP = − − ∂ ∂∫2
2σ ηαβ

α
µ

β
ν

µν

The fi rst thing to notice about Eq. (3.15) is that the determinant is just

 h h= =
−

= −det detαβ

1 0

0 1
1

and so

 − = +h 1

Now since

 hαβ =
−⎛

⎝⎜
⎞
⎠⎟

1 0

0 1
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we have

 

h X X h X X h X Xαβ
α

µ
β

ν
µν

ττ
τ

µ
τ

ν
µν

σσ
σ

µ
σ

ν
µη η η∂ ∂ = ∂ ∂ + ∂ ∂ νν

τ
µ

τ
ν

µν σ
µ

σ
ν

µν

τ
µ

τ µ σ

η η= −∂ ∂ + ∂ ∂

= −∂ ∂ + ∂

X X X X

X X X µµ
σ µ∂ X

Do you remember your quantum fi eld theory? This equation should look familiar—
you might recognize the lagrangian (density) for a set of free massless scalar fi elds. 
Putting this into the Polyakov action, we see that using its local symmetries has 
taken it into the very simple form

 

S
T

d h h X X

T
d X X

P = − − ∂ ∂

→ ∂ ∂ −

∫

∫

2

2

2

2

σ η

σ

αβ
α

µ
β

ν
µν

τ
µ

τ µ ∂∂ ∂( )σ
µ

σ µX X

 

 (3.16)

In the following we use abbreviated notation:

 ∂
∂

=
∂
∂

= ′
X

X
X

X
µ

µ
µ

µ

τ σ

In fl at space (hαβ αβη= ) the energy-momentum tensor can be written as

 T X X X Xαβ α
µ

β µ αβ
λρ

λ
µ

ρ µη η= ∂ ∂ − ∂ ∂( )1

2

Let’s work out each component. We have

 

T X X X X X Xττ τ
µ

τ µ ττ
ττ

τ
µ

τ µ
σσ

σ
µ

σ µη η η= ∂ ∂ − ∂ ∂ + ∂ ∂( )1

2

= ∂ ∂ + −∂ ∂ + ∂ ∂( )

= ∂ ∂

τ
µ

τ µ τ
µ

τ µ σ
µ

σ µ

τ
µ

X X X X X X

X

1

2

1

2 ττ µ σ
µ

σ µ
µ

µ
µ

µX X X X X X X+ ∂ ∂( ) = + ′ ′( )1

2
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Next we have

 

T X X X X X Xσσ σ
µ

σ µ σσ
ττ

τ
µ

τ µ
σσ

σ
µ

σ µη η η= ∂ ∂ − ∂ ∂ + ∂ ∂( )1

2

= ∂ ∂ − −∂ ∂ + ∂ ∂( )
= ∂ ∂

τ
µ

τ µ τ
µ

τ µ σ
µ

σ µ

τ
µ

X X X X X X

X

1

2
1

2 ττ µ σ
µ

σ µ
µ

µ
µ

µX X X X X X X+ ∂ ∂( ) = + ′ ′( )1

2

 

The off-diagonal terms are

 
T X X X X X Xτσ τ

µ
σ µ τσ

ττ
τ

µ
τ µ

σσ
σ

µ
σ µη η η= ∂ ∂ − ∂ ∂ + ∂ ∂( )1

2
== ∂ ∂ = ′

= ∂ ∂ − ∂ ∂

τ
µ

σ µ
µ

µ

στ σ
µ

τ µ στ
ττ

τ
µη η

X X X X

T X X X
1

2 ττ µ
σσ

σ
µ

σ µ σ
µ

τ µ
µ

µηX X X X X X X+ ∂ ∂( ) = ∂ ∂ = ′
 

So we can write the energy-momentum tensor as the matrix

 T
X X X X X X

X X X X
αβ

µ
µ

µ
µ

µ
µ

µ
µ

µ
µ

=
+ ′ ′( ) ′

′ + ′

1

2
1

2
XX Xµ

µ′( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 (3.17)

As specifi ed in Eq. (3.5), this energy-momentum tensor has zero trace. This is 
because

 
Tr T T T T T

T T

( )αβ
α

α
αβ

αβ
ττ

ττ
σσ

σσ

ττ σσ

η η η= = = +

= − + = −− + ′ ′( ) + + ′ ′( ) =
1

2

1

2
0X X X X X X X Xµ

µ
µ

µ
µ

µ
µ

µ

 

Now recall from Chap. 2, Prob. 4, that the energy-momentum tensor is defi ned 
using the equation of motion for hαβ . This tells us that the energy-momentum tensor 
for the string worldsheet is 0, that is,

 T
T h

S

h
P

αβ αβ

δ
δ

= −
−

=
2 1

0
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This means that the equations of motion attained from the Polyakov action [Eq. (3.16)] 
are supplemented by the constraint

 Tαβ = 0

Moreover, in fl at space the energy-momentum tensor of the worldsheet is conserved, 
that is,

∂ =α
αβT 0

We can fi nd conserved charges associated with Poincaré invariance which involves 
charges associated with the global symmetries (translation invariance and Lorentz 
invariance). The conserved currents (the Noether currents) can be found in the 
following way. Using a variation of the lagrangian where δ εµ µX = , the current Jµ

α  
is found from

 ε εµ
µ
α

α
µ

µJ
L

X
=

∂
∂ ∂( )    (3.18)

We will do this in a kind of ad hoc way, using the lagrangian density from the 
Polyakov action:

 L
T

h h X XP = − − ∂ ∂
2

αβ
α

µ
β

ν
µνη  (3.19)

Now consider a translation

 X X bµ µ µ→ +

where bµ is our small parameter. Then

 

L
T

h h X b X b

T
h h

P → − − ∂ +( )∂ +( )
= − − ∂

2

2

αβ
α

µ µ
β

ν ν
µν

αβ

η

αα
µ

α
µ

β
ν

β
ν

µν

αβ
α

µ
β

ν

ηX b X b

T
h h X X

+ ∂( ) ∂ + ∂( )
= − − ∂ ∂

2
++ ∂ ∂ + ∂ ∂ + ∂ ∂( )

= − −

α
µ

β
ν

α
µ

β
ν

α
µ

β
ν

µν

αβ

ηX b b X b b

T
h h

2
∂∂ ∂ + ∂ ∂ + ∂ ∂( )α

µ
β

ν
α

µ
β

ν
α

µ
β

ν
µνηX X X b b X

 

Conserved Currents from Poincaré Invariance
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Moving to the last line, we dropped the term ∂ ∂α
µ

β
νb b . This is because we are 

assuming that bµ  is a small displacement, and so we neglect terms in second order. 
You will recognize that the fi rst term in the last line is just the original lagrangian 
(density). So we separate the result as

 

L
T

h h X X X b b XP → − − ∂ ∂ + ∂ ∂ + ∂ ∂( )
2

αβ
α

µ
β

ν
α

µ
β

ν
α

µ
β

ν
µνη

== − − ∂ ∂ − − ∂ ∂ + ∂ ∂
T

h h X X
T

h h X b b
2 2

αβ
α

µ
β

ν
µν

αβ
α

µ
β

ν
α

µη ββ
ν

µνη

δ

X

L LP p

( )
= +

 

The second term δ LP will be associated with the conserved current. To get it, we want 
to peel off terms involving bµ. In order to do this, we will need to get the same 
indices α β µ ν, , , and  on both terms. This is easy because we can exploit the symmetry 
of the metric. Take a look at the fi rst term. We are going to manipulate it to get the 
form we want in three steps. First, recalling that repeated indices are dummy 
indices that we can call what we want, we swap the labels µ ν↔ . Then we exploit 
the symmetry of the metric to write it the way it originally was, and then we 
lower an index:

− − ∂ ∂ = − − ∂ ∂( ) ( )T
h h X b

T
h h X b

2 2
αβ

α
µ

β
ν

µν
αβ

α
ν

β
µ

νµη η ((relabel dummy indices µ ν

αβ
α

ν

↔

= − − ∂ ∂

)

T
h h X

2
ββ

µ
µν µν νµη η ηb( ) =

=

(symmetry of the metric )

−− − ∂ ∂( )T
h h X b

2
αβ

α µ β
µ (lower an index)

So now

 δ ηαβ
α µ β

µ αβ
α

µ
β

ν
µνL

T
h h X b

T
h h b XP = − − ∂ ∂( ) − − ∂ ∂( )

2 2
 

Now we work on the second term, in two steps. First we lower an index, and 
then we swap the labels used for the dummy indices α β↔  and again exploit the 
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symmetry of the metric, but this time it’s the worldsheet metric we are talking 
about:

 

δ ηαβ
α µ β

µ αβ
α

µ
β

ν
µνL

T
h h X b

T
h h b XP = − − ∂ ∂( ) − − ∂ ∂( )

2 2

= − − ∂ ∂( ) − − ∂ ∂( )
=

T
h h X b

T
h h b X

2 2
αβ

α µ β
µ αβ

α
µ

β µ

−− − ∂ ∂( ) − − ∂ ∂( )
−

T
h h X b

T
h h b X

T
2 2

2

αβ
α µ β

µ βα
β

µ
α µ

= −− ∂ ∂( ) − − ∂ ∂( )
− −

h h X b
T

h h b X

T
h h

αβ
α µ β

µ αβ
β

µ
α µ2

2
= ααβ

α µ β
µ αβ

α µ β
µ

αβ
α

∂ ∂( ) − − ∂ ∂( )
= − − ∂

X b
T

h h X b

T h h

2

XX bµ β
µ( )∂

 

Now notice we have a term multiplied by ∂β
µb , which is the small parameter we used 

to vary X µ. The rest of this expression is the conserved current we’re looking for:

 P T h h Xµ
β αβ

α µ= − − ∂( )    (3.20)

If we use reparameterization and Weyl invariance to take hαβ αβη→ then we have

 
P T X

P T X P T X

µ
β

α µ

µ
τ

τ µ µ
σ

σ µ

= − ∂

⇒ = − ∂ = − ∂

The conservation equation for the current is

 ∂ =α µ
αP 0   (3.21)

Dropping the string tension T and ignoring the minus sign we see that the 
conservation equation for the current becomes the equation of motion for the string 
worldsheet:

 ∂ + ∂ =τ µ
τ

σ µ
σP P 0    (3.22)
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Pτ
µ has an immediate physical interpretation. It is the momentum density of the 

string. We integrate along the length of the string fi xing τ to get the total momentum 
carried by the string, which we label pµ :

 p d Pµ

σ

µ
τσ= ∫0

1   (3.23)

The other conserved current associated with the global symmetries of the action 
comes from invariance under Lorentz transformations. In this case

 δ ωµ µ
ν

νX X=

We can show that the lagrangian in Eq. (3.19) is invariant under a Lorentz 
transformation in the following way:

 

δ η δ η δ ηα
µ

β
ν

µν α
µ

β
ν

µν α
µ

β
ν

µ∂ ∂ = ∂ ∂ + ∂ ∂( ) ( ) ( )X X X X X X νν

α
µ

β
ν

µν α
µ

β
ν

µν

α
µ

ρ
ρ

δ η δ η

ω

= ∂ ∂ + ∂ ∂

= ∂

( ) ( )
(

X X X X

X )) ( )∂ + ∂ ∂

= ∂ ∂ +

β
ν

µν α
µ

β
ν

λ
λ

µν

µ
ρ α

ρ
β

ν
µν

η ω η

ω η

X X X

X X ωω η

ω ω

ν
λ α

µ
β

λ
µν

νρ α
ρ

β
ν

µλ α
µ

β
λ

∂ ∂

= ∂ ∂ + ∂ ∂

X X

X X X X (lowwer indices with η

ω ω

µν

νρ α
ρ

β
ν

ρλ α
ρ

)

= ∂ ∂ + ∂X X X ∂∂ →

= ∂ ∂

β
λ

νρ α
ρ

β

µ ρ

ω

X

X

(relabel dummy indices )

XX X Xν
ρν α

ρ
β

νω λ ν+ ∂ ∂ →(relabel dummy indices )

== ∂ ∂ + ∂ ∂ =ω ω ωνρ α
ρ

β
ν

νρ α
ρ

β
ν

αX X X X 0 (antisymmetry ββ βαω= − )

So the lagrangian is invariant under a Lorentz transformation, but what are the 
currents? This is easy to fi nd, since

 

L
T

h h X X

L

P

P

= − − ∂ ∂

⇒
∂

∂ ∂

2
αβ

α
µ

β
ν

µν

α

η

XX

T
h h X

T
h h Pµ

αβ
β

ν
µν

αβ
β
µη( ) = − − ∂ = − −

2 2

Using ε δµν
µν
α

α
µ µJ L X XP= ∂ ∂ ∂[ / ( )] where δ ωµ µ

ν
νX X= together with the anti-

symmetry of ω µ
ν , we conclude that the Lorentz current is

 J T X P X Pα
µν µ

α
ν ν

α
µ= −( )    (3.24)

  



CHAPTER 3 Symmetries and Worldsheet Currents 67

We have introduced the energy-momentum tensor and looked at some conserved 
currents that arise due to symmetries of the lagrangian. The next major piece of 
the dynamics puzzle is the hamiltonian which governs the time evolution of the 
worldsheet. It can be written down simply using formulas from classical mechanics:

 H d X P L
T

d X XP= −( ) = + ′( )∫ ∫σ σµ τ
µσ σ

0 0

2 21 1

2
 (3.25)

The Hamiltonian

In this chapter we have extended our classical analysis of the string. We did this by 
introducing the energy-momentum tensor and by describing the symmetries of the 
Polyakov action. Then we derived conserved currents of the worldsheet, and wrote 
down the hamiltonian. In the next chapter, we will conclude our classical description 
of the string by writing down mode expansions of the hamiltonian and energy-
momentum tensor, and describing the Virasoro algebra. After writing down a mass 
formula for the string, we will proceed to quantize the theory.

Summary

 1. Let σ σ ε σα α α→ ′ + ( ) be an infi nitesimal reparameterization. Considering 
only terms that are fi rst order in εα , fi nd the variation of the worldsheet 
metric hαβ . 

 2. Assuming that you can move the derivative d d/ τ  inside the integral in 
Eq. (3.23), explain conservation of momentum for the cases of the open 
and closed string.

 3. The energy-momentum tensor has zero trace. Show that this is a 
consequence of Weyl invariance.

 4. Consider light-cone coordinates and derive the Virasoro constraints for the 
energy-momentum tensor.

 5. Consider the Lorentz current Jα
µν  in Eq. (3.24). What is the equation that 

describes that the current is conserved? What are the conserved charges and 
what do they describe?

         Quiz
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String Quantization

At this point we have the classical physics of the string in place. The next step 
toward a quantum theory is, of course, to quantize the string. We will start off by 
looking at a quantum theory of a single string. From quantum fi eld theory you recall 
that this procedure is known as fi rst quantization. This is opposed to the procedure 
called second quantization, which is a viewpoint of quantizing fi elds (see Quantum 
Field Theory Demystifi ed for a review). The difference in the two approaches will 
be on how we view the Xm(s, t ). If we take them to be fi elds, then the quantization 
procedure is second quantization. If we take them to be space-time coordinates, as 
we have so far, then the process is fi rst quantization. This is the procedure we will 
apply in this chapter. There are several different approaches to quantization of the 
string, each with their own accompanying diffi culties and problems. The main 
approaches used are called covariant quantization, light-cone quantization, and 
BRST quantization. We consider the fi rst two approaches here, and will discuss 
BRST quantization later.
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Covariant Quantization
The procedure known as covariant quantization will be familiar to you from your 
studies of ordinary quantum mechanics. In a nutshell, this is the imposition of 
commutation relations on position and momentum. So, using this procedure we 
continue with the notion that X µ σ τ( , ) are space-time coordinates, but we need to say 
what we are taking as the momentum. This can be done in the standard way using 
lagrangian dynamics. Let π σ τµ ( , ) be the momentum carried by the string. Given a 
lagrangian density L we can calculate the momentum from the X µ σ τ( , ) using
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∂
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This is easy to calculate using the Polyakov action as written in Eq. (2.31):
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So we see that the conjugate momentum is
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µ τ µ( , ) =
∂

∂ ∂( ) = ∂
L

X
T X

With this defi nition in hand, we are in a position to quantize the theory. To do this 
we take the approach used in quantum fi eld theory, namely, impose equal time 
commutation relations on the position and momenta. In ordinary quantum mechanics 
the position and momentum coordinates satisfy
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where we have set = 1. If we denote the coordinates as x
i
 where i = 1, 2, 3 then 

these relations can be written compactly as
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Here, d
ij
 is the Kronecker delta. Now we apply these relations to the string, with two 

crucial differences. First, we have a relativistic theory and hence we let δ ηµνij → . 
Moreover, we expect that position and momentum will commute when they are 
taken to be at different spatial locations of the string. That is, let s and s  ′ be two 
different locations on the string. Since we are taking equal time commutation 
relations, we let the time coordinate be τ for both position and momentum. Then

 [ ( , ), ( , )]X µ νσ τ π σ τ σ σ′ = ≠ ′0 for

Now, to ensure that the position and momentum don’t commute at the same 
spatial location, we use the Dirac delta function d (s − s ′). So the equal time 
commutation relations are:

 
X i

X

µ ν µν

µ

σ τ π σ τ η δ σ σ

σ τ

( , ), ( , ) ( )

( , )

′⎡⎣ ⎤⎦ = − ′

,, ( , ) ( , ), ( , )Xν µ νσ τ π σ τ π σ τ′⎡⎣ ⎤⎦ = ′⎡⎣ ⎤⎦ = 0
 (4.1)

To summarize, remember that

• t is the same for X µ σ τ( , ) and π σ τν ( , )′ .

• The presence of the Dirac delta function δ σ σ( )− ′ ensures that the 
coordinates and momenta do commute at different points σ along the 
string—the commutation relations are only nonzero when position and 
momentum are evaluated at the same point on the string.

• The presence of ηµν comes from the fact we have a relativistic theory.

Ultimately, we want to write down commutation relations for the modes of the 
string. This can be done most easily by transitioning to the light-cone coordinates 
σ τ σ σ τ σ+ −= + = −, . First, using ∂ = ∂ + ∂ ∂ = ∂ − ∂+ −1 2 1 2/ ( ) / ( )τ σ τ σ and , we 
can invert to write

 ∂ + ∂ = ∂ ∂ − ∂ = ∂+ − + −τ σ
   (4.2)

In the case of Xν νσ τ π σ τ( , ) ( , )′ ′ and , we will have ∂′+ = 1/2 (∂τ + ∂σ′) and 
∂′− = 1/2 (∂τ − ∂σ′). Using Eq. (4.2), we can write the commutation relation 
[ ( , ), ( , )] ( )X iµ ν µνσ τ π σ τ η δ σ σ′ = − ′  in a new way:
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Now we compute the derivative of [ ( , ), ( , )] ( )X iµ ν µνσ τ π σ τ η δ σ σ′ = − ′  with 
respect to s. Since Xν σ τ( , )′  is not a function of s, only X µ σ τ( , ) is affected. 
Proceeding and again using Eq. (4.2) we fi nd
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Now we can utilize the commutation relation for the conjugate momenta in 
Eq. (4.1). We have
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That is,

 i T X Xη
σ

δ σ σ σ τ σ τµν µ ν∂
∂
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In the chapter quiz, you will have the opportunity to show that [�+X
m(s, t ), 

�−X
n (s, t )] = [�− X

m(s, t ), �+ X
n (s′, t )] = 0. Therefore the commutation relations are
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 [ ( , ), ( , )] [ ( , ),∂ ′∂ ′ = ∂ ′∂+ − − +X X Xµ ν µσ τ σ τ σ τ XXν σ τ( , )]′ = 0    (4.5)

Using Eqs. (4.3) to (4.5), deriving commutation relations for the modes, which will 
help us get to the quantum physics, will be a much simpler matter. In order to derive 
the commutation relations, we will need the following expression for the Dirac 
delta function:

 δ
κ

( ) =
=−∞

∞

∑x
z

eikx1

2

Recalling Eq. (2.47), which told us that we can write the equations for the string 
in terms of left-moving and right-moving modes:

 X X XL R
µ µ µσ τ σ τ σ τ( , ) ( , ) ( , )= +

Notice the left-moving modes are functions of σ + only, while the right-moving 
modes are functions of σ− only, so that

 ∂ = ∂ ∂ = ∂+ + − −X X X XL R
µ µ µ µσ τ σ τ σ τ σ τ( , ) ( , ) ( , ) ( , ))
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COMMUTATION RELATIONS FOR THE CLOSED STRING
We will derive the commutation relation [Eq. (4.3)] for the modes explicitly, and 
simply state the results in the other cases. Hence we write down the left-moving 
modes [Eq. (2.55)] which are functions of σ +. The left-moving modes are restated 
here in the case of the closed string

 X
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Now since σ τ σ+ = + , the derivative is
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To get the last step, we used α µ µ
0 2= ( / )s p . Now let’s calculate the left-hand side 

of Eq. (4.3). We have
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But, this must be proportional to ( / ) ( )∂ ∂ − ′σ δ σ σ , and furthermore, the term on the 
right-hand side of Eq. (4.3) does not depend on τ . So, we have to remove the τ
dependence. We can do so by noting that

 e m ni m n− + → = −( )τ 1 when

We will be able to enforce this condition by introducing the Kronecker delta 
term δm n+ , 0, which is 1 when m n= − and 0 otherwise. Furthermore, we take note of 
the following expression for the Dirac delta function:
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Using Eqs. (4.3) and (4.8) together with our previous result, we have
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We have also used Eq. (2.50) to relate s and the string tension T. This gives us 
the commutation relation for the modes

 
α α η δµ ν µν

m n m nm, ,⎡⎣ ⎤⎦ = + 0

Equation (4.5) can be used to show that the α αµ ν
m n and commute. We can write all 

of the commutation relations for the modes of the closed string as

 
α α η δ α α η δµ ν µν µ ν µν

m n m n m n mm m, ,,⎡⎣ ⎤⎦ = ⎡⎣ ⎤⎦ =+ +0 nn m n, ,0 0α αµ ν⎡⎣ ⎤⎦ =  (4.9)

In the chapter quiz you will also derive a commutation relation for the center-of-
mass position and momentum of the string

[ , ]x p iµ ν µνη=

COMMUTATION RELATIONS FOR THE OPEN STRING
In the case of the open string, it can be shown that together with [ , ]x p iµ ν µνη= , the 
commutation relations are

 
α α η δµ ν µν

m n m nm, ,⎡⎣ ⎤⎦ = + 0
 (4.10)

THE OPEN STRING SPECTRUM
With the commutation relations in hand, we can proceed to fi nd the states of the 
string. Because the open string case is simpler, we consider this fi rst. Notice that in 
our quantization procedure where we have imposed commutation relations on the 
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modes α αµ ν
m n(and for the closed string), what we have done is promote them to 

operators. By extension, since the X µ σ τ( , ) are defi ned in terms of α µ
m, the X µ σ τ( , ) 

are now to be thought of as operators as well. Therefore the next task in our program 
is to determine the state space of the system, that is the states upon which the α µ

m
 and 

by extension the X µ σ τ( , ) act. This procedure is really pretty similar to what you’re 
used to from your previous studies of quantum theory. 

The fi rst item to notice is that the commutation relations have some similarity to 
the harmonic oscillator you learned about in fi rst semester quantum mechanics. 
Temporarily dispensing with our convention of setting = 1, recall that we can 
defi ne the creation and annihilation operators for the harmonic oscillator as

 ˆ ˆ ˆ ˆ ˆ ˆ†a
m

x
i

m
p a

m
x

i

m
p= −⎛

⎝⎜
⎞
⎠⎟ = +⎛

⎝⎜
⎞
⎠⎟

ω
ω

ω
ω2 2

These operators satisfy the commutation relation:

 [ ˆ, ˆ ]†a a = 1 (4.11)

The hamiltonian of the system is given by

 ˆ ˆ ˆ†H a a= +⎛
⎝

⎞
⎠ω 1

2

We introduce the number operator ˆ ˆ ˆ†N a a=  which has eigenstates n :

 N̂ n n n=  (4.12)

where n = 0 1 2, , , . . . . A system consisting of an infi nite collection of harmonic 
oscillators is called a fock space. 

Continuing, the number operator and its eigenstates allow us to write down the 
quantized energy levels of the harmonic oscillator, which are given by

 

ˆ ˆH n N n n n E nn= +⎛
⎝⎜

⎞
⎠⎟

= +⎛
⎝⎜

⎞
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=ω ω1

2

1

2

You should also recall that the system has a ground state, which is the lowest 
possible energy state. This is denoted by 0 .

A comparison of Eqs. (4.9) and (4.11) indicates that we have a similar system in 
the case of the string. This should not be surprising, since what else would you 
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expect for a vibrating string, except a system that resembles a harmonic oscillator. 
Let’s continue forward. Since [ , ] ,α α η δµ ν µν

m n m nm= + 0 , we can write

 
α α α α ηµ ν µ ν µν

m n m m m, ,⎡⎣ ⎤⎦ = ⎡⎣ ⎤⎦ =−  (4.13)

At this point, it is important to take a step back and recognize a key fact. The 
commutation relation not only bears some resemblance to the harmonic oscillator 
of quantum mechanics, but there is a very important difference. Notice that the 
presence of the metric ηµν means that we can have negative commutators. This is 
the case for the time components. That is, since η00 1= − , it follows that

 
α αm m m0 0, −⎡⎣ ⎤⎦ = −

This is going to turn out to be important because it can lead to negative norm 
states. 

Now, in analogy with the harmonic oscillator from ordinary quantum mechanics, 
we defi ne a number operator. These are given in terms of the modes as

 Nm m m= ⋅−α α

where we take m ≥ 1. The eigenstates of the number operator satisfy

 N i i im m m m=

The total number operator is defi ned by summing over all possible Nm m m= ⋅−α α :
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Following a procedure used in elementary quantum mechanics, we can use 
Nm m m= ⋅−α α  together with [ , ] [ , ]α α α α ηµ ν µ ν
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to show that the α αµ µ

− m m and 
are raising and lowering operators, respectively. This follows from

 

N i i

m i

m m m m m m m

m m m m

m

α α α α

α α α

α α

( ) = ⋅ ( )
= ⋅ − ( )
=

−

−( )

( −− −

= − = − ( )
m m m m m

m m m m m m m m

i m i

i i m i i m i

α α

α α α

)

( )

 



 78 String Theory Demystifi ed

Hence, α µ
m
 acts like a lowering operator. A similar exercise shows that the 

negative frequency mode α µ
− ≥m m, 1acts like a raising operator:

 
N i i m im m m m m mα α− −( ) = + ( )( )

The lowering operator α µ
m destroys the vacuum or ground state, which is the state 

with im = 0:

 α µ
m 0 0=  (4.15)

We can construct higher-energy states using the raising operators which are the 
negative modes, α µ

− ≥m m, 1, that is, α α α α αµ µ µ µ µ
− − − − −1 1 1 1 20 0 0, , , and so on. A 

string state also carries momentum, so we can label a state by i km , . Considering 
the ground state, supposing that the string carries momentum kµ, the momentum 
operator acts as

 p k k kµ µ0 0, ,=  (4.16)

Earlier we remarked that since the Minkowski metric ηµν appears in the 
commutation relations, negative norm states can exist. We can demonstrate this 
explicitly as follows. Consider the fi rst excited state with momentum kµ, that is, 
α−1

0 0, k . Using ( )†α α− =1
0

1
0 we fi nd the norm of this state to be

 
α α α− −= = −1

0
1
0

1
00 0 0 1, , ,k k k  (4.17)

We can rid the theory of the negative norm states by applying the Virasoro 
constraints. The classical expressions for the Virasoro constraints are

 
L Lm m n n

n
m m n n

n

= ⋅ = ⋅− −∑ ∑1

2

1

2
α α α α  (4.18)

In the quantum theory, the Virasoro constraints are promoted to Virasoro 
operators. However, since the modes must satisfy the given commutation relations, 
some care must be applied when writing the Virasoro operators as derived from the 
classical expressions. The technique of normal ordering is used. This will ensure 
that the eigenvalues of the Virasoro operators will be fi nite. The prescription of 
normal ordering is simple:

• Move all lowering operators (positive frequency modes) to the right.

• Move all raising operators (negative frequency modes) to the left.
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A normal ordered product is denoted using two colons, that is : :†a a . In the case 
of the Virasoro operator, we write

 
Lm m n n

n
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2
: :α α

Lm will lower the eigenvalue of the number operator by m. Looking at the 
commutation relation Eq. (4.10), you can see that α αµ µ

m n n−  and commute when 
m ≠ 0. This means that when m ≠ 0 we can simply move raising and lowering 
operators where we want in the expression for the Virasoro operator because no 
extra terms will be added from the commutator. Normal ordering L0 gives
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Now, to get this result, note that
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To get from the fi rst to the second line, the commutator for the modes was used 
together with the fact that α α− ⋅n n represents the dot product in D space-time 
dimensions. To get the normally ordered result we have thrown out the sum D n

n
/2

1
Σ
=

∞
.

At fi rst glance, you might think that this sum is infi nite, but regularization can be 
used to compute its fi nite value. To see how this works, recall the geometric series:
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It follows that D n D D
n

/ / ( ) /2 2 1 12 24
1

Σ
=

∞
= − = −/ . Another undetermined constant

piece is missing from the difference between the general expression of L0 and the 
normal ordered expression of L0. This is a normal ordering constant which is 
denoted by a. Therefore in any calculation L0 is replaced by L a0 − , where a is a 
constant. 

The point of all this is to write down the commutation relations for the Virasoro 
operators. Using Eq. (4.10), one fi nds that

 
[ , ] ( ) ( ) ,L L m n L

D
m mm n m n m n= − + −+ +12

3
0δ

 
(4.20)

We call this commutation relation the Virasoro algebra with central extension. 
The central charge is the space-time dimension D which has shown up in the second 
term on the right-hand side. This is also the number of free scalar fi elds on the 
worldsheet. It is clear that if m = ±0 1,  the central extension term will vanish. This 
singles out L L L1 0 1, ,  and − which form a closed subalgebra. We call this the SL 
(2, R) algebra.

The Virasoro operators can be used to eliminate unphysical states (i.e., negative 
norm states) from the theory by requiring that the expectation value of L a0 −
vanishes for a physical state ψ . That is, we impose the constraint

 
ψ δ ψL am m− =,0 0

for m ≥ 0. The term a mδ ,0  takes care of the fact that we only need the normal 
ordering constant a in the case of L0. To eliminate negative norm states, specifi c 
conditions must be put on a and D, which is the origin of the “extra dimensions” 
in string theory. In particular, it can be shown that negative norm states can be 
eliminated if

 a D= =1 26    (4.21)

The reason that a = 1is chosen is a bit beyond the scope we want to cover in this 
book, see the references if interested in the proof. 

We can proceed further to obtain a mass operator. First recall that Einstein’s 
equation tells us

 
p p m m p pµ

µ
µ

µ+ = ⇒ = −2 20
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To obtain a formula for the mass operator in string theory, which is denoted by
M 2, we use the condition on physical states. Taking L

n
n n0 0

2

1
1 2= + ⋅

=

∞

−/ α α αΣ , using 
L a0 − with a = 1, we arrive at the condition

 

( )L a n n
n

0 0
2

1

0

0
1

2
1 0

1

2

− = ⇒ + ⋅ −
⎛
⎝⎜

⎞
⎠⎟

=

⇒

−
=

∞

∑ψ α α α ψ

α 22

1

1 0+ ⋅ − =−
=

∞

∑α αn n
n

The fi rst term in this expression is nothing other than the mass squared: 
( / )1 2 0

2 2α α= − ′M where ′ =α π1 2/ ( )T . So, in bosonic string theory the “mass 
shell” condition becomes

 
M N2 1

1=
′

−
α

( )  (4.22)

where N is the total number operator. The term 2πT  sets the energy scale of the 
theory, it is taken to be on the order of the Planck mass. This is the origin of the high 
energy scale of string theory. 

It can be shown that

 
M N

D2 1 2

24
=

′
−

−⎛
⎝⎜

⎞
⎠⎟α

Notice that setting a = 1forces us to take D = 26. The number operator acts on 
the ground state as

 N 0 0=

Hence the mass of the ground state is

 
M N

D D2 0
1 2

24
0

1 2

24
0

1
0=

′
−

−⎛
⎝⎜

⎞
⎠⎟

= −
′

−
= −

′α α α

So the ground state of bosonic string theory in the open string case has negative 
mass. This means that the ground state is a Tachyon. This is an unphysical state 
which travels faster than the speed of light. Consistency of bosonic string theory 
requires that we choose a = 1, so the Tachyon cannot be removed from the theory. 
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It will turn out that the introduction of supersymmetry (that is the introduction of 
fermionic states) into the theory will get rid of the Tachyon, giving us a realistic 
string theory. We will see that this also changes the number of space-time 
dimensions.

Now let’s consider the mass of the fi rst excited state. The fi rst excited state is 
i i= −α 1 0  where i is a spatial index. Here, i D= −1 2, ..., , and the state transforms 
as a vector in space-time. You will recall from your studies of quantum fi eld theory 
that a vector is a spin-1 particle that in general has D −1 components, the fact that this 
state has D − 2 components implies that it is a massless state. An example of a massless 
vector is the photon, it only has transverse components of spin. This explains why 
there are D − 2 components rather than D −1. The mass of the state is

 M
D Di i2

1 10
1

1
2

24
0

1 26

24
α

α
α

α− −=
′

−
−⎛

⎝⎜
⎞
⎠⎟

=
′

−⎛
⎝⎜

⎞
⎠⎠⎟ −α 1 0i

In order for the state to be massless, 26 24− D / must vanish, once again setting 
the number of space-time dimensions D to 26. Physicists refer to the bosonic string 
theory with a D= =1 26, as critical and call D = 26 the critical dimension. 

CLOSED STRING SPECTRUM
In the case of the closed string, things are a little more complicated than what 
you’re used to from the harmonic oscillator in ordinary quantum theory due to the 
fact that we have a second commutation relation in addition to α α η δµ ν

µνm n m nm, ,⎡⎣ ⎤⎦ = + 0 
that must be satisfi ed, namely, α α η δµ ν

µνm n m nm, ,⎡⎣ ⎤⎦ = + 0 . What this is going to mean 
is that we need to defi ne two number operators. These are defi ned by infi nite sums 
over the modes:

 
N NR m m

m
L m m

m

= =−
=

∞

−
=

∞

∑ ∑α α α α
1 1

 (4.23)

Together with the momentum operator pµ, the number operators N NR L and 
serve to characterize the state of a closed string. Let us denote a state by n k, . As 
in the open string case, the momentum operator will act according to

 p k k kµ µ0 0, ,=  (4.24)

Therefore, the state 0, k  of the string carries momentum kµ. Turning our 
attention to the number operators, fi rst let’s specify the action of the raising and 
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lowering (creation and annihilation) operators. This follows what we did in the 
open string case as well. Keeping m ≥ 1, we defi ne these as follows:

• α µ
m is a lowering operator.

• α µ
− m is a raising operator.

Similar roles are played by α µ
m and α µ

− m
. We defi ne the ground state by 0 0,

which is often abbreviated by 0 . Then, the lowering operators satisfy a relation 
familiar from ordinary quantum mechanics:

 α αµ µ
m m0 0 0 0= =  (4.25)

Note also that we can defi ne the ground state with momentum kµ by writing k . 
The raising operators α µ

− m and α µ
−n act to raise the eigenvalues of the number 

operators NL and NR by m and n, respectively. So if i m( , )µ  and i m( , )µ are 
integers:

 i m i m k m

D

m
m

i

( , ) ( , ),µ µ α αµ

µ

µ= ( ) ( )−
=

−

≥

∞

−∏∏
0

1

1

ii
k0,

The number operators NL and NR act on this state as follows:

 

N i m i m k mi m i m i mL ( , ) ( , ), ( , ) ( , ) ( , ),µ µ µ µ µ=

( , ) ( , ), ( , ) ( , )

,

k

N i m i m k m i m i m i

m

R

µ

µ µ µ µ

∑
= (( , ),

,

µ
µ

m k
m

∑
Once again, we will have negative norm states due to the presence of the metric 

in the commutation relations. This situation can be dealt with in the same manner 
used in the open string case. So we won’t go into great detail and simply state the 
results, noting that in the following we take m ≥ 0. We proceed by introducing 
normal ordered Virasoro operators, but this time must include Lm as well:

 
L Lm m n n

n
m m n n

n

= ⋅ = ⋅− −∑ ∑1

2

1

2
: : : :α α α α  (4.26)

These operators satisfy commutation relations called the Virasoro algebra:

 
[ , ] ( ) ( )

[ , ]

,L L m n L
D

m m

L L

m n m n m n

m n

= − + −

=

+ +12
3

0δ

(( ) ( ) ,m n L
D

m mm n m n− + −+ +12
3

0δ
 (4.27)
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If the following relations are satisfi ed by a state ψ :

 
( ) ( ), ,L a L am m m m− = − =δ ψ δ ψ0 00 0  (4.28)

then the state ψ  is a physical state. That is, if m > 0 , then the Virasoro operator 
annihilates the physical state L Lm mψ ψ= =0 0, . The condition satisfi ed when 
m = 0 is the “mass shell” condition, ( ) , ( )L a L a0 00 0− = − =ψ ψ . Once again, it 
can be shown that negative norm states can be avoided in the theory provided that 
a D= =1 26, . The Virasoro operators L L0 0and can be written in terms of the 
number operators as follows:

 
L

T
p p N L

T
p p NL R0 0

1

8

1

8
= + = +

π π
µ

µ
µ

µ

The sum and difference of L L0 0 and annihilate the physical states:

 ( ) ( )L L a L L0 0 0 02 0 0+ − = − =ψ ψ

The constraint ( )L L0 0 0− =ψ  is called level matching. Using the Einstein 
relations, we can arrive at an expression for a mass operator:

 
M p p N NL R

2 2
2= − =

′
+ −µ

µ α
( )  (4.29)

The ground state of the closed bosonic string is 0, k , found when N NL R= = 0. 
This is a tachyon that satisfi es

 
M 2 4

= −
′α

The next case to consider is N NL R= = 1, which is the fi rst excited state. Here 
we get hints that string theory is a unifi ed theory. The fi rst excited states are massless, 
so M 2 0= . They are derived from the ground state in the following way:

 
ε α αµν

µ ν( ) ,k k− −1 1 0

The object εµν ( )k is a tensor which can be decomposed into symmetric ε µν( ) ( )k
and antisymmetric ε µν( ) ( )k  parts (see Relativity Demystifi ed if you aren’t sure about 
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this). The symmetric part corresponds to a massless spin-2 particle which is the 
graviton. The linearized metric g xρσ ρσ ρση ε= + ( ) satisfi es the linearized Einstein 
equations ∂ ∂ = ∂ =µ

µ
ρσ

µ
µνε ε( ) , ( )x x0 0 and . By taking the Fourier transform of 

ε µν( ) ( )k , it can be shown that these equations are satisfi ed.
The trace ε µ

µ ( )k , which defi nes a scalar, is also important. This corresponds to a 
massless scalar particle called the dilaton.

We now turn our attention to a different method of quantization. We began the 
chapter with a discussion of covariant quantization. This method is a straightforward 
application of the imposition of commutation relations. We took this approach fi rst 
because it may seem familiar from your studies of ordinary quantum mechanics. In 
addition, it preserves the Lorentz invariance of the theory. Physicists say that this 
approach is “manifestly” Lorentz invariant, colloquially meaning that the Lorentz 
invariance is obvious. The technique has the disadvantage in that negative norm 
states appear. Although this is a problem, it is instructive to go through the process 
of eliminating the negative norm states.

Another approach is possible which avoids the negative norm states at the cost 
of losing manifest Lorentz invariance. This is called light-cone quantization. We 
briefl y discuss it here, considering the open string case.

We begin by using light-cone coordinates, which were introduced in Chap. 2 in 
Eq. (2.34):

 
X

X X D
±

−

=
±0 1

2
 (4.30)

The remaining coordinates Xi are transverse coordinates. The center of mass 
coordinate xµ and momentum pµ  are also written as light-cone coordinates. In the 
light-cone gauge, we choose

 X x ps
+ + += + 2 τ  (4.31)

which leads to αn n+ = ≠0 for 0, that is, the modes are zero for X +. The Virasoro 
constraints will lead us to a description based on transverse oscillators. We have the 
freedom to set s p2 1+ = , giving the center of mass position as

 
X x

p

p
µ µ

µ

τ= + +

Light-Cone Quantization
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The Virasoro constraint becomes

 
X X X Xi i− −± ′ = ± ′1

2
2( )  (4.32)

So we have a relation between light-cone coordinates and the transverse 
coordinates. The mode expansion of the worldsheet coordinates for an open string 
is given by

 
X x p i
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inµ µ µ
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−∑2
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In particular

 
X x p i

n
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n

n
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≠

−= + + ∑2

0

τ α στ cos

We can then solve for the nonzero modes of X −  in terms of the transverse oscillators. 
These are
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 (4.33)

In the case of the zeroth mode, we can derive an expression for the hamiltonian
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(4.34)

Defi ne a conjugate momentum Pµ. The system is quantized by imposing 
commutation relations on the transverse components of position and momentum:

 [ , ] , [ ( ), ( )] ( )x p i X P ii j ij i j ij= ′ = − ′δ σ σ δ δ σ σ  (4.35)

The mass-shell condition becomes

 
M p p p N ai

i

D

s

2 2

1

2

2
2

2
= − = −+ −

=

−

∑ ( )  (4.36)

The number operator is given by

 
N n
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n
i

ni

D

= −
=

∞

=

−

∑∑ α α
11

2

 (4.37)
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Normal ordering leads to
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The regularization trick can be applied to make the second term fi nite. We fi nd

 

D
n

D

n

−
= −

−
=

∞

∑2

2

2

241

Again taking a = 1, one fi nds D = 26.

In the previous two chapters, we constructed a relativistic theory of the string, the 
classical theory. In this chapter we have introduced the simplest possible quantum 
extension of the classical theory. This is a theory that consists only of bosons. 
While the theory is not realistic since it does not include fermionic states, it is easier 
to deal with and introduces important concepts and methods that will play a role in 
the full quantum theory. The classical theory was quantized using two different 
methods. The fi rst method, called covariant quantization, is a straightforward 
approach that imposes commutation relations on the X µ and their conjugate 
momenta. This leads to negative norm states. The Virasoro constraints are imposed 
to rid the theory of these states. When this is done, we fi nd that the theory must have 
26 space-time dimensions. We concluded the chapter with a different approach, 
known as light-cone quantization.

         Quiz
 1. Explicitly calculate the commutators [ ( , ), ( , )]∂ ′∂ ′+ −X Xµ νσ τ σ τ  and 

[ ( , ), ( , )]∂ ′∂ ′− +X Xµ νσ τ σ τ . 

 2. Consider the closed string and explicitly calculate [ , ]x pµ ν .

 3. Consider the fi rst excited state of the closed string ε α αµν
µ ν( ) ,k k− −1 1 0 . Using the 

condition satisfi ed by physical states ψ , in particular L L1 1 0ψ ψ= = , 
fi nd εµν

µk .

Summary
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 4. Let α−1 0i k,  be the state of an open string and suppose that the normal 
ordering constant a is undetermined. What is the mass of this state?

 5. In the light-cone gauge, use [ , ] , [ ( ), ( )] ( )x p i X P ii j ij i j ij= ′ = − ′δ σ σ δ δ σ σ  
to fi nd a commutation relation for the transverse modes, [ , ]α αm

i
n
j . 

 6. Consider light-cone quantization for the closed string case. What additional 
commutation relation do you think should be imposed for the modes?



Conformal Field 
Theory Part I

In this chapter we study conformal fi eld theory, an area of quantum fi eld theory that 
relies heavily on complex variables. In this chapter, we will introduce some of the 
basic concepts of conformal fi eld theory. The topic will be expanded and utilized in 
many areas in the rest of the book. In the next chapter, we discuss other aspects of 
conformal fi eld theory along with BRST quantization.

Conformal fi eld theory is an important tool used in the analysis of perturbative 
string theory, so it plays a central role in our task at hand (understanding the 
physics of quantized strings). In particular, since the worldsheet can be described 
using two coordinates ( , )τ σ  two-dimensional conformal fi eld theory is used. The 
theory of complex variables plays an important role in the study of theoretical 
physics, and string theory is no exception. If you are not familiar with complex 
variables you should take time out to study the topic before proceeding any 
further. You can do so using my book Complex Variables Demystifi ed, also 
published by McGraw-Hill.

CHAPTER 5

Copyright © 2009 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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In the theory of complex variables, a conformal transformation is one that maps 
a region of the complex plane to a new more convenient region while preserving 
angles, but not lengths. For example, you can map the unit disk to the upper-half 
plane using a conformal transformation. 

The notion that angles are preserved is a geometric interpretation and leads us to 
the notion of a conformal transformation of space-time coordinates. Let us consider 
a transformation of the space-time coordinates such that x x→ ′. In general, the 
metric g xµν ( ) is found to transform in the following way:

 g x
x

x

x

x
g xµν

α

µ

β

ν αβ
′ ′ =

∂
∂ ′

∂
∂ ′

( ) ( )   (5.1)

Now consider a function of the space-time coordinates given by Ω( )x . If the 
metric transforms in the following way:

 g x x g xµν µν
′ ′ =( ) ( ) ( )Ω  (5.2)

Then we have a conformal transformation of the metric. Notice that Ω( )x acts 
as a scaling factor, hence it will preserve angles but not lengths. If a metric is 
related to the fl at Minkowski metric as g x xµν µνη= Ω( ) ( )we say that the metric 
is conformally fl at.

To see how a conformal transformation preserves angles, consider two tangent 
vectors u v and . Using the metric, the angle between them is given by

 cos
( , )

( , ) ( , )
θ =

g

g g

u v
u u v v

Now we apply the transformation given by Eq. (5.2) and fi nd

 cos
( , )

( , ) ( , )

( ) ( , )

(
θ →

′
′ ′

=
g

g g

x gu v

u u v v

u vΩ
Ω xx g x g

g

g g) ( , ) ( ) ( , )

( , )

( , ) ( , )u u v v
u v

u u v vΩ
=

Hence a conformal transformation preserves angles.
A conformal fi eld theory is a quantum fi eld theory that is invariant under 

conformal transformations. These theories are Euclidean quantum fi eld theories, 
meaning that a Euclidean metric is used. The symmetry group of such a theory will 
contain Euclidean symmetries (we will review those in a moment) along with local 
conformal transformations. It turns out that two-dimensional conformal fi eld 
theories are of particular use. Two-dimensional conformal fi eld theories have an 
infi nite number of conserved charges. 
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There are two important properties of conformal fi eld theories. These can be 
summed up by saying that a conformal fi eld theory is scale invariant. This manifests 
itself in two ways:

• Conformal fi eld theories have no length scale.

• Conformal fi eld theories have no mass scale.

To see why this is important, we can consider the quantum fi eld theory of a scalar 
fi eld. Let φ( )x be a scalar fi eld in d space-time dimensions. Consider a rescaling of 
the coordinates which we write as a scale transformation:

 ′ =x xλ  (5.3)

Under a scale transformation, a scalar fi eld φ( )x transforms using the classical 
scaling dimension ∆ = −( ) /d 2 2 as follows:

 φ φ λ λ φ λ φ( ) ( ) ( ) ( )x x x x
d

→ ′ = =−∆ − +
2

1

For a fi eld theory to be scale invariant, we require that the action be invariant 
under this transformation. This is, in fact, true when we consider a free, massless 
scalar fi eld. The action in this case is

 S d xd= ∂ ∂∫ µφ φ
µ

Under the transformation ′ =x xλ , it is clear that dx dx′ = λ , that is,

 d x d x d x d x d x d xd
d′ = = ⋅−( ) ( ) ( ) ( ) ( ) (λ λ λ λ λ λ0 1 1 0 1… … )) ( )…d x d xd

d d
− =1 λ

Now recall that ∂µ is shorthand for ∂ ∂/ ( )xµ . So we pick up a copy of λ under a 
scale transformation:
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where we used φ φ λ λ φ( ) ( ) ( )( / )x x xd→ ′ = − +2 1 . It follows that the action is unchanged 
under a scale transformation:

 ′ = ′∂ ′∂ ′ = ∂ ∂ = ∂ ∂∫ ∫ ∫′
′ −S d x d x d xd d d d d

µ µ µφ φ λ λ φ φ φ
µ µ µµ

φ = S

The problem is that a scale transformation does not change a fi xed quantity like 
mass. Let’s consider a free scalar fi eld with mass m. The action is

 S d x md= ∂ ∂ −∫ ( )µφ φ φ
µ 2 2

This action is not invariant under a scale transformation because

 m m md2 2 2 2 2 2 2′ = ≠− +φ λ φ φ

Often, quantum theory breaks scale invariance. A prototypical example is φ 4 theory 
for a massless fi eld. The classical action is scale invariant:

 S d x
g

= ∂ ∂ −⎛
⎝⎜

⎞
⎠⎟∫ 4 41

2 4µφ φ φ
µ

!

The problem is, that renormalization introduces a fi xed mass term to the theory. 
As a result scale invariance is broken. Conformal fi eld theories provide a way out of 
this confl ict by giving us quantum fi eld theories that are scale and mass invariant.

The Role of Conformal Field Theory
in String Theory

A question you should be asking yourself is why are conformal fi eld theories 
important in string theory? It turns out that two-dimensional conformal fi eld theories 
are very important in the study of worldsheet dynamics. 

A string has internal degrees of freedom determined by its vibrational modes. 
The different vibrational modes of the string are interpreted as particles in the 
theory. That is, the different ways that the string vibrates against the background 
space-time determine what kind of particle the string is seen to exist as. So in one 
vibrational mode, the string is an electron, while in another, the string is a quark, for 
example. Yet a third vibrational mode is a photon.
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As we have seen already, the vibrational modes of the string can be studied by 
examining the worldsheet, which is the two-dimensional surface. It turns out that 
when studying the worldsheet, the vibrational modes of the string are described by 
a conformal fi eld theory. 

If the string is closed, we have two vibrational modes (left movers and right 
movers) moving around the string independently. Each of these can be described by 
a conformal fi eld theory. Since the modes have “direction” we call the theories that 
describe these two independent modes chiral conformal fi eld theories. This will be 
important for open strings as well.

A Euclidean metric is simply a metric that resembles the distance measure from 
ordinary geometry. Let’s try to clarify this point considering the simplifi ed case 
of one-time dimension and one-space dimension. In special relativity, we 
distinguish between space and time with the use of a change of sign so that if we 
are using the signature ( , )− + ds dt dx2 2 2= − + . So the two-dimensional Minkowski 
metric would be

 ηµν =
−⎛

⎝⎜
⎞
⎠⎟

1 0

0 1

What we’re after with a Euclidean metric is describing things in a way that we could using 
ordinary geometry. In the x-y plane, the infi nitesimal measure of distance is given by 
dr dx dy2 2 2= + . This tells us that a Euclidean metric is one for which all quantities have 
the same sign. We can rewrite the Minkowski metric in this way by using what is known 
as a Wick rotation. Simply put, we make a transformation on the time coordinate by 
letting t it→ − . Then dt idt→ − and it follows that ds idt dx dt dx2 2 2 2 2= − − + = +( ) , 
which is exactly what we want. In order to describe the worldsheet with coordinates 
( , )τ σ  using a Euclidean metric, we make a Wick rotation τ τ→ −i . 

In terms of the worldsheet coordinates ( , )τ σ , the metric is

 ds d d2 2 2= − +τ σ

So we see that making a Wick rotation τ τ→ −i  changes this to

 ds d d2 2 2= +τ σ

which is a Euclidean metric. Utilizing the Euclidean metric enables us to use 
conformal fi eld theory on the string. 

Wick Rotations



 94 String Theory Demystifi ed

Complex Coordinates
A consequence of a Wick rotation is that the light-cone coordinates ( , )+ −  are 
replaced with complex coordinates ( , )z z . The description of the worldsheet is 
transformed into complex variables by defi ning complex coordinates ( , )z z  which 
are functions of the real variables ( , )τ σ . One way this can be done is as 
follows:

 z i z i= + = −τ σ τ σ   (5.4)

Let’s use this defi nition to work out a few basic quantities and show how this 
simplifi es analysis. Keep the Polyakov action in the back of your mind. Using the 
Euclidean metric the Polyakov action is written as

 S d d X X X XP =
′

∂ ∂ + ∂ ∂∫
1

4πα
τ σ τ

µ
τ µ σ

µ
σ µ( )   (5.5)

We’re going to fi nd out that going to complex variables will simplify the form of 
Eq. (5.5). 

To transform coordinates we need to know how to compute derivatives with 
respect to the coordinates z z and . This is easy enough. First we invert the coordinates 
Eq. (5.4):

 τ σ=
+

=
−z z z z

i2 2
  (5.6)

It follows that

 ∂
∂

=
∂
∂

=
∂
∂

=
∂
∂

= −
τ τ σ σ
z z z i z i

1

2

1

2

1

2

and so

 ∂
∂

=
∂
∂

∂
∂

+
∂
∂

∂
∂

=
∂

∂
+

∂
∂

=
∂

∂
−

∂
∂z z z i

i
τ

τ
σ

σ τ σ τ σ
1

2

1

2

1

2
⎛⎛
⎝⎜

⎞
⎠⎟

  (5.7)

The shorthand notation ∂ = ∂ = ∂ − ∂z i1 2/ ( )τ σ is usually used. It is also easy to 
see that

 ∂
∂

= ∂ = ∂ =
∂
∂

∂
∂

+
∂
∂

∂
∂

=
∂
∂

−
∂

∂
=

∂
∂z z z i

z

τ
τ

σ
σ τ σ τ

1

2

1

2

1

2
++

∂
∂

=⎛
⎝

⎞
⎠ ∂ + ∂i i

σ τ σ
1

2
( )  (5.8)
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where we’ve introduced the abbreviation ∂ = ∂z . Now given that after a Wick 
rotation the metric for the ( , )τ σ coordinate system is written as

 gαβ =
⎛
⎝⎜

⎞
⎠⎟

1 0

0 1

We can write down the metric in the new complex coordinates using Eq. (5.1). 
We have

 

g g g g g
zz z z z z z z z z

= ∂ ∂ + ∂ ∂ + ∂ ∂ + ∂ ∂τ τ τ σ σ τ σ σττ τσ στ σσ

== ∂ ∂ + ∂ ∂

=
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

z z z z

i

τ τ σ σ

1

2

1

2

1

2

1

22

1

4

1

4
0

i

⎛
⎝⎜

⎞
⎠⎟

= − =
 

(5.9)

Similarly, gzz = 0. On the other hand

 

g g g g gzz z z z z z z z z= ∂ ∂ + ∂ ∂ + ∂ ∂ + ∂ ∂τ τ τ σ σ τ σ σττ τσ στ σσ

== ∂ ∂ + ∂ ∂

= ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

−

z z z z

i

τ τ σ σ
1

2

1

2

1

2

11

2

1

4

1

4

1

2i
gzz

⎛
⎝⎜

⎞
⎠⎟

= + = =
 

(5.10)

In matrix form

 gµν =
⎛
⎝⎜

⎞
⎠⎟

0 1 2

1 2 0

/

/
 (5.11)

The inverse metric, written with raised indices has components given by

 g g g gzz zz zz zz= = = =0 2  (5.12)

The corresponding matrix is

 gµν =
⎛
⎝⎜

⎞
⎠⎟

0 2

2 0
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“Volume elements” in integrals can be written using coordinate transformations 
by including the determinant of the metric. Writing d z dzd z2 = and using 

| |det g d z d d2 = τ σ it follows that

 d z d d2 2= τ σ   (5.13)

Now consider the action

 S d z X X=
′

∂ ∂∫
1

2
2

πα
µ

µ
   (5.14)

This is, in fact, the Polyakov action [Eq. (5.5)] in a much simpler mathematical 
form. To see this, we can use Eq. (5.7) together with Eq. (5.13). Notice that

 

∂ ∂ = ∂ − ∂{ } ∂ + ∂{ }
= ∂

X X i X i X

X

µ
µ τ σ

µ
τ σ µ

τ
µ

1

2

1

2

1

4

( ) ( )

( −− ∂ ∂ + ∂

= ∂ ∂ + ∂ ∂ −

i X X i X

X X i X X

σ
µ

τ µ σ µ

τ
µ

τ µ τ
µ

σ µ

)( )

(
1

4
ii X X X X

X X X X

∂ ∂ + ∂ ∂

= ∂ ∂ + ∂ ∂

σ
µ

τ µ σ
µ

σ µ

τ
µ

τ µ σ
µ

σ µ

)

( )
1

4

To move from the third to the fourth line, we used the fact we can raise and lower 
indices with the Euclidean metric. That is, X X Xµ µν

ν µδ= = , so

 − ∂ ∂ = − ∂ ∂ = − ∂ ∂ = − ∂ ∂i X X i X X i X X i X Xσ
µ

τ µ σ µ τ µ σ µ τ
µ

τ
µ

σ µ

and the middle terms cancel. Therefore

 

S d z X X d d X X

d

=
′

∂ ∂ =
′

∂ ∂

=
′

∫ ∫
1

2

1

2
2

1

2
2

2

πα πα
τ σ

πα

µ
µ

µ
µ

ττ σ

πα
τ σ

τ
µ

τ µ σ
µ

σ µ

τ
µ

d X X X X

d d X

∫

∫

∂ ∂ + ∂ ∂

=
′

∂ ∂

1

4

1

4

( )

( ττ µ σ
µ

σ µX X X SP+ ∂ ∂ =)
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We’ve shown that Eq. (5.14) is an equivalent way to write the Polyakov action. 
But it’s much simpler, and it’s much simpler to derive the equations of motion using 
this form. We can do this by varying the action [Eq. (5.14)] with respect to the 
coordinate Xµ. This is done by letting X X Xµ µ µδ→ + . Then

 
S d z X X X d z X X→

′
∂ ∂ + =

′
∂ ∂ + ∂∫ ∫

1

2

1

2
2 2

πα
δ

πα
δµ

µ µ
µ

µ( ) ( XX

d z X X d z X X S

µ

µ
µ

µ
µπα πα

δ δ

)

( )=
′

∂ ∂ +
′

∂ ∂ = +∫ ∫
1

2

1

2
2 2 SS

We can obtain the equations of classical motion by requiring that δS = 0. Integrating 
by parts and discarding the boundary term:

 
δ

πα
δ

πα
δ

µ
µ

µ
µ

S d z X X

d z X X

=
′

∂ ∂

= −
′

∂∂

∫

∫

1

2
1

2

2

2

( )

( )

We have used the fact that partial derivatives commute. This term must vanish 
for the action to be invariant. Therefore it must be the case that

 ∂ ∂ =X z zµ ( , ) 0   (5.15)

We’ve written X X z zµ µ= ( , ) to emphasize that in general the coordinates can be 
a function of z z and . However, as you might guess from your studies of complex 
variables there is a special case of interest, that of analytic or holomorphic functions. 
A function f z z( , ) is holomorphic if

 
∂
∂

=
f

z
0   (5.16)

That is, f f z= ( ) only. On the other hand, if

 ∂
∂

=
f

z
0   (5.17)

and f f z= ( ), then we say that f is antiholomorphic. In string theory, if ∂ ∂ =( )X µ 0
then ∂X µ is a holomorphic function which is called left moving. In the other case, 
where ∂ ∂ =( )X µ 0 , the function ∂X µ is antiholomorphic and is called right moving. 
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Generators of Conformal Transformations
To study the generators of a conformal transformation, we consider an infi nitesimal 
transformation of the coordinates:

 ′ = +x xµ µ µε

Now consider an infi nitesimal conformal transformation. That is if ′ ′ =g xµν ( )  
Ω( ) ( )x g xµν we take Ω( ) ( )x f x= −1  where f x( ) is some small departure from the 
identity. Then we have ′ ′ = − = −g x f x g x g x f x g xµν µν µν µν( ) ( ( )) ( ) ( ) ( ) ( )1 . 

Using ′ = +x xµ µ µε you can show that

 ′ = − ∂ + ∂g gµν µν µ ν ν µε ε( )

So, recalling that we are working with a conformal transformation about the fl at 
space metric, it must be the case that

 ∂ + ∂ =µ ν ν µ µνε ε f x g( )

We can determine the form of f x( ) by multiplying both sides of this equation by 
gµν

. In d spacetime dimensions g g dµν
µν =  and so on the right we obtain 

g f x g d f xµν
µν( ) ( )= . On the left side we have

 

g g gµν
µ ν ν µ

µν
µ ν

µν
ν µ

µ
µ

ν
ν

ε ε ε ε

ε ε

( )∂ + ∂ = ∂ + ∂

= ∂ + ∂ (raiise indices with metric)

(relabel= ∂ + ∂µ
µ

µ
µε ε repeated indices

which are dummy indices)
== ∂2 µ

µε

Hence

 f
d

= ∂
2

µ
µε

And we have the relation

 ∂ + ∂ = ∂ = ∂ ⋅µ ν ν µ µν ρ
ρ

µνε ε δ ε δ ε2 2

d d
( )   (5.18)
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Using = ∂ ∂µ
µ, taking the derivative with respect to ∂µ we have, on the left-hand 

side:

 ∂ ∂ + ∂ ∂ = + ∂ ∂ ⋅µ
µ ν

µ
ν µ ν νε ε ε ε( )

Hence, taking the same derivative on the right side and equating results we obtain

 ε εν ν+ −⎛
⎝⎜

⎞
⎠⎟

∂ ∂ ⋅ =1
2

0
d

( )

Notice that this equation singles out the case of two dimensions. Setting d = 2
we obtain

 εν = 0

We can obtain a second equation which highlights the importance of d = 2 by 
operating on * with = ∂ ∂µ

µ. This gives

 { ( ) }( )δ εµν µ ν+ − ∂ ∂ ∂ ⋅ =d 2 0

The infi nitesimal parameter ε µ can represent four different types of transformations: 
translations, scale transformations, rotations, and special conformal transformations. 
A translation takes the form

 ε µ µ= a

where aµ is a constant. A scale transformation is one of the form:

 ε λµ µ= x

For a rotation, we write

 ε ωµ µ
ν

ν= x

where we require that ω is antisymmetric, that is, ω ωµν νµ= − . Finally, a special 
conformal transformation assumes the form

 ε µ µ µ= − ⋅b x x b x2 2 ( )
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These operations can be combined with the Poincaré group to form the conformal 
group. We incorporate two generators from the Poincaré group, the generator of 
translations Pµ  and the generator of rotations Jµν . Denoting the generator of a 
scale transformation by D and the generator of a special conformal transformation 
by Kµ , the generators of the conformal group are

 P i D i x J i x x K i x xµ µ µν µ ν ν µ µ µ= − ∂ = − ⋅ ∂ = ∂ − ∂ = − ∂ −( ) [ 2 2 µµ ( )]x ⋅ ∂  (5.19)

The Two-Dimensional Conformal Group
We now simplify the discussion somewhat and consider the special case of interest 
to us, the conformal group in two dimensions. In Eq. (5.18) we found that

 ∂ + ∂ = ∂µ ν ν µ µν ρ
ρε ε δ ε

     where we have set d = 2. Proceeding with the two-dimensional case,      take coordinates 
( , )x x1 2 . Then when µ ν= =1 2, we have δµν = 0  and we obtain

 ∂ + ∂ =1 2 2 1 0ε ε

Dispensing with the shorthand notation for a moment, this might look more 
familiar as

 ∂
∂

= −
∂
∂

ε ε2
1

1
2x x

This is nothing other than one of the Cauchy-Riemann equations when we take 
ε ε ε= + = +1 2 1 2i x x ix and . Similarly you can also show that

 ∂
∂

=
∂
∂

ε ε1
1

2
2x x

In the theory of complex variables we learned that a function that satisfi es the 
Cauchy-Riemann equations in a given region R is called analytic. An analytic 
function is one that is a function of z only. So, labeling our coordinates with the 
usual complex coordinates ( , )z z conformal transformations in two dimensions are 
implemented using analytic functions:

 z f z z f z→ →( ) ( )    (5.20)
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where ∂ = ∂ =f f 0. To obtain the generators, we consider a coordinate transformation 
of the form:

 z z z z z z z zn
n

n
n→ ′ = − → ′ = −+ +ε ε1 1   (5.21)

To obtain an expression for the generators of a conformal transformation in two 
dimensions, we take the derivatives of the transformed coordinates ′ ′z z, and look for 
terms containing the derivatives ∂ ∂ε εn n and , respectively. In the fi rst case we obtain

 ∂ ′ =
∂
∂

− = − + − ∂+ +z
z

z z n z zn
n

n
n n

z n( ) ( )ε ε ε1 11 1

This allows us to identify the generator:

 n
n

zz= − ∂+1   (5.22)

A similar procedure applied to the complex conjugate coordinate gives

 
n

n
zz= − ∂+1  (5.23)

In the classical case, the generators [Eqs. (5.22) and (5.23)] satisfy the Virasoro 
algebra:

 [ , ] ,m n m n m n m nm n m n= −( ) ⎡⎣ ⎤⎦ = −( )+ +   (5.24)

EXAMPLE 5.1
Show that the infi nitesimal generator n

nz= − ∂+1 satisfi es the Virasoro algebra 
[ , ] ( )m n m nm n= − + .

SOLUTION
We apply the generator, which is an operator, to a test function f. So we obtain

 

[ , ] ( )

( ) (
m n m n n m

m n n

f f

z z f z

= −

= − ∂ − ∂ − −+ +1 1 ++ +

+ +

∂ − ∂

= − − + ∂ − ∂ +

1 1

1 1 21

)( )

[ ( ) ]

z f

z n z f z f z

m

m n n n++ +

+ + + +

− + ∂ − ∂

= + ∂ +

1 1 2

1

1

1

[ ( ) ]

( )

m z f z f

n z f z

m m

m n m n 22 2 1 2 2

1

1∂ − + ∂ − ∂

= − −

+ + + +

+ +

f m z f z f

m n z

m n m n

m n

( )

( )[ ∂∂
= − +

]

( )

f

m n fm n
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Hence we conclude that

 [ , ] ( )m n m nm n= − +

The generators 0 1 0 1, ,± ±and  are a special case. Consider the action of these 
generators on the infi nitesimal coordinate transformations [Eq. (5.21)]. Taking 
n = −1 0 1, , we have

 

n z z

n z z z

= − ′ = −
= ′ = −

1

0

:

:

ε
ε

       (translation)

        (scaling)

      (special n z z z= ′ = −1 2: ε cconformal transformation)

There are similar expressions for the complex conjugates. Hence − −1 1 and  
generate translation, 0 0 0 0 and , ( )+ generate scaling and dilations, respectively, 
i( )0 0− generates rotations, and 1 1 and generate special conformal transforma-
tions. All together, the transformations generated by 0 1 0 1, ,± ± and can be written in 
the form

 z z
az b

cz d
→ =

+
+

γ ( )    (5.25)

Here, ad bc− = 1 and the transformation γ ( )z is called a Möbius transformation. 

EXAMPLE 5.2
Consider the transformation T z z aza ( ) / ( )= +1 . Show that T za ( )  constitutes a 
transformation group by examining the composition T T zb a( ( )) .

SOLUTION
This is actually a simple problem. We need to show that 

 T T z T z
z

a b zb a a b( ( )) ( )
( )

= =
+ ++ 1

Starting with T z z aza ( ) / ( )= +1 , let w z az= +/ ( )1 . Now

 T w
w

bwb ( ) =
+1
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Using w z az= +/ ( )1  we get

 

T w
w

bw

z
az

b
z
az

z

az b
z

b ( )

( )

=
+

= +

+
+

⎛
⎝⎜

⎞
⎠⎟

=
+ +

1
1

1
1

1 1
11

1 1

+
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

=
+ +

=
+ +

= (+

az

z

az bz

z

a b z
T za b( )

))

Hence, T z z aza ( ) / ( )= +1 satisfi es the group composition property.

EXAMPLE 5.3
Let T z z aza ( ) / ( )= +1  and suppose that a is real and a = 1. Determine the generators 
of this transformation.

SOLUTION
Recall that the generators have the form n

n
zz= − ∂+1 and similarly for the complex 

conjugate. This form holds for an infi nitesimal transformation parameter 
ε( )z a zn

n= −∑ +1. So we can deduce the expressions for the generators by writing 
the transformation as a series. 

Consider the following series

 s r r r= − + − +1 2 3

Now multiply by r to give

 rs r r r r= − + − +2 3 4

Now add both series. On the left side we obtain s rs s r+ = +( )1 . On the right, we 
have

 s rs r r r r r r r+ = − + − + + − + − + =1 12 3 2 3 4
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This tells us that

 
1

1
1 2 3

+
= = − + − +

r
s r r r

So, taking into account that a = 1 we can write the transformation as

 T z
z

az
z az O a z az O aa ( ) ( ( )) ( )=

+
= − + ≈ − +

1
1 2 2 2

The power associated with the small parameter is z2 from which we deduce that 
n = 1. So the generator is

 1
2= − ∂z z

We aren’t quite done—we need to consider the complex conjugate. This takes 
the same form:

 T z
z

az
z az O a z az O aa ( ) ( ( )) ( )=

+
= − + ≈ − +

1
1 2 2 2

Notice we used the fact that a is real. The generator in this case is 1
2= − ∂z z, and 

the generator for the transformation is found by taking the sum:

 1 1
2 2+ = − ∂ − ∂z zz z

Central Extension
In the quantum theory the Virasoro operators acquire an extra term which goes by 
the name central extension. Calling c the central charge, the algebra described by 
Eq. (5.24) becomes

 [ , ] ( ) ( ) ,L L m n L
c

m mm n m n m n= − + −+ +12
12

0δ   (5.26)

The result in Eq. (5.26) is known as the Virasoro algebra. The classical form 
[Eq. (5.24)] is sometimes called the Witten algebra. This formula [Eq. (5.26)] will 
be derived in the next chapter using the operator product expansion of the energy-
momentum tensor.
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Now let’s move forward so we can see what the developments laid out thus far in 
the chapter really mean. We will see that the energy-momentum tensor can be 
expanded in a Laurent series, and that the Virasoro operators turn out to be the 
coeffi cients of the expansion. In other words, they describe the modes of the energy-
momentum tensor. In particular, the operator L0 is proportional to the energy 
operator or hamiltonian.

As a specifi c example, consider a closed string with worldsheet coordinates 
( , )τ σ . The spatial dimension is compactifi ed, that it is periodic with

 σ σ π= + 2  (5.27)

The time coordinate satisfi es − ∞ < < ∞τ . We can describe the worldsheet of the 
closed string, which is an infi nite cylinder, using conformal fi eld theory in the 
following way. We begin by making the following conformal transformation:

 z e z ei i= =+ −τ σ τ σ  (5.28)

The effect of this transformation is to map the cylinder to the complex plane. The 
radial coordinate plays the role of time, with the infi nite past at the origin. With 
increasing radius, we move forward in time. Spatial integrals on the worldsheet are 
translated into contour integrals about the origin in the complex plane as the result 
of the conformal transformation [Eq. (5.28)]. A slice through the cylinder, which 
corresponds to a slice at constant time τ i , is transformed into a circle of radius ri  in 
the complex plane. That is, radius in the z plane is a measure of Euclidean worldsheet 
time as

 R z e= = τ

So, at time τ1  a closed string is a circle of radius R z e1
1= = τ in the z plane, with the 

angular coordinate given by θ σ= . This is illustrated in Fig. 5.1.
As time increases, from say τ τ τ τ1 2 2 1→ >, , the radius of the circle in the z plane 

increases from R1  to R R2 1> . 
Let’s recall the left-moving and right-moving modes described in Eq. (2.55) and 

(2.56). Given Eq. (5.28), it is clear that τ σ τ σ+ ∞ − ∞ln , lnz zand . So we have

 X z
x

i p z i
n

zL
s s n n

n

µ
µ

µ
µα

( ) ln= − + −

≠
∑2 2 2

2

0

  (5.29)

 X z
x

i p z i
n

zR
s s n n

n

µ
µ

µ
µα

( ) ln= − + −

≠
∑2 2 2

2

0

  (5.30)

Closed String Conformal Field Theory
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The energy-momentum tensor of the worldsheet is a conserved quantity, meaning 
that

 ∂ =µ
µνT 0  (5.31)

The energy-momentum tensor is also traceless. This means that in the coordinates 
( , )z z , the components Tzz = 0. The conservation condition [Eq. (5.31)] implies that

 ∂ = ∂ =z zz z zzT T 0   (5.32)

That is, the energy-momentum tensor is composed of a holomorphic and 
antiholomorphic functions given by T Tzz zz and , respectively. A holomorphic 
function has a Laurent series expansion, which we write as

 T z
L

zzz
m

m
m

( ) = +
=−∞

∞

∑ 2
  (5.33)

We have written this expression in a way anticipating that the Laurent coeffi cients 
are the Viarasoro generators. The antiholomorphic component also has a Laurent 
expansion:

 T z
L

zzz
m

m
m

( ) = +
=−∞

∞

∑ 2
   (5.34)

Worldsheet of
closed string

z  plane

R

z=et+is

τ1

Figure 5.1. The worldsheet of a closed string is mapped to the z plane. A slice 
through the cylinder, at a constant time, is mapped to a circle of a 
fi xed radius in the z plane. The radius of the circle in the z plane 

corresponds to (Euclidean) time on the worldsheet.
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Using standard complex analysis, this tells us that we can invert these formulas 
in the following way:

 L
i

dz

z
z T z L

i

dz

z
z T zm

m
zz m

m
zz= =+ +∫ ∫

1

2

1

2
2 2

π π
( ) ( ))   (5.35)

The deformation of path theorem (see Complex Variables Demystifi ed ) tells us 
that we can shrink or expand the contour used for the integration in Eq. (5.35) and 
leave the integral invariant. Since movement along the radial distance in the complex 
plane corresponds to time translation, this tells us that the Virasoro operators are 
invariant under a time translation, in other words the integrals [Eq. (5.35)] are 
related to conserved charges. 

To gain insight into the physics of the problem, we will begin by calculating 
propagators for the theory. In the text we will derive the closed string propagator, 
you can try the open string case in the chapter quiz.

We begin by considering the propagator or Wick expansion for X µ σ τ( , ) for the 
closed string. This is done by calculating

 X X T X Xµ ν µ νσ τ σ τ σ τ σ τ( , ), ( , ) ( ( , ), ( , )′ ′ = ′ ′ )) : ( , ) ( , ) :− ′ ′X Xµ νσ τ σ τ

This is also called the two-point function. There are two notations you should be 
aware of in this expression. The T indicates that the expression is time ordered. It is 
shorthand for

 T X XX X( ( , ), ( , )) ( , ) ( , ) (µ νσ τ σ τ µ νσ τ σ τ θ′ ′ = ′ ′ ττ τ σ τ σ τ θ τ τν µ− ′ + ′ ′ ′ −) ( , ) ( , ) ( )X X

To understand what we have here, note that the Heaviside function 
θ θ( ) , ( )t t t t= > = <1 0 0 0 if  if . This expression ensures that the term which 
occurs earlier in time is to the right. So if τ τ> ′, which means that τ  is later than 

′τ , then

 T X X X X( ( , ), ( , )) ( , ) ( , )µ ν µ νσ τ σ τ σ τ σ τ′ ′ = ′ ′

Wick Expansion
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 and vice versa for the other possibility. The colons indicate normal ordering which 
puts all creating operators to the left of all annihilation operators. Now consider 
the fact that we can write the fi elds in terms of left movers and right movers. 
Then

 
0 0 0 0

0

X X X X X XL R L R
µ ν µ µ ν νσ τ σ τ( , ) ( , ) ( )( )′ ′ = + +

= XX X X X X X X XL L L R R L R R
µ ν µ ν µ ν µ ν+ + + 0

Now let’s move to the complex plane where X X z X X zR R L L
µ µ µ µ= =( ), ( )  so that 

0 0 0 0X X X z z X z zµ ν µ νσ τ σ τ( , ) ( , ) ( , ) ( , )′ ′ → ′ ′ . Let’s consider one term, 
0 0X XR R

µ ν using the expansion given in Eq. (5.30). Noting that pµ 0 0=  and 
[ , ]x p iµ ν µνη= , α αµ µ

m nm n0 0 0 0 0 0= > = < if  and  for , we have

 

0 0
1

4
0 0

4
0 0

2

1
0

2 2

X X x x i z p x
mnR R

s s
n

µ ν µ ν µ ν α= − −ln µµ ν

µ ν
µν

α

η

m
n

m
n m

s

z z

x x
z

≠
≠

− −∑ ′

= − +

0
0

2

0

1

4
0 0

2 2

ln ss
n

m
n

m
n m

mn
z z

2

0
0

2

1
0 0α αµ ν

≠
≠

−
− −∑ ′

Moving from the fi rst to the second line, we used

 0 0 0 0 0 0 0 0p x x p i x p i iµ ν ν µ µν ν µ µν µνη η η= − = − = −

Now the commutator of the creation and annihilation operators satisfi es

 α α η δµ ν µν
m n m nm, ,⎡⎣ ⎤⎦ = −

And so this becomes

 0 0
1

4
0 0

2 2 2

12 2

0

X X x x
z

nR R
s s

n

µ ν µ ν
µν

µνη η= − +
>
∑ln

zz zn n− ′
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Now, using the fact that x n xn

n

/ ln( )
=

∞

∑ = − −
1

1 , we can write this as

 

0 0
1

4
0 0

4 2

2 2

X X x x
z z

nR R
s s

n

n

µ ν µ ν
µν

µνη η= − + ′
>

( / )

00

21

4
0 0

2 2
1

1

∑

= − + − ′⎛
⎝⎜

⎞
⎠⎟

=

x x
z

z zsµ ν
µνη ln

ln( / )

44
0 0

4 2

2 2

x x z z zs sµ ν
µν µνη η

+ − − ′ln ln( )

Similar calculations show that

 
0 0

1

4
0 0

4 2

2 2

X X x x z z zL L
s sµ ν µ ν

µν µνη η
= + − − ′ln ln( ))

 
0 0

4

2

X X zR L
sµ ν

µνη
= − ln

 

 
0 0

4

2

X X zL R
sµ ν

µνη
= − ln

Adding these terms up we fi nd that

 

0 0

0 0
2

2

X z z X z z

x x z zs

µ ν

µ ν
µνη

( , ) ( , )

ln[(

′ ′

= − − ′))( )] ( , ) ( , )z z X z z X z z− ′ = ′ ′0 0ν µ

So the vacuum expectation value of the time ordered product is

 0 0 0 0
2

2

T X z z X z z x x zs[ ( , ) ( , )] ln[(µ ν µ ν
µνη

′ ′ = − −− ′ − ′z z z)( )]

Now let’s return to the two-point function:

 X X T X Xµ ν µ νσ τ σ τ σ τ σ τ( , ), ( , ) ( ( , ), ( , )′ ′ = ′ ′ )) : ( , ) ( , ) :− ′ ′X Xµ νσ τ σ τ

Normal ordering puts all destruction operators to the right. So: :p xµ ν 0 =
x pν µ 0 0= . Also, normal ordering of terms like 1 0 0

0
0

/( )mn z z
n

m
n

m
n mα αµ ν

≠
≠

− −∑ ′
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puts all destruction operators to the right annihilating the vacuum. So the vacuum 
expectation value of the normal ordered piece reduces to

 0 0 0 0: ( , ) ( , ) :X X x xµ ν µ νσ τ σ τ′ ′ =

Hence the two-point function is

 

X X T X Xµ ν µ νσ τ σ τ σ τ σ τ( , ), ( , ) ( ( , ), ( , ))′ ′ = ′ ′ −− ′ ′

= − − ′ − ′

: ( , ) ( , ) :

ln ( )(

X X

z z zs

µ ν

µν

σ τ σ τ

η 2

2
zz

z z z zs s

)

ln( ) ln( )

[ ]

= − − ′ − − ′
η ηµν µν2 2

2 2

Now that we have this expression, we can easily calculate other quantities that 
involve derivatives, say. For example, to calculate the two-point function 
∂ ′ ′z X z z X z zµ ν( , ), ( , ) , we just differentiate the result:

 

∂ ′ ′ = ∂ − − ′ −z z
sX z z X z z z zµ ν

µνη η
( , ), ( , ) ln( )

2

2

µµν

µνη

s

s

z z

z z

2

2

2

2

1

ln( )− ′
⎡

⎣
⎢

⎤

⎦
⎥

= −
− ′

And

 ∂ ∂ ′ ′ =
− ′′z z

sX z z X z z
z z

µ ν
µνη

( , ), ( , )
( )

2

22

1

Operator Product Expansion
A key concept we need to continue forward is known as an operator product 
expansion. This is often given the abbreviation OPE. An operator product expansion 
is a series expansion of a product of two operator-valued fi elds. Let’s denote these 
fi elds by A

i
 and consider two space-time points z and w. Then in a region R that does 

not contain w

 A z A w c z w A wi j ijk k
k

( ) ( ) ( ) ( )= −∑    (5.36)
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The c z wijk ( )− are analytic functions in R and the A wk ( )  are operator-valued 
fi elds. Now, defi ne a conformal transformation z w z→ ( ). A conformal fi eld or 
primary fi eld is one that transforms as

 Φ Φ( , ) ( , )z z
w

z

w

z
w w

h h

=
∂
∂

⎛
⎝⎜

⎞
⎠⎟

∂
∂

⎛
⎝⎜

⎞
⎠⎟

   (5.37)

We say that ( , )h h are the conformal weights or conformal dimension of the fi eld. 
In particular, h h+  is the dimension which describes how the fi eld Φ behaves under 
scaling, while h h− is the spin of Φ, which describes how the fi eld is transformed 
under a rotation. If Eq. (5.37) is satisfi ed, then it follows that

 Φ Φ( , )( ) ( ) ( , )( ) ( )z z dz d z w w dw dwh h h h=  (5.38)

That is, Φ( , )( ) ( )z z dz d zh h  is invariant under a conformal transformation. 
Working in the complex plane, time ordering is transformed into radial ordering 

because as we mentioned above, the radial direction encodes the fl ow of time in the 
z plane. Consider two operators defi ned in the complex plane A z B w( ) ( ) and . The 
radial-ordering operator R fi xes the order of the operators based on which one has 
the larger radius in the complex plane. That is,

 R A z B w
A z B w z w

B w A z w zf[ ( ) ( )]
( ) ( ),

( ) ( ) ( ),
=

>
− >

⎧
⎨

1⎩⎩

If the operators are fermionic, then f = 1. 
One operator product expansion of particular interest involves the energy-

momentum tensor. In the complex plane

 T z X Xzz z z( ) : := ∂ ∂ηµν
µ ν    (5.39)

EXAMPLE 5.4
Find the operator product expansion of the radially ordered product T z X wzz w( ) ( )∂ ρ .

SOLUTION
Using Eq. (5.39) we have

 

R T z X w R X z X z Xzz w z z w( ( ) ( )) (: ( ) ( ) : (∂ = ∂ ∂ ∂ρ
µν

µ ν ρη ww

X z X w X z

X z X

z w z

z w

))

( ) ( ) ( )

( )

= ∂ ∂ ∂

+ ∂ ∂

η

η
µν

µ ρ ν

µν
ν ρρ µ( ) ( )w X zz∂
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Now we can use our previous result, namely

  ∂ ∂ ′ ′ =
− ′′z z

sX z z X z z
z z

µ ν
µνη

( , ), ( , )
( )

2

22

1

And so we obtain

 

R T z X w

z w
X z

zz w

s
z

( ( ) ( ))

( )
( )

∂

= −
−

∂ −

ρ

µν
µρ νη η

2

22

1 s
z

s z

z w
X z

z w
X z

2

2

2
2

2

1

1

( )
( )

( )
(

−
∂

= −
−

∂

η ηµν
νρ µ

ρ ))

Now expand ∂z X zρ ( ) in a power series about the point z w= . We fi nd

 ∂ = ∂ + − ∂ +
−

∂z w z zX z X w z w X z
z w

Xρ ρ ρ ρ( ) ( ) ( ) ( )
( )

!
2

2
3

2
(( )z +

Hence

 

R T z X w

z w
X z

z

zz w

s z

s

( ( ) ( ))

( )
( )

(

∂

= −
−

∂

= −

ρ

ρ2
2

2

1

1

−−
∂ + − ∂ +

−
∂

w
X w z w X z

z w
X zw z z)

( ) ( ) ( )
( )

!
( )

2
2

2
3

2
ρ ρ ρ ++

⎧
⎨
⎩

⎫
⎬
⎭

= −
−

∂ −
−

∂s w
s

zz w
X w

z w
X z2

2

2
21

( )
( ) ( )ρ ρ −−

−
∂ +s z

z w
X z2 3

2

( )

!
( )ρ

The singular terms are what is of interest. So it is typical to use an ellipsis to 
represent the regular terms in the summation and write

 R T z X w
z w

X w
z wzz w s w

s( ( ) ( ))
( )

( )∂ = −
−

∂ −
−

∂ρ ρ2
2

21
zz X z2 ρ ( ) +
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EXAMPLE 5.5
In this example we compute an important result, the OPE of T z T wzz ww( ) ( ).

SOLUTION
Using radial ordering we have

 

R T z T w R X z X zzz ww z z w( ( ) ( )) ( : ( ) ( ) : := ∂ ∂ ∂η ηµν
µ ν

ρσ XX w X w

X z X w X z

w

z w z

ρ σ

µν ρσ
µ ρ νη η

( ) ( ))

( ) ( ) ( )

∂

= ∂ ∂ ∂2 ∂∂

+ ∂ ∂ ∂ ∂

w

z w z w

X w

X z X w X z X

σ

µν ρσ
µ ρ ν ση η

( )

( ) ( ) : ( ) (4 ww) :

We have already seen that

 ∂ ∂ = −
−z w

sX z X w
z w

µ ρ
µρη

( ), ( )
( )

2

22

1

Hence

 

∂ ∂ ∂ ∂

=
−

z w z w

s

X z X w X z X w

z w

µ ρ ν σ

µρη

( ) ( ) ( ) ( )

( )

2

22

1⎛⎛
⎝⎜

⎞
⎠⎟ −

⎛
⎝⎜

⎞
⎠⎟

=
−

η η ηνσ µρ νσ
s s

z w z w

2

2

4

2

1

4

1

( ) ( ))4

Now the metric terms give us the dimension of the space:

 η η η η δ δµν ρσ
µρ νσ

ν
ρ

ρ
ν= = D

In the last term of R T z T wzz ww( ( ) ( )) which includes the normal ordered product, 
we expand ∂z X zν ( ) about w the way we did in Example 5.4. Then we obtain the 
operator product expansion for the energy-momentum tensor:

 

R T z T w X z X w X zzz ww z w z( ( ) ( )) ( ) ( ) (= ∂ ∂ ∂2η ηµν ρσ
µ ρ ν )) ( )

( ) ( ) : ( )

∂

+ ∂ ∂ ∂

w

z w z

X w

X z X w X z

σ

µν ρσ
µ ρ νη η4 ∂∂

=
−

−
−

−

w

s s ww s

X w

D

z w z w
T w

σ ( ) :

/

( ) ( )
( )2

4
2

2
22 2 11

z w
T ww ww−

∂ +( )
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Summary
Conformal fi eld theory is a tool that allows us to transform the physics of the string 
worldsheet to the complex plane. Calculations are much easier to do using the 
techniques of complex variables. In this chapter we introduced some of the basic 
terminology and techniques. In the following chapters, we will continue our 
exploration of conformal fi eld theory in the context of string theory by exploring 
Kac-Moody algebras, minimal models, vertex operators, and BRST quantization.

         Quiz
 1. Calculate [ , ]m n

.

 2. Does T z
aza ( ) =

+
1

1
satisfy the group composition property?

 3. Consider T z
z

aza ( ) =
+1

 with a pure imaginary. Find the generator of the 
transformation. 

 4. Following the text, calculate 0 0X XL L
µ ν . 

 5. For a closed string, calculate ∂ ∂ ′ ′′z zX z z X z zµ ν( , ), ( , ) . 

 6. Calculate 0 0: ( , ) ( , ) :X z z X z zµ ν ′ ′ . 

 7. Find 0 0X z z X z zµ ν( , ) ( , )′ ′ . 

 8. By exploiting the properties of the natural logarithm function, and using 
the fact that 0 0 0 0X z z X z z X z z X z zµ ν ν µ( , ) ( , ) ( , ) ( , )′ ′ = ′ ′ , fi nd a 
compact expression for 0 0X z z X z zµ ν( , ) ( , )′ ′ .

 9. Find the operator product expansion of R T z ezz
ik X w( ( ) : :)( )⋅ .



CHAPTER 6

BRST Quantization

So far we have seen two methods that can be utilized to quantize the string: the 
covariant approach and light-cone quantization. Each offers its advantages. 
Covariant quantization makes Lorentz invariance manifest but allows for the 
existence of “ghost states” (states with negative norm) in the theory. In contrast, 
light-cone quantization is ghost free. However, Lorentz invariance is no longer 
obvious. Another trade-off is that the proof of the number of space-time dimensions 
(D = 26 for the bosonic theory) is rather diffi cult in covariant quantization, but it’s 
rather straightforward in light-cone quantization. Finally identifying the physical 
states is easier in the light-cone approach.

Another method of quantization, that in some ways is a more advanced approach, 
is called BRST quantization. This approach takes a middle ground between the two 
methods outlined above. BRST quantization is manifestly Lorentz invariant, but 
includes ghost states in the theory. Despite this, BRST quantization makes it easier 
to identify the physical states of the theory and to extract the number of space-time 
dimensions relatively easily.

Copyright © 2009 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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BRST Operators and Introductory Remarks
We begin by considering our old friend, Lie algebra. This is the algebra that is 
obeyed by the familiar spin angular momentum operators of ordinary quantum 
mechanics. In general, let some physical theory contain a gauge symmetry with 
operators Ki. These operators satisfy the Lie algebra:

 [ , ]K K f Ki j ij
k

k=  (6.1)

where the fij
k are called the structure constants of the theory (note we are using 

the Einstein summation convention, so repeated indices are summed over). The 
structure constants satisfy

 f f f f f fij
m

mk
l

jk
m

mi
l

ki
m

mj
l+ + = 0  (6.2)

The BRST quantization procedure begins with the following. We introduce two 
ghost fi elds that are denoted by b ci jand  which satisfy an anticommutation relation 
given by

 { , }c bi
j j

i= δ  (6.3)

Furthermore { , } { , }c c b bi j
i j= = 0. Here the ci

 are ghost fi elds and the bj  
are 

“ghost momenta.”
Notice that since an anticommutation relation is satisfi ed by the ghost fi elds, 

these fi elds are fermionic. Now, recall that a fi eld φ( , )z z  has conformal dimension 
( , )h h  provided that it transforms under some conformal transformation z w z→ ( )
as follows:

 φ ϕ( , ) ( , )z z
w

z

w

z
w w

h h

=
∂
∂

⎛
⎝⎜

⎞
⎠⎟

∂
∂

⎛
⎝⎜

⎞
⎠⎟

 (6.4)

The fi elds b cand  are chosen such that they have conformal dimension 2 and 
�1, as we will see later. 

There are two operators that are constructed out of the ghost fi elds and the Ki
. 

The fi rst of these is the BRST operator which is given by

 Q c K f c c bi
i ij

k i j
k= −

1

2
 (6.5)
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It is assumed that Q Q= †. We say that the BRST operator is nilpotent of degree 
two. This means that if we square the operator we get zero:

 Q2 0=  (6.6)

Notice that Eq. (6.6) can also be expressed as { , }Q Q = 0. We label the BRST 
operator with a Q to imply that this is a conserved charge of the system, we often 
call this the BRST charge. A second operator that is composed solely of ghost fi elds 
is called the ghost number operator U. This is given by

 U c bi i=  (6.7)

(Again note the Einstein summation convention is being used.) This operator has 
integer eigenvalues. If the dimension of the Lie algebra is n, then the eigenvalues of 
U are the integers 0,...,n. A state ψ

 
has ghost number m if U mψ ψ= . 

EXAMPLE 6.1
Show that Q raises the ghost number by 1.

SOLUTION
Using the anticommutation relations for the ghost fi elds [Eq. (6.3)], notice that

 

Uc K c b c K c c b K

c K c c

i
i

r
r

r

i
i

r
r
i i

r
r

i

i
i

i r

= = −( )

= −

∑ ∑ δ

bb K

c K c K c b c K c K U

r
r

i

i
i

i
i

r
r

r

i
i

i
i

∑

∑= + = +

Now consider some state ψ  with ghost number m, that is U mψ ψ= . Then

 

U Q U c K f c c b

Uc K c b

i
i ij

k i j
k

i
i

r
r

r

ψ ψ( ) = −⎛
⎝⎜

⎞
⎠⎟

= −

1

2

∑∑⎛⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

= + −

1

2

1

2

f c c b

c K c K U f

ij
k i j

k

i
i

i
i i

ψ

jj
k r

r
r

i j
kc b c c b∑⎛

⎝⎜
⎞
⎠⎟
ψ

Use Uc K c K c K Ui
i

i
i

i
i= +( )



 118 String Theory Demystifi ed

    

= + − −( )⎛
⎝⎜

⎞
⎠⎟∑c K c K U f c c b c bi

i
i

i ij
k r

r
i i

r
r

j
k

1

2
δ ψψ [Apply Eq. (6.3)]

= + −c K c K U fi
i

i
i ij

1

2
kk i j

k ij
k i r

r
j

r
kc c b f c c b c b+

⎛
⎝⎜

⎞
⎠⎟∑1

2
ψ

(Use the properties of δr
i

i
i

i
i ij

k i jc K c K U f c c b

)

= + −
1

2 kk ij
k i r

r
j j

r
r

kf c c c b b+ −( )⎛
⎝⎜

⎞
⎠⎟∑1

2
δ ψ

[Applyy Eq. (6.3) again]

= + + −Q c K U f c c ci
i ij

k i r
r
j1

2
δ jj

r
r

kb b( )⎛
⎝⎜

⎞
⎠⎟∑ ψ [Use Eq. (6.5) to wrrite Q

Q c K U f c c b f c c c bi
i ij

k i j
k ij

k i j r

]

= + + −
1

2

1

2 kk
r

rb∑⎛
⎝⎜

⎞
⎠⎟
ψ

(Kroneker delta again)

= Q ++ + − −( )∑c K U f c c b f c c b ci
i ij

k i j
k ij

k i j
r
k

k
r

r

1

2

1

2
δ bbr

⎛
⎝⎜

⎞
⎠⎟
ψ

[Yet again use Eq. (6.3)]

= +Q cii
i ij

k i j r

r
rK U f c c c b

Q QU m

−
⎛
⎝⎜

⎞
⎠⎟

= + = +

∑1

2

1

ψ

ψ( ) )(QQ U mψ ψ ψ( ) =( )Apply

Hence the BRST operator raises the ghost number by 1.

BRST-Invariant States
A state ψ  

is called BRST invariant if it is annihilated by the BRST operator 
[Eq. (6.5)]:

 Q ψ ψ= ⇒0 is BRST invariant   (6.8)

BRST-invariant states are the physical states of the theory. Since Q2 = 0, it follows 
that any state ψ χ= ≠Q 0  is BRST invariant, since

 Q Qψ χ= =2 0
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Call ψ χ= Q
 
a null state. Suppose that φ  is an arbitrary physical state so 

that Q φ = 0. Notice that

 
φ ψ φ χ φ χ= ( ) = ( ) =Q Q 0

Hence, any amplitude taken between a physical state and a null state vanishes. 
This implies a result, which is somewhat akin to the idea of a phase factor in ordinary 
quantum mechanics. Two states a b e ai, = θ

 
represent the same physical state 

in quantum mechanics since the resulting amplitudes are the same. Likewise, since 
any inner product between a physical state and a null state vanishes, adding a null 
state ψ χ= Q  to a physical state φ  generates a new state which is physically 
equivalent to φ :

 ′ = +φ φ χQ

because the second term on the right does not contribute to any inner product and hence 
does not change the physical predictions of the theory, which are the amplitudes. Since 
Q raises the ghost number of a state by 1, if the ghost number of ψ  is m, then the ghost 
number of χ

 
is m −1. Important special cases are states ψ  with ghost number 0. If 

the ghost number is 0, then

 U ψ = 0

Looking at the form of U, namely, Eq. (6.7), we see that this implies that bk ψ = 0. 
Furthermore, a state annihilated by the ghost fi elds bk cannot be annihilated by the 
ghost fi elds ck. Since u c b b c n b ci

i
i

i
i

i
i

i
i

i

i

= = − = −∑ ∑ ∑δ
 
we see that

 U n b c n b ci
i

i
i

i

i

ψ ψ ψ ψ= −
⎛
⎝⎜

⎞
⎠⎟

= −∑ ∑

Hence if bk ψ = 0, the ck
 cannot annihilate the state since this would result 

in a contradiction. When bk ψ = 0, it immediately follows that U ψ = 0, but 
the above result shows that if ck ψ = 0

 
also, we would have U nψ ψ= ≠ 0, 

a contradiction.
The key result for states with zero ghost number is the following. Looking at Q 

in Eq. (6.5), it is clear that if bk ψ = 0 then

 Q c Ki
i

i

ψ ψ=∑
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This implies that for a state with zero ghost number

 Ki ψ = 0  (6.9)

So, we can say that a state which is BRST invariant with zero ghost number is 
also invariant under the symmetry described by the generators Ki

. Furthermore, if 
a state has ghost number zero, this tells us that the state is not a ghost state, hence 
we avoid negative probabilities.

BRST in String Theory-CFT 
We will take a look at the BRST formalism in string theory by briefl y considering 
two approaches. The derivation of this approach is based on the use of path integrals, 
which we are purposely avoiding due to the level of this text. So some results will 
simply be stated, the reader who is interested in their derivation is encouraged to 
check the references at the back of the book.

The application of BRST quantization to string theory can be done easily using 
conformal fi eld theory. The advantage of this approach is that the critical dimension 
D = 26 arises in a straightforward manner. We work in the conformal gauge where 
we take hαβ αβη= . In this case the energy-momentum tensor has a holomorphic 
component T zzz ( ) 

and an antiholomorphic component T zzz ( ) where T zzz ( ) 
was given 

in Eq. (5.33) as

 
T z

L

zzz
m

m
m

( ) = +
=−∞

∞

∑ 2

In Example 5.5 we worked out the OPE of T z T wzz ww( ) ( ) and found

 
T z T w

D

z w

T w

z w

T
zz ww

ww w ww( ) ( )
/

( )

( )

( )

(
=

−
−

−
−
∂2 2

4 2

ww

z w

)

−

Where for simplicity of notation we have omitted the multiplying 
s
2  factor. The ghost 

fi elds are introduced as functions of a complex variable z as follows. We defi ne

 
b z c w

z w
b z c w

z w
( ) ( ) ( ) ( )=

−
=

−
1 1

Next we write down an energy-momentum tensor T zgh ( ) for the ghost fi elds. This 
is given by

 
T z b z c z b z c zgh z z( ) ( ) ( ) ( ) ( )= − ∂ − ∂2
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The conformal dimension [Eq. (6.4)] of the ghost fi elds follows from this 
defi nition. Using the ghost energy-momentum tensor together with the energy-
momentum tensor for the string we can arrive at the BRST current:

 
j z c z T z T z c z T z czz gh zz( ) ( ) ( ) ( ) ( ) ( )= +⎛

⎝⎜
⎞
⎠⎟ = +

1

2
(( ) ( ) ( )z c z b zz∂

The BRST charge is given by

 
Q

dz

i
j z= ∫ 2π
( )

Now, the central charge (i.e., the critical space-time dimension) comes from the 
leading term in the OPE of the energy-momentum tensor, which is

 

D

z w

/

( )

2
4−

The presence of this extra term is called the conformal anomaly since it prevents 
the algebra from closing. So we would like to get rid of it. This is done by considering 
a total energy-momentum tensor, which is the sum of the string energy-momentum 
tensor and the ghost energy-momentum tensor, that is, T T z T zzz gh= +( ) ( ). It can be 
shown that the OPE of the ghost energy-momentum tensor is

 
T z T w

z w

T w

z w

T
gh gh

gh w gh( ) ( )
( )

( )

( )

(
=

−
−

−
−

−
∂13 2

4 2

ww

z w

)

−

Taking the leading term in this expression to be of the form − −( / )/( )D z w2 4, we 
see that the ghost fi elds contribute a central charge of �26 which precisely cancels 
the conformal anomaly that arises from the matter energy-momentum tensor. This 
result actually follows from the nilpotency requirement (i.e., Q2 0= ) of the BRST 
charge. 

BRST Transformations
Next we look at BRST quantization by considering a set of BRST transformations 
which are derived using a path integral approach. This is a bit beyond the level of 
the discussion used in the book, so we simply state the results. Working in light-
cone coordinates, we defi ne a ghost fi eld c and an antighost fi eld b where c has 
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components c c+ −, , and b has components b b++ −−and . We also introduce an energy-
momentum tensor for the ghost fi elds T gh

±±  with components given by

 

T i b c b c

T i b c

gh

gh

++ ++ +
+

+ ++
+

−− −− −
−

= ∂ + ∂

= ∂ + ∂

( )

(

2

2 −− −−
−b c )

The BRST transformations, using a small anticommuting operator ε are

 

δ ε
δ ε
δ

µ µX i c c X

c i c c c

b

= ∂ + ∂

= ± ∂ + ∂

+
+

−
−

± +
+

−
−

±

±±

( )

( )

== ± +±± ±±i T T ghε( )

The action for the ghost fi elds is

 S d b c b cgh = ∂ + ∂∫ ++ −
+

−− +
−2σ ( )

From which the following equations of motion follow:

 ∂ = ∂ = ∂ = ∂ =− ++ + −− −
+

+
−b b c c 0

We can write down modal expansions of the ghost fi elds. These are given by

 

c c e c c e

b b e

n
in

n
n

in

n

n

+ − + − − −

++
−

= =

=

∑ ∑( ) ( )τ σ τ σ

iin

n
n

in

n

b b e( ) ( )τ σ τ σ+
−−

− −∑ ∑=

The modes satisfy the following anticommutation relation:

 { , } ,b cm n m n= +δ 0

with { , } { , }b b c cm n m n= = 0. Virasoro operators are defi ned for the ghost fi elds using 
the modes. Using normal-ordered expansions, these are

 
L m n b c L m n bm

gh
m n n

n
m
gh

m= − = −+ − +∑ ( ) : : ( ) : nn n
n

c−∑ :
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To write down the total Virasoro operator for the “real” fi elds + ghost fi elds, we 
form a sum of the respective operators. That is

 L L L am
tot

m m
gh

m= + − δ ,0

where the last term on the right is the normal-ordering constant for m = 0. It can be 
shown that the commutation relation for the total Virasoro operator is of the form:

 L L m n L A mm
tot

n
tot

m n
tot

m n, ( ) ( ) ,⎡⎣ ⎤⎦ = − ++ +δ 0

Notice that the presence of the term A m( ) on the right keeps us from obtaining a 
relation that preserves the classical Virasoro algebra. As such, this term is called an 
anomaly. The anomaly is determined in terms of two unknown constants which you 
might guess by now are D and a. It has the form

 
A m

D
m m m m am( ) ( ) ( )= − + − +

12
1

1

6
13 22 3

To make the anomaly vanish, we take D a= =26 1, , which is consistent with the 
other results obtained so far in the book for bosonic string theory.

The BRST current is given by

 j cT cT cgh= + + ∂
1

2

3

2
2: :

The BRST charge is given by the mode expansion:

 
Q c L m n c c b cn n m n m n

m nn

= + − −− − −∑∑ 1

2 0( ) : :
,

Using tedious algebra one can show that

 
Q L L m n L c cm

tot
n
tot

m n
tot

m n
2 1

2
= ⎡⎣ ⎤⎦ − −( ) ≈+ − −∑ , ( )

11

12
26( )D −

Hence the requirement that Q2 0=  forces us to take D = 26.
Going back to the original BRST approach outlined in Eqs. (6.1) to (6.5), using 

the classical algebra for the Virasoro operators:

 [ , ] ( )L L m n Lm n m n= − +
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We can identify the structure constants as

 f m nmn
k

m n k= − +( ) ,δ

To see how the physical spectrum can be constructed in string theory, we consider 
the open string case. The states are built up from the ghost vacuum state. Let’s call 
the ghost vacuum state χ . This state is annihilated by all positive ghost modes. 
Let n > 0, then

 b cn nχ χ= = 0

The zero modes of the ghost fi elds are a special case. They can be used to build 
the physical states of the theory. Using the anticommutation relations [Eq. (6.3)], 
the zero modes satisfy

 { , }b c0 0 1=

Using Eq. (6.3) it should also be obvious that b c0
2

0
2 0= = . We also require that 

b0 0ψ =
 
for physical states ψ . Now we can construct a two-state system from 

the zero modes of the ghost states. The basis states are denoted by ↑ ↓, . The 
ghost states act as

 

b c

b c

0 0

0 0

0↓ = ↑ =

↑ = ↓ ↓ = ↑

We choose ↓  as the ghost vacuum state. To get the total state of the system, we take 
the tensor product of this state with the momentum state k  to give ↓,k . To 
generate a physical state, we act on it with the BRST charge Q. It can be shown that

 
Q k L c k↓ = − ↓, ( ) ,0 01

The requirement that Q k↓ =, 0
 
gives the mass-shell condition L0 1 0− = , which 

describes the same Tachyon state we found in Chap. 4. Higher states can be 
generated. We will have mode operators for each of the three fi elds: the X µ σ τ( , ) 
plus the two ghost fi elds. To get the fi rst excited state, we act with α− − −1 1 1, ,c band
as follows:

 ψ ς α ξ ξ= ⋅ + +( ) ↓− − −1 1 1 2 1c b k,
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The ξ1
 and ξ2

 are constants, but ςµ  is a vector with 26 components. In 
Chap. 4, we found that the first excited state was massless, so we expect the 
state to have physical degrees of freedom in the transverse directions. That 
is, it should have 24 independent components. To get rid of the extra 
parameters, we create a physical state with the requirement that Q ψ = 0. It 
can be shown that

 
Q p c p c p kψ ς ξ α= + ⋅ + ⋅( ) ↓− −2 2

0 1 2 1( ) ,

The requirement that Q ψ = 0 enforces constraints on the parameters. With 
this general prescription, there are 26 positive norm states and 2 negative norm 
states. 

We can eliminate the negative norm states by introducing some constraints. The 
fi rst constraint is to take p ⋅ =ς 0 and ξ1 0= . This rids the theory of the negative 
norm states. Also note that p2 0= , which tells us that this is a massless state. We 
also have two zero-norm states:

 
k k c kµ

µα− −↓ ↓1 1, ,and

These states are orthogonal to the physical states. Eliminating them gives us a 
state with 24 degrees of freedom, as expected for a massless state in 26 space-time 
dimensions.

No-Ghost Theorem
The no-ghost theorem is simply a statement of the results we have seen in Chap. 4 
and here, namely, that if the number of space-time dimensions is given by D = 26, 
then negative norm states are eliminated from the theory.

Summary
In this chapter we introduced the BRST formalism and illustrated how it can be used 
to quantize strings. This is a more sophisticated approach than covariant quantization 
or light-cone quantization. It takes a middle ground, preserving manifest Lorentz 
invariance while living with ghost states. The approach makes the appearance of the 
critical D = 26 dimension simple to understand.
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           Quiz
 1. Consider the Virasoro generators and calculate 

 [ , ], [ , ], [ , ],L L L L L L L L Li j k j k i k i j[ ]+ [ ]+ [ ]]

 2. Suppose that the BRST current j z c z T z c z c z b zzz z( ) ( ) ( ) ( ) ( ) ( )= + ∂
 
is written as 

a normal ordered expression. Find 
1

2
{ , }Q Q .

 3. Looking at your answer to question 2, how many scalar fi elds does the 
theory contain if we require that Q2 0= ?

 4. Use L k0 0↓ =,  to fi nd k 2.



CHAPTER 7

RNS Superstrings

The real world as we know it described by the standard model of particle physics 
contains two general classes of particles. These are defi ned in terms of their spin 
angular momentum as follows. Those particles with whole integer spin are called 
bosons, while those with half-integer spin are called fermions. At the level of 
fundamental particles—electrons, neutrinos, quarks, photons, gauge bosons, and 
gluons—matter particles are fermions while force-mediating particles are bosons. 
A symmetry which relates fermions and bosons is called a supersymmetry. 

The string theory we have described so far in the book consists only of bosons. 
Obviously, this cannot be a realistic theory that describes our universe since we see 
fermions in the everyday world. This tells us that the theory we have developed so 
far, starting with the Polyakov action, is not the whole story. The theory must be 
extended to include fermions. In addition, recall that when we quantized the theory, 
the ground state was a tachyon—a particle that travels faster than the speed of light. 
These states with negative mass squared are physically unrealistic. More importantly, 
a quantum theory with a tachyon has an unstable vacuum.

The remedy to this situation is to introduce supersymmetry into the theory. This 
will allow us to develop string theory so that fermions are included in our description 
of nature. We will also see that the unwanted tachyon state goes away. An interesting 
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side effect of this effort will be that the critical dimension drops from 26 to 10. If 
you aren’t familiar with the description of fermionic fi elds (and supersymmetry) in 
quantum theory, try reviewing your favorite quantum fi eld theory book before 
tackling this chapter (Quantum Field Theory Demystifi ed provides a relatively 
painless introduction). 

The Superstring Action
We can proceed with a straightforward modifi cation of the theory to include 
fermions using an approach called the Ramond-Neveu-Schwarz (RNS) formalism. 
This approach is supersymmetric on the worldsheet. Later we consider the Green-
Schwarz formalism, which is supersymmetric in space-time. When the number of 
space-time dimensions is 10, these two approaches are equivalent. 

The program we will follow can be done using basically the same which was 
applied in the bosonic case: introduce an action, fi nd the equations of motion, and 
quantize the theory. However, this time we are going to include fermionic fi elds on 
the worldsheet. We start with the Polyakov action, fi rst described in Eq. (2.27) and 
reproduced here in the conformal gauge:

 S
T

d X X= − ∂ ∂∫2
2σ α

µ α
µ

 (7.1)

To include free fermions in the theory using the RNS formalism, we add a kinetic 
energy term for a Dirac fi eld to the lagrangian. That is, we include D free fermionic 
fi elds ψ µ to the action, so that it assumes the form

 S
T

d X X i= − ∂ ∂ − ∂( )∫2
2σ ψ ρ ψα

µ α
µ

µ α
α µ

 (7.2)

Again, if you are not familiar with Dirac fi elds, consult Quantum Field Theory 
Demystifi ed or your own favorite quantum fi eld theory text. The ρα

 are Dirac 
matrices on the worldsheet. Since the worldsheet has 1 � 1 dimensions, the ρα

 
are Dirac matrices in 1 � 1 dimensions. Hence there are two such 2 2×  matrices, 
which can be written in the form

 ρ ρ0 10

0

0

0
=

−⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

i

i

i

i
 (7.3)

using an appropriate choice of basis. 
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EXAMPLE 7.1
Show that the Dirac matrices on the worldsheet obey an anticommutation relation 
known as the Dirac algebra

 { , }ρ ρ ηα β αβ= −2  (7.4)

by explicit computation.

SOLUTION
This result is easy to verify. Since

 ηαβ =
−⎛

⎝⎜
⎞
⎠⎟

1 0

0 1

The Dirac algebra will be satisfi ed by the ρα
 if the following relations hold:

  

{ , }

{ , }

ρ ρ ρ ρ ρ ρ ρ ρ η
ρ ρ ρ ρ

0 0 0 0 0 0 0 0 00

1 1 1

2 2 2= + = = − =
=

I
11 1 1 1 1 11

0 1 0 1 1 0

2 2 2

2

+ = = − = −
= + = −

ρ ρ ρ ρ η
ρ ρ ρ ρ ρ ρ

I

{ , } ηη01 0=

and likewise for { , }ρ ρ1 0 . Now,

 
ρ ρ0 0 0

0

0

0

0 0 0
=

−⎛
⎝⎜

⎞
⎠⎟

−⎛
⎝⎜

⎞
⎠⎟

=
⋅ + −( ) ⋅ ⋅ −(i

i

i

i

i i i)) + −( ) ⋅
⋅ + ⋅ ⋅ −( ) + ⋅

⎛

⎝⎜
⎞

⎠⎟
=

⎛
⎝⎜

⎞
⎠⎟

i

i i i i

0

0 0 0 0

1 0

0 1
== I

Hence the fi rst relation { , }ρ ρ0 0 2= I
 
is satisfi ed. We verify that the second 

relation { , }ρ ρ1 1 2= − I
 
is also satisfi ed:

 
ρ ρ1 1

0

0

0

0

0 0 0 0

0
= ⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

=
⋅ + ⋅ ⋅ + ⋅
⋅

i

i

i

i

i i i i

i ++ ⋅ ⋅ + ⋅
⎛
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⎞
⎠⎟

=
−

−
⎛
⎝⎜

⎞
⎠⎟

= −
0 0 0

1 0

0 1i i i
I

Finally, noting that

 

ρ ρ0 1 0

0

0

0

0 0 0
=

−⎛
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⎞
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⎛
⎝⎜

⎞
⎠⎟

=
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⎛
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⎞
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=

0

0 0 0 0

1 0

0 1

01 0

i i i i
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i i i i

i0

0

0

0 0 0 0

0

⎛
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⎞
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⎝⎜

⎞
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⎞
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we see that { , } { , }ρ ρ ρ ρ0 1 1 0 0= = .
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MAJORANA SPINORS
The fi elds introduced in the action, ψ ψ σ τµ µ= ( , ), are two-component Majorana 
spinors on the worldsheet. Given that they have two components, they are 
sometimes written with two indices ψ µ

A, where µ = −0 1 1, , ,… D  is the space-time 
index and A = ±  is the spinor index. We can write ψ µ

A  as a column vector in the 
following way (suppressing the space-time index):

 ψ
ψ
ψ

=
⎛
⎝⎜

⎞
⎠⎟

−

+

Under Lorentz transformations, these fi elds transform as vectors in space-time 
[recall that a contravariant vector fi eld V xµ ( ) is one that transforms as 
V x V x V xµ µ µ

ν
ν( ) ( ) ( )→ ′ ′ = Λ  under x x xµ µ µ

ν
ν→ ′ = Λ  where Λµ

ν  is a Lorentz 
transformation].

Following the convention used with Dirac spinors in quantum fi eld theory, we 
have the defi nition:

 ψ ψ ρµ µ= ( )† 0

Note that the defi nitions used here depend on the basis used to write down the Dirac 
matrices Eq. (7.3), and that other conventions are possible. We can also introduce a 
third Dirac matrix analogous to the γ 5 matrix you’re familiar with from studies of 
the Dirac equation, which in this context we denote by ρ3:

 
ρ ρ ρ3 0 1

1 0

0 1
= =

−
⎛
⎝⎜

⎞
⎠⎟

It will be of interest to make left movers and right movers manifest. This can be 
done by recalling the following defi nitions:

 σ τ σ± = ±  (7.5)

 ∂ = ∂ ± ∂±

1

2
( )τ σ

 (7.6)

 ∂ = ∂ + ∂ ∂ = ∂ − ∂+ − + −τ σ  (7.7)

EXAMPLE 7.2
Show that ψ ρ ψ ψ ψ ψ ψµ α

α µ∂ = ⋅∂ + ⋅∂− + − + − +2( ) .
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SOLUTION
We can rewrite ψ ρ ψµ α

α µ∂  in a more enlightening way by expanding out the sum 
explicitly:

 ψ ρ ψ ψ ρ ρ ψµ α
α µ

µ
µ∂ = ∂ + ∂( )0

0
1

1

Now

 
ρ

ρ

τ

σ

0
0

1
1

0

0

0

0

∂ =
−⎛

⎝⎜
⎞
⎠⎟

∂

∂ =
⎛
⎝⎜

⎞
⎠⎟

∂

i

i

i

i

So, the summation is

 

ρ ρ τ σ

τ

0
0

1
1

0

0

0

0

0

∂ + ∂ =
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⎝⎜
⎞
⎠⎟

∂ +
⎛
⎝⎜

⎞
⎠⎟

∂

=
− ∂

i

i

i

i

i( −− ∂
∂ + ∂

⎛
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⎞
⎠⎟
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− ∂

∂
⎛
⎝⎜

⎞
⎠⎟

−

+

σ

τ σ

)

( )i

i

i0

0 2

2 0

Hence,

 

ψ ρ ψ ψ ρ ρ ψ

ψ

µ α
α µ
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µ

µ
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− ∂

∂
⎛
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⎞
⎠

−

+

( )0
0

1
1

0 2

2 0

i

i ⎟⎟ ψ µ

Now, we write out the components of the spinors. For simplicity, we suppress the 
space-time index for a moment. First, note that

 

0 2
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0 2
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⎞
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− +

+ −

2i
ψ
ψ

Using ψ ψ ρµ µ= ( )† 0 , we have

 

ψ ψ ψ ψµ
µ

µ µ0 2

2 0

0

0
2

− ∂
∂

⎛
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= ( ) −⎛
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i

i

i

i
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∂
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µ µ µ

µ

2

2 ⎠⎠
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The result obtained in Example 7.2 allows us to write the fermionic part of the 
action in a relatively simple way. Denoting the fermionic action by SF we have

 

S
T

d i

T
d i

F = − − ∂

= − − ⋅∂

∫

∫ − + −

2

2
2

2

2

σ ψ ρ ψ

σ ψ ψ

µ α
α µ( )

( )( ++ ⋅∂

= ⋅∂ + ⋅∂

+ − +

− + − + − +∫

ψ ψ

σ ψ ψ ψ ψ

)

( )iT d 2

It can be shown that by varying the fermionic action SF, one can obtain the free 
fi eld Dirac equations of motion:

 ∂ = ∂ =+ − − +ψ ψµ µ 0  (7.8)

The Majorana fi eld ψ µ
−  describes right movers while the Majorana fi eld ψ µ

+  describes 
left movers.

SUPERSYMMETRY TRANSFORMATIONS ON THE WORLDSHEET
Now, we introduce a supersymmetry (SUSY for short) transformation parameter 
which is denoted by ε . This infi nitesimal object is also a Majorana spinor, which 
has real, constant components given by

 
ε

ε
ε

=
⎛
⎝⎜

⎞
⎠⎟

−

+

Since the components of ε  are taken to be constant, this represents a global symmetry 
of the worldsheet. If it were a local symmetry, it would depend on the coordinates 
( , )σ τ . Furthermore, the components of ε  are Grassman numbers. Two Grassmann 
numbers a b,  anticommute such that ab ba+ = 0.  

Now we use ε  to defi ne our symmetry. The action which includes the fermionic 
fi elds is invariant under the supersymmetry transformations:

 
δ εψ
δψ ρ ε

µ µ

µ α
α

µ

X

i X

=
= − ∂  (7.9)

Using δψ µ, we also fi nd that δψ ρ ε ερµ α
α

µ α
α

µ= − ∂ = ∂i X i X . Notice that this takes 
the free boson fi elds into fermionic fi elds, and vice versa. We can relate individual 
components as follows. First, we have

 
δ εψ ε ε

ψ
ψ

ε ψ ε ψµ µ
µ

µ
µ µX = =

⎛

⎝⎜
⎞

⎠⎟
= +− +

−

+
− − + +( )  (7.10)
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In the second case, we have

 δψ
δψ
δψ

µ
µ

µ=
⎛

⎝⎜
⎞

⎠⎟
−

+

and

 

ρ ε ρ ε ρ ε
ρ ρ ε

α
α

µ
τ

µ
σ

µ

τ σ
µ

∂ = ∂ + ∂

= ∂ + ∂

=
−

X X X

X

i

i

0 1

0 1

0

( )

00

0

0

0

⎛
⎝⎜

⎞
⎠⎟

∂ +
⎛
⎝⎜

⎞
⎠⎟

∂
⎡

⎣
⎢

⎤

⎦
⎥

=
− ∂ − ∂

τ σ
µ

τ σ

ε
i

i
X

i( )

ii
X

i

i
X

( )∂ + ∂
⎛
⎝⎜

⎞
⎠⎟

=
− ∂

∂
⎛
⎝⎜

⎞
⎠⎟

−

+

τ σ

µ

µ

ε

ε

0

0 2

2 0

Hence,

 δψ εµ µ
− − += − ∂2 X  (7.11)

 δψ εµ µ
+ + −= ∂2 X  (7.12)

Conserved Currents
At this point, we need to identify the conserved currents associated with the action  
in Eq. (7.2). Before tackling supersymmetry, let’s review how to calculate a 
conserved current by looking at momentum. You can practice in the Chapter Quiz 
by looking at Lorentz transformations. Let’s start with a simple example to remind 
ourselves of the method.

EXAMPLE 7.3
Consider the action S T d X X i= − ∂ ∂ − ∂∫/ ( )2 2σ ψ ρ ψ

α

µ α

µ

µ α

α µ
 and fi nd the 

conserved current associated with translational invariance.
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SOLUTION
Let’s write down the lagrangian, which is

 
L

T
X X i= − ∂ ∂ − ∂

2
( )α

µ α
µ

µ α
α µψ ρ ψ

To examine translational invariance, we let X X aµ µ µ→ +  where aµ is an 
infi nitesimal parameter. A key insight into the fact that aµ is infi nitesimal is that we 
can drop terms that are second order in aµ. Taking X X aµ µ µ→ +  changes the 
lagrangian as follows:

 

L
T

X a X a i

T

→ − ∂ + ∂ + − ∂⎡⎣ ⎤⎦

= −

2

2

α
µ µ α

µ µ
µ α

α µψ ρ ψ( ) ( )

(( )( )∂ + ∂ ∂ + ∂⎡⎣ ⎤⎦ +

= − ∂ ∂

α
µ

α
µ α

µ
α

µ

α
µ α

X a X a L

T
X X

F

2 µµ α
µ α

µ α
µ α

µ α
µ α

µ+ ∂ ∂ + ∂ ∂ + ∂ ∂⎡⎣ ⎤⎦ +

= − ∂

X a a X a a L

T

F

2 αα
µ α

µ α
µ α

µ α
µ α

µX X X a a X LF∂ + ∂ ∂ + ∂ ∂⎡⎣ ⎤⎦ +

(drop ssecond-order term )∂ ∂

= − ∂ ∂

α
µ α

µ

α
µ α

µ

a a

L
T

X a
2

++ ∂ ∂⎡⎣ ⎤⎦α
µ α

µa X

(addd in to to get total lagrangian∂ ∂α
µ α

µX X LF ))

Note that the term i LFψ ρ ψµ α
α µ∂ ∝

 
is unaffected by X X aµ µ µ→ + . Now, we 

focus on the leftover extra term:

 
δ α

µ α
µ α

µ α
µL

T
X a a X= ∂ ∂ + ∂ ∂⎡⎣ ⎤⎦2

We will manipulate this expression to get our conserved current, which will be a 
term multiplying ∂α

µa . We can fi x up this expression doing some index gymnastics, 
which is a good exercise for us to go through given the level of this book. For more 
practice doing this, consult Relativity Demystifi ed. 

We want to fi x up the second term so that it looks like the fi rst term. We do this 
by raising and lowering indices with the metric and using the fact that

 
η η δ δµν

νλ λ
µ αβ

βγ γ
α= =h h
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Now, the fi rst thing to notice is that the order of the derivatives doesn’t matter. 
So, the fi rst step is to write

 ∂ ∂ = ∂ ∂α
µ α

µ
α

µ α
µa X X a

Next, let’s raise the space-time index on Xµ 
and lower it on aµ. Since these are 

space-time indices, we use the Minkowski metric to do this:

 
∂ ∂ = ∂ ∂α

µ α
µ α

µν
ν

α
µλ

λη ηX a X a( ) ( )

The metric is not space-time dependent (in the fl at space or Minkowski space-
time we are considering here), so we can pull the metric terms outside of the 
derivatives. You might recognize that this is actually true in general—because the 
derivatives are with respect to worldsheet coordinates, but the metric, if it depends 
on coordinates, is space-time dependent. So,

 

∂ ∂ = ∂ ∂

= ∂ ∂

α
µν

ν
α

µλ
λ µν

µλ α ν
α λ

ν
λ α ν

α

η η η η

δ

( ) ( )X a X a

X aa X aλ
α ν

α ν= ∂ ∂

The index ν  is a repeated or dummy index, so we can call it what we like. Let’s 
change it to match the fi rst term in δ α

µ α
µ α

µ α
µL T X a a X= ∂ ∂ + ∂ ∂/ [ ]2 :

 ∂ ∂ = ∂ ∂α ν
α ν

α µ
α µX a X a

Now, we repeat the process for the indices on the derivatives. This time, the 
indices are worldsheet indices. So, we obtain

 

∂ ∂ = ∂ ∂

= ∂ ∂

= ∂

α µ
α µ

αβ
β

µ
αγ

γ
µ

αβ
αγ β

µ γ
µ

γ
βδ

X a h X h a

h h X a

ββ
µ γ

µ

β
µ β

µ α
µ α

µ

X a

X a X a

∂

= ∂ ∂ = ∂ ∂

And so, the variation in the lagrangian reduces to

 
δ α

µ α
µ α

µ α
µ α

µ α
µL

T
X a a X T X a= ∂ ∂ + ∂ ∂ = ∂ ∂

2
( )
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The leftover term multiplying the infi nitesimal ∂α
µa
 
is our conserved current. 

Being that we started with a translation of space-time coordinates, we identify this 
as the momentum:

 P T Xα
µ

α
µ= ∂

With Example 7.3 in mind, we can easily fi nd the conserved supercurrent, which 
is the conserved current associated with the supersymmetry transformation. Let’s 
just grind it out. Starting with L T X X i= − ∂ ∂ − ∂/ ( )2 α

µ α
µ

µ α
α µψ ρ ψ , we have

δ δ δψ ρ ψ ψ ρ δψα
µ α

µ
µ α

α µ
µ α

α µL
T

X X i i= − ∂ ∂ − ∂ − ∂
2

2 ( ) ( ) ( ))

( ) ( )

⎡⎣ ⎤⎦

= − ∂ ∂ + ∂ ∂ −
T

X X
2

2 α
µ α

µ
β

β
µ α

α µ
µ αεψ ερ ρ ψ ψ ρ ∂∂ ∂⎡⎣ ⎤⎦

= − ∂ ∂ − ∂ ∂

α
β

β
µ

α
µ α

µ α
β

β
µ

ρ ε

εψ ερ

( )

( ) (

X

T
X X

2
2 )) ( )

( )

ρ ψ ψ ρ ρ ε

εψ

α
µ

µ α
α

β
β µ

α
µ α

µ α

− ∂ ∂⎡⎣ ⎤⎦

= − ∂ ∂ − ∂

X

T X (( )

( ) (

ερ ρ ψ

εψ ε ρ

β
β

µ α
µ

α
µ α

µ α
β

β
µ

∂⎡⎣ ⎤⎦
= − ∂ ∂ − ∂ ∂

X

T X X )) ( )

( )

ρ ψ ερ ρ ψ

εψ εψ

α
µ

β α
α β

µ
µ

α
µ α

µ

− ∂ ∂⎡⎣ ⎤⎦
= − ∂ ∂ −

X

T X µµ
α

α
µ α

β α µ
β µ α

α
µ

µε ρ ρ ψ ε ψ∂ ∂ − ∂ ∂ + ∂ ∂⎡⎣ ⎤⎦
= −

X X X

T

( ) ( )

∂∂ ∂ − ∂ ∂⎡⎣ ⎤⎦α
µ α

µ α
β α µ

β µεψ ε ρ ρ ψ( ) ( )X X

The fi rst term is a total derivative, so it does not contribute to the variation of the 
action. So we identify the conserved current with the second term. It is taken to be

 J Xα
µ β

α
µ

β µρ ρ ψ= ∂
1

2
 (7.13)

The Energy-Momentum Tensor
The next item of interest in our description of strings with worldsheet supersymmetry 
is the derivation of the energy-momentum tensor. The energy-momentum tensor is 
associated with translation symmetry on the worldsheet. Consider an infi nitesimal 
translation εα

 which is used to vary the worldsheet coordinates as

 σ σ εα α α→ +



We can write the change of the bosonic fi elds X µ  by basically writing down their 
Taylor expansion:

 X X Xµ µ α
α

µε→ + ∂  (7.14)

A similar relation holds for the fermionic fi elds:

 ψ ψ ε ψµ µ α
α

µ→ + ∂  (7.15)

With this in mind, we again follow the Noether procedure. Vary the action as if εα  
depended on the worldsheet coordinates, and look for terms multiplied by ∂β

αε . At 
the end we consider εα

 to be constant so that term vanishes from the action—the 
term which multiplies ∂β

αε
 
will be the energy-momentum tensor that we seek.

We proceed in two parts. Let’s take a look at the fermionic part of the lagrangian 
fi rst. We have

 L
i

F = − ∂
2

ψ ρ ψµ α
α µ

Using Eq. (7.15), we vary this term as follows:

 

δ δψ ρ ψ ψ ρ δψ

ε ψ

µ α
α µ

µ α
α µ

β
β

µ

L
i i

i

F = − ∂ − ∂

= − ∂

2 2

2

( ) ( )

( )) ( )ρ ψ ψ ρ ε ψα
α µ

µ α
α

β
β µ∂ − ∂ ∂

i

2

Let’s apply the product rule and carry out the derivative on the second term:

 

− ∂ ∂ − ∂ ∂

= − ∂

i i

i
2 2

2

( ) ( )

(

ε ψ ρ ψ ψ ρ ε ψ

ε

β
β

µ α
α µ

µ α
α

β
β µ

β
βψψ ρ ψ ψ ρ ε ψ ψ ρ ε ψµ α

α µ
µ α

α
β

β µ
µ α β

α β µ) ∂ − ∂ ∂ − ∂ ∂
i i

2 2

Now, the variation actually takes place as a variation of the action S, so we can 
integrate by parts. We do this on the last term to move one of the derivatives off 
∂ ∂α β µψ . Integration by parts introduces a sign change, so we get

− ∂ ∂ − ∂ ∂ − ∂
i i i

2 2 2
( )ε ψ ρ ψ ψ ρ ε ψ ψ ρ εβ

β
µ α

α µ
µ α

α
β

β µ
µ α β

α ∂∂

= − ∂ ∂ − ∂ ∂ + ∂

β µ

β
β

µ α
α µ

µ α
α

β
β µ β

ψ

ε ψ ρ ψ ψ ρ ε ψi i i

2 2 2
( ) (( )

( )

ψ ρ ε ψ

ε ψ ρ ψ ψ ρ ε

µ α β
α µ

β
β

µ α
α µ

µ α
α

β

∂

= − ∂ ∂ − ∂ ∂
i i

2 2 ββ µ
β

β
µ α

α µ
µ α

β
β

α µψ ε ψ ρ ψ ψ ρ ε ψ+ ∂ ∂ + ∂ ∂
i i

2 2
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The divergence term ∂β
βε  is not going to contribute anything, so we drop it. The 

fi rst and third terms cancel, leaving us with

 
δ ε ψ ρ ψα

β µ α
β µL

i
F = ∂ − ∂⎛

⎝⎜
⎞
⎠⎟2

This is what we want, because terms that multiply ∂α
βε  are going to be terms that 

make up the energy-momentum tensor Tαβ. This isn’t quite right, because we want 
it to be symmetric. So, we take

 δ ε ψ ρ ψ ψ ρ ψα
β µ α

β µ
µ β

α µL
i i

F = ∂ − ∂ − ∂⎛
⎝⎜

⎞
⎠⎟4 4

 (7.16)

In the Chapter Quiz, you will derive an expression for the bosonic part of the 
energy-momentum tensor. When all is said and done

 T X X
i i

αβ α
µ

β µ
µ

α β µ
µ

β α µψ ρ ψ ψ ρ ψ= ∂ ∂ + ∂ + ∂ −
4 4

( )Trace  (7.17)

The “Trace” is explicitly removed to ensure that Tαβ  
remains traceless as required 

for scale invariance. 
The energy-momentum tensor and supercurrent can be written compactly using 

worldsheet light-cone coordinates. The energy-momentum tensor has two nonzero 
components given by

 T X X
i

T X X
i

++ + + + + + −− − − − −= ∂ ∂ + ∂ = ∂ ∂ + ∂µ
µ µ

µ µ
µ µψ ψ ψ

2 2
ψψ µ−

 (7.18)

The components of the supercurrent are

 J X J X+ + + − − −= ∂ = ∂ψ ψµ
µ

µ
µ  (7.19)

The equations of motion for the fermion fi elds are

 ∂ = ∂ =+ − − +ψ ψµ µ 0  (7.20)

Together with the equations of motion of the boson fi elds

 ∂ ∂ =+ − X µ 0  (7.21)
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We obtain conservation laws for the energy-momentum tensor:

 ∂ = ∂ =− ++ + −−T T 0  (7.22)

EXAMPLE 7.4
Show that the equations of motion for the fermion and boson fi elds lead to 
conservation of the supercurrent.

SOLUTION
We start with J+ and consider the derivative ∂− +J . We have:

 

∂ = ∂ ∂

= ∂ ∂ + ∂ ∂

=

− + − + +

− + + + − +

J X

X X

( )

( ) ( )

ψ

ψ ψ

µ
µ

µ
µ

µ
µ

0

The result was readily obtained using Eqs. (7.20) and (7.21). Now taking J−, we 
obtain a second conservation equation by calculating ∂+ −J  which gives

 ∂ = ∂ ∂

= ∂( )∂ + ∂ ∂( )
=

+ − + − −

+ − − − + −

−

J X

X X

( )ψ

ψ ψ

ψ

µ
µ

µ
µ

µ
µ

µµ
µ( )∂ ∂ =− + X 0

EXAMPLE 7.5
Show that ∂ =− ++T 0.

SOLUTION
Using T X X i++ + + + + += ∂ ∂ + ∂µ

µ µ
µψ ψ/2 , we fi nd

 
∂ = ∂ ∂ ∂ + ∂⎛

⎝⎜
⎞
⎠⎟

= ∂ ∂ ∂

− ++ − + + + + +

− +

T X X
i

X

µ
µ µ

µ

µ

ψ ψ
2

( ) ++ + − + − + + + + − ++ ∂ ∂ ∂ + ∂( )∂ + ∂ ∂X X X
i iµ

µ
µ µ

µ
µψ ψ ψ ψ( )

2 2 ++

+ − + + + + − += ∂ ∂ = ∂ ∂ =

µ

µ
µ

µ
µψ ψ ψ ψi i

2 2
0

To obtain this result, we applied Eqs. (7.20) and (7.21) together with the 
commutativity of partial derivatives. 
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Mode Expansions and Boundary Conditions
The fi nal step in putting together the classical physics of the RNS superstring 
follows the program used in the bosonic case—we need to apply boundary conditions 
and write down the mode expansions. Specifi cally, we need to apply boundary 
conditions for the fermionic fi elds. It is simplest to continue working in light-cone 
coordinates and vary the fermionic part of the action. Before doing this, it can be 
helpful to review some elementary calculus.

Recall integration by parts:

 f x
dg

dx
dx fg

df

dx
g x dxa

b

a

b

a

b
( ) ( )= −∫ ∫

The product fg is called the boundary term. When we vary the fermionic action, we 
are going to obtain boundary terms for the fi elds ψ ±, so we need to specify boundary 
conditions so that the variation in the action vanishes. The fermionic part of the 
action in light-cone coordinates, modulo a few constants and ignoring the space-
time index is

 S dF = ∂ + ∂∫ − + − + − +
2σ ψ ψ ψ ψ( )  (7.23)

For simplicity, let’s consider one piece of this expression and vary it. We obtain

 δ σ ψ ψ σ δψ ψ ψ δψd d2 2∫ ∫+ − + + − + + − +∂ = ∂ + ∂[ ( )]

Following the usual procedure applied in fi eld theory, we want to move the derivative 
off the δψ + term. This can be done using integration by parts. When this is done, we 
pick up a boundary term:

 d d d2
0

2σ ψ δψ τ ψ δψ σ ψ δψσ
σ π∫ ∫ ∫+ − + −∞

∞

+ + =
=

− + +∂ = − ∂( )

A similar expression arises from the variation of the other term. All together, the 
boundary terms obtained by varying the action are

 δ τ ψ δψ ψ δψ ψ δψ ψ δψσ πS dF = − − −
−∞

∞

+ + − − = + + − −∫ ( ) ( ) σσ ={ }0  (7.24)



CHAPTER 7 RNS Superstrings 141

OPEN STRING BOUNDARY CONDITIONS
When varying the action, the boundary terms must vanish in order to maintain 
Lorentz invariance. In the case of open string, the boundary terms σ = 0 and σ π=  
must both vanish independently. We can obtain

 ψ δψ ψ δψ+ + − −− = 0

at σ = 0 if we take

 ψ τ ψ τµ µ
+ −=( , ) ( , )0 0  (7.25)

Now in general, ψ ψ+ −= ±  will make the boundary terms vanish, but typical convention 
is to fi x the boundary condition at σ = 0 using Eq. (7.25). This leaves the choice of 
sign at σ π=  ambiguous. Depending on the sign we choose, we obtain two different 
boundary conditions. Ramond or R boundary conditions are given by the choice

 ψ π τ ψ π τµ µ
+ −=( , ) ( , ) (Ramond)  (7.26)

The other choice we can make is known as Neveau-Schwarz or NS boundary 
conditions:

 ψ π τ ψ π τµ µ
+ −= −( , ) ( , ) (Neveau-Schwarz)  (7.27)

We often refer to the boundary conditions chosen as the sector. The choice of 
boundary conditions has dramatic consequences. In particular

• The R sector gives rise to string states that are space-time fermions.

• The NS sector gives rise to string states that are space-time bosons.

OPEN STRING MODE EXPANSIONS
We consider the R sector fi rst. The mode expansions are

 ψ σ τ

ψ σ τ

µ µ τ σ

µ µ

−
− −

+
−

=

=

∑( , )

( , )

( )1

2

1

2

d e

d e

n
in

n

n
iin

n

( )τ σ+∑

 
(7.28)
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The Majorana condition is the requirement that the fermionic fi elds are real. This 
forces us to take

 d dn n− = ( )µ µ †  (7.29)

Here, the summation index is an integer and so runs n = ± ±0 1 2, , ,….
The NS sector results in different mode expansions, as you might guess, since 

this gives rise to different string states. The expansions are

 ψ σ τ

ψ σ τ

µ µ τ σ

µ µ

−
− −

+
−

=

=

∑( , )

( , )

( )1

2
1

2

b e

b e

r
ir

r

r
iir

r

( )τ σ+∑

 
(7.30)

This is more than simple notational gymnastics. The summations in the NS sector 
are quite different than those for the R sector, because here we take

 r = ± ± ±
1

2

3

2

5

2
, , ,… (7.31)

CLOSED STRING BOUNDARY CONDITIONS
In the case of closed strings, we can apply periodic or antiperiodic boundary 
conditions. These are given by

 
ψ σ τ ψ σ π τ± ±= +( , ) ( , ) (periodic boundary conditiion)

(antiperiodic boundψ σ τ ψ σ π τ± ±= − +( , ) ( , ) aary condition)
 (7.32)

CLOSED STRING MODE EXPANSIONS
The boundary conditions in Eq. (7.32) can be applied separately to left and right 
movers. The mode expansions are

 
ψ σ τ

ψ σ τ

µ µ τ σ

µ µ

+
− +

−
−

=

=

∑( , )

( , )

( )d e

d e

r
ir

r

r
i

2

2 rr

r

( )τ σ−∑
 (7.33)
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If we choose the R sector, then following the open string case

 r = ± ±0 1 2, , ,…  (7.34)

On the other hand, if we choose the NS sector, then

 r = ± ±
1

2

3

2
, ,  (7.35)

We can choose either sector for left and right movers independently. If the 
sectors match for left and right movers, we obtain space-time bosons. If the 
sectors are different for left and right movers, then we obtain space-time fermions. 
That is,

• Choosing the NS sector for left movers and the NS sector for right movers 
gives space-time bosons.

• Choosing the R sector for left movers and the R sector for right movers 
gives space-time bosons.

• Choosing the NS sector for left movers and the R sector for right movers 
gives space-time fermions.

• Choosing the R sector for left movers and the NS sector for right movers 
gives space-time fermions.

Super-Virasoro Generators
When we quantize the theory we will need super-Virasoro operators. These are 
generalizations of what we have already worked out for bosonic string theory. We 
extend the idea in this case to include a fermionic operator. That is,

 L L Lm m
B

m
F→ +( ) ( )

It can be shown that the following defi nition will work:

 L r m b bm m n n
n

r m r
r

= ⋅ + −−
=−∞

∞

− +∑ ∑1

2

1

4
2α α ( )  (7.36)
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In addition, in superstring theory we have a second generator that arises from the 
supercurrent

 G d e J br
ir

m r m
m

= = ⋅
− + +

=−∞

∞

∫ ∑2

π
σ α

π

π σ   (7.37)

for the NS sector, while we take

 F dm n m n
n

= ⋅− +∑α  (7.38)

for the R sector. Here, m and n are integers while r = ± ±1 2 3 2/ , / ,….

Canonical Quantization
Now we are ready to quantize the theory, and canonical quantization is not so bad 
because fermions are simple to deal with. The condition on the modes for the 
bosonic string was the commutator:

 α α δ ηµ ν µν
m n m nm, ,

⎡⎣ ⎤⎦ = + 0
 (7.39)

This relation is supplemented by a similar commutator for the ′α s in the case of 
closed strings. For the supersymmetric theory, we need to supplement Eq. (7.39) 
with relations for the fermionic modes. You will recall from your studies of quantum 
fi eld theory that fermionic fi elds satisfy anticommutation relations. In our case the 
Majorana fi elds will satisfy the equal time anticommutation relation:

 { ( , ), ( , )} ( )ψ σ τ ψ σ τ πη δ δ σ σµ ν µν
A B AB′ = − ′  (7.40)

In terms of the modes, we will have the following sets of anticommutation relations 
depending on the sector used:

 
b b

d d

r s r s

m n m n

µ ν µν

µ ν µν

η δ

η δ

,

,

,

,

{ } =

{ } =
+

+

0

0

 (7.41)

The presence of the Minkowski metric in these equations mean that the theory will 
still be plagued by negative norm states that we will have to remove. 
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The Virasoro operators generate what is known as a super-Virasoro algebra. There 
are some differences for the R sector and the NS sector, so we consider each 
independently.

NS SECTOR ALGEBRA
For the NS sector, the following relations are satisfi ed:

 [ , ] ( ) ( ) ,L L n m L
c

n nn m n m n m= − + −+ +12
3

0δ  (7.42)

 [ , ] ( )L G n r Gn r n r= − +

1

2
2   (7.43)

 { , } ( ) ,G G L
c

rr s r s r s= + −+ +2
12

4 12
0δ  (7.44)

The central charge is related to the space-time dimension by c D D= + /2. Let ψ
be a physical state in the NS sector. The NS sector super-Virasoro constraints are

 ( )L aNS0 0− =ψ  (7.45)

 L nn ψ = >0 0  (7.46)

 G rr ψ = >0 0  (7.47)

Here, following the quantization of the bosonic string, aNS is a normal-ordering 
constant. The open string mass formula is taken by setting L aNS0 = , which gives

 m N aNS
2 1

=
′

−
α

( )  (7.48)

Where the number operator is

 N rb bn n
n

r r
r

= ⋅ + ⋅−
=

∞

−
=

∞

∑ ∑α α
1 1 2/

 (7.49)

The Super-Virasoro Algebra
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R SECTOR ALGEBRA
In the R sector, the commutation and anticommutation relations are

 [ , ] ( ) ,L L m n L
D

mm n m n m n= − ++ +8
3

0δ  (7.50)

 [ , ]L F
m

n Fm n m n= −⎛
⎝⎜

⎞
⎠⎟ +2

 (7.51)

 { , } ,F F L
D

mm n m n m n= ++ +2
2

2
0δ  (7.52)

The conditions on the physical states are

 ( )L aR0 0− =ψ  (7.53)

 L nn ψ = >0 0  (7.54)

 F mm ψ = ≥0 0  (7.55)

Here, aR is the normal-ordering constant for the R sector. 

EXAMPLE 7.6
Deduce that aR = 0.

SOLUTION
We start with the anticommutation relation satisfi ed by the Fm

:

 
{ , } ,F F L

D
mm n m n m n= ++ +2

2
2

0δ

Notice that if m n= = 0, we obtain

 

{ , }F F F F F F F L

L F
0 0 0 0 0 0 0

2
0

0 0
2

2 2= + = =

⇒ =

The Fm annihilate physical states ψ . Therefore,

 F0 0ψ =



CHAPTER 7 RNS Superstrings 147

From this we obtain, by acting on the equation with F0, the relation

 

F F F

L

0 0 0
2

0

0

0

ψ ψ

ψ
( ) = =

⇒ =

But we know that ( )L aR0 0− =ψ . Hence,

 0

0
0 0= − = − = −

⇒ =
( )L a L a a

a
R R R

R

ψ ψ ψ ψ

The Open String Spectrum
Now let’s examine the states of the string. We will look at states of the open string 
in this chapter. We must consider the NS and R sectors independently. Working in 
the NS sector fi rst, the ground state is 0,k

NS
 and it is annihilated by the modes

 αn
i

NS r
i

NS
k b k0 0 0, ,= =  (7.56)

where n r, > 0. The zero mode α µ
0  as discussed in the bosonic string case is a 

momentum operator:

 α αµ
0 0 2 0, ,k k

NS NS
= ′  (7.57)

It can be shown that the normal-ordering constant in the NS sector is

 aNS =
1

2
 (7.58)

Using this we can fi nd the mass of the ground state, which is

 m2 1

2
= −

′α
 (7.59)

Once again, we have a state with m2 0< , so the theory still contains a tachyon state. 
We will see later that we can get rid of the tachyon state in the superstring theory. 
The ground state in the NS sector is a unique spin-0 state. To fi nd massive states, we 
progressively act on the state with negative mode oscillators.
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Next we consider the R sector, which describes space-time fermions in the open 
string case. The ground state is annihilated by

 α µ µ
m R m R

k d k0 0 0, ,= =  (7.60)

for m > 0. The zero mode d0
µ

 is actually a Dirac operator. That is,

 d0
µ µ= Γ  (7.61)

We will see below that the critical space-time dimension is 10, so the states in the 
R sector are 10-dimensional spinors. The ground state satisfi es the massless Dirac 
wave equation. In our notation, this is written in the following way, recalling that 
the momentum operator is α µ

0
:

 α0 0 0 0⋅ =d k
R

,  (7.62)

From Eq. (7.61), we deduce that the ground state in the R sector is a massless Dirac 
spinor in 10 dimensions.

GSO Projection
In the previous section, we saw that the theory still has a major problem—it admits 
an imaginary mass or tachyon state. This indicates that the vacuum is unstable. We 
can rid the theory of the tachyon state, however, giving superstring theory a major 
advantage over bosonic string theory (aside from bringing fermions into the picture). 
This is done using GSO projection. 

GSO projection reduces the number of states in the theory, and rids it of unwanted 
problems like the tachyon state. In the NS sector, we keep states with an odd number 
of fermion excitations and reject states with an even number of fermion excitations. 
This is done by defi ning a fermion number operator:

 F b br r
r

= ⋅−
>
∑

0

 (7.63)

Then we defi ne a parity operator given by

 PNS
F= − −

1

2
1 1[ ( ) ]  (7.64)
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The parity operator determines the states that we can have in the theory. 
Notice that if F PNS= ⇒ =0 0, . Only half integer values of the number operator 
N rb b rb bn n

n
r r

r
r r

r

= ⋅ + ⋅ → ⋅−
=

∞

−
=

∞

−
=

∞

∑ ∑ ∑α α
1 1 2 1 2/ /

are allowed, giving a mass spectrum for 

the NS sector:

 m2 0
1 2

=
′ ′

, , ,
α α

 (7.65)

This means that the spin-0 ground state of the NS sector is now massless. The 
tachyon state has been removed from the theory.

In the R sector, we defi ne the Klein operator which is given by

 ( )− = ±1 11F Γ  (7.66)

Here,

 Γ Γ Γ Γ11 0 1 9=  (7.67)

is a 10-dimensional chirality operator. It acts on spinors ψ according to

 Γ11ψ ψ= ±  (7.68)

That is, states have positive or negative chirality. Weyl spinors are states with 
defi nite chirality, and states can be projected into spinors with opposite space-time 
chirality using the operator

 P± = ±
1

2
1 11( )Γ  (7.69)

Critical Dimension
We will not pursue light-cone quantization in this chapter, but if that procedure is 
used the number of space-time dimensions is easily extracted. One obtains a relation 
for the Lorentz generators M i:

 [ , ]
( )

( )(M M
p

i j
n

i
n
j

n
j

n
i

n
n

− −
+ − −

=

∞

= − − ∆ −∑1
2

1

α α α α nn)  (7.70)
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where

 ∆ =
−⎛

⎝⎜
⎞
⎠⎟

+ −
−⎛

⎝⎜
⎞
⎠⎟n NSn

D

n
a

D2

8

1
2

2

8
 (7.71)

In order to maintain Lorentz invariance, we must have [ , ]M Mi j− − = 0 . This can 
only be true if the fi rst term on the right-hand side of Eq. (7.71) is n and the second 
term vanishes. This implies that

 

D

D

−
=

⇒ =

2

8
1

10
 (7.72)

So, we see that

• Lorentz invariance requires us to take the critical space-time dimension to 
be 10 (9 space and 1 time dimension) in superstring theory.

Using Eq. (7.72), we can deduce the value of the normal-ordering constant:

 2
2

8
0 10

1

2
a

D
D aNS NS−

−
= = ⇒ =

Summary
In this chapter, we made the fi rst attempt to introduce fermions to string theory. This 
was done by adding supersymmetry as a global symmetry on the worldsheet. The 
conserved current and supercurrent was derived. Next, we wrote down the super-
Virasoro algebra and determined how physical states behave in the theory, and the 
spectrum of the open string was described including the two sectors, the NS and R 
sectors which give rise to bosonic and fermionic states, respectively. Using GSO 
projection, one can remove unwanted states like the Tachyon from the theory. Finally, 
we showed how Lorentz invariance forces us to take the critical dimension to be 10.

 Quiz
 1. Compute δSF to arrive at the equations of motion [Eq. (7.8)]. 

 2. Using S T d X X i= − ∂ ∂ − ∂∫/ ( )2 2σ ψ ρ ψα
µ α

µ
µ α

α µ , consider an infi nitesimal 
Lorentz transformation X Xµ

µν
νω→ . Find the conserved current associated 

with the fermionic part of the lagrangian. (Hint: The Majorana spinors used 
here transform as vectors under Lorentz transformations.) 
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 3. A continuation of Prob. 2. What is the total conserved current? (Hint: ωµν is 
antisymmetric.)

 4. For the worldsheet supercurrent J Xα
µ β

α
µ

β µρ ρ ψ= ∂1 2/ , calculate ρα
αJ .

 5. Using Eq. (7.14), fi nd δLB
given S T d X X i= − ∂ ∂ − ∂∫/ ( )2 2σ ψ ρ ψα

µ α
µ

µ α
α µ .

 6. Calculate ∂+ −−T .

 7. Find ( ) ,−{ }1 F
rbµ .

 8. Find { , }Γ Γµ 11 .

 9. Calculate ( )Γ11 2.

 10. Characterize the states α µ µ
− −1 10 0

NS R
dand .
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CHAPTER 8

Compactifi cation 
and T-Duality

In this chapter we introduce two important concepts. The fi rst, compactifi cation, 
involves compactifying one of the extra spatial dimensions into a circle of radius R. 
The second, T-duality, allows us to relate a theory with compactifi ed extra dimension 
of radius R to one with compactifi ed extra dimension of radius ′α /R.

Compactifi cation of the 25th Dimension
For simplicity, we consider the theory of the bosonic string which means we are 
back to working with 26 space-time dimensions for the moment. The dimension X 0

is timelike while X X1, ...,  are spatial dimensions. We imagine that one of those 
spatial dimensions, typically chosen to be X 25 is curled up into a circle of radius R. 
We wish to study how this compactifi cation affects closed strings. As we will see, 
it has some interesting consequences. 

Copyright © 2009 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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Previously a closed string was constrained by the following periodic boundary 
condition:

 X Xµ µσ τ σ π τ( , ) ( , )= + 2  (8.1)

This boundary condition was stated with the implicit assumption where the string was 
moving in a space-time with noncompact dimensions. Now let’s modify the situation. 
As stated above, we are going to let the 25th dimension be a circle with radius R. This 
changes the boundary condition in Eq. (8.1) as follows, but only for X 25:

 X X nR25 252 2( , ) ( , )σ π τ σ τ π+ = +  (8.2)

The interesting thing about Eq. (8.2) is that now the string will have winding states. 
Simply put, the string can wind around the compactifi ed dimension any number of 
times. For all other dimensions µ ≠ 25 , Eq. (8.1) still holds.

The number n in Eq. (8.2) is called the winding number. Using the winding 
number we can defi ne the winding w as

 w
nR

=
′α

 (8.3)

We are going to see in a moment that the winding is actually a type of momentum. The 
periodic boundary condition in Eq. (8.2) can be written in terms of the winding as

 X X w25 252 2( , ) ( , )σ π τ σ τ πα+ = + ′  (8.4)

Now let’s take a closer look at the boundary condition by seeing how it affects left- 
moving and right-moving modes. This will demonstrate the fact that the winding is 
a kind of momentum. First recall that X X XL R

µ µ µσ τ σ τ σ τ( , ) ( , ) ( , )= + . The left- and 
right-moving modes can be written as follows:

 X x p i
n

eL L L
n

n

25 25 25

0

1

2 2 2
( , ) ( )σ τ α τ σ α α

= + ′ + + ′
≠

−∑ iin( )τ σ+
  (8.5)

 X x p i
n

eR R R
n

n

25 25 25

0

1

2 2 2
( , ) ( )σ τ α τ σ α α

= + ′ − + ′
≠

−∑ iin( )τ σ−  (8.6)

where we have made the identifi cations α α α α0
25 1 2 25

0
25 1 2 252 2= ′ = ′( / ) ( / )/ /p pL Rand . 

Adding Eqs. (8.5) and (8.6) together (while ignoring the oscillator contributions) we get

 
X x p p p pL R L R

25 25 25 25 25 25

2 2
( , )σ τ α τ α

= + ′ +( ) + ′ −( )σσ + modes  (8.7)
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The total center of mass momentum of the string is

 p p pL R
25 25 25= +  (8.8)

Along the compactifi ed dimension, the string acts like a particle moving on a circle. 
The momentum is quantized according to

 p
K

R
25 =  (8.9)

where K is an integer called the Kaluza-Klein excitation number. This is an important 
result—without the compactifi ed dimension, the center of mass momentum of the 
string is continuous. Compactifying a dimension quantizes the center of mass 
momentum along that dimension. 

Looking at Eq. (8.7) then, the fi rst term involving the momenta is the total center 
of mass momentum of the string. We call this the momentum mode. The second 
term, however, also involves momentum. In fact this term is the winding mode of 
the string, which satisfi es

 ′ −( ) =
α
2

25 25p p nRL R
 (8.10)

Looking at Eq. (8.3), we see that the winding w can be defi ned in terms of the 
momentum of the left- and right-moving modes as

 w
nR

p pL R=
′

=
′

−( )α α
1

2
25 25  (8.11)

Modifi ed Mass Spectrum
Compactifying a dimension will lead to a modifi ed mass spectrum. To obtain the 
mass spectrum for the state with a compactifi ed dimension, let us begin with the 
Virasoro operators. Recall that

 L p pR R n n
n

0
14

= ′ + ⋅−
=

∞

∑α α αµ
µ  (8.12)

Note the repeated index which is an upper and lower index on the fi rst term in 
the right—so we have an implied sum. Here the index µ ranges over the entire 
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space-time, that is, µ = 0 2, ..., . Now let’s write L0 in such a way that we peel of the 
µ = 25 term. Then

 L p p p pR R R R n n
n

0
25 25

0

24

14 4
=

′
+

′
+ ⋅

=
−

=

∞

∑α α α αµ
µ

µ
∑∑  (8.13)

Similarly we can write

 L p p p pL L L L n n
n

0
25 25

0

24

14 4
=

′
+

′
+ ⋅

=
−

=

∞

∑α α α αµ
µ

µ
∑∑  (8.14)

With a single compactifi ed dimension, the Kaluza-Klein excitations on X 25
 are 

considered to be distinct particles. Hence we can write down the mass operator as 
a mass term in the 25 noncompactifi ed dimensions. That is,

 m p p2

0

24

= −
=

∑ µ
µ

µ
 (8.15)

Now, you should recognize the sums α α−=

∞
⋅∑ n nn 1

 and α α−=

∞
⋅∑ n nn 1

 as the number 

operators NR and NL. Using this fact together with Eq. (8.15) allows us to write the 
Virasoro operators as

 L p p m NR R R0
25 25 2

4 4
= ′ − ′ +

α α
  (8.16)

 L p p m NL L L0
25 25 2

4 4
= ′ − ′ +

α α
 (8.17)

Now we can utilize the mass-shell constraint. This is the condition that L0 1− and 
L0 1−  annihilate physical states ψ :

 ( )L0 1 0− =ψ  (8.18)

 ( )L0 1 0− =ψ  (8.19)

The conditions in Eqs. (8.18) and (8.19) imply that L0 1= and L0 1= . Applying the 
fi rst condition to Eq. (8.16) we get

               

L

p p m NR R R

0

25 25 2

1

1
4 4

=

⇒ =
′

−
′

+
α α

 
⇒ ′ = ′ + −

α α
2 2

2 22 25 25m p p NR R R
 

 (8.20)
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Similarly, using L0 1=  together with Eq. (8.17) we obtain

 ′ = ′ + −
α α
2 2

2 22 25 25m p p NL L L
  (8.21)

Now using Eq. (8.8) together with Eqs. (8.9) and (8.10) we can write

 p
nR K

RL
25 =

′
+

α
 (8.22)

Which of course allows us to compute

 p
nR K

R

nR K

RL
25 2

2 2

( ) =
′

+⎛
⎝⎜

⎞
⎠⎟

=
′

⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟α α

22

2+
′

nK

α
 (8.23)

and similarly p K R nRR
25 = − ′( / ) ( / )α  so that

 p
K

R

nR nR K

RR
25 2

2 2

( ) = −
′

⎛
⎝⎜

⎞
⎠⎟

=
′

⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟α α

22

2−
′

nK

α
 (8.24)

This allows us to obtain the sum and difference formulas:

 p p
nR K

RL R
25 2 25 2

2 2

2( ) + ( ) =
′

⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

α ⎦⎦
⎥
⎥

  (8.25)

 p p
nK

L R
25 2 25 2

4( ) − ( ) =
′α

 (8.26)

Using Eqs. (8.25) and (8.26) we can add Eqs. (8.20) and (8.21) to obtain

 ′ =
′

⎛
⎝⎜

⎞
⎠⎟ + ⎛

⎝⎜
⎞
⎠⎟ + + −α

α
m

nR K

R
N NR L

2
2 2

2 4( )  (8.27)

and subtracting Eqs. (8.21) from (8.20) gives

 N N nKR L− =  (8.28)

So notice we have extra terms in the formulas for mass [Eq. (8.27)] and the level 
matching condition [Eq. (8.28)] as compared to the formulas introduced for the 
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bosonic string in Chap. 2. The extra terms are due to two components, the Kaluza-
Klein excitations and the winding states of the string. The Kaluza-Klein excitations 
can be regarded as particles and so cannot be thought of as due to strings in a 
general sense. However the winding excitations can only come from strings, 
because only strings can wrap around a compactifi ed extra dimension.

Now let’s look at the mass formula in Eq. (8.27) together with the relations for 
the momenta in Eqs. (8.22) and (8.25). Our task here is to consider limiting behavior. 
First we consider the case where R → ∞. In this limit, the momentum goes to the 
continuum limit and the Kaluza-Klein excitations disappear. It is simple to show 
that p pL R=  and hence the winding state

 w p p R
L R

= −( ) → → ∞1

2
025 25 as

The center of mass momentum Eq. (8.8) returns to the nonquantized, continuous 
momentum of the noncompactifi ed case.

Now let’s think about the opposite limit where R → 0. You might also expect that 
this is like returning to the noncompactifi ed case. After all, taking the limit 
R → 0 is like making the extra dimension go away. In quantum fi eld theory we 
might expect the fi elds to completely decouple from that unseen extra dimension. 
However, things don’t quite work this way in string theory. 

As R → 0, we fi nd that the Kaluza-Klein modes become infi nitely massive and 
decouple from the theory. Since these can be regarded as particle states, maybe this 
isn’t so surprising. What’s left behind for the center of mass momentum are the 
winding states. First note that as R → 0 we obtain

 p pR L= −

Hence p25 0→  but the winding term behaves in the following way:

 w p p p R
L R L

= −( ) → →1

2
025 25 25 as

(or to − pR
25

 if you like). Now the winding states, rather than the momentum states, 
form a continuum of states. This should not be so surprising, as R → 0 the circle 
gets smaller and smaller. So it gets easier and easier to wrap a string around it—that 
is, it costs less energy. When the circle is very small it doesn’t require a lot of 
energy to wrap the string around it. 

So you see as the radius gets very large or very small there is a trade-off between 
winding states and momentum. This trade-off leads us to a discussion of T-duality, 
the topic of the next section. 
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T-duality is a symmetry which exists between different string theories. This 
symmetry relates small distances in one theory to large distances in another, 
seemingly different theory and shows that the two theories are in fact the same 
theory expressed from different viewpoints. This is an important recognition; before 
T-duality was discovered it was believed that there were fi ve different string 
theories, when in fact they were all different versions of the same theory that could 
be related to one another by transformations or dualities. One can transform between 
small and large distances when considering the compactifi ed dimension in one 
theory, and arrive at another dual theory. This is the essence of T-duality. We will 
see later that other dualities exist in string theory as well.

T-duality relates type IIA and type IIB string theories, as well as the heterotic 
string theories. It applies to the type of compactifi cation that we have been studying 
in this chapter, namely the compactifi cation of a spatial dimension to a circle of 
radius R. The transformation that is used in T-duality is to transform the radius to a 
new large radius ′R  which is defi ned by the exchange

 ′ ↔ ′
R

R

α
 (8.29)

The T-duality transformation also exchanges winding states characterized by a 
winding number n with high-momentum states in the other theory (Kaluza-Klein 
excitations). That is,

 n K↔  (8.30)

The symmetry of T-duality, described by these exchanges, makes its appearance in 
the mass formula [Eq. (8.27)], which we reproduce here:

 ′ =
′

⎛
⎝

⎞
⎠ + ⎛

⎝
⎞
⎠ + + −α

α
m

nR K

R
N NR L

2
2 2

2 4( )  

Now exchange ′ ↔ ′R Rα /  and n K↔ , then:

 
K

R

n

R

nR
→

′
′( ) = ′

′α α
 (8.31)

We also have:

 
nR K

R K

R′
→

′
′( )

′
=

′α

α

α
 (8.32)

T-Duality for Closed Strings
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So we see that the mass formula Eq. (8.27) is invariant under the exchange 
′ ↔ ′R Rα /  and n K↔ . It assumes the form

 
′ = ′

′
⎛
⎝⎜

⎞
⎠⎟ +

′
⎛
⎝

⎞
⎠ + + −α

α
m

nR K

R
N NR L

2
2 2

2 4( )

That is, it keeps the same form but now with the new radius ′R . That’s the math of 
the transformation. The physics is that if we started with a theory with a small 
compactifi ed dimension R, we have transformed to a dual theory with a large extra 
dimension ′R . What this means for the string is that a string in a type IIA theory 
(with small compactifi ed dimension), which winds around the small compact 
dimension (with winding states) is dual to a string in type IIB theory (with the 
dimension transformed to a large dimension of radius ′R ), which has momentum 
along that dimension. Each time the string in type IIA theory winds around the 
compact dimension, this corresponds to increasing the momentum in type IIB 
theory by one unit.

Now let’s examine how p pL R
25 25and , and by extension α α0 0and , transform 

under this symmetry. Recall Eq. (8.22) that states

 
p

nR K

RL
25 =

′
+

α

Now exchange ′ ↔ ′R Rα /  and n K↔ . We fi nd

 

p
K

R

n

R

K

R

nR
L
25 →

′
′
′

⎛
⎝⎜

⎞
⎠⎟

+
′

′( ) =
′

+ ′
′α

α
α α

So, pL
25

 maintains the same form under the transformation—that is, it is invariant. 
We can indicate this by writing p pL L

25 25= . Now consider how pR
25

 transforms under 
the exchange ′ ↔ ′R Rα /  and n K↔ :

 

p
K

R

nR

p
n

R

K

R

R

R

25

25

= −
′

⇒ →
′

′( ) −
′

′
′

⎛
⎝⎜

⎞
⎠

α

α α
α

⎟⎟ =
′
′

−
′

nR K

Rα

That is, p pR R
25 25= − . This tells us that the exchange ′ ↔ ′R Rα /  and n K↔ is 

equivalent to transformations applied to the zero-modes:

 α α α α0
25

0
25

0
25

0
25→ → −and  (8.33)
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We can summarize this as follows:

• A state ( , )K n
 
in a theory with radius R is transformed into a state ( , )n K  in 

a theory with radius ′ = ′R Rα / .

• The two states have the same mass. That is, m K n R m n K R2 2( , , ) ( , , )= ′ .

• The number operators are unchanged under a T-duality transformation.

The transformation not only preserves mass, the entire theory with 
compactifi ed dimension of radius R is mapped to a theory of radius ′ = ′R Rα /

 using a T-duality transformation. Let ~ denote quantities in the dual theory. A 
T-duality transformation  maps the compactifi ed coordinates to those in the dual 
theory as follows:

 
X X

X X

L L

R R

25 25

25 25

( ) ( )

( ) ( )

τ σ τ σ

τ σ τ σ

+ → +

+ → − +
 (8.34)

Then using X X XL R
25 25 25= +  the relation of the coordinates in the dual theory 

X X XL R
25 25 25= + can be written as

 X X XL R
25 25 25= −

Furthermore we have the relations

 

∂ = ∂

∂ = −∂
+ +

− −

X X

X X

25 25

25 25

However the physical content of the theory is unchanged because ∂ = ∂ =+ −X XR L
25 25 0. 

The winding number and Kaluza-Klein excitation in the theory with compactifi ed 
dimension and its dual are related according to

 K n n K= =and

A T-duality transformation also maps all the modes as

 

α α

α α
n n

n n

25 25

25 25

= −

=
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Open Strings and T-Duality
The situation is a little different when considering compactifi cation in the open 
string case. This is because open strings cannot wind around the compact dimension. 
We summarize this by saying:

• Open strings do not have winding modes when a dimension is compactifi ed 
into a circle of radius R. Hence they have winding number n = 0.

Let’s quickly review a couple of facts about open strings in bosonic string theory. 
In order to satisfy Poincaré invariance, we choose Neumann boundary conditions 
for the open string:

 
∂
∂

= =X µ

σ
σ π0 0for ,  (8.35)

The modal expansion for the open string with Neumann boundary conditions is 
given by

 X x p i
n

e nn

n

inµ µ µ
µ

τσ τ α α α σ( , ) cos= + ′ + ′
≠

−∑0 0
0

2 2  (8.36)

We can write left-moving and right-moving modes for the open string as

 

X
x x

p i
n

eL
n

n

µ
µ µ

µ
µ

τ σ α τ σ α α
( ) ( )+ =

+
+ ′ + + ′

≠
∑0 0

0
02 2

−− +( )

− =
−

+ ′ − + ′

in

RX
x x

p i

τ σ

µ
µ µ

µτ σ α τ σ α
( ) ( )0 0

02 2

αα µ
τ σn

n

in

n
e

≠

− −( )∑
0

 (8.37)

Note that x0
25 will be the position coordinate along the compactifi ed dimension. 

Here we have added and subtracted x0
µ, which is the coordinate of the compactifi ed 

dimension in the dual space.
We can go through the compactifi cation procedure by simply applying the 

T-duality transformation (which is why we have written the open string modes 
in terms of left movers and right movers). We let

 X X X X
L L R R
25 25 25 25→ → −and
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This means that for X 25 we have:

  

X X
x x

pL L
25 25 0

25
0
25

0
25

2
( ) ( ) (τ σ τ σ α τ σ+ = + =

+
+ ′ + ))

( ) (

+
′

− = − −

≠

− +( )∑i
n

e

X X

n

n

in

R R

α α

τ σ τ σ

τ σ

µ µ

2

25

0

)) ( )=
− +

+ ′ − −
′

≠

−∑x x
p i

n
en

n

0
25

0
25

0
25

25

02 2
α τ σ α α iin τ σ−( )

 (8.38)

Adding together to get the total mode expansion gives

 
X x p i

n
e en

n

in25
0
25

0
25

25

02
= + ′ +

′
−

≠

− +( )∑α σ α α τ σ −− −( )⎡⎣ ⎤⎦
in τ σ

 

Now using Euler’s famous formula:

 
e e i

e e

i
in in

in in
− +( ) − −( )

− +( ) − −( )

− =
−τ σ τ σ

τ σ τ σ

2
2

⎡⎡

⎣
⎢

⎤

⎦
⎥

= −
−⎡

⎣
⎢

⎤

⎦
⎥ = −−

−
−2

2
2ie

e e

i
iein

in in
inτ

σ σ
τ ssin nσ

 

This means that the mode expansion can be written as

 

X x p
n

e nn

n

in25
0
25

0
25

25

0

2= + ′ + ′

=

≠

−∑α σ α
α

στ sin

xx
K

R n
e nn

n

in
0
25

25

0

2+ ′ + ′
≠

−∑α σ α
α

στ sin

Now we can analyze this expression to discover the properties of open strings in 
the dual theory. The fi rst item to notice is:

• The expression for X 25
 has no linear terms that contain the worldsheet time 

coordinate τ. Physically, This means that the dual string has no momentum 
in the 25th dimension.

• If the string carries no momentum for µ = 25, it must be fi xed. What does a 
fi xed vibrating string do? The motion is oscillatory. 

• Notice that the expansion contains a sinnσ  term, which of course satisfi es 
sinnσ = 0 at σ π= 0, . 



 164 String Theory Demystifi ed

The last point is particularly important. Recall that Dirichlet boundary conditions 
on the string are

 
X Xµ

σ
µ

σ π= == =0 0

Looking at the expression for the dual fi eld, notice that

 X x25
0
250( , )σ τ= =

At σ π=  we have

 
X x

K

R
x K R25

0
25

0
25 2( , )σ π τ α π π= = + ′ = + ′

Hence,

 X X K R25 25 0 2( , ) ( , )σ π τ σ τ π= − = = ′

This tells us that the dual string winds around the dual dimension of radius ′R  with 
winding number K. 

Summarizing

• T-duality transforms Neumann boundary conditions into Dirichlet boundary 
conditions.

• T-duality transforms Dirichlet boundary conditions into Neumann boundary 
conditions.

• T-duality transforms a bosonic string with momentum but no winding into a 
string with winding but no momentum. 

• For the dual string, the string endpoints are restricted to lie on a 25-dimensional 
hyperplane in space-time.

• The endpoints of the dual string can wind the circular dimension an integer 
number of times given by K.

D-Branes
The hyperplane that the open string is attached to carries special signifi cance. A 
D-brane is a hypersurface in space-time. In the examples worked out in this chapter, 
it is a hyperplane with 24 spatial dimensions. The dimension which has been 
excluded in this example is the dimension which has been compactifi ed. The D is 
short for Dirichlet which refers to the fact that the open strings in the theory have 
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endpoints that satisfy Dirichlet boundary conditions. In English this means that the 
endpoints of an open string are attached to a D-brane. 

A D-brane can be classifi ed by the number of spatial dimensions it contains. A point 
is a zero-dimensional object and therefore is a D0-brane. A line, which is a one-
dimensional object is a D1-brane (so strings can be thought of as D1-branes). Later we 
will see that the physical world of three spatial dimensions and one time dimension that 
we can perceive directly is a D3-brane contained in the larger world of 11-dimensional 
hyperspace. In the example studied in this chapter, we considered a D24-brane, with one 
spatial dimension compactifi ed that leaves 24 dimensions for the hyperplane surface.

Using the procedure outlined here, other dimensions can be compactifi ed. If we 
choose to compactify n dimensions then that leaves behind a D(25-n)-brane. The 
procedure outlined here is essentially the same in superstring theory, but in that 
case compactifying n dimensions gives us a D(9-n)-brane. Note that:

• The ends of an open string are free to move in the noncompactifi ed 
directions—including time. So in bosonic theory, if we have compactifi ed 
n directions, the endpoints of the string are free to move in the other 
1 + (25-n) directions. In superstring theory, the endpoints will be free to 
move in the other 1 + (9-n) directions. In the example considered in this 
chapter where we compactifi ed 1 dimension in bosonic string theory, the 
end points of the string are free to move in the other 1 + 24 dimensions.

We can consider the existence of D-branes to be a consequence of the symmetry 
of T-duality. The number, types, and arrangements of D-branes restrict the open 
string states that can exist. We will have more to say about D-branes and discuss 
T-duality in the context of superstrings in future chapters. 

Summary
In this chapter we described compactifi cation which involves taking a spatial dimension 
and compactifying it to a small circle of radius R. Going through this procedure, it was 
discovered that a symmetry emerges called T-duality, which relates theories with small 
R to equivalent theories with large R. An important consequence of T-duality was 
discovered when it was learned that open strings with Neumann boundary conditions 
are transformed into open strings with Dirichlet boundary conditions in the dual theory. 
The result is the endpoints of the string are fi xed to a hyperplane called a D-brane. 

         Quiz
 1. Translational invariance along σ  leads to the condition ( )L L0 0 0− =ψ  for 

physical states ψ . Use this to fi nd a relation between pL
25, NL, and pR

25, NR.
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CHAPTER 9

Superstring Theory 
Continued

In Chap. 7, we took our fi rst look at superstring theory by considering supersymmetry 
on the worldsheet. The result is the RNS superstring. We can learn a lot from this 
method but space-time supersymmetry is not manifest with this theory. In this 
chapter, we have a somewhat random collection of material on supersymmetry 
and superstrings that will give you a general overview of what these topics are 
about so that you can pursue more advanced treatments if desired. In short, we are 
going to do two things. First, we will deepen and extend our discussion of 
supersymmetry and superstrings, and then we will introduce a space-time 
supersymmetry approach. These are more advanced topics so we aren’t going to 
go into great detail, and leave out a lot of important information. But our purpose 
here is to provide the reader with an introductory overview that exposes you to 
some of the basic ideas of superstring theory. A detailed study can be undertaken 
by reading any of the references listed at the end of the book. We hope this fi rst 
exposure will make going through material in other textbooks a bit easier. The 

Copyright © 2009 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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material in this chapter will not be necessary to understand D-branes or black 
hole physics as discussed in this book, so if you’d rather avoid it for now you can 
do so without much harm.

Superspace and Superfi elds
Adding space-time supersymmetry is going to involve a couple of things. Specifi cally:

• We will extend the coordinates to add a “supersymmetric partner” to 
the space-time coordinate xµ . The result will be superspace defi ned by 
coordinates x A

µ θand .

• We will introduce a superfi eld which is a function of the superspace 
coordinates. The superfi eld will be added to the action to generate a 
supersymmetric theory.

With these points in mind let’s fi rst move ahead by describing the concept known 
as superspace. As noted above, the idea here is to add to the usual space-time 
coordinate x x xd0 1, , ...,  by adding fermionic or Grassman coordinates θA. The 
index A used on the superspace or Grassman coordinates corresponds to the spinor 
index used on the spinors ψ µ

A
. Taking the case of worldsheet supersymmetry that 

we have discussed already, we had two component spinors, and so A = 1 2, . 
Fermionic coordinates θA are also called Grassman coordinates because they 

satisfy an anticommution relation. That is,

 θ θ θ θA B B A+ = 0  (9.1)

Notice that this relation implies that θ θ θA A A= =2 0. In the case of the worldsheet, 
the θA are super-worldsheet coordinates that are two component spinors:

 
θ

θ
θA =
⎛
⎝⎜
⎞
⎠⎟

−

+

To characterize superspace, we also need to understand how the fermionic 
coordinates behave with respect to normal space-time coordinates—this is encapsulated 
in commutation and anticommutation relations. Sticking to the worldsheet as an 
example, we denote the coordinates of the worldsheet by σ τ σa = ( , ). Since these 
are ordinary coordinates, they commute with themselves:

 σ σ σ σa b b a− = 0  (9.2)
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They also commute with the fermionic coordinates:

 σ θ θ σa
A A

a− = 0  (9.3)

So, what we’ve seen here is that supersymmetry doesn’t just pair up bosons and 
fermions, it also enlarges the notion of space-time to pair up ordinary coordinates 
with fermionic coordinates, with superspace being characterized by the relations 
given by Eqs. (9.1) through (9.3). Now let’s consider the notion of a superfi eld. 

It is possible to defi ne functions on superspace, meaning that we can introduce 
fi elds Y that are functions of space-time coordinates and fermionic coordinates. We 
can indicate this by writing

 Y Y≡ ( , )σ θ

for a given fi eld Y. We call a fi eld that is a function of superspace a superfi eld. A 
superfi eld can be introduced into the action to construct a supersymmetric 
theory.

Next, we introduce the supercharge which can also be called the supersymmetry 
generator. In the case of worldsheet supersymmetry, this is given by

 
Q iA

A
A=

∂
∂

− ∂
θ

ρ θα α( )

We call the supercharge the supersymmetry generator because it generates 
supersymmetry transformations on superspace. That is, it acts on the coordinates as 
follows. Using the worldsheet example, the role of the space-time coordinates are 
played by σ τ σa = ( , ). The supersymmetry generator acts on them as follows:

 

ε σ ε
θ

ρ θ σ

ε σ
θ

ρ θ σ

α β
β

α

α
β

β
α

Q i

i

=
∂
∂
− ∂⎛

⎝⎜
⎞
⎠⎟

=
∂
∂

− ∂
⎛
⎝⎜

⎞⎞
⎠⎟

(the coordinate is not a function
of t

σα
hhe fermion coordinate )θ

ερ θδ ερ θβ
β
α α= − = −i i

Hence we conclude that under a supersymmetry transformation

 σ σ ερ θα α α→ − i
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This can also be written as σ σ θρ εα α α→ + i . This is possible because of the 
properties of Grassman numbers together with { , }ρ ρ ηα β αβ= 2  (remember that we have 
Majorana spinors that consist of anticommuting Grassman numbers). For readers new to 
the subject it’s a good idea to write out the details, so let’s take an aside to do so. We can 
reorder the term ερ θα  in two ways. Do you remember how to reorder terms using the 
hermitian conjugate † in ordinary quantum mechanics? If so, then you will understand 
how to work with ερ θα , but in this case we only use the transpose. We have

 

ερ θ ερ ρ θ ρ θ ερ
θρ ρ ε
θ η ρ ρ

α α α

α

α

= =
=
= −

0 0

0

0 02

[( )( )]

(

T

αα

α α

α α

ε
η θε θρ ρ ε
η θε θρ ε

)

= −
= −

2

2

0 0

0

But we can also write

 

ερ θ ερ ρ θ
ε η ρ ρ θ
η εθ ερ ρ θ
η

α α

α α

α α

=
= −
= −
=

0

0 0

0 0

0

2

2

2

( )

αα α

α α α α

εθ ρ θ ερ
η εθ θρ ρ ε η εθ θρ

−
= − = −

[( )( )]0

0 0 02 2

T

εε

Now, we use the fact that the metric is symmetric, so η ηα α0 0= . Adding our two 
expressions, we get

 2 2 20ερ θ η θε εθ θρ εα α α= + −( )

We can write θε εθ+  in terms of components and use the fact that the components are 
anticommuting Grassman numbers to show that the fi rst term vanishes. First we have

 
θε θ θ

ε
ε

θ ε θ ε=
⎛
⎝⎜
⎞
⎠⎟
= +− +

−

+
− − + +( )

We also have

 
εθ ε ε

θ
θ

ε θ ε θ=
⎛
⎝⎜
⎞
⎠⎟
= +− +

−

+
− − + +( )
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Now, use the fact that the components are anticommuting to write

 εθ ε θ ε θ θ ε θ ε θε= + = − − = −− − + + − − + +

This means that 2 00η θε εθα ( )+ = , and so we are able to write ερ θ θρ εα α= − . 
Returning to the main thrust of our discussion, in general, space-time coordinates 

will transform as

 x x iµ µ µεγ θ→ −

under a supersymmetry transformation, where γ µ are the usual Dirac matrices. 
Now let’s consider the action of the supersymmetry generator on the fermionic or 
super-worldsheet coordinates. We simply state the result which you can work out in 
the Chapter Quiz:

 δθ εA A=

Hence, the supercoordinates transform as

 θ θ εA A A→ +

A tool we will use to write down the action is the supercovariant derivative. This is 
given by

 D iA A A=
∂
∂

+ ∂
θ

ρ θα α( )

A key property of the supercovariant derivative is that under a supersymmetry 
transformation, the supercovariant derivative of a superfi eld F, DF transforms the 
same way as F does. 

Superfi eld for Worldsheet Supersymmetry
We will use the case of worldsheet supersymmetry to illustrate how to write down an 
action where supersymmetry is manifest. To do this, we start with the superfi eld:

 
Y X Bµ α µ α µ α µ ασ θ σ θψ σ θθ σ( , ) ( ) ( ) ( )= + +

1

2
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This expression is a general expression, it’s a Taylor expansion of the superfi eld. 
Due to the anticommuting properties of Grassman variables θθ  is the highest-order 
term in the expansion. It can be shown that the equation of motion for Bµ is given 
by Bµ = 0, so this is an auxiliary fi eld that plays no role in the physics. The superfi eld 
transforms as

 δ ε εµ µ µY Q Y QY= =[ , ]

Now recall Eq. (7.9), which gave the SUSY transformations of the boson and 
fermion fi elds X µ µψand :

 

δ εψ

δψ ρ ε

µ µ

µ α
α

µ

X

i X

=

= − ∂

We can derive these transformations by calculating δ µY  explicitly. Using QA A= ∂ ∂ −( / )θ
  i A( )ρ θα α∂ ,

 
we have
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α
α
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A
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∂
∂
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⎣
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⎤

⎦
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⎣⎢

⎤
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=
∂
∂

+
∂
∂
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θ ψ
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1

2
B

X
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B
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A
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A
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α
α
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+
∂
∂
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⎣
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⎦
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2
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α
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µ α
α
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⎤
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σ
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∂
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1

2

ii A B( )ρ θ θ ψα
α

µ∂⎡⎣ ⎤⎦

To get the last step, we dropped the third-order term which is 0 due to the 
anticommuting nature of Grassman variables, and we dropped the fi rst term since 
X µ

 does not depend on the supercoordinates. Using the Fierz transformation

 
θ θ δ θ θA B AB C C= −

1

2

We can fi nally write this as

 δ εψ θ ερ ε θθ ερ ψµ µ α
α

µ µ α
α

µY i X B i= + ∂ + + ∂( ) ( )



CHAPTER 9 Superstring Theory Continued 173

To write down the SUSY transformations, we simply compare with * and look for 
corresponding terms in the θ  expansion. Doing this we fi nd

 

δ εψ

δψ ρ ε ε

δ ερ ψ

µ µ

µ α
α

µ µ

µ α
α

µ

X

i X B

B i

=

= − ∂ +

= − ∂

We can write the action in terms of superfi elds. Since the superfi elds are functions 
of the Grassman variables, we will have to utilize a new kind of integration, called 
Grassman integration. We take a brief detour to describe this now.

Grassman Integration
Another important tool in the supersymmetry toolkit is the technique of Grassman 
integration. It turns out that the integration of anticommuting Grassman variables is 
quite a bit different (and actually a lot simpler, although less intuitive) than the 
ordinary integration of a function of real variables. Even so, we develop the notion 
of Grassman integration by our wish to preserve one important property of integration. 
If you integrate a function of a real variable over the entire number line, that integral 
is translation invariant. That is, let a be some real constant then it must be true that

 
f x dx f x a dx( ) ( )

−∞

∞

−∞

∞

∫ ∫= +

Now let φ θ( )
 
be a function of the Grassman variable θ . We also want integration 

here to be translation invariant:

 
d d cθφ θ θφ θ( ) ( )∫ ∫= +

where c is a constant (a Grassman number in this case). To deduce the properties of 
Grassman integration while preserving translation invariance, we expand the 
function φ θ( ) in Taylor:

 φ θ θ( ) = +a b

Then,

 
d d a bθφ θ θ θ( ) ( )∫ ∫= +
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Now, let θ θ→ + c  and we obtain

 

d a b c d a b bc

a bc d b d

θ θ θ θ

θ θθ

[ ( )] ( )

( )

+ + = + +

= + +

∫ ∫
∫ ∫

In order for this integral to be translation invariant, it cannot depend on c, and so we 
conclude that

 
dθ∫ = 0

when θ  is a Grassman variable. By convention, the Grassman integral is normalized 
to one in the following way:

 
dθθ∫ = 1

So that altogether we have the rule

 d a b bθ θ( )+ =∫

For double integration over two Grassman coordinates, there is only one rule to 
remember

 
d i2 2∫ = −θθ θ

With these rules in hand, you are on your way to becoming a supersymmetry 
expert.

A Manifestly Supersymmetric Action
The action written in Chap. 7 [Eq. (7.2)] includes fermionic fi elds but supersymmetry 
is not manifest. This situation can be remedied by writing down an action in terms 
of superfi elds. The action we use is given by

 
S

i
d d DY DY=

′ ∫8
2 2

πα
σ θ µ

µ



CHAPTER 9 Superstring Theory Continued 175

where,

 

DY B i X
i

DY B i

µ µ µ α
α

µ α
α

µ

µ µ µ

ψ θ ρ θ θθρ ψ

ψ θ θ

= + − ∂ + ∂

= + +

2

ρρ θθ ψ ρα
α

µ
α

µ α∂ − ∂X
i

2

Performing the Grassman integration in the action, we can obtain the component 
form, which is

 S d X X i B B= −
′

∂ ∂ − ∂ −∫
1

4
2

πα
σ ψ ρ ψα µ

α µ µ α
α µ

µ
µ( )

The equation of motion for Bµ , as mentioned earlier, is Bµ = 0, which allows us to 
discard the auxiliary fi eld, and we arrive back at the theory described in Chap. 7.

To see how to arrive at this, you can just apply the rules of Grassman integration, 
considering θ θand  as separate variables and using d d d2θ θ θ= . We illustrate by 
computing a couple of terms. For example,

 
d B d d B2∫ ∫ ∫=θ θ ψ θ θθ ψµ

µ
µ

µ

But dθθ∫ = 1
 
and so,

 
d d B d Bθ θθ ψ θ ψµ

µ
µ

µ∫ ∫ ∫= = 0

On the other hand,

 
d B B d B B iB B2 2 2θ θ θ θ θθµ

µ
µ

µ
µ

µ∫ ∫= = −( )( ) ( )

Using these types of computations, one can transform the manifestly super-
symmetric action into the coordinate form to recover the theory of the RNS 
superstring.

The Green-Schwarz Action
In this section, we use the idea of supersymmetry applied to the space-time coordinates. 
For worldsheet supersymmetry, we extended the coordinates σ σ τα = ( , ) of the 
worldsheet by introducing fermionic super-worldsheet coordinates. Now, we are 
going to utilize this same idea but apply it to the actual space-time coordinates, 
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which are the bosonic fi elds X µ σ τ( , ). This can be done by adding new fi elds, 
typically denoted by Θa ( , )σ τ , which map the worldsheet to fermionic coordinates. 
Taking the X µ σ τ( , ) together with the Θa ( , )σ τ

 
will enable us to map the worldsheet 

to superspace. This approach to superstring theory is known as the Green-Schwarz 
(GS) formalism. 

To summarize, when applying worldsheet supersymmetry

• We extend the coordinates ( , )τ σ  by introducing fermionic coordinates 
θ θ1 2and . This gives us super-worldsheet coordinates.

In this case:

• We are developing an extension of space-time itself, creating a superspace 
described by the pair X µ σ τ( , ) and Θa ( , )σ τ . 

• An N m=  supersymmetric theory will have a m= 1, ..., , or m fermionic 
coordinates.

A SUPERSYMMETRIC POINT PARTICLE
We introduce the formalism by going back to the simplest case we can describe—a 
point particle. This will allow us to go over the main ideas without getting bogged 
down by the formalism. It turns out this approach actually has some direct relevance 
to string theory anyway. In modern parlance, a point particle is called a D0-brane. 
So the physics we will lay out here is known as the D0-brane action (this is a 
Dp-brane with p = 0 ). This type of object can be found in the type IIA superstring 
theory.

The action for a relativistic point particle of mass m can be written as

 S d
e

x em= −⎛
⎝⎜

⎞
⎠⎟∫

1

2

1 2 2τ  (9.4)

As noted in Chap. 2, e is called the auxiliary fi eld. The action written in this form is 
well suited to the study of massless particles. Letting m→ 0 gives

 S d
e

x= ∫
1

2

1 2τ  (9.5)

To make the jump to superspace, we consider the space defi ned by the pair of 
coordinates:

 x Aaµ θ,  (9.6)



CHAPTER 9 Superstring Theory Continued 177

where θ Aa  is anticommuting spinor coordinate. In the case we are studying here, for 
a point particle, these are functions of τ , that is, θ θ τAa Aa= ( ). The index A ranges 
over the number of supersymmetries in the theory. If there are N of them, then

 A N= 1, ...,

Hence, if we have an N = 2 supersymmetry, then we have the two fermionic 
coordinates θ θ1 2a aand . You may be a little confused by the notation. We actually 
have a second index here. The second index is the spinor index. Consider a general 
Dirac spinor. In D dimensions it has 2 2D/

 components. So,

 a D= 1 2 2, ..., /

For Majorana spinors, this number is cut in half. Now, we are actually going to 
proceed in a manner which is not too different from what you learned for worldsheet 
supersymmetry. Once again, we consider a constant Majorana spinor that we denote 
by ε A (suppressing the spinor index) to emphasize that it is infi nitesimal. Now we 
introduce the following SUSY transformations:

 δ ε θ
δθ ε

δθ ε

µ µx i A A

A A

A A

=

=

=

Γ  

(9.7)

In addition, we have to worry about the auxiliary fi eld. We suppose that the SUSY 
transformation in this case is

 δe = 0  (9.8)

The simplest supersymmetric action that can be conceived of is an extension of the 
action in Eq. (9.5) written as follows:

 S d
e

x i A A= −∫
1

2

1 2τ θ θµ µ( )Γ  (9.9)

Now, since ε A  is a constant, it does not depend on τ  and hence ε A = 0. Given that 
plus Eq. (9.7), it’s very easy to see that Eq. (9.9) is invariant under a SUSY 
transformation. First note that

 δθ δ
τ
θ

τ
δθ

τ
εA A A Ad

d

d

d

d

d
= ⎛
⎝⎜

⎞
⎠⎟ = = =( ) 0
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Now of course we can ignore the 1 e  term when varying the action since the 
SUSY transformation is Eq. (9.8). Proceeding

 
δ δ τ θ θ

τ δ θ

µ µ

µ

S d
e

x i

d
e

x i

A A

A

= −

= −

∫

∫

1

2

1

1

2

1

2( )

(

Γ

ΓΓ

Γ Γ

µ

µ µ µ µ

θ

τ θ θ δ θ θ

A

A A A Ad
e

x i x i

)

( ) ( )

2

1
= − −∫
== − −⎡⎣ ⎤⎦∫ d e

x i x i
A A A Aτ θ θ δ δ θ θµ µ µ µ1

( ) ( )Γ Γ

Ok, now we have

 δ θ θ δθ θ θ δθ
δθ θ

µ µ µ

µ

( ) ( ) ( )

( )

A A A A A A

A A

Γ Γ Γ
Γ

= +
=
== ε θµA AΓ

Using Eq. (9.7) then, we have

 δ δ θ θ ε θ ε θµ µ µ µx i i iA A A A A A− = − =( )Γ Γ Γ 0

Therefore, δS = 0 and the action is invariant under a SUSY transformation. 
Since we are dealing with an enlargement of space-time coordinates, take a step 

back and recall that the actions described in Chap. 2

• Are invariant under space-time translations aµ.

• Are invariant under Lorentz transformations ωµ
ν

νx .

We combine these two results in the Poincaré group and note that the action in 
Eq. (9.4) is invariant under

 δ ωµ µ µ
ν

νx a x= +

With the enlargement of the space-time coordinates to include the supercoordinates 
θ A, and the action in Eq. (9.9), which is invariant under supersymmetry transformations, 
we now see that we have the super-Poincaré group. 

In Example 9.1, we illustrate an interesting result. We compute the commutator 
of two infi nitesimal SUSY transformations applied to a space-time coordinate and 
show that the result is a space-time translation. 
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EXAMPLE 9.1
Let δ δ1 2and  be two infi nitesimal supersymmetry transformations on xµ. Compute 
[ , ]δ δ µ

1 2 x .

SOLUTION
This is actually rather easy. The commutator is

 [ , ]δ δ δ δ δ δµ µ µ
1 2 1 2 2 1x x x= −

For the fi rst term, we have

 δ δ δ ε θ
ε δ θ
ε ε

µ µ

µ

µ

1 2 1 2

2 1

2 1

x i

i

i

A A

A A

A A

=

=

=

( )Γ

Γ

Γ

The second term is

 

δ δ δ ε θ
ε δ θ
ε ε

µ µ

µ

µ

2 1 2 1

1 2

1 2

x i

i

i

A A

A A

A A

=

=

=

( )Γ

Γ

Γ

Therefore

 [ , ]δ δ δ δ δ δ ε ε ε εµ µ µ µ µ
1 2 1 2 2 1 2 1 1 2x x x i iA A A A= − = −Γ Γ

It’s a simple exercise to rewrite one term like the other, which gives

 [ , ]δ δ ε εµ µ
1 2 1 22x i A A= − Γ

This is just a number, so we can write [ , ]δ δ µ µ
1 2 x a= − .

Carrying on, we defi ne a momentum term:

 π θ θα
µ µ µ

α= − ∂x i A AΓ  (9.10)

where α = 0 1, , ..., p for a general p-brane. In the case of the point particle, which 
is a 0-brane, only α = 0 applies and so

 π θ θµ µ µ
0 = −x i A AΓ  (9.11)

In fact, we have already seen that Eq. (9.11) is invariant under a SUSY 
transformation. 
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Space-Time Supersymmetry and Strings
We have introduced some of the basic ideas of space-time supersymmetry by 
considering the point particle (known as the D0-brane). Now we move on to consider 
the supersymmetric generalization of bosonic string theory. Recall that the action 
for a bosonic string can be written as

 S d h h X XB = − ∂ ∂∫
1

2
2

π
σ αβ

α
µ

β µ  (9.12)

Following the procedure used to write down the D0-brane action which was invariant 
under SUSY transformations, we introduce a new fi eld:

 Π Θ Γ Θα
µ

α
µ µ

α= ∂ − ∂X i A A  (9.13)

This approach is different than the RNS formalism discussed in Chap. 7. The Πα
µ 

are actual fermion fi elds on space-time. In Chap. 7, we had spinors but the ψ µ  were 
space-time vectors and not genuine fermion fi elds. 

It turns out that in string theory the number of supersymmetries is restricted to 
N ≤ 2. If we consider the most general case allowed which has N = 2, then there 
are two fermionic coordinates:

 Θ Θ1 2a aand  (9.14)

To get the full action we need to extend Eq. (9.12) in two steps. The fi rst step is to 
simply add a corresponding piece containing the fermion fi elds defi ned in Eq. (9.13). 
It has basically the same form:

 S d h h1
21

2
= − ∫π σ αβ

α
µ

βµΠ Π  (9.15)

Now things get hairy for technical reasons. In supersymmetry, there is a local 
fermionic symmetry called kappa symmetry. To avoid getting weighted down with 
mathematical details in a “Demystifi ed series” book, we are going to leave it to you 
to read about kappa symmetry in more advanced treatments. Here we simply take it 
as a given that we need to preserve this kappa symmetry and that we can only do so 
by adding the following unwieldy piece to the action:

 S d i X2
2 1 1 2 21

= −⎡⎣ ∂ ∂ − ∂ +∫π σ ε εαβ
α

µ
µ β µ β

αβ( )Θ Γ Θ Θ Γ Θ ΘΘ Γ Θ Θ Γ Θ1 1 2 2µ
α µ β∂ ∂ ⎤⎦   

  (9.16)
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Light-Cone Gauge
As we found in Chap. 7, the quantum theory will force us to take the number of 
space-time dimensions to be D = 10. Since a general Dirac spinor has components 
1 2 2, ..., /D , in 10 space-time dimensions a general Dirac spinor is going to have 32 
components. I am sure the reader found dealing with 4 components in quantum fi eld 
theory enough of a headache, what are we going to do with 32 components? Luckily 
certain restrictions will cut this down dramatically. The fi rst thing to note is that the 
complete action, which is given by adding up Eqs. (9.12), (9.15), and (9.16)

 S S S= +1 2

which is invariant under SUSY transformations and the mysterious local Kappa 
symmetry only under very specifi c conditions that restrict the number of space-time 
dimensions and the type of spinors in the theory. These conditions are given as 
follows:

• D = 3 with Majorana fermions.

• D = 4 with Majorana or Weyl fermions.

• D = 6 with Weyl fermions.

• D = 10 with Majorana-Weyl fermions.

It is clear that we don’t live in fl atland, so that rules out the fi rst case. The quantum 
theory forces us to take D = 10, which is no surprise since this was explored in 
Chap. 7. Therefore the spinors that are relevant to our discussion are Majorana-
Weyl fermions. This helps us in two ways:

• The Majorana condition makes the spinor components real.

• The Weyl condition eliminates half of the components. This leaves us with 
a 16-component spinor.

Once again the Kappa symmetry reveals its hand by cutting the number of components 
by half. So we are left with an eight component Majorana-Weyl spinor.

With this in mind we will proceed with some aspects of light-cone quantization. 
This procedure imposes several conditions. First let’s begin by defi ning light-cone 
components of the Dirac matrices. This is done by singling out the µ = 9 component 
to make the following defi nitions:

 Γ
Γ Γ+ =
+0 9

2
 (9.17)

 Γ
Γ Γ− =
−0 9

2
 (9.18)
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The 10-dimensional Gamma matrices obey the anticommutation relation:

 { , }Γ Γµ ν µνη= −2  (9.19)

As a result, notice that

 

( ) ( )( )

(

Γ Γ Γ Γ Γ

Γ Γ Γ Γ Γ Γ Γ

+ = + +

= + + +

2 0 9 0 9

0 0 9 0 0 9 9

1

2
1

2
ΓΓ

Γ Γ Γ Γ Γ Γ

Γ Γ Γ Γ

9

0 0 9 9 0 9

0 0 9 9

1

2
1

2
1

2

)

( { , })

( )

= + +

= +

= (( ) ( )− − = − =η η00 99 1

2
1 1 0

We summarize this result by saying that Γ Γ+ −and  are nilpotent, that is,

 ( ) ( )Γ Γ+ −= =2 2 0  (9.20)

To maintain kappa symmetry, a further constraint must be imposed. This is the fact 
that Γ+  annihilates the ΘA :

 Γ Θ Γ Θ+ += =1 2 0  (9.21)

As is usual in the light-cone gauge, we have

 X x p+ + += + τ  (9.22)

It is customary to denote the spinors which contain the remaining eight nonzero 
components by S Aa. These objects are defi ned in the following way:

 

p S

p S

a

a

+

+

→

→

Θ

Θ

1 1

2 2

 (9.23)
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Note that there are dotted spinors in the case of type IIA string theory (see Quantum 
Field Theory Demystifi ed if you are not familiar with this). 

Making the defi nition

 P h h± = ±αβ αβ αβε1

2
( / )   (9.24)

we can write down the equations of motion that are derived by adding Eqs. (9.12), 
(9.15), and (9.16). These are the equations of motion for the GS superstring, which 
are in general quite complicated:

 Π Π Π Πα β αβ
γδ

γ δ⋅ = ⋅
1

2
h h  (9.25)

 Γ Π Θ⋅ ∂ =−α
αβ

βP 1 0  (9.26)

 Γ Π Θ⋅ ∂ =+α
αβ

βP 2 0  (9.27)

Remarkably, in the light-cone gauge, the equations of motion turn out to be very 
simple. This is because we can simplify the expression:

 Π Θ Γ Θα
µ

α
µ µ

α= ∂ − ∂X i A A

getting the term Θ Γ ΘA Aµ
α∂  to drop out in most cases. Using Eq. (9.21), this is 

immediate when taking µ = +:

 Θ Γ ΘA A+∂ =α 0

There is only one nonvanishing term, when µ = −. For the cases where µ = i , we 
can use the following trick. Consider the fact that

 
Γ Γ Γ Γ Γ Γ

Γ Γ Γ Γ Γ Γ Γ Γ

+ − = + −

= + − −

1

2
1

2

0 9 0 9

0 0 9 0 0 9 9

( )( )

( 99

00 99 9 0 0 9

9 0 0 9

1

2

1
1

2

)

( )

( )

= − + + −

= + −

η η Γ Γ Γ Γ

Γ Γ Γ Γ
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Doing a similar calculation for Γ Γ− + one can show that the following provides a 
representation of the identity operator:

 1
2

=
++ − − +Γ Γ Γ Γ

 (9.28)

So, for µ = i, one simply inserts Eq. (9.28) into the term Θ Γ ΘA Aµ
α∂  to make it 

vanish from the equations of motion. This is only possible in the light-cone gauge, 
and it can be shown that the equations of motion are

 ∂
∂

−
∂
∂

⎛
⎝⎜

⎞
⎠⎟ =

2

2

2

2
0

σ τ
X i  (9.29)

 
∂
∂
+
∂
∂

⎛
⎝⎜

⎞
⎠⎟ =

τ σ
S a1 0  (9.30)

 
∂
∂
−
∂
∂

⎛
⎝⎜

⎞
⎠⎟ =

τ σ
S a2 0  (9.31)

Canonical Quantization
Now, we will take a quick look at canonical quantization and the ground state of the 
type I superstring. First, note that the usual bosonic commutation relations are 
imposed for the bosonic fi elds or space-time coordinates X µ σ τ( , ) and their 
associated modes. Now we need to extend the theory by defi ning quantization 
conditions for the fermionic fi elds. Since the supercoordinates are fermionic, we 
apply equal-time anticommutation relations. These are given by

 { ( , ), ( , )} ( )S SAa Bb ab ABσ τ σ τ πδ δ δ σ σ′ = − ′  (9.32)

Open strings in type I theory satisfy boundary conditions given by

 S S

S S

a a

a a

1
0

2
0

1 2

σ σ

σ π σ π

= =

= =

=

=

 
(9.33)
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This helps us determine the modal expansions of the fermion fi elds, which are given by

 S S e

S S e

a
n
a in

n

a
n
a in

n

1

2

1

2
1

2

=

=

− −

=−∞

∞

− +

∑ ( )

( )

τ σ

τ σ

==−∞

∞

∑

 
(9.34)

The modes satisfy

 S Sm
a

n
b

m n
ab, ,{ } = +δ δ0  (9.35)

When writing down the spectrum, it is interesting to note that the normal-ordering 
constant we’ve had to deal with in previous theories is no longer an issue. This is 
because it cancels out with the bosonic and fermionic modes (this is supersymmetry 
after all). The mass-shell condition for the type I open string is

 ′ = +( )− −
=

∞

∑α α αm nS Sn
i

n
i

n
a

n
a

n

2

1

 (9.36)

The ground state consists of a bosonic state and its fermionic partner. Both are 
massless (there is no tachyon state). The bosonic state is a massless vector which is 
denoted by i

 
where i = 1 8, ,… . The massless fermion partner is given by a

where …a = 1 8, ,  as well. We can transform between the two states as follows:

 
a S i

i S a

i
ab

b

i
ab

b

=

=

Γ

Γ
0

0

 (9.37)

The states are normalized according to

 
i j

a b h

ij

ab

=

= +

δ
1

2
( )Γ

 (9.38)

Summary
In this chapter, we have extended our discussion of supersymmetric string theory. 
First, we introduced the notion of superfi elds and showed how to write an action 
where supersymmetry was manifest. We then discussed some of the central 
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components of space-time supersymmetry, fi rst in the context of the point particle 
which gives the D0-brane action and then in the case of string theory. The discussion 
presented in this chapter is far from complete. The reader who is interested in 
studying superstring theory on a serious level is urged to consult the references.

            Quiz
 1. Verify that θ θ εA A A→ +  by calculating δθ ε θA AQ= [ , ] .

 2. Calculate { , }D QA B
.

 3. Find Γ Γ Γ0 0
µ
† .

 4. Compute { , }.Γ Γ11
0



CHAPTER 10

A Summary of 
Superstring Theory

Our fi nal foray into the details of superstring theory will be a cursory look at 
heterotic superstrings in the next chapter. The heterotic string theories are a kind of 
hybrid between the 26-dimensional bosonic theory and the 10-dimensional 
superstring theory with fermions. This probably sounds intractable, but we will see 
in a minute how this can possibly work out into a consistent theoretical framework. 
Before we dive into heterotic strings, let’s take a step back and qualitatively 
summarize the overall picture of string theory.

A Summary of Superstring Theory
Before jumping into some mathematical details about heterotic string theory, let’s 
review the basic structure of string theory. This is a good idea because there are 
several string theories with different states of the string. Five of the theories are 

Copyright © 2009 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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superstring theories, and we also saw that it is possible to construct a theory 
consisting only of bosons. Actually you can list four different bosonic string 
theories, which we will do here. 

BOSONIC STRING THEORY
We began our look at strings by considering bosonic string theory. This is an 
unrealistic theory because we know that the real world contains particles that are 
fermions. Nonetheless bosonic string theory provides an easier framework that can 
be used to illustrate the key ideas and techniques of string theory. 

Some key aspects of bosonic string theory you should remember are

• It introduces the concept of extra spatial dimensions. In order to avoid 
ghosts (states with negative norm) we were forced to accept that there are 
26 space-time dimensions.

• The ground state (the lowest energy or lowest excitation mode of the string) 
has a negative mass-squared ( / ).m2 1= − ′α  This state is called a tachyon. 
The presence of a tachyon in the theory indicates that the ground state 
or vacuum is unstable. Note that in relativity, tachyons are particles that 
travel faster than the speed of light. Therefore the tachyon is a physically 
unrealistic particle. There is no known way to remove tachyon states from 
bosonic string theory.

• Bosonic string theory always includes gravity. This is indicated by the 
presence of a spin-2 state called the graviton. This is a hint that string theories 
provide a framework for the unifi cation of all known physical interactions.

• Bosonic string theories also include a state called the dilaton. This is a 
scalar fi eld which is denoted byϕ . It is related to the coupling constant g 
via g = exp ϕ , where ϕ  is the vacuum expectation value of the dilaton 
fi eld. If you need to brush up on your quantum fi eld theory, note that the 
coupling constant determines the strength of an interaction. The dilaton 
fi eld is dynamical (it is space-time dependent), so in string theory we obtain 
a dramatic result that the string coupling constant can be dynamical. The 
dilaton is also known as the gravitational scalar fi eld and may play a role 
in the recently discovered nonzero cosmological constant.

Strings can be either open or closed and can be oriented or unoriented. If a string 
is oriented, this means that directions along the string are unequivalent. So you can 
tell which way you’re going along the string. By choosing open or closed strings 
and oriented or unoriented strings, we can actually construct four different bosonic 
string theories.



If a bosonic string theory has open strings, it automatically includes closed 
strings as well. This is due to the dynamical behavior of strings. If a string is open, 
it is possible for the endpoints to join together, forming a closed string state. Let’s 
summarize the four possibilities for bosonic string theory.

If a bosonic string theory only includes closed strings that are oriented, then the 
spectrum of the theory includes the following states:

• Tachyon

• Massless antisymmetric tensor

• Dilaton

• Graviton

Now, suppose that we only have closed strings, but the theory describes unoriented 
strings instead. That is, we can’t tell which direction we are moving along the string. 
In this case, the theory no longer includes a massless vector boson. We can summarize 
the key aspects of the spectrum as

• Tachyon

• Dilaton

• Massless state which is the graviton

Now let’s turn to bosonic string theories that include open as well as closed 
strings.  Again, we can choose strings that are oriented and strings that are unoriented. 
The oriented theory is characterized by

• Tachyon

• Dilaton

• Graviton

• A massless antisymmetric tensor

The closed string and open string tachyons are distinct. Choosing oriented open 
+ closed bosonic string theory gives us

• Tachyon

• Dilaton

• Massless graviton

There is also a massless vector state for open strings, which can be oriented or 
unoriented. So we see that all bosonic string theories are plagued by the presence of 
a tachyon state. They have an unstable vacuum and do not include fermions. As a 
result, we are forced to consider superstring theories.
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Superstring theory is a generalization of bosonic string theory which extends the theory 
to include fermions. There are fi ve different superstring theories. We use the word super 
in our description of them because all fi ve theories are based on a theory of physics 
known as supersymmetry. This theory is characterized by the idea that each fermion has 
a bosonic partner and vice versa. Some examples are given in Table 10.1.

The existence of supersymmetry is a good indirect test of string theory. For string 
theory to be true, supersymmetry must exist in nature. At the time of writing no 
super-partner has ever been discovered, so supersymmetry either doesn’t exist in 
nature or it has been broken. One way it could be broken is that the superpartners 
are extremely massive. This means it would take high energies to see them. The 
Large Hadron Collider (LHC) set to begin operation in 2008 may be powerful 
enough to detect supersymmetry.

So, superstring theory includes supersymmetry, which allows us to introduce 
fermions into the theory. It also includes ghost states, which are removed in an 
analogous, manner to what we saw in bosonic string theory. When the ghost states 
are removed we arrive at the second general characteristic of superstring theory:

• There are 10 space-time dimensions.

There are two ways to introduce supersymmetry into string theory, reviewed in 
Chaps. 7 and 9, respectively:

• The RNS formalism adds supersymmetry to the worldsheet.

• The GS formalism adds supersymmetry to space-time.

We can still characterize superstring theories by noting whether or not they 
include open and/or closed strings, and whether those strings are oriented or 
unoriented. In addition, a superstring theory can be characterized by the number of 
supercharges used in the theory. This is done by saying that a theory with N = m 

Superstring Theory

Table 10.1 A listing of some particles and their postulated super-partners.

Partner Superpartner

Photon (spin 1) Photino (spin 1/2)

Graviton (spin 2) Gravitino (spin 3/2)

Quark (spin 1/2) Squark (spin 0)

Electron (spin 1/2) Selectron (spin 0)

Gluon (spin 0) Gluino (spin 1/2)
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supercharges has N = m supersymmetry. Finally, we can characterize each 
superstring theory by the gauge symmetry that it admits. All superstring theories 
eliminate the tachyon from the spectrum and include a graviton, so superstring 
theory naturally describes gravity.

TYPE I SUPERSTRING THEORY
Type I superstring theory can be characterized as follows:

• It includes both open and closed strings.

• It describes unoriented strings.

• It has N = 1 supersymmetry.

• It has SO(32) gauge symmetry.

In addition, type I superstrings can have charges attached to their ends called 
Chan-Paton factors, a topic we will explore in a later chapter.

TYPE II A 
Type II A theory describes closed, oriented superstrings. We can summarize the 
theory as follows:

• It only includes closed strings.

• It has N = 2 supersymmetry.

• It has a U(1) gauge symmetry.

Since this theory only has a U(1) gauge symmetry, it is not large enough to 
describe all the particle states seen in nature. It can describe gravity and 
electromagnetism, but cannot describe the weak or strong forces. The theory has 
two supercharges, and Θ Θ1 2and have opposite chirality. Practically speaking, this 
means that each fermion has a partner state with opposite chirality. 

TYPE II B
Type II B theory also describes closed strings, also oriented. Although it includes 
fermionic states because it is a superstring theory, it has no gauge symmetry and so 
can only describe gravity. Like type II A theory, it has N = 2 supersymmetry, but 
Θ Θ1 2and have the same chirality. This remedies the diffi culty in type II A theory 
in that the fermions described in type II B theory do not have partners of opposite 
chirality. But the lack of a gauge group indicates the theory cannot be the whole 
story as far as a unifi ed theory of physics.
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HETEROTIC SO(32)
There are two heterotic theories that both describe closed, oriented strings. A heterotic 
theory is a kind of fusion between bosonic and superstring theory. The left movers 
and right movers are treated using different theories. We describe modes moving in 
one direction using bosonic string theory, and describe the modes moving in the 
opposite direction using N = 1 supersymmetry. The extra 16 dimensions of the bosonic 
theory are regarded as abstract, mathematical entities rather than actual space-time 
coordinates (like superspace). There are two heterotic theories, both with large gauge 
groups that can describe all particles in nature. The fi rst has SO(32). 

HETEROTIC E8 × E8

Similar to Heterotic SO(32) theory but has the gauge group E E8 8× .

Dualities
The state of string theory at this point appears to be a random mess, but the discovery 
of a set of dualities which relate the fi ve theories amongst themselves saved the day. 
The fact is that the fi ve theories are all related to one another, and we can transform 
between them. This has led physicists to believe that there exists an underlying 
theory. The fi ve superstring theories arise as different aspects or solutions of the 
underlying theory. While some aspects of the potentially underlying theory have 
been characterized, the actual underlying theory remains unknown. It goes by the 
name of M-theory.

T-DUALITY
We have already studied one duality in detail in Chap. 8, T-duality. To review T-
duality relates a theory with a small compact dimension to a theory where that same 
dimension is large. T-duality relates string theories as follows:

• It relates type II A and type II B theory.

• It relates the two heterotic theories.

T-duality can be summarized by saying that if we transform from a small to a 
large distance scale we exchange momentum and winding modes (and vice versa). 
T-duality relates type II A and type II B theory in that if we move from small to  
large distance in type II A theory, the theory is transformed into type II B theory and 
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vice versa (or switch momentum and winding modes). The same holds for the two 
heterotic theories. This means that type II A and type II B are really the same theory, 
and the two heterotic theories are really the same theory.

S-DUALITY
The second big duality that has been discovered is S-duality. Remember that a coupling 
constant determines the strength of an interaction, and in string theory the dilaton 
fi eld determines the value of the coupling constant. String theories have different 
coupling constants that are weak or strong. By letting ϕ ϕ→ −  where ϕ  is the dilaton 
fi eld, since the coupling constant is defi ned from g = exp ϕ , we see that we can 
transform a large coupling constant into a small one and vice versa, changing a strong 
interaction into a weak one and vice versa. This is what S-duality is about. S-duality 
brings type I superstring theory into the fold. That is, under S-duality

• Type I superstring theory is related to heterotic SO(32) superstring theory.

• Type II B is S-dual to itself.

So, a strong interaction in Type I superstring theory is the same as a weak 
interaction in heterotic SO(32) theory, and vice versa. In other words, the two 
theories are really the same theory at different coupling strengths.

         Quiz
 1. T-duality relates string theories in which way?

 (a) It relates strong interactions in type II A theory to weak interactions in 
type II B theory.

 (b) It relates strong interactions in heterotic theory to weak interactions in 
type I theory.

 (c) It relates large and small distance scales and momentum and winding 
modes in two different theories.

 (d) It only relates large and small distance scales.

 2. The most signifi cant difference between superstring theory and bosonic 
theory is

 (a) Bosonic theory has 16 extra space-time dimensions.

 (b) Superstring theory eliminates tachyon states and incorporates fermions 
into the theory.
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 (c) Bosonic string theory eliminates tachyons.

 (d) Superstring theory has an unstable vacuum.

 3. The difference between types II A and type II B theory is

 (a) Type II A theory is nonchiral and type II B theory is chiral.

 (b) Type II A theory only describes open strings.

 (c) Type II B theory only describes bosons.

 (d) Type II B theory is nonchiral and type II A theory is chiral. 

 4. The dilaton fi eld

 (a) Is only found in bosonic string theory.

 (b) Is related to the coupling constant, but only in heterotic theory.

 (c) Is related to the coupling constant in all string theories.

 (d) Is known to be a mathematical trick not found in nature.

 5. Physicists were excited by dualities because

 (a) They add fermions to the theory.

 (b) They show that the fi ve superstring theories are related, so are different 
aspects of an underlying, unknown theory.

 (c) They show that bosonic and superstring theories are related, so are 
different aspects of an underlying, unknown theory.

 6. The number of space-time dimensions in string theory

 (a) Is fi xed at 26 by an ad hoc assumption.

 (b) Is fi xed at 26 for superstring theories and 10 for bosonic string theory, 
because this eliminates ghost states from the theory.

 (c) Is fi xed at 10 for superstring theories and 26 for bosonic string theory, 
because this eliminates tachyon states from the theory.

 (d) Is fi xed at 10 for superstring theories and 26 for bosonic string theory, 
because this eliminates ghost states from the theory.



CHAPTER 11

Type II String 
Theories

In this chapter, we will review the states of type II A and type II B superstrings. We 
will do so using the worldsheet supersymmetry plus Gliozzi-Scherk-Olive (GSO) 
projection approach because it’s a bit simpler, so we will review some of the 
discussion of Chap. 7. In the next chapter, we will briefl y discuss heterotic 
superstrings.

The R and NS Sectors
To introduce worldsheet supersymmetry we began with the action [Eq. (7.2)]:

 S
T

d X X i= − ∂ ∂ − ∂∫2
2σ ψ ρ ψα

µ α
µ

µ α
α µ( )

Copyright © 2009 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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In the light-cone gauge, the fermionic part of the action assumes the form

 S iT dF = ⋅∂ + ⋅∂− + − + − +∫ 2σ ψ ψ ψ ψ( )
 

In type II string theories, we only consider closed strings. Therefore, we apply 
periodic boundary conditions. There are actually two possibilities. Periodic boundary 
conditions are known as Ramond (R) boundary conditions:

 ψ σ ψ σ πµ µ
A A( ) ( )= + 2  (11.1)

Antiperiodic boundary conditions are called Neveu-Schwarz (NS):

 ψ σ ψ σ πµ µ
A A( ) ( )= − + 2    (11.2)

Remember that a closed string has independent left-moving and right-moving 
modes. We can apply either periodic or antiperiodic boundary conditions to the left- 
and right-moving modes independently, which will give us four possibilities, as 
discussed in Chap. 7. 

THE R SECTOR
Now we review the R sector in more detail. The left ψ µ

+  and right ψ µ
−  modal 

expansions are

 

ψ σ τ

ψ σ τ

µ µ τ σ

µ µ

+
∈

− +( )

−
∈

( ) =

( ) =

∑

∑

,

,

d e

d

n
n Z

in

n
n Z

2

ee in− −( )2 τ σ   
(11.3)

Quantization proceeds using the anticommutation relations:

 d d d d
m n m n m n
µ ν µ ν µνη δ, , ,{ } = { } = + 0

  (11.4)

These relations are augmented, of course, by the usual bosonic commutation 
relations. We also have the number operators:

 N nd d N nd dd
n n

n

d
n n

n

( ) ( )= ⋅ = ⋅−
=

∞

−
=

∞

∑ ∑
1 1

and  (11.5)



The total number operator for the left-moving and right-moving sectors is given by 
adding the bosonic number operator

 N
n n

n

α α α= ⋅−
=

∞

∑
1

to Eq. (11.5). We obtain

 

N N N

N N N
L

d

R
d

= +

= +

α

α

( )

( )   (11.6)

Taking n > 0,we can defi ne creation and annihilation operators as follows:

• d
n−

µ  acts as a creation operator by adding n to the eigenvalue of N d( ).

• d
n
µ  acts as an annihilation operator by subtracting n from the eigenvalue 

of N d( ).

The states are constructed in the usual way by using a fock space (or number 
states). Letting n > 0 , the ground state is annihilated by the bosonic and fermionic 
annihilation operators:

 α µ µ
n R n R

d0 0 0= =   (11.7)

for the right-moving modes, and similarly for the left movers. We can construct an 
arbitrary state by tracing on the ground state multiple times:

 
n d

R n
p

m
ji

q

Ri

i

j

j= − −∏∏ ( ) ( )α 0   (11.8)

For states in the right-moving sector, the expression for the left-moving sector is 
similar. 

Now consider the special case of d0
µ . The anticommutation relation is

 
d d0 0

µ ν µνη,{ } =  (11.9)

This is almost the same as the commutation relation obeyed by the Gamma matrices 
(i.e., the “Dirac algebra”):

 { , }Γ Γµ ν µνη= −2   (11.10)
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This suggests that these operators are related to the Gamma matrices using

 Γ µ µ= i d2 0  (11.11)

This tells us that the states in the R sector are space-time spinors. We can write the 
ground state as

 0
R

a

where a is a spinor index that ranges over a = 1, …, 32. As we have seen earlier, this 
is because a general Dirac spinor has 2D/2 components where D is the number of 
space-time dimensions. Since D = 10 for superstring theories, there are 32 
components. The state 0

R

a
 is a 32-component Majorana spinor. 

Now recall that the chirality operator Γ Γ Γ Γ11 0 1 9= … acts on states 0
R

±

 
of 

defi nite chirality according to

 

Γ

Γ

11

11

0 0

0 0

R R

R R

+ +

− −

= +

= −  
 (11.12)

States with defi nite chirality are Majorana-Weyl spinors, which have half the 
number of components, (16 in this case). We can write the state 0

R

a
 as a direct sum 

of positive and negative chirality states:

 0 0 0
R

a

R R
= ⊕

+ −
   (11.13)

This gives the state [Eq. (11.13)] 16 ⊕ 16 = 32 components. The states 0
R

±
 are

space-time fermions. However, they have the bizarre property that 0
R

+
 is bosonic 

and 0
R

−
 is fermionic on the worldsheet. 

THE NS SECTOR
In the NS sector, we have the modal expansions of the left- and right-moving 
fermionic states given by

 

ψ σ τ

ψ σ τ

µ µ τ σ

µ µ

+
∈ +

− +( )

−

( ) =

( ) =

∑,

,

/

b e

b

r
r Z

ir

r

1 2

2

rr Z

ire
∈ +

− −( )∑
1 2

2

/

τ σ  
 (11.14)
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The expansion coeffi cients satisfy the anticommutation relations:

 b b b b
r s r s r s
µ ν µ ν µνη δ, , ,{ } = { } = + 0

   (11.15)

The number operators are

 N rb b N rb bb
r r

r

b
r r

r

( )

/

( )

/

= ⋅ = ⋅−
=

∞

−
=

∞

∑ ∑
1 2 1 2

  (11.16)

This allows us to defi ne number operators for right- and left-moving modes:

 

N N N

N N N
R

b

L
b

= +

= +

α

α

( )

( )  
(11.17)

Letting n > 0 :

•  bm
-r

 acts as a creation operator, increasing the eigenvalue of N(b) by r. 

• bm
r
 acts as an annihilation operator, decreasing the eigenvalue of N(b) by r.

Again we construct the states using a fock space. The ground state is annihilated 
in the following way:

 α µ µ
n NS r NS

b0 0 0= =   (11.18)

An arbitrary right-moving state is given by acting multiple times on the ground 
state as

 n b
NS n

p
r

ji

q

NSi

i

j

j= − −∏∏ ( ) ( )α 0   (11.19)

The NS sector results in states that are space-time bosons.
To get the most general space-time state, one forms tensor products of the left-

moving sector and the right-moving sector. Each sector can be an NS state or an R 
state independently of the other, so we have four possible states overall. If both 
sectors are NS

 
states, then the state of the string is 

 ψ = ⊗NS NS
left right
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This state is a space-time boson. If both states are R  states

 ψ = ⊗R R
left right

This is also a space-time boson (this is a state called a bispinor, since it is constructed 
out of two spinors). 

As described qualitatively in Chap. 7, we can also have left-moving and right- 
moving modes from different sectors. Of course, there are two possibilities:

 ψ ψ= ⊗ = ⊗R NS NS R
left right right

or
left

These states are space-time fermions.

The Spin Field
In supersymmetry, one can move between fermionic and bosonic states using a 
supercharge operator. We now construct such an operator that allows us to move 
from an NS (bosonic) to an R (fermionic) state. 

Let φ k  where k = 1 5,...,  be complex bosonic fi elds. We can defi ne the spinors ψ µ
 

in terms of these bosonic fi elds using a process called bosonization. Remember from 
Chap.7 that the ψ µ  are space-time vectors, so have 10 components (each of which is 
a spinor). These are defi ned in terms of the bosonic fi elds as follows:

 

e i

e i

e i

e

i

i

i

i

±

±

±

±

= ±

= ±

= ±

φ

φ

φ

φ

ψ ψ

ψ ψ

ψ ψ

1

2

3

1 2

3 4

5 6

44

5

7 8

9 10

= ±

= ±±

ψ ψ

ψ ψφ

i

e ii

We can construct a spin fi eld operator by taking the product of these quantities, that is

 S e ea i i= ± ±φ φ1 2 5 2/ /

  (11.20)
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This is a 32-component SO(10) spinor. It acts like a supercharge, taking the bosonic 
state 0

NS
 to the fermionic state 0

R

a
:

 0 0
R

a a

NS
S=   (11.21)

Now we have everything in place to describe the differences between type II A and 
type II B string theories.

Type II A String Theory 
The key aspect of type II A string theory that should stick in your mind which 
distinguishes it from type II B string theory is opposite chirality. That is, for a state

 R R1 2⊗

R1  and R2  
will have opposite chirality. 

First, let’s note that the total fock space is constructed as follows. First, we form 
direct sums:

 NS R NS R⊕( ) ⊕( )
left right

Then we form the tensor product:

 NS R NS R⊕( ) ⊗ ⊕( )
left right

The physical state space is constructed using GSO projection, which will cure 
the odd problem of the states differing as being fermions or bosons in space-time 
and on the worldsheet described earlier, as well as allowing us to remove tachyons 
from the theory. First, we construct an operator which will count up the number of 
d

n−
µ  excitations in a state:

 F d dn n
n

= ⋅−
=

∞

∑
1

  (11.22)

It is easy to see that ( )−1 F  tells us if a state has an even or odd number of d n−
µ  

excitations. Now suppose that ψ  is a state with an even number of d0
µ 
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oscillators and φ  is a state with an odd number of d0
µ  oscillators. It so 

happens that

 Γ Γ11 11ψ ψ φ φ= = −    (11.23)

Now defi ne

 Γ Γ= −11 1( )F
   (11.24)

Then if

 Γ ψ ψ= +

the state ψ  has an even number of d
n−

µ  excitations. On the other hand if

 Γ ψ ψ= −  

the state ψ  has an odd number of d
n−

µ  excitations. 
Type II A theory is characterized by states with opposite chiralities. So, the GSO 

projection of the right movers has the opposite sign of the GSO projection of the 
left movers. This means that the chirality of space-time fermions will turn out to be 
opposite. Specifi cally note that

 Γ Γ11 110 0
R R( ) = −( )

left right
   (11.25)

in type II A theory. Now consider the spin fi eld Sa. Since Γ11 0 0
R R

= ±  and 
0 0

R

a

NS
S=  where 0

NS
 is bosonic, we can consider the action of Γ11  on the 

spin fi eld itself. In type II A theory

 Γ Γ11 11S S S Sa a a a= = −and   (11.26)

The action of GSO projection is to take the 32-component spinor into a 
16-component Majorana-Weyl spinor. 
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Type II B Theory
We have seen that type II A theory is characterized by opposite chirality. Type II B 
theory is characterized by the same chirality. That is, for a state

 R R1 2⊗

R1  and R2  
will have the same chirality. The left and right movers will have 

the same GSO projection:

 Γ Γ11 110 0
R R( ) = ( )

left right
   (11.27)

The spinor fi eld satisfi es

 Γ Γ11 11S S S Sa a a a= =and    (11.28)

The states

 0 0 0 01 2 1 2R NS NS R
b b

left right r
⊗ ⊗− −/ /

µ µand
left iight

also have the same chirality. 

The Massless Spectrum of Different Sectors
We conclude the chapter by noting the spectrum of states seen in the different 
sectors, and describing how these are different in type II A and type II B string 
theories. For those with a background in differential geometry or general relativity, 
forms are odd in type II A theory and even in type II B theory.

THE |NS〉 ⊕  |NS〉 SECTOR
Type II A and type II B string theories have the same NS-NS sector. The spectrum 
of states in the NS-NS sector is

• A scalar fi eld ϕ  which is the dilaton described in the last chapter (1 state)

• An antisymmetric gauge fi eld with 28 states

• A symmetric traceless rank two tensor Gµν  (this is the graviton) with 35 states
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THE |NS〉 ⊕  |R〉, |R〉 ⊕ |NS〉 SECTOR
The states in these sectors are superpartners of the dilaton and the graviton. Type II 
A and type II B theories have the same states, but the states NS R R NS⊗ ⊗,  
each have the same chirality in type II B theory and have the opposite chirality in 
type II A theory. The states are

• The dilatino, the spin-1/2 superpartner of the dilaton, with 28 states.

• The gravitino, the spin-3/2 fermion which is the superpartner of the 
graviton. For type II A theory the 2 gravitinos have opposite chirality.

THE |R〉 ⊕  |R〉 SECTOR
These are boson states formed from the tensor product of two Majorana-Weyl 
spinors. In type II A theory the left and right states have opposite chirality, 
while in type II B theory they have the same chirality. For type II A theory, there 
are two states:

• A vector gauge fi eld

• A “3-form” gauge fi eld (see Relativity Demystifi ed for a description of 
forms)

In type II B theory the states are

• A scalar fi eld

• A two-form gauge fi eld

• A four-form gauge fi eld

Summary
In this chapter, we have summarized the states of type II A and type II B string 
theories, which are based on the R and NS sectors first introduced in Chap. 7. 
Type II A theory consists of states that are tensor products of states with 
opposite chiralities, while type II B theory consists of states that are tensor 
products of states with the same chiralities. This results in different “particle” 
states. These theories predict the existence of superpartners that have not yet 
been observed in nature. 
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Quiz
 1. Type II string theories:

 (a) Include only open strings

 (b) Include open and closed strings

 (c) Include only closed strings

 (d) Include open strings only if they are oriented

 2. States in the NS sector can be described in space-time as:

 (a) NS sector states must be combined with R sector states to give 
space-time fermions, otherwise they do not describe states in 
space-time. 

 (b) Space-time bosons.

 (c) Space-time fermions. 

 (d) Space-time bosons for oriented strings, space-time fermions for 
unoriented strings.

 3. The spin fi eld operator S e ea i i= ± ±φ φ1 52 2/ /
 is what type of spinor? How 

many components does it have in general?

 (a) SO(10), 16 components

 (b) SO(10), 32 components

 (c) SO(32), 10 components

 (d) SO(10), 10 components

 4. The superpartner states in the NS R R NS⊗ ⊗,  sectors include:

 (a) The dilatino and the gravitino. For type II A theory the 2 gravitinos 
have opposite chirality.

 (b) The dilatino and the gravitino. For type II A theory the 2 gravitinos 
have the same chirality.

 (c) The dilatino and the gravitino. For type II A theory the 2 dilatinos 
have opposite chirality.

 (d) The dilatino and the gravitino. For type II A theory the 2 dilatinos 
have the same chirality.
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 5. In type II B theory the GSO projection can be written as:

 (a) Γ Γ11 110 0R R( ) = −( )
left right

 (b) Γ Γ11 110 0 0R R( ) = ( ) =
left right

 (c) Γ Γ11 110 0R R( ) = ( )
left right

 (d) Γ ΓΓ
11 110 011

R

i

Re( ) = ( )−
left right



CHAPTER 12

Heterotic
String Theory

In Chap. 10, we learned that there are two string theories that treat the left- and 
right-moving sectors differently. These theories are called heterotic string theories 
for this reason. The modes are treated as follows:

• The left-moving sector is bosonic.

• The right-moving sector is supersymmetric.

This idea sounds nonsensical because we have learned that bosonic string theory 
lives in a world of 26 space-time dimensions, while superstring theories live in a 
world of 10 space-time dimensions. The reason for doing such a radical thing is the 
following. First, we already know that bosonic string theories by themselves are 
fl awed because they do not incorporate fermions. On the other hand, type II 
superstrings do not incorporate nonabelian gauge symmetries. This means that the 
standard model cannot be described by superstring theory as formulated with those 
theories alone. So type II theories seem to leave us with a description of the universe 

Copyright © 2009 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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that lacks electroweak theory and QCD, an unacceptable situation since the real 
world does include these interactions. One way around this problem is to add 
charges to the ends of the strings, something we will discuss in Chap. 15, but in this 
chapter we consider a more successful and elegant approach.

The idea of heterotic strings was originally proposed by Gross, Harvey, Martinec, 
and Rohm. They proposed a theory of closed superstrings with decoupled left- and 
right-moving modes that preserves the best aspects of both theories, producing a 
theory which is large enough and sophisticated enough to incorporate the features 
we know the theory must have to include the standard model. By making the right-
moving modes super-symmetric

• We are able to include fermions in the theory.

• We keep tachyons out of the theory, so it has a stable vacuum.

We incorporate nonabelian gauge theory in the left-moving modes. This is done 
by adding Majorana-Weyl fermions λ A

 to the left-moving sector, without adding 
supersymmetry.  We must eliminate the extra 16 dimensions from the 26-dimension 
contribution of the bosonic theory. This can be understood by discarding the view 
that the extra 16 dimensions are space-time dimensions. First, note that

• The right-moving modes are supersymmetric. So, there are 10 bosonic 
fi elds X µ

 among the right-moving modes. 

• We keep 10 bosonic fi elds X µ  from the left-moving modes to match up 
with the right-moving modes.

Since 26 = 10 + 16, we need to cancel the remaining 16 contributions from the 
unwanted X µ  present in the left-moving sector. Since the λ A

 are spinors, we need 
32 of them to enable the desired calculation, hence we take A = 1 32,..., . The 
symmetry group for the λ A  is SO(32) when all of the λ A  have the same boundary 
condition. This is the SO(32) heterotic theory.

The Action for SO(32) Theory
We can write down the action as follows:

• It will include a bosonic contribution for left- and right-moving modes for 
10 dimensional space-time.

• It will include fermionic spinors to add supersymmetry to the 10 
dimensional space-time. These will only be rightmovers.

• It will include a contribution from the left-moving λ A  spinors.



The fi rst two pieces are familiar, we use then Majorana-Weyl fermions ψ µ  
which are space-time vectors like those used for worldsheet supersymmetry. So, 
we have

 S d X X ia
a

1
21

4
2= −

′
∂ ∂ − ∂∫ − + −πα

σ ψ ψµ
µ

µ
µ( )   (12.1)

The right-moving sector must incorporate supersymmetry. This is done in the 
same way as in Chap. 7, we incorporate the following transformations:

 δ εψ δψ εµ µ µ µX i X= = ∂− − −and

We will add a second action to incorporate the λ A . This piece is similar to the 
fermionic piece used in S1 but now we are considering left-moving modes and we 
have to include all 32 λ A . So the action is

 S d i A A

A
2

2

1

321

4
2= −

′
− ∂

⎛
⎝⎜

⎞
⎠⎟∫ ∑ + − +

=πα
σ λ λ   (12.2)

The total action for the heterotic string is therefore:

 

S S S

d X X i ia
a A
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1 2
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2 2
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A 1
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(12.3)

CHAPTER 12 Heterotic String Theory 209

Quantization of SO(32) Theory
In heterotic string theory, we describe two sectors similar to the R and NS sectors 
we are already familiar with. These are

• The periodic sector P

• The antiperiodic sector A

We already know how to handle the bosonic modes and right-moving fermionic 
modes included in the theory. To develop the full theory we need to quantize the λ A . 
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There are no surprises here; the techniques are the same as used before. First, we 
write down a modal expansion, which in the P sector is

 λ σ λ σA
n
A in

n

e( ) = −

=−∞

∞

∑ 2    (12.4)

These are fermions, so the coeffi cients of the expansion λn
A  are required to satisfy 

the anticommutation relation:

 λ λ δ δm
A

n
B AB

m n, ,{ } = + 0
  (12.5)

The A sector, like the NS sector we are already familiar with, is similar except we 
sum over half-integer quantities. We have

 λ σ λ σA
r
A ir

r z

e( )
/

= −

∈ +

∞

∑ 2

1 2

   (12.6)

With the similar anticommutation relation

 λ λ δ δr
A

s
B AB

r s, ,{ } = + 0
  (12.7)

The next step is to construct number operators for the left- and right-moving 
modes, and then to use these to write down the mass spectrum. We can do this using 
the NS and R sectors along with GSO projection and the super-Virasoro operators 
as described in Chap. 7. Or, as we learned in Chap. 9, there are actually two ways 
to describe supersymmetric modes:

• Using worldsheet supersymmetry together with GSO projection—as 
applied to NS and R sectors

• Using space-time supersymmetry (the GS formalism)

In the fi rst case, for the NS sector we have a number operator for the right-
moving modes:

 N rb bR n n
n

r r
r

= ⋅ + ⋅−
=

∞

−
=

∞

∑ ∑α α
1 1 2/

   (12.8)

Let ψ
 
be a physical state. The mass-shell condition for the NS sector is

 L0

1

2
0−⎛

⎝⎜
⎞
⎠⎟ =ψ   (12.9)
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In addition, we have the constraints

 G Lr mψ ψ= = 0    (12.10)

where r, M > 0. The operator L0
 is given by

 L
p

NR0

2

8

1

2
= + −    (12.11)

Using the Einstein relation p m2 2 0− = , we have

 p NR
2 4 8= −

 ⇒ ′ = −α m NR
2 4 8    (12.12)

Now let’s quickly review the R sector. Once again we have a mass-shell condition, 
which in this case is

 L0 0ψ =   (12.13)

This is supplemented by

 F Lm mψ ψ= = 0    (12.14)

for m ≥ 0. The number operator for the right-moving modes in the R sector is

 
N nd dR n n n n

n

= ⋅ + ⋅− −
=

∞

∑( )α α
1

  (12.15)

The operator L0
 is given by

 
L

p
NR0

2

8
= +    (12.16)

since the ordering constant is 0 for the R sector. Hence the mass-shell condition for 
the R sector gives

 ′ =α m NR
2 8    (12.17)
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In Chap. 9, we learned that there is a simpler, unifi ed description for superstrings 
using the GS formalism. Since we are dealing with different physics for the left- 
and right-moving modes, why not take this approach instead of carrying around the 
NS and R sectors. Using the GS formalism, the number operator for the right-
moving modes is given by

 
N nS SR n n n

a
n
a

n

= ⋅ +( )− −
=

∞

∑ α α
1

   (12.18)

In the GS formalism, the mass-shell condition gives us an expression for the 
mass that is similar to what we found for the R sector in the RNS formalism:

 ′ =α m NR
2 8  (12.19)

There will be two number operators for the left-moving modes. One for the P 
sector, and one for the A sector. Given what we learned in Chap. 11, these can be 
written down immediately for the case of the λ A :

 

N n

N

L
P

n n n
A

n
A

n

L
A

n n
n

= ⋅ +( )

= ⋅ +

− −
=

∞

−
=

∞

∑ α α λ λ

α α

1

1
∑∑ ∑ −

=

∞

r r
A

r
A

r

λ λ
1 2/

   

(12.20)

The left-moving modes must also satisfy the Virasoro constraints. In general, the 
mass-shell condition is

 
( )L a0 0− =ψ    (12.21)

There is no supersymmetry for the left-moving modes, so the condition [Eq. (12.21)] 
is only augmented by

 Lm ψ = 0  (12.22)

for m > 0. These constraints must be satisfi ed for the P and A sectors. So we 
introduce two normal ordering constants which we denote by a aP Aand . Then  
Eq. (12.21) becomes the two conditions:
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( )

( )

L a

L a

P

A

0

0

0

0

− =

− =

ψ

ψ

(P sector)

(A sector))    (12.23)

The L0
 are not identical in these two equations, since we have the two number 

operators [Eq. (12.20)]. So we have

 

L
p

N a

L
p

N a

L
P

P

L
A

A

0

2

0

2

8

8

= + −

= + −

(P sector)

(AA sector)    
(12.24)

The task now is to determine the values of a aP Aand . It turns out that this can be 
done readily given what we know about superstrings. That is

• A periodic boson makes a contribution of 1/24 to the normal ordering 
constant.

• A periodic fermion makes a contribution of −1/24 to the normal ordering 
constant.

The normal ordering constant is actually formed by the sum

 a = bosonic contribution + fermionic contriibution

Going to the light-cone gauge, there are eight transverse bosonic components. 
We also have the 32 fermions λ A. So, the total normal ordering constant for the 
P sector is

 
aP = ⎛

⎝⎜
⎞
⎠⎟ + −⎛

⎝⎜
⎞
⎠⎟ = −8

1

24
32

1

24
1    (12.25)

Now for the A sector, we need to know that

• An antiperiodic fermion contributes 1/48 to the normal ordering constant. 

In the A sector, the bosonic contribution is the same. Hence

 
aP = ⎛

⎝⎜
⎞
⎠⎟ + ⎛

⎝⎜
⎞
⎠⎟ =8

1

24
32

1

48
1  (12.26)
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You should be aware that the bosonic and fermionic contributions to the normal 
ordering constants are due to the zero point energy of the bosonic and fermionic 
modes. Note also that these zero energy contributions are fi nite.

Using Eqs. (12.24), (12.25), and (12.26) and including the relation obtained for 
the right-moving modes, we obtain the mass formulas for the P and A sectors:

 

′ = = +( )
′ = = −

α

α

m N N

m N N

R L
P

R L
A

2

2

8 8 1

8 8

(P sector)

11( ) (A sector)
 
 

(12.27)

We have made the obvious leap of faith that the mass must be the same for a 
given string state whether looking at the right-moving or left-moving modes. We 
immediately notice that

• A state with zero mass has NR = 0.

Put another way, a state with zero mass in heterotic string theory has the right-
moving modes in the ground state. In addition, if m = 0, then

• For a state in the P sector, NL
P = −1.

• For a state in the A sector, NL
A = +1.

Now, in ordinary quantum mechanics, you learned that a number operator 
satisfi es N ≥ 0. So, we must reject the fi rst possibility which translates into

• The P sector contains no massless states.

The Spectrum
To describe the spectrum of the theory, we follow the usual procedure of constructing 
states which are tensor products of left-moving and right-moving modes:

 
ψ = ⊗left right    (12.28)

For the left movers, we just learned that the P sector contributes nothing to a 
massless state. Since NL

A = +1, this means that the state from the A sector is in the 
fi rst excited state. There are two possibilities. It can be a bosonic state:

 left = −α 1 0j
L   (12.29)
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Or it can be a fermionic state, since we need to consider the λ A  as well:

 left = − −λ λ1 2 1 2 0/ /
A B

L
   (12.30)

For right movers, with NR = 0 , we can have a bosonic state:

 right = i
R

  (12.31)

Or a fermionic state

 a
R

   (12.32)

Now let’s consider the case when the left movers are in the bosonic state 
[Eq. (12.29)]. The bosonic sector is given by the tensor product with the 
bosonic states of the right movers [Eq. (12.31)]:

 
ψ α= ⊗−1 0j

L R
i    (12.33)

The states [Eq. (12.33)] can be summarized as follows. The “particle” spectrum 
includes:

• A scalar, the dilaton

• An antisymmetric tensor state given by α α− −⊗ − ⊗1 10 0j

L R

i

L R
i j

• The graviton which is the state α α− −⊗ + ⊗1 10 0j

L R

i

L R
i j

Now let’s take a look at the fermionic sector for the massless states. We can get 
this by pairing up the bosonic states from the left movers with the fermionic states 
from the right movers. This is going to give us the superpartners of Eq. (12.23). The 
states can be written as

 
ψ α= ⊗−1 0j

L R
a    (12.34)

The “particle” states here include

• The superpartner of the dilaton, the dilatino

• The superpartner of the graviton, the gravitino

As you might guess from looking at the particle spectrum, supersymmetry is a 
vital component of string theory. If particle accelerators never fi nd evidence of 
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superpartners, the status of string theory will be put in doubt. On the other hand, the 
discovery of superpartners does not prove string theory, but would be a good 
indication that the theory is on the right track.

Compactifi cation and Quantized Momentum
In this section, for readers who are curious, we briefl y describe a different approach 
developed by Gross, Harvey, Matinec, and Rohm where compactifi cation is used to 
construct the heterotic string. We follow the description laid out in Kaku (please see 
References). In the light-cone gauge, the action for the heterotic string can be 
written as

 
S d X X X X iS Sa

i a
i a

I a
I

I

= −
′

∂ ∂ + ∂ ∂ + ∂ + ∂∫ −1

4
2

πα
σ τ σΓ ( )

==
∑⎛

⎝⎜
⎞
⎠⎟i

16

 

The approach used here is to compactify the extra bosonic dimensions to generate 
the group E E8 8⊗ . The extra 16 dimensions of the bosonic sector are compactifi ed 
on a lattice. As described in the previous section, the right-moving sector is 
supersymmetric. The spinors Sa ( )τ σ−

 
have 8 components (so a = 1 8,..., ). 

Remember we are in the light-cone gauge, so only consider transverse components. 
The index i is used for the space-time components, in the light-cone gauge i = 1 8,...,
as well. The remaining index I is used to run over the lattice used to compactify 
the extra 16 dimensions. So it runs over 1 to 16. 

The physics is much the same as the previous analysis. Bosonic states Xi ( )τ σ+
and Xi ( )τ σ− are included in the left- and right-moving sectors, respectively. The 
right-moving sector also includes the fermionic component Sa ( )τ σ− , while the 
states X I ( )τ σ+ are in the left-moving sector.

The action is invariant under the supersymmetry transformation:

 

δ ε
δ µ τ σ

µ

X p S

S i p X

i i a

a

=
= ∂ − ∂

+ −

+ −
−

( )

( ) ( )

/

/

1 2

1 2

Γ
Γ Γ εε

The following constraints are used to keep each component properly locked 
away as a left mover or a right mover:

 

( )∂ − ∂ =

=+
τ σ X

S

I

a

0

0Γ  
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The usual formulas for the modal expansions apply

X
x p i

n
e

X

i
i i

n
i

n

inτ σ τ σ
α τ σ−( ) = + −( ) +

=

∞
− −( )∑

2 2 2 1

2

ii
i i

n
i

n

inx p i

n
eτ σ τ σ

α τ σ+( ) = + +( ) +
=

∞
− +( )∑

2 2 2 1

2

XX
x p i

n
eI

I I
n
I

n

inτ σ τ σ
α τ σ+( ) = + +( ) +

=

∞
− +(∑

2 2 2 1

2 ))

− −( )

=−∞

∞

−( ) = ∑S S ea
n
a in

n

τ σ τ σ2

Using this approach, we write down two number operators. The number operator 
for the right-moving sector is

 
N nS Sn

i
n
i

n n
n

= +⎛
⎝⎜

⎞
⎠⎟− −

−

=

∞

∑ α α 1

21

Γ

For the left-moving sector we have

 
N n

i
n
i

n
I

n
I

n

= +( )− −
=

∞

∑ α α α α
1

The mass can be written in terms of the canonical momentum pI as

 

1

4
1

1

2
2 2

1

16

m N N pI

I

= + − + ( )
=

∑
 

Now, let’s see how compactifi cation affects these results. It is easiest to 
understand by stepping back to compactifi cation of one dimension as we did in 
Chap. 8. Kaku gives a nice example which we restate here. Take a single-dimensional 
theory and let

 x x R= + 2π  

Consider a fi eld defi ned on this space φ( )x . Since the coordinate is periodic, the 
fi eld must be also

 φ φ π( ) ( )x x R= + 2  
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Now, we know that we can expand φ( )x  in a Fourier series. That is, we can 
expand it in p where p is the conjugate momentum for the coordinate x. The 
expansion looks like

 
φ φ( )x en

n

ipx= ∑
 

Now, of course, the exponential function is 2π  periodic. Calculating φ πx R+( )2  

 
φ π φ φπ πx R e e en

n

ip x R
n

n

ipx ip R+( ) = =∑ ∑+( ) ( )2 2 2

The presence of the extra term eip R2π( )  means that we must take

 
p

n

R
=

So, we relearn an important rule about compactifi cation:

• Compactifi cation quantizes momentum.

For the heterotic string, we compactify each of the extra bosonic coordinates:

 X X LI I I= + 2π  

Here, LI  represents the lattice spacing. If we span the lattice with basis vectors ei
I

then

 
L n e RI

i i
I

i
i

=
=
∑1

2 1

16

Here, the Ri  are the radii of the compactifi ed dimensions. Now, we use the conjugate 
momenta pI  from the bosonic states, which are compactifi ed as a generator of 
translations. We take 2pI

 to be the generator of translations along the lattice in the 
Ith direction. The periodicity condition X X LI I I= + 2π  means that

 ei p LI I2 1π ⋅ =  
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This can only be true if the canonical momentum has an expansion of the form

 
p a

e

R
I

i
i
I

ii

=
=
∑2

1

16

where the ai are integer coeffi cients of the expansion. This has the same form 
obtained in the one-dimensional case, where we found p = n/R. So, to compactify 
over a lattice you defi ne basis vectors, then sum up over all directions dividing by 
the radius in each direction. 

Summary
In this chapter, we gave an overview of the heterotic string. Using the usual 
approach to supersymmetry, we wrote down the action, applied anticommutation 
relations, defined number operators, and applied the mass-shell condition. As 
a result, we found a theory which contains the dilaton and graviton and their 
superpartners among the massless states. Further analysis would show that 
the theory is large enough to include the standard model. We can summarize 
this as follows:

• The heterotic theory has left-moving and right-moving currents on the 
string.

• The right-moving currents carry supersymmetry charges and give fermionic 
states.

• The left-moving currents carry the conserved charges of Yang-Mills 
theories. 

After describing the basic machinery of the heterotic string, we illustrated how 
compactifi cation can be used to get rid of the unwanted 16 extra dimensions that are 
added to the theory by including the left-moving bosonic theory.

         Quiz
 1. How many states are there for the left-moving sector of the form α −1 0j ?

 2. How many states in the left-moving states have the form α −1 0I ?
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 3. Consider the constraint equations in the compactifi cation section. Why is 
( )∂ − ∂ =τ σ X I 0  the only constraint on the bosonic modes for the extra 16 
dimensions?

 4. Given the action

  S d X X X X iS Sa
i a

i a
I a

I
I

= −
′

∂ ∂ + ∂ ∂ + ∂ + ∂∫ −1

4
2

πα
σ τ σΓ ( )

==
∑⎛

⎝⎜
⎞
⎠⎟i

16

, what are the 

commutation relations satisfi ed by the bosonic modes?

 5. Consider the description of the heterotic string in the compactifi cation 
section and calculate 1 011+( ) =Γ Sa . 



CHAPTER 13

D-Branes

One of the most interesting developments in string theory over the last decade or so 
was the realization that the theory could incorporate higher-dimensional extended 
objects—that is, objects beyond one-dimensional strings. When these objects are 
associated with Dirichlet boundary conditions we call these extended objects 
Dp-branes, where p indicates the number of spatial dimensions it has. The word 
“brane” comes about by analogy. In our everyday world of three spatial dimensions, 
we are familiar with the notion of a membrane, which is a two-dimensional surface 
that can separate two regions. The idea of a Dp-brane is to generalize this concept 
to consider an extended object of p dimensions. 

If the number of spatial dimensions of the D-brane is equal to the total number 
of spatial dimensions in the entire space-time, we say that we have a space-fi lling 
brane. There are three pertinent examples we can think of immediately to illustrate 
space-fi lling branes:

• If space-time is just the three spatial dimensions and one time dimension 
we are used to from everyday life and special/general relativity, then a 
D3-brane would be a space-fi lling brane.

Copyright © 2009 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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• In bosonic string theory, there are 26 space-time dimensions. So, a 
D25-brane would be a space-filling brane.

• In superstring theory, there are 10 space-time dimensions. So, a space-
fi lling brane has 9 spatial dimensions and is called a D9-brane.

Chances are if you’re reading this book you’ve completed calculus so you’re 
familiar with the notion of a hyperplane. When fi rst getting started, the best way to 
think about a D-brane is

• It is a hyperplane-like object.

• The endpoints of open strings are attached to it.

This is illustrated in Fig. 13.1. Note, however, that not all D-branes are hyperplanes, 
but this is a good way to visualize them.

The spatial dimensions not associated with the brane are called the bulk. The 
volume of the brane is called the world-volume.  Note that time fl ows everywhere, 
in the bulk and on the D-brane as well. 

A model of our universe has been proposed where we live in a D3-brane and the 
bulk consists of the remaining extra spatial dimensions. Perhaps the most fundamental 
physical insight that has resulted from the study of D-branes is that

• The interactions of the standard model (electromagnetism, strong, and 
weak forces) are constrained to the brane. 

• Gravity can escape from the brane. Gravitational forces are distributed in 
the brane and also throughout the higher dimensions. Hence, the strength of 
gravity is diluted by the higher dimensions. This explains why its strength 
is so different from that of the other known forces.

For simplicity, we will discuss branes within the context of bosonic string theory.

D-brane 

Open string with ends attached to 
D-brane 

Space-time outside D-brane is the “bulk’’

Figure 13.1 A D-brane is a hyperplane-like object to which open strings attach.
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The Space-Time Arena
The easiest way to describe a Dp-brane mathematically is to use the light-cone 
gauge. To specify the D-brane, we need to choose which coordinates will 
satisfy Neumann boundary conditions and which coordinates satisfy Dirichlet 
boundary conditions. To use the light-cone gauge, we also need to define light-
cone coordinates that will satisfy Neumann boundary conditions, these will 
include:

• Time

• One spatial coordinate, which we choose to be X1( , )σ τ

For a Dp-brane, we let i p= 2, ,…  in the light-cone gauge. Then as usual we 
defi ne:

 X
X X± =

±
( , )σ τ

0 1

2
   (13.1)

Neumann boundary conditions can be written as

 ∂ ==σ
µ

σ πX 0 0,
   (13.2)

So, the coordinates chosen to satisfy Neumann boundary conditions are

 X X X i pi+ − =( , ) ( , ) ( , ) , ,σ τ σ τ σ τ 2 …   (13.3)

Let us suppose that the D-brane is located at x a . That is, letting a p d= +1, ,… :

 x xa a=   (13.4)

The remaining spatial coordinates will satisfy Dirichlet boundary conditions. We 
use a p d= +1, ,…  to denote these coordinates. In bosonic string theory we take 
d = 25 while in superstring theory d = 9. So the Dirichlet boundary conditions will 
be applied to

 X a p da ( , ) , ,σ τ = +1 …   (13.5)
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Given x xa a= , the Dirichlet boundary condition can be written as

 X X x a p da a a( , ) ( , ) , ,0 1τ π τ= = = + …    (13.6)

Notice that we can also specify the Dirichlet boundary conditions by defi ning:

 δ π τ τX X X a p da a a= − = +( , ) ( , ) , ,0 1 …  (13.7)

Then we could write the Dirichlet boundary condition as

 δ X a = 0   (13.8)

The coordinates are divided into two groups and given labels depending on boundary 
conditions that are applied:

• The coordinates with indices µ = ± =, , ...,i p2  are called NN coordinates 
since they satisfy Neumann boundary conditions at both ends. 

• The coordinates with indices a p d= +1, ...,  are called DD coordinates 
since they satisfy Dirichlet boundary conditions at both ends. 

A simplifi ed illustration of the boundary conditions is shown in Fig. 13.2. To 
summarize, a Dp-brane is located at x a and has extension along the xi directions.

D-brane 

Directions normal to D-brane-Dirichlet
boundary conditions

Directions along D-brane-Neumann boundary conditions 

Figure 13.2 A visualization of the boundary conditions and an open string.
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Once again we apply the quantization procedure, considering the bosonic string 
theory case. The fi rst step is to write down the modal expansions. These will be 
different depending on which coordinates we look at because now we have NN 
coordinates and DD coordinates. The fi rst step is to write out the modal 
expansions.

Now let’s recall the open string modal expansion, which can be written in the 
following way:

 X x p i
n

e nn

n

inµ µ µ
µ

τσ τ α τ α
α

σ( , ) cos(= + ′ + ′
≠

−∑0 0
0

2 2 ))  (13.9)

Taking the derivative of this expression with respect to σ  we fi nd

 
∂ = − ′

≠

−∑σ
µ µ τσ τ α α σX i e nn

n

in( , ) sin( )2
0  

Clearly this expression satisfi es

 
∂ ==σ

µ
σ πX 0 0,

which are the Neumann boundary conditions. So, we take the modal expansion for 
the X i  to be

 X x p i
n

e ni i i n
i

n

in( , ) cos(σ τ α τ α
α

στ= + ′ + ′
≠

−∑0 0
0

2 2 ))   (13.10)

For the DD coordinates, we really have two requirements that have to be satisfi ed. 
We need the summation over the modes ∑

≠n 0
in the expansion to vanish at σ π= 0, .

This indicates that we should use sin( )nσ instead of cos( )nσ  which is in the 
usual open string expansion. However, we also need X X xa a a( , ) ( , )0 τ π τ= = . 
Looking at the usual modal expansion, this tells us that we must take

 

x x

p

a a

a

0

0 0

→

→  

Quantization
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So, the presence of a momentum term in the modal expansion would mean that 
Dirichlet boundary conditions could not be satisfi ed. Putting everything together, 
the modal expansion for the DD coordinates is

 X x i
n

e na a n
i

n

in( , ) sin( )σ τ α
α

στ= + ′
≠

−∑2
0

  (13.11)

Quantization will involve imposing the usual commutators:

 
X X ia b ab

m
a

n
b

( , ), ( , ) ( )

,

σ τ σ τ δ δ σ σ

α α

′⎡⎣ ⎤⎦ = − ′

⎡⎣ ⎤⎦ == +m ab
m nδ δ ,0

  (13.12)

Now, for a moment we consider the general light-cone expansion of the string (so 
for a moment we let i = 2 25, ..., ). We gauge fi x by choosingαn

+ = 0  for all n ≠ 0
and so

 X x p+ + += + ′( , )σ τ α τ0 2

The momentum p+
 is defi ned as

 p+ +=
′

1

2 0α
α  (13.13)

The light-cone gauge condition is

 p+ =
′

1

2α
  (13.14)

Now, X −
 is an NN coordinate, so

 X x p i
n

e nn

n

in− − −
−

≠

−= + ′ + ′∑( , ) cos( )σ τ α τ α
α

στ2 2
0

  (13.15)

It follows that

 
X X p en

n

in− − − −

≠

− ±( )± ′ = ′ + ′∑2 2
0

α α α τ σ
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and

 
( ) ( )X X p ei i i

n
i

n

in± ′ = ′ + ′
⎡
⎣
⎢

⎤
⎦
⎥

≠

− ±∑2

0

2

2 2α α α τ σ

Using the light-cone gauge condition, 2 1′ = +α p pi / . By writing αn
− in terms of αn

i  

and looking at the n = 0  mode, we can use the expression for ( )X Xi i± ′ 2 to write
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p p p p p p

i i

n
i

n
i
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n
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≠

= +
′

−
⎛
⎝⎜

⎞
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α α   (13.16)

where we have introduced the normal-ordering constant a = 1 for bosonic string 
theory into the equations. To transition to the case of a D-brane, all we have to do is 
have the modes split up into NN and DD coordinates. This means that
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This allows us to write down the mass:

 m p p p p pi i
n

i
n
i

n
a

n
a

n

2 2

0

2
1

= − = − =
′
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We can defi ne creation and annihilation operators:

 

a
m

a
m

a
m

a
m

a

i
m
i i

m
i

a
m
a i

m
a

m

= =

= =

−

−

1 1

1 1

α α

α α

†

†

ii
n
i

m
a

n
a

mna a a, ,† †⎡⎣ ⎤⎦ = ⎡⎣ ⎤⎦ = δ  



 228 String Theory Demystifi ed

with all other commutators zero. So the mass can be written in the following way:
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Due to the presence of the D-brane, the interpretation of the mass has changed. 
Lorentz invariance is restricted to the brane world-volume, so we view this mass as 
a mass living in p +1 dimensions.

Now, recall that for a p d= +1, ,… , the Dirichlet boundary conditions forced us 
to take the pa

 to vanish. This means that states will be of the form

 p pi+ ,   (13.18)

where i p= 2, ...,  are the NN coordinates. Since the states only depend on pi, this 
means two things:

• Any fi elds we defi ne are functions of the momenta pi. String states only 
have momentum in the NN directions along the brane.

• By writing the Fourier transform, we would see they are functions of the 
coordinates xi.

So what does this mean? The fi elds are defi ned on coordinates that defi ne the volume 
of the Dp-brane—they have no coordinate dependence on the a p d= +1, ,…  and 
so are zero in the region outside the D-brane. We summarize this by saying that the 
fi elds live on the Dp-brane.

There are three states we can readily identify. The ground state p pi+ ,  is 

immediately annihilated by the terms an
i  and am

a  that is, a p p a p pn
i i

n
a i+ += =( ), , 0  

so the mass is
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Not to be unexpected for the bosonic theory—the ground state is a tachyon. There 
are two massless states. This is because we have a choice of how we can create the 
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fi rst excited state. We can act on the ground state with ai
1
†  or with aa

1
†. Let’s consider 

using ai†

 fi rst. The state is
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In this case
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Now, a p pm
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Hence, the state a p pi i
1
† ,+  has mass m2 0= . These states are characterized by an 

index i which denotes coordinates on the brane. Since i p= 2, ..., , there are a total 
of ( )p + −1 2 states. Recall that a photon in a (3 + 1) dimensional theory has two 
transverse states. So these states are photon states. 
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The next possibility for a massless state is to act on the ground state with aa
1

†. 
You can show that the state a p pa i

1
† ,+  also has m2 0= . These states are called 

Nambu-Goldstone bosons. They represent scalar bosons which have arisen from a 
symmetry breaking of translation invariance in space-time. Excitations of the 
Nambu-Goldstone bosons a p pa i

1
† ,+ , correspond to displacements of the 

D-brane in space-time along the coordinate xa. 
The lesson of the string states we have found in the presence of a D-brane is that 

gauge fi elds live on the brane.
It turns out that gravity is different. It is not restricted to the brane and can 

propagate in the bulk.

D-Branes in Superstring Theory
Thinking about superstring theory for a moment on a qualitative level, different 
types of branes live in different superstring theories. In type IIA theory, only branes 
with even spatial dimensions are possible. Since d = 9  in superstring theory, this 
means that type IIA superstring theory incorporates branes with the following 
spatial dimensions:

 p = 0 2 4 6 8, , , ,

We met the D0-brane when discussing the supersymmetric point particle in Chap. 9. 
Now consider type IIB string theory. The dimension of p must be odd, so the theory 
can contain branes with spatial dimensions:

 p = −1 1 3 5 7 9, , , , ,

The case of p = −1 might stand out as a little odd. This object is called an instanton. 
It is an object that is forever fi xed in time and space-time does not fl ow for an 
instanton (thus the name). When p = 9  we have a space-fi lling brane in superstring 
theory. Note that space-fi lling branes are possible in type IIB string theory but not 
in type IIA string theory.

Multiple D-Branes
Having a confi guration of multiple D-branes allows for something new—an open 
string can begin on one brane and end on a different brane. This leads to some 
interesting results and changes in the mass spectrum. In general we could consider 
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a set of D-branes with spatial dimensions p q r, , ,...  in various orientations. However, 
here we will stick to the simplest case, which is to consider two Dp-branes that are 
parallel but located at different coordinates x xa a

1 2and . We will describe this case in 
a moment and see how the energy from stretching a string between the branes 
changes the mass spectrum. However, before doing that we take a brief aside to 
introduce Chan-Paton factors.

Chan-Paton factors were introduced into string theory because Yang-Mills 
theories are necessary to describe the particle interactions of the standard model of 
particle physics. Before D-branes were known about, the technique used was to 
attach non-abelian degrees of freedom to the endpoints of open strings. These 
degrees of freedom were denoted quark and antiquark, respectively. These names 
came about by historical accident, string theory was originally proposed as a 
description of the strong interaction, but it was later displaced from that role by 
quantum chromodynamics(QCD). 

There are i N= 1,...,  possible states of a string endpoint. Since an open string 
has two endpoints, it has two Chan-Paton indices ij. An open string state can be 
written as:

 
p a p ij ij

a

i j

N

; ;
,

=
=

∑ λ
1

The λij
a

 
are matrices that are called Chan-Paton factors. It turns out that amplitudes 

obtained when including Chan-Paton factors are invariant under U (N) trans-
formations, which can be transformed into a local U (N) gauge symmetry in space-
time. This is exactly what is required for Yang-Mills theories, so it provides a basis 
for including the standard model in string theory.

After D-branes were discovered, the Chan-Paton indices were reinterpreted. 
Now we suppose that there are multiple D-branes with integer labels, and string 
endpoints can be located at D-brane i and j for example. It turns out that multiple 
D-branes are what give rise to the standard model of particle physics in string 
theory. In particular, coincident D-branes give rise to massless gauge fi elds in the 
following way:

• If there are N coincident Dp-branes, there are N 2
 massless gauge fi elds.

• This characterizes a U N( ) Yang-Mills theory on the world-volume of the N 
coincident D-branes.

We have already seen that a single Dp-brane has a photon state. This is consistent 
with the outline we are developing here. We have a single D-brane, and the gauge 
group of the electromagnetic fi eld is U( )1 . If we add more D-branes in the right 
way, we can get the number of gauge fi elds that we want.
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As we will see in a moment, strings with endpoints on different branes acquire 
mass from stretching of the string. Separating coincident D-branes provides a 
mechanism through which the gauge fi elds can acquire mass. Now, the gauge group 
of the electroweak theory is SU 2( ). There are four gauge fi elds with quanta:

• The photon

• The W W+ −and

• The Z 0

When we have two coincident D-branes, we have N = 2  and so there are N 2 4=
gauge fi elds that transform under U 2( ) . This sounds like the right confi guration we 
need to describe electroweak theory (and you might imagine more branes to include 
the strong interaction). However, the W W+ −and and Z 0

 are massive. In quantum 
fi eld theory, we give them mass using the Higgs mechanism (see Chap. 9 and 10 in  
Quantum Field Theory Demystifi ed for a description). In string theory, we separate 
the two coincident D-branes which will give mass to two of the string states, the 
states with ends attached to each of the branes. This isn’t quite enough since we need 
one more massive state (and so will need a more complicated D-brane confi guration 
to actually do it right). But you see how the process works. 

Now let’s quantify the discussion. We consider bosonic string theory again with 
two D-branes that are parallel. The coordinate locations of the D-branes are given 
by x xa a

1 2and . There are four possibilities for open strings:

• A string has both endpoints attached to D-brane 1.

• A string has both endpoints attached to D-brane 2.

• A string starts on D-brane 1 and ends on D-brane 2.

• A string starts on D-brane 2 and ends on D-brane 1.

Denoting the Chan-Paton indices by ( , )i j
 
these possibilities correspond to:

• 1 1,( )
• (2, 2)

• (1, 2)

• (2, 1)

We already know how the (1, 1) and (2, 2) cases work out—these are open strings 
with their endpoints attached to the same D-brane. So the spectrum will be 
unchanged. It includes a tachyon, the photon, and the Nambu-Goldstone boson.

The cases (1, 2) and (2, 1) are string states stretched between the two branes. The 
descriptions of both cases are the same, so we focus on the (1, 2) case. First, we start 
with the boundary conditions, which are modifi ed so that the string starts on 
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D-brane 1 and ends on D-brane 2. Now, let’s see how we specify that the string 
starts on the fi rst D-brane. We quantify this by writing

 X xa a( , )0 1τ =    (13.19)

To specify that the string ends on the second D-brane, we have:

 X xa a( , )π τ = 2
   (13.20)

The oscillator expansions for the NN coordinates are unchanged. However, we need 
to incorporate the new boundary condition into the oscillator expansion for the DD 
coordinates. It is now written as:

 X x x x i
n

ea a a a n
i

n

in( , ) sσ τ
π

σ α
α τ= + −( ) + ′

≠

−∑1 2 1
0

1
2 iin( )nσ    (13.21)

It is easy to see that this gives the correct boundary conditions by setting σ π= 0, . 
You might compare this modal expansion to the modal expansion we got for the DD 
coordinates earlier, and to the modal expansion for an open string when no D-brane 
is present. When there is no D-brane, we have a momentum term p0

µτ  which is 
related to the zeroth mode α µ

0 . In the expansion given here, we have a momentum-like 
term given by 1 2 1/π σx xa a−( ) . We use this to describe the zeroth mode:

 α
π α0 2 1

1

2
a a ax x=

′
−( )    (13.22)

Notice that this mode does not multiply the timelike coordinate τ , rather it 
multiplies σ . This tells us that the mode is like a winding mode of the string, but it’s 
really from the stretching of the string from D-brane 1 to D-brane 2. We have to add 
a term to the expression for the mass to refl ect the presence of this additional energy. 
This is done using:
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Previously, with only a single D-brane the mass was given by
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With the extra term due to the stretching, the mass becomes
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The spectrum of states is modifi ed as follows. Now, the ground state has a mass 
given by

 
m

x xa a
2 2 1
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The interesting thing about this is that now there are three possibilities for the 
mass of the ground state which depend on the separation x xa a

2 1−  between the 
two D-branes:

• x xa a
2 1 2− < ′π α . In this case the mass is negative, so it describes a 

tachyon state.

• x xa a
2 1 2− = ′π α . This is a massless state.

• x xa a
2 1 2− > ′π α . In this case, the ground state is massive.

The spectrum also includes one vector and d p− −1  scalars with mass:
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Now let’s look at the description in terms of our earlier discussion by considering 
what happens if the two Dp-branes are coincident. The spectrum then includes:

• Four tachyons

• Four massless vectors

• Four sets of d p−  massless scalars

The states transform under 2 2×  matrices so the interactions are described by a 
U( )2

 
gauge theory, which sounds like what we want. Keep in mind that in our 

simple description given here we are using the bosonic string theory, which is 
unrealistic and plagued by the tachyon states. But even though it’s artifi cial it 
gives us an idea of what techniques can be used in the full superstring theory 
together with more sophisticated D-brane confi gurations to introduce standard 
model physics through non-abelian gauge fi elds living on the brane.
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Tachyons can actually describe D-brane decay, so let’s say a little bit about that 
since it shows how they can fi t into the overall theory. Consider the action for a 
scalar fi eld. Suppose that:

 
S d xD= ∂ ∂ +∫ ( )µ

µϕ ϕ λϕ 2

 

Quadratic terms in the potential identify mass terms. In the above, we have:

 λ = m2

Now, notice that the quadratic terms indicates a harmonic potential. We can use this 
to see why the presence of a tachyon indicates an instability of the vacuum. If 
m2 0> , then the potential V ( )ϕ

 
opens upward, with the minimum located at ϕ = 0. 

On the other hand, if m2 0< , the parabola opens downward. This means that the 
point ϕ = 0  is unstable. It’s like placing a ball at the top of a hill—a small perturbation 
will cause it to roll down the hill. These potentials are illustrated in Fig. 13.3.

We can expand the potential energy V ( )ϕ
 
about its critical points, which tell us 

where the maxima and minima are, to determine its behavior. To second order it’s 
going to assume the form

 V V( ) ( ) ( )* *ϕ ϕ λ ϕ ϕ= + − +2

Tachyons and D-Brane Decay

Figure 13.3 A comparison of the potential for m2 0>  and m2 0< .

m2 > 0 m2 > 0

f f

V(f ) V(f )
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where ϕ *

 is a critical point. The term λ ϕ ϕ( )*− 2  is quadratic so is a mass term. In 
the case of a D-brane, the leading term is given by the tension T. If a tachyon lives 
on the D-brane, then

 
V T( )ϕ

α
ϕ= −

′
+

1

2
2

So, if the potential strays away from ϕ = 0  this shows that the D-brane is losing 
energy. What happens is the D-brane decays away into closed string states. Generally 
speaking this is an artifact of bosonic string theory. In superstring theory there are 
stable D-brane states. However, in superstring theory you can have an anti-D-brane, 
which can be coincident with a D-brane. Like particles and antiparticles, they 
annihilate. This is because there are tachyon states stretched between them.

We consider a simple example. The tachyon potential for a D1-brane coincident 
with an anti-D1-brane is

 
V ( )ϕ λ ϕ ϕ= −( )

2
2

0
2 2

The fi rst step is to fi nd the critical points ′ =V ( )*ϕ 0. The fi rst derivative is

 
′ = −( )V ( )ϕ λ ϕ ϕ ϕ2 2

0
2

Setting this equal to 0 we fi nd

 ϕ ϕ* ,= ±0 0

The second derivative of the potential is

 
′′ = −( ) +V ( )ϕ λ ϕ ϕ λϕ2 42

0
2 2

 

Expanding the potential to second order about ϕ = a is

 
V V a V a a V a a= + ′ − + ′′ − +( ) ( )( ) ( )( )ϕ ϕ1
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2
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We consider the critical point ϕ * = 0  and fi nd

 
V = − +

λϕ
λϕ ϕ0

4

0
2 2

2

The mass term, which multiplies the quadratic term in the expansion is

 m2
0
2= −λϕ

This is a negative mass. So the critical point ϕ * = 0  corresponds to a tachyon.

Summary
Our description of the fascinating topic of D-branes in this chapter barely scratches 
the surface, but it should help prepare you for more detailed and/or more advanced 
treatments. We have followed the development by Zweibach in this chapter, so you 
can see his book for a more detailed analysis, in particular including his discussion 
of intersecting D6-branes and his accessible discussion of string charge and 
electromagnetic fi elds on D-branes (see References). Another good book to consult 
is the Szabo text listed in the References. For a really detailed (and advanced) 
description of D-branes, see Clifford V. Johnson’s “D-Brane Primer” Johnson’s. 

         Quiz
 1. Consider a potential given by V

A
( ) ( )φ φ= −

6
12 2 . What are the critical 

points?

 2. Consider V
A

( ) ( )φ φ= −
6

12 2 and expand to second order. Then identify the 

mass in the case of each critical point found in Prob. 1. Are any of these 

related to a tachyon?

 3. What are the critical points?

 4. Which critical point corresponds to a tachyon?

 5. If a string is stretched between two parallel D-branes, the ground state 
acquires mass. Why is that?
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CHAPTER 14

Black Holes

Black holes, the collapsed remnants of large stars or the massive central cores of 
many galaxies, represent an arena where a quantum theory of gravity becomes 
important. The possibility of the existence of black holes was recognized long ago by 
the great physicist and mathematician Laplace, but it wasn’t until the Schwarzschild 
solution in general relativity was put forward that these objects and their truly bizarre 
properties really came into their own. In recent decades the existence of black holes 
has been established without doubt from observational evidence.

Classically, black holes are remarkably simple objects that can be described by 
just three properties:

• Mass

• Charge

• Angular momentum

Then Stephen Hawking made a remarkable discovery. In a result that is now famous 
and is without a doubt known by most readers of this book, Hawking found out that 
black holes radiate. But this was only the beginning of the story. Black holes have 
remarkable characteristics that connect them—directly it turns out—to the science 
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of thermodynamics. Black holes have entropy and temperature, and the laws of 
thermodynamics have analogs that Hawking and his colleagues dubbed the laws of 
black hole mechanics. 

One of the most dramatic results of Hawking’s work was the implication that 
black holes are associated with information loss. Physically speaking, we can 
associate information with pure states in quantum mechanics. In ordinary quantum 
physics, it is not possible for a pure quantum state to evolve into a mixed state. This 
is related to the unitary nature of time evolution. What Hawking found was that 
pure quantum states evolved into mixed states. This is because the character of the 
radiation emitted by a black hole is thermal, it’s purely random—so a pure state that 
falls into the black hole is emitted as a mixed state. The implication is that perhaps 
a quantum theory of gravity would drastically alter quantum theory to allow for 
nonunitary evolution. This is bad because nonunitary transformations do not 
preserve probabilities. Either black holes destroy quantum mechanics or we have 
not included an aspect of the analysis that would maintain the missing information 
required to keep pure states evolving into pure states. 

However, it is important to realize that the analysis done by Hawking and others 
in this context was done using semiclassical methods. That is, a classical space-
time background with quantum fi elds was studied. Given this fact, the results can’t 
necessarily be trusted. 

String theory is a fully quantum theory so evolution is unitary. And it turns out 
that the application of string theory to black hole physics has produced one of the 
theories most dramatic results to date. Using string theory, it is possible to count 
the microscopic states of a black hole and compare this to the result obtained using the 
laws of black hole mechanics (which state that entropy is proportional to area). It is 
found that there is an exact agreement using the two methods. This is a spectacular 
result in favor of string theory. 

In this chapter we will quickly review the study of black holes in general relativity, 
state the laws of black hole mechanics, and then illustrate the entropy calculation 
using string theory.

Black Holes in General Relativity
The existence of black holes is predicted by Einstein’s theory of general relativity. 
Readers interested in a detailed description of black holes in this context may want 
to consult Relativity Demystifi ed. 

The Einstein fi eld equations are a set of differential equations which relate the 
curvature of space-time to the matter-energy content as follows:

 R g R g G Tµν µν µν µνπ− + =
1

2
8 4Λ

 
 (14.1)
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This equation contains the following elements:

• Rµν is the Ricci tensor. In a moment we will see that it is related to the 
curvature of space-time through the metric. It can be calculated from the 
Riemann curvature tensor using R Rαβ

µ
αµβ= .

• gµν is the metric tensor which describes the geometry of space-time.

• R is the Ricci scalar which is computed by contraction of the Ricci tensor.

• Λ is the cosmological constant.

• G4
is Newton’s gravitational constant. It has been noted that this is the 

gravitational constant in four space-time dimensions, because the form of 
the gravitational constant depends on the number of space-time dimensions.

• Tµν is the energy-momentum tensor.

The Riemann curvature tensor is

 Ra
bgd

a
bd

a
bd

e
bd

a
eg

e
bg

a
ed= ∂ − ∂ + −g Γ Γ Γ Γ Γ Γδ   (14.2)

where the Christoffel symbols are given in terms of the metric tensor as

 
Γαβγ α βγ β γα γ αβ= ∂ + ∂ − ∂

1

2
( )g g g  (14.3)

When studying the gravitational fi eld outside of the source, the energy-momentum 
tensor can be set to 0 and we study the vacuum fi eld equations. Tµν = 0 in a region 
of empty space-time where no matter or energy is present. The equations are

 R g Rαβ αβ− =
1

2
0   (14.4)

The vacuum fi eld equations describe the structure of space-time outside of a massive 
body. We use this form of the equations when studying a black hole, because all of 
the mass is concentrated at a single point at the center called the singularity. We can 
use the vacuum fi eld equations to characterize the structure of the space-time outside 
this region.

As an aside, note that perturbative string theory adds corrections to the vacuum 
fi eld equations. These corrections are of the order O R n[( ) ]′α . If we took the fi rst-
order correction from string theory, Eq. (14.4) would be modifi ed as follows:

 R g R O Rαβ αβ α− + ′( ) =
1

2
0   (14.5)
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We will ignore that here, we only mention it for information purposes. Continuing, 
the simplest case we can imagine is a black hole of mass m which is static (i.e., 
nonrotating) and spherically symmetric. The metric which describes the space-time 
outside a black hole of this form is called the Schwarzschild metric. The full solution 
to the vacuum fi eld equations used to arrive at this metric can be found in Chap. 10 
of Relativity Demystifi ed. We simply state the metric here:

 ds
mG

r
dt

mG

r
dr r2 4 2 4

1
2 21

2
1

2
= − +⎛

⎝⎜
⎞
⎠⎟ + +⎛

⎝⎜
⎞
⎠⎟ +

−

ddΩ2    (14.6)

where d d dΩ2 2 2 2= +θ θ φsin . The point r G mH = 2 4  is called the horizon. This 
appears to be a singular point because setting r G m= 2 4

causes the coeffi cient of dr
to blow up. It can be shown, however, that this is not a real singularity—this singular 
behavior is just an artifact of the coordinate system. To see this we can calculate a 
scalar which is an invariant, which gives us insight into the true nature of the 
horizon. One such invariant is

 R R
r

r
Hµνρσ

µνρσ =
12 2

6
  (14.7)

This expression tells us that there is a true singularity at r = 0. 
Although r G mH = 2 4 is not a singularity, it is still an important location. This 

location as we have already indicated denotes the event horizon. This is a boundary, 
in the case of (3 + 1)-dimensional space-time the surface of a sphere which divides 
space-time into the external world and a point of no return. Nothing that crosses the 
event horizon can ever return to the rest of the universe, not even light. This is why 
black holes are black, because light cannot escape from inside the horizon. 

It will be of interest to study black holes in arbitrary space-time dimension D. 
With that in mind, before moving on to our next black hole let’s defi ne some basic 
quantities. The fi rst item to note is the volume of a unit sphere in d dimensions. This 
is given by

 Ω
Γ

d

d

d
=

+⎛
⎝⎜

⎞
⎠⎟

+2

1
2

1 2π ( )/

  (14.8)

where Γ is the gamma factorial function. The radius of the horizon in D-dimensional 
space-time is given by

 r
mG

DH
D D

D

−

−

=
−

3

2

16

2

π
( )Ω

   (14.9)
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Here, GD is the gravitational constant in D dimensions. In string theory, it depends 
on the volume of compactifi ed space V, the string-coupling constant gs, and the 
string length scale l

s
 through a 10-dimensional gravitational constant:

 G
G

V
G gD s s= =10

10
6 2 88π   (14.10)

Now defi ne:

 h
r

r
H

D

= − ⎛
⎝⎜

⎞
⎠⎟

−

1
3

  (14.11)

Then, the Schwarzschild metric in D dimensions can be written as

 ds hdt h dr r d D
2 2 1 2 2

2
2= − + +−

−Ω   (14.12)

In the introduction we noted that classically a black hole can be completely 
characterized by its mass, charge, and angular momentum. So in relativity theory 
there aren’t too many choices available to study more complicated black holes. We 
could have

• A static black hole of mass m (Schwarzschild).

• A static black hole with mass m and electric charge Q.

• A rotating black hole.

A static black hole with electric charge is called a Reissner-Nordström black 
hole, while a rotating black hole is called a Kerr black hole. Real astrophysical 
black holes are best described by Kerr black holes. Stars rotate so when they 
collapse to a black hole conservation of angular momentum dictates that the 
black hole will rotate as well. If the rotation is very slow, the Schwarzschild 
solution would be a good approximation. Real astrophysical black holes, as far 
as we know, don’t carry electrical charge. However, this example is simpler 
than the Kerr case and it has some advantages which simplify calculations in 
string theory, so if you’re interested in string theory you should familiarize 
yourself with charged black holes. It is interesting to note that if you add a 

Charged Black Holes
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charge Q to a static black hole in string theory, you can arrive at an exotic 
black hole that is supersymmetric.

First we defi ne:

 ∆ = − +1
2 4

2
4

2

mG

r

Q G

r
 (14.13)

Notice that we are basically extending the Schwarzschild solution by adding a 
Coulomb-type term. The metric for a static, charged black hole is given by

 ds dt dr r d2 2 1 2 2 2= −∆ + ∆ +− Ω   (14.14)

This metric has two coordinate singularities which are given by

 r MG MG Q G± = ± −4 4
2 2

4( )   (14.15)

The two horizons are denoted by

• r+ is the outer horizon.

• r− is the inner horizon.

The outer horizon is the event horizon—the point of no return when approaching 
the black hole. Now, before stating our next result, we need to talk a little bit 
about singularities. Stephen Hawking and Roger Penrose did a great deal of work 
on singularities in the context of classical general relativity. They found out some 
interesting results about singularities. If a singularity is present in space-time 
without a horizon, it is called a naked singularity. This is because the horizon, 
like clothing, keeps you from seeing what’s behind the veil. In this case the veil 
is provided by the fact that light and hence no information can escape from beyond 
the horizon. The singularity is essentially shut off from the rest of the universe. 
Hawking and Penrose conjectured that classical physics does not permit the 
existence of naked singularities. 

Charged black holes are related to this concept in the following way. A charged 
black hole with a mass m is limited in the amount of charge Q that it can carry. It 
avoids having a naked singularity only if

 m G Q4 ≥  (14.16)
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When the maximum charge per mass is allowed, we obtain a special type of charged 
black hole which is called an extremal black hole. If you search the literature you 
will fi nd this term used over and over—extremal black holes are an active area of 
study. The condition for having an extremal black hole is

 m G Q4 =   (14.17)

In this case, the radii of the inner and outer horizons are equal. There is only the 
event horizon whose location is determined to be

 r r mGE = =± 4   (14.18)

Extremal black holes are important because they have unbroken supersymmetry. 
The metric of an extremal black hole assumes the form
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 (14.19)

The key breakthrough for string theory and black holes involved the derivation 
of black hole entropy from the microscopic states for an extremal black hole in 
D = 5 dimensions. In that case the metric can be written as

 ds
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r
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E E2
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2dr r dΩ   (14.20)

For the extremal black hole in fi ve dimensions, the relation between mass and 
charge becomes

 m
Q

G

r

G
E= =

5

2

5

3

4

π    (14.21)

where G5
 is the gravitational constant in fi ve dimensions. The area of the horizon is

 A rE= 2 2 3π    (14.22)
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The Laws of Black Hole Mechanics
In the early 1970s, James Bardeen, Brandon Carter, and Stephen Hawking found 
that there are laws governing black hole mechanics which correspond very closely 
to the laws of thermodynamics.1 The zeroth law states that the surface gravity κ at 
the horizon of a stationary black hole is constant. 

The fi rst law relates the mass m, horizon area A, angular momentum J, and charge 
Q of a black hole as follows:

 dm dA dJ dQ= + +
κ
π8

Ω Φ  (14.23)

This law is analogous to the law relating energy and entropy. We will see this more 
precisely in a moment. 

The second law of black hole mechanics tells us that the area of the event horizon 
does not decrease with time. This is quantifi ed by writing:

 dA ≥ 0   (14.24)

This is directly analogous to the second law of thermodynamics which tells us that 
the entropy of a closed system is a nondecreasing function of time. A consequence 
of Eq. (14.24) is that if black holes of areas A A1 2and coalesce to form a new black 
hole with area A3

then the following relationship must hold:

 A A A3 1 2> +

As you probably recall, an analogous relationship holds for entropy. Finally, we 
arrive at the third law of black hole mechanics. This law states that it is impossible 
to reduce the surface gravity κ to 0. 

The correspondence between the laws of black hole mechanics and 
thermodynamics is more than analogy. We can go so far as to say that the analogy 
is taken to be real and exact. That is, the area of the horizon A is the entropy S  of 
the black hole and the surface gravity κ is proportional to the temperature of the 
black hole. We can express the entropy of the black hole in terms of mass or area. 
In terms of mass the entropy of a black holes is proportional to the mass of the black 

1 Bardeen, J.M., B. Carter, and S.W. Hawking, The four laws of black hole mechanics, Comm. Math 
Phys. vol. 31, (2), 1973, 161–170.
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hole squared. In terms of area, the entropy is 1/4 of the area of the horizon in units 
of Planck length:

 S
A

p

=
4 2

  (14.25)

Let us compute the temperature in the case of a Schwarzschild black hole. In the 
Chapter Quiz you will get a chance to try your luck fi nding the temperature of a 
charged black hole. We follow a procedure outlined in a note published by P.R. 
Silva.2

We proceed as follows. We perform a Wick rotation t i→ τ and write the 
Schwarzschild metric as

 ds
G M

r
d
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r
dr r2 4 2 4

1
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Now set
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and integrate. We take the limits of integration to be

 α α π
τ τ β

:

:

:

0 2

0

2 4

≤ ≤
≤ ≤

≤ ′ ≤r G m r r

This gives us two relations:

 2 2 24
1 2

4
1 2π βR G m r G m= −−( ) ( )/ /   (14.27)

 R G m r G m= −2 2 24
1 2

4
1 2( ) ( )/ /   (14.28)

2 Available on the arXiv at http://arxiv.org/ftp/gr-qc/papers/0605/0605051.pdf.

Computing the Temperature of a Black Hole

http://arxiv.org/ftp/gr-qc/papers/0605/0605051.pdf
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Dividing Eq. (14.27) by Eq. (14.28) we obtain

 

2
4

8
4

4

π β

β π

=

⇒ =
G m

G m

The β  used here is the same one used in thermodynamics, and so we obtain the 
following expression for the temperature of a Schwarzschild black hole:

 T
mG

=
1

8 4π
  (14.29)

With the temperature in hand, we can proceed ahead to obtain an expression for 
the entropy. Recalling that the fi rst law of thermodynamics states that dE TdS=
(think tedious), using E mc= 2 (but taking c = 1 ) we obtain the fi rst law of black 
hole mechanics for a static, uncharged black hole:

 dm Tds=  (14.30)

Hence,

 mdm
G

dS=
1

8 4π

Integrating we fi nd

 
m

G
S

2

42

1

8
=

π

Hence, the entropy of a Schwarzschild black hole is given by

 S G m= 4 4
2π   (14.31)

This confi rms our earlier claim, that the entropy is proportional to the mass squared.
Before proceeding, let’s quickly refresh our memories. What is entropy anyway? 

Suppose that we have a density of states n E( )  for some microscopic system. The 
entropy is

 S k n EB= ln[ ( )]   (14.32)

where kB
 is Boltzman’s constant. 
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We will consider two cases, a Schwarzschild black hole where we use a somewhat 
loose heuristic estimate and a calculation for a fi ve-dimensional charged black hole.

In string theory, the calculation of the entropy of a black hole is easiest in fi ve 
dimensions. This is due to an amazing property of fi ve-dimensional black holes that 
arises from supersymmetry. It turns out that supersymmetry allows us to count up 
string states while taking the string-coupling constant gs = 0 , which amounts to 
considering a set of noninteracting strings—something not really possible in a 
black hole. This greatly simplifi es the calculation and what is remarkable is that the 
result obtained with no coupling is valid for any coupling strength gs

.
Remember the adiabatic theorem? The procedure used here is something you 

already know about from ordinary quantum mechanics. In quantum mechanics, 
you can disturb a system adiabatically so that the energy levels are not disturbed. 
The adiabatic method is used here—the string-coupling constant is varied 
adiabatically so that large gravitational forces transition to a weak regime. Entropy, 
however, is an adiabatic invariant. So while we weaken the string coupling, the 
entropy remains the same as long as things are done adiabatically.

In string theory, we start with a collection of highly coupled strings and then let 
the coupling gs → 0 slowly. We work in the usual D = 10 space-time of superstring 
theory, and need to compactify some extra dimensions to get an effective fi ve-
dimensional space-time. Supersymmetry remains unbroken if we compactify 
dimensions into tiny circles. We compactify the dimensions x x5 9, ..., leaving us 
with the remaining fi ve-dimensional space-time described by the coordinates 
x x x x x0 1 2 3 4, , , , . The black hole can actually be thought of as two objects—a 
string carrying a charge Q1

and a 5-brane with charge Q2. These charges are winding 
modes as we will see below.

First we consider an adiabatic process  gs → 0  applied to a Schwarzschild black 
hole in D dimensions. A straightforward calculation using the laws of black hole 
mechanics shows that the entropy is given by

 S
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G
m G

D
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D

D
D
D

D= =
−
− −

−4

2

3

1

3
2Ω   (14.33)

where mB is the mass of the black hole. The entropy can be estimated quite simply 
from string theory considerations. For an excited string, the entropy is proportional 
to the product of the mass times its length:

 S m s∝    (14.34)

 Entropy Calculations for Black Holes 
with String Theory
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Now let’s use the string theory considerations to fi nd the entropy. This is done by 
applying the adiabatic procedure to the string coupling gs → 0 and noting that the 
entropy remains unchanged during the process. We follow the procedure outlined 
in Susskind (please see References). What is found is that as gs → 0 , the black hole 
turns into a single string which has the same entropy as the black hole. The black 
hole transitions into a single string when the radius of the horizon is the same as the 
fundamental string length s. 

The Planck length p can be related to the fundamental string length using:

 
p s

D
sg= −

2
2   (14.35)

The Schwarzschild radius of the black hole is given in terms of its mass as

 r m Gs B D
D= −( )

1
3    (14.36)

We can approximately take the gravitational constant to be

 G gD s s
D≈ −2 2   (14.37)

So that:

 r
m gs

s
s B s

D= ( ) −2
1

3   (14.38)

We are going to be interested in rs s → 1, that is, the point where the 
Schwarzschild radius approaches the string length. During the adiabatic process, 
the mass becomes a function of the string-coupling constant, m m gs= ( ). If we take 
the initial coupling to be gB then m m gB B= ( ). The entropy is a function of the 
product m gs p( ) , and since the entropy is an adiabatic invariant, this product must 
be a constant. Using Eq. (14.35) we can write

 m g m
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   (14.39)

Now, rs s → 1 when m gs p
D

s
D( ) − −=2 3 which gives

 m g
gs s

s

( ) =
1

2   (14.40)
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Recalling that the entropy of an excited string is proportional to the product of its 
mass and length [Eq. (14.34)], this allows us to write the entropy in terms of the 
mass of the black hole and the gravitational constant using [Eqs. (14.39) and 
(14.37)]. This gives a result proportional to Eq. (14.33):

 S m G
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3
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3

4
  (14.41)

This calculation was not formal by any means. It just relied on some basic 
considerations from string theory, but it gave the correct result modulo a constant. 
Now let’s turn to the fi ve-dimensional black hole example. 

The structure of the fi ve-dimensional geometry is as follows. We take a circular 
dimension of radius R denoted by S1 and a four torus T 4  so that

 T T S5 4 1= ×

As mentioned above, the black hole actually has two string components. One is an 
actual string (a D1-brane) which wraps around S1 and so has winding modes which 
will contribute to its mass. The D5-brane wraps around S1 and also has Kaluza-
Klein modes quantized on the circle T 5 . 

The starting point is the metric given by

 ds dt dr r d2 2 3 2 1 3 2 2
3
2= − + +( )−λ λ/ / Ω   (14.42)

where:
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   (14.43)

A result from superstring theory that we simply take as a given because it’s beyond 
the scope of our discussion that the BPS condition is satisfi ed. What this means 
for us is that charges are additive. The upshot of this is we can write the mass of 
the black hole as

 M M M M= + +1 2 3
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Now the calculation of the entropy is actually quite straightforward. From the 
metric in Eq. (14.42), there are three radii associated with the horizon. Using 
Eq. (14.9) with D = 5 , we can write each of these as

 r
mG g
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mi

s s
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2 5

3

2 816

3
= =

π
Ω

  (14.44)

where R is the radius of the circular dimension S1 and V  is the volume of the torus. 
The individual masses can be calculated from string considerations. The fi rst two 
masses are due to winding modes. First, the string winding around radius R gives

 m
Q R

gs s
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1
2

=   (14.45)

For the D5-brane, fi rst we have the winding mode which wraps around the circle 
and torus:

 m
Q RV

gs s
2

5
6

=   (14.46)

Then we have a third mass, due to the Kaluza-Klein excitation of the D5-brane 
along the circular dimension:

 m
n

R3 =   (14.47)

Now let’s calculate each of the radii:
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Now, the area in fi ve dimensions is

 A r r r
g

RV
Q Q ns s= =2 22

1 2 3
2

2 8

1 5π π

The entropy is

 S
A

G
=

4 5

  (14.51)

where G G RV gs s5
5

10
5 6 2 82 2 8= =( ) ( )π π π . Putting everything together we obtain 

the result:

 S Q Q n= 2 1 5π   (14.52)

One of the recent successes of string theory has been its ability to count up the 
microscopic states of a black hole to calculate its entropy. The result obtained in 
this manner agrees with the semiclassical expressions, providing strong support for 
string theory as a quantum theory of gravity. 

         Quiz
 1. Find the temperature of a D = 4 charged black hole.

 2. The Hagedorn temperature is the temperature above which multiple strings 
would coalesce into a single string. Take the density of string states to be 
n m= ′exp( )4π α  and write down the partition function. What condition 
is necessary for the partition function to be fi nite? This gives the Hagedorn 
temperature.

 3. Suppose that the sun were to collapse to a black hole. What would be its 
temperature?

 4. Estimate the lifetime of a six solar mass black hole that is evaporating from 
the Hawking process.

Summary
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 5. Consider a charged, rotating black hole in D = 5 dimensions with metric:

  ds dt
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  By calculating the area of the horizon, estimate the entropy. Take the 
charges to be the same as for the static charged black hole analyzed in the 
text. 



The Holographic 
Principle and AdS/CFT 

Correspondence

In this chapter we will touch on one of the most interesting ideas to come out of the 
study of quantum gravity and string theory in particular: the holographic principle. 
This is an idea closely related to entropy, so we present it here after we have 
completed our discussion of black holes and entropy in the last chapter. The 
holographic principle appears to be a quite general feature of quantum gravity, but 
we discuss it in the context of string theory. Our discussion largely follows that of 
Susskind and Witten.1 Our focus will be on showing how the holographic principle 
leads to an entropy bound of the type we found for black holes.

CHAPTER 15

1 The topics discussed here are quite advanced, so our discussion will be more qualitative and heuristic. 
For a detailed exposition you may consult L. Susskind and E. Witten, “The Holographic Bound in Anti-
de Sitter Space,” http://xxx.lanl.gove/abs/hep-th/9805114; and J. M. Maldacena, “The Large N Limit of 
Superconformal Field Theories and Super Gravity,” Adv. Theor. Math. Phys. 2:231–252, 1998.

Copyright © 2009 by The McGraw-Hill Companies, Inc. Click here for terms of use. 

http://xxx.lanl.gove/abs/hep-th/9805114
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A Statement of the Holographic Principle
The holographic principle was fi rst proposed by Gerard t’Hooft in 1993 and has 
been worked on extensively by Leonard Susskind. It can be asserted using two 
postulates:

• The total information content in a volume of space is equivalent to a theory 
that lives only on the surface area that encloses the region.

• The boundary of a region of space-time contains at most a single degree of 
freedom per Planck area.

The holographic principle really applies to gravity and we have already seen it in 
action when talking about black holes. Information content, which is another way 
of saying entropy,  is about counting the number of states in a system and so is 
proportional to area. We have already seen that in the case of a black hole that 
entropy is proportional to the area of the event horizon:

 S
A

G
=

4
 

where G is Newton’s gravitational constant. The area A is measured in Planck 
units.

This is a surprising result because we would intuitively expect that the number of 
states is proportional to the volume of the enclosed region. Following Susskind, we 
illustrate that this is in fact the case when gravity is not involved. Imagine that a 
volume V contains a set of spins on a lattice. We take the lattice spacing to be a, and 
imagine that the lattice fi lls the entire volume. Then the total number of spins 
contained in V is

 # spins =
V

a3
 

The total number of states the system can have is

 N V a= 2
3/  

Using thermodynamics, we arrive at a relationship between the number of states 
and entropy S:

 N S∝ exp  
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Hence we fi nd that 2
3V a S/ exp= , or taking the logarithm of both sides:

 S
V

a
V a= =ln( ) ln/2 2

3

3
 

We’ve found what we intuitively expect—the entropy (and by extension the 
amount of information) in the region is proportional to the volume. After all we 
started off assuming we had a lattice of spins that fi lled the volume—so what else 
could we get? 

For black holes we found something very different. In that case, the entropy is 
directly proportional to the area of the even horizon. So in some sense, gravity must 
be different from other interactions. It turns out that the case of a black hole provides 
the maximum entropy that a gravitational system can have.

A Qualitative Description of 
AdS/CFT Correspondence

The framework of the holographic principle which comes out of string/M-theory is 
known as AdS/CFT (anti-de Sitter/conformal fi eld theory) correspondence. We can 
quantitatively describe the space-time using AdS space in fi ve dimensions. The 
fi ve-dimensional AdS model has a boundary with four dimensions that looks like 
fl at space with three spatial directions and one time dimension.

The AdS/CFT correspondence involves a duality, something we’re already 
familiar with from our studies of superstring theories. This duality is between two 
types of theories:

• Five-dimensional gravity

• Super Yang-Mills theory defi ned on the boundary

By “super” Yang-Mills theory we mean theory of particle interactions with 
supersymmetry. The holographic principle comes out of the correspondence between 
these two theories because Yang-Mills theory, which is happening on the boundary, is 
equivalent to the gravitational physics happening in the fi ve-dimensional AdS geometry. 
So the Yang-Mills theory can be colloquially thought of as a hologram on the boundary 
of the real fi ve-dimensional space where the fi ve-dimensional gravitational physics is 
taking place. 
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The Holographic Principle and M-Theory
Now let’s make our description more quantitative. In the fi nal chapter of the book 
we discuss stringy cosmology. There we will encounter a model of space-time that 
has sprung out of string/M-theory that might in fact describe our actual universe. 
That same model has a nice application in the topic of this chapter as well. The 
model is a fi ve-dimensional AdS space. It can be described as follows.

We start with a fi ve-dimensional AdS space. In a nutshell, this is a four-
dimensional spatial ball and an infi nite time axis. The radius of the ball is 0 1≤ <r . 
The radius of curvature is denoted by R, and we lump the remaining spatial 
dimensions together into a unit three-sphere denoted by Ω. The metric which 
describes the AdS is written as

 ds
R

r
r dt dr r d2

2

2 2

2 2 2 2 2

1
1 4 4=

−
+ − −

( )
[( ) ]Ω  

Note that there are different, equivalent ways to write this metric which you might 
encounter elsewhere. AdS space has negative curvature and acts like a cavity of size 
R with refl ecting walls. Light or objects and refl ect off the boundary and return to the 
center (see “The Illusion of Gravity” by Juan Maldacena in Scientifi c American, 
November 2005, for a nice popular level description of AdS). 

For us, we are interested in superstring theory. The number of space-time 
dimensions in superstring theory is D = 10. So the complete space is

 AdS S⊗ 5  

where S5 is a unit fi ve-sphere containing the remaining dimensions from string theory. 
If we denote the extra fi ve coordinates by y

5
 they are incorporated into our metric by 

adding a term Rdy5
2. We can imagine compactifying these dimensions to a very small 

size so that they can be effectively ignored. So the universe can be effectively treated 
as the fi ve-dimensional “bulk” which is the interior of the sphere and the boundary 
which is the surface. The surface has three spatial dimensions and time.

In the M-theory picture, the world we know is in essence a “shadow” or hologram 
living on the boundary of a larger dimensional universe. The physics is divided as 
follows:

• The boundary conformal theory lives on the surface of the sphere at x = 1. 
These are the particles and interactions of the standard model, plus any 
supersymmetric extension of it.

• Gravity is everywhere.
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• But, gravity can propagate into the bulk. In the bulk, which is the interior 
volume of the AdS sphere, gravity is the only interaction. Inside the ball of the 
AdS geometry, the theory is supergravity. We won’t get into supergravity in 
this book but you can look it up on the arXiv if interested in learning about it. 

The conformal theory that describes particles and their interactions is 
supersymmetric and is called super Yang-Mills theory or SYM for short. The 
gauge group for SYM is SU(N). So the AdS/CFT correspondence can be framed 
as follows:

• There is a super Yang-Mills theory with SU(N) on the surface of the ball.

• There is bulk supergravity in the interior of the ball.

In string theory, the number of degrees of freedom for the SYM is constrained by 
three factors:

• The fundamental string length

• The string coupling

• The curvature of AdS space

The number of degrees of freedom for SYM is ∼ N2 since the gauge group is
SU(N) and it has a gauge coupling g

YM
. The constraint on N is quantifi ed in the 

following relationship:

 R g N
s s

= C ( ) /1 4  

The gauge-coupling is related to the string-coupling constant as:

 g g
YM s

2 =  

Now we would like to introduce a cutoff in the bulk. We divide up the sphere into 
little cells such that the total number of cells in the sphere is ∼ δ −3

 for some cell d. 
That is,

• We cut off the information storage capacity by replacing the continuum of 
space by cells of size d.

• There is a single degree of freedom in each cell.

With the total number of degrees of freedom for the SYM theory proportional to 
N2, we fi nd that the total number of degrees of freedom with the cutoff is

 N
N

A
N

Rdof
= =

2

3

2

3δ
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Now since R g N
s s

= C ( ) /1 4  we can write

 N
AR

gdof

s s

=
5

8 2C
 

In fi ve-dimensions, the Newton gravitational constant is

 G
g

R
s s

5

8 2

5
=
C

 

Hence we fi nd that

 N
A

Gdof
=

5

 

This agrees with the holographic principle, and is the same as the result obtained 
for black holes with the exception of the factor of 1/4.

More Correspondence
In this section we describe connections between the supergravity theory of the bulk 
and the SYM of the boundary. We can convert between bulk variables and SYM 
variables as follows. Let E

SYM
 be energy on the boundary and M be the energy in the 

bulk. They are related as

 E RM
SYM

=  

Temperature is related in the same way:

 T RT
SYM

=  

where T is the temperature in the bulk. Now consider a thermal Yang-Mills state 
with temperature T

SYM
. The entropy is

 S N T
SYM

= 2 3( )  

A thermal state of temperature T
SYM  

corresponds to an AdS Schwarzschild black 
hole at the center of the AdS ball. 
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Using T RT
SYM

=  and R g N
s s

= C ( ) /1 4 we obtain

 ( )TR
Sg

R
s s3
2 8

8
=

C  

Now if we take S = A/4G then we fi nd

 T
A

RSYM
3

3
=  

Now we regulate the SYM so that the maximum T
SYM

 is 1/d. Then we fi nd the 
maximum area to be

 A
R

max =
3

3δ
 

Regulation of the super Yang-Mills theory on the boundary gives a holographic 
description with one bit per Planck area.

An interesting result derived by Susskind and Witten is the IR-UV connection. 
This relates IR divergences in the bulk to UV divergences on the boundary. Consider 
a string in the bulk that ends on the boundary. The ends of the string correspond to 
a point charge in the Yang-Mills theory. Now, just thinking back to the self-energy 
of an electron, you will realize that a point charge in the Yang-Mills theory has a 
divergent infi nite self-energy. This is an UV divergence. The divergence of the bulk 
string is proportional to 1/d, while d plays the role of a short distance regulator for 
UV divergence in SYM theory.

The energy of the string is linearly divergent at the boundaries. Since this 
divergence is softer, we say that it is an IR divergence. The propagator for a particle 
of mass m in the bulk is given by

 ∆ =
−

δ m

m
X X1 2

 

where we have relgulated the area using A R≈ 3 δ  and δ �1. Super Yang-Mills 
theory is a conformal fi eld theory. Remember Chap. 5? We learned how to calculate 
operator product expansions there. For super Yang-Mills theory:

 Y X Y X X Xp p
( ) ( )1 2 1 2= −−µ  

You can see that you can transform between these two expressions. What this 
means is that a propagator for a particle of mass m in the bulk can be transformed 
into a power law in the conformal fi eld theory on the boundary. 
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Summary
In this chapter we provided a brief and heuristic introduction to two interesting 
ideas that have sprung from string theory: the holographic principle and the AdS/
CFT correspondence. These two ideas are related. The holographic principle tells 
us that for an enclosed volume, the informational content of the volume can be 
described by an equivalent theory that lives on the bounding surface area. This 
notion is codifi ed in black hole mechanics where the entropy of the black hole is 
proportional to the area of the horizon, not the volume it encloses. The AdS/CFT 
correspondence describes a fi ve-dimensional universe where fi ve-dimensional 
supergravity in the bulk is equivalent to a super Yang-Mills conformal fi eld theory 
on the boundary. 

         Quiz
A solution of supergravity gives the metric for a D-brane as:

 ds F z dt dx F z dz2 2 2 1 2= − − −( )( ) ( )  

where F z
ag N

z
s( )

/

= +
⎛
⎝⎜

⎞
⎠⎟

−

1
4

1 2

.

 1. Find an expression for F(z) in the limit 
ag N

z

s
4 1� .

 2. Using your answer to Prob. 1, fi nd a new expression for the metric.

 3. The holographic principle can be best described by

 (a) The informational content of a region is encoded in its volume.

 (b) The informational content of a region can be described entirely by the 
surface area.

 (c) Fields living in the bulk are not equivalent to fi elds living on the 
bounding surface.

 4.  In AdS/CFT correspondence, the number of degrees of freedom available 
to the super Yang-Mills theory on the boundary is

 (a) Independent of the AdS geometry.

 (b) Related to the string coupling strength only.

 (c)  Is related to the string coupling strength and the fundamental string length.

 (d) Is related to the fundamental string length only.
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 5. In AdS/CFT correspondence, the number of degrees of freedom is

 (a) Proportional to the area of the bounding surface and to Newton’s 
gravitational constant.

 (b) Proportional to the area of the bounding surface and inversely 
proportional to Newton’s gravitational constant.

 (c) Proportional to the area of the bounding surface and the fundamental 
string length.

 (d) Proportional to the area of the bounding surface and the string coupling 
constant.
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String Theory and 
Cosmology

Conventional cosmology, which grew out of general relativity, astrophysics, and 
quantum fi eld theory, proposes that the universe began with a “big bang” at a fi nite 
time in the past with an infl ationary rush, and will expand forever until the universe 
dies with a whimper, as a result of increasing entropy eventually sapping the useful 
life out of it. Proposals which originated in string/M-theory have led to different 
cosmological models. These models have the unexpected and shocking ability to 
describe the universe before the big bang. Based on a brane-world-type universe, 
they involve the collision of two branes which get rid of the “singularity” of big-
bang theory and replace it with an eternal universe, which could be described as 
“cyclic.” In this chapter, we give an overview of some of the cosmological models 
that have arisen from string/M-theory. Unfortunately, the details of these models 
using string/M-theory are well beyond the scope of this book, so our description 
will be more of a qualitative nature. The motivated reader is urged to consult the 
references for details. Cosmology is sure to be an active area of research in the 
coming years with many new and possibly unexpected developments. 

CHAPTER 16

Copyright © 2009 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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Einstein’s Equations
In the previous chapter we introduced the Einstein fi eld equations, which give a 
classical description of gravity. In this chapter, we discuss the application of the 
Einstein fi eld equations to cosmology. For a detailed description of the study of 
cosmology in the context of general relativity, please see Relativity Demystifi ed and 
any of the references contained therein.

Cosmology is the study of the evolution of the universe as a whole. The starting 
point is the Robertson-Walker metric:

 ds dt a t d2 2 2 2= − + ( ) Σ  (16.1)

Here, dΣ2 represents the spatial part of the metric. The function a t( ) is called the 
scale factor. It characterizes the spatial size of the universe and how it changes with 
time. The Hubble constant is given by

 H
a

a
=  (16.2)

We can characterize the spatial structure of the universe by a curvature constant 
K. If the space is fl at, has negative curvature (a saddle) or has positive curvature
(a sphere), then K = − +0 1 1, , , respectively. Observational evidence indicates that 
our universe is fl at. 

The behavior of the universe with time is determined by starting with a given 
metric believed to describe the overall structure of the universe, and then using it to 
work out the components of the curvature tensor. Then we can solve the Einstein 
fi eld equations either with or without matter present. This can also be done with or 
without a cosmological constant.

In standard cosmology treatments, space is assumed to be isotropic, meaning 
that it is the same in all directions. We may not want to make that assumption in 
string theory where some spatial dimensions are treated differently.

There are two cosmological models that come up rather repeatedly. A de Sitter 
universe is one without matter (a vacuum solution of Einstein’s fi eld equations), 
with fl at space, and a positive cosmological constant. An anti-de Sitter universe 
(sometimes denoted AdS) is a vacuum solution to the Einstein fi eld equations with 
positive cosmological constant and negative scalar curvature. 

Infl ation
The cosmological models studied in relativity theory are only a part of modern 
cosmology. The second piece which is needed to explain known data is infl ation. 
The standard big-bang model begins the universe with a singularity and it expands 
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and cools with its dynamics evolving according to Einstein’s equations. Interestingly, 
the universe exhibits a great deal of uniformity on large scales that the standard big-
bang model is hard pressed to explain. 

To understand the type of uniformity we are talking about, we can think of everyday 
life. Imagine heating a cup of tea in the microwave and then taking it out and setting 
it on the counter. Over time, the cup of tea will cool and if we leave it there long 
enough, it will reach an equilibrium point where it is the same temperature as its 
surroundings. 

The same kind of behavior has occurred on the largest scales of the universe. If 
we examine the universe on large scales where we divide it up into cubes that have 
sides which are on the order of hundreds of millions of light years across, we fi nd

 • Homogeneity: On large scales on the average the universe is the same 
everywhere. That is each cube has the same galaxy density, the same mass 
density, and the same luminosity.

 • Isotropy: We have already mentioned that standard cosmology assumes 
the universe is isotropic, or the same in every direction. Observation bears 
this out to an incredibly high degree.

The problem with standard big-bang theory and these observations is that the 
universe evolved too quickly for equilibrium in the sense we described with the cup 
of tea, could have occurred. There would not have been enough time for light signals 
to connect different spatial regions, so how could they have “communicated” so as to 
end up in exactly the same confi guration? 

Another problem with standard big-bang cosmology is known as the fl atness 
problem. The universe is fl at and the mass density of the early universe was 
apparently so exactly fi ne-tuned to give the observed fl atness that it is hard to 
imagine how this could be coincidence. The critical mass density is defi ned in 
terms of the Hubble constant:

 ρ
πc

H

G
=

3

8

2

 (16.3)

where G is Newton’s gravitational constant. Now defi ne

 Ω =
ρ
ρ

c

 (16.4)

where r is the actual mass density in the universe. Now let ∆ be the cosmological 
constant. If

 Ω
Λ

+
3 2H

 (16.5)
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exceeds 1, then the universe is a closed space like a sphere. If it is less than one, then 
it is an open space with negative curvature (like a saddle). If it is exactly 1, then the 
universe is a fl at open space. Observation indicates that the universe is a fl at open 
space, so the fl atness problem boils down to the equation of why early conditions in 
the universe fi xed the mass density so close to the critical mass density.

The issues which cannot be explained by classical physics-homogeneity, isotropy, 
and the fl atness problem can be explained by a theory known as infl ation. This is a 
theory that proposes that the early universe went through a brief phase of exponential 
expansion. Just prior to the phase of exponential expansion, all regions of the universe 
were causally connected. This explains the homogeneity and isotropic problems. 
The expansion is driven by a scalar fi eld f (a quantum fi eld called the infl aton) which 
has negative pressure. This acts like a repulsive gravitational fi eld causing different 
regions of the universe to repel one another and to expand outward. 

The infl aton fi eld is believed to have a false vacuum, which is a metastable point 
that is higher in energy than the true vacuum (the lowest energy state). For a brief 
period, the infl aton was at the false vacuum and could cause infl ation, then it “rolled 
down the hill” to the true vacuum or lowest energy state. During the expansion, the 
total energy of the universe remains constant (as it must). During infl ation, the energy 
of matter, which is positive, is increasing exponentially. Energy from the infl aton 
fi eld can be used to actually create matter through Einstein’s equation E mc= 2.

As matter is added to the universe, the gravitational fi eld gets larger as well. The 
gravitational fi eld has negative energy density. So the increasing negative energy of 
the gravitational fi eld balances out the increasing positive energy of matter keeping 
the total energy of the universe constant. 

Quantum fl uctuations in the infl aton fi eld when the universe was very small are 
believed to have magnifi ed during the exponential expansion providing seedlike 
structures for the universe as a whole. These seeds led to the formation of the galaxies. 
This is an amazing connection between quantum theory and the large-scale structure 
of the universe.

Infl ation theory makes several predictions that are consistent with observation 
to date. 

The Kasner Metric
The Kasner metric is a solution to the Einstein fi eld equations that has an interesting 
property that makes it useful from a string theory perspective. We can characterize 
the Kasner metric by considering the notion of isotropy. If space is isotropic, then 
it is the same in all directions. This is a reasonable assumption that is used routinely 
in cosmology when considering the 3 + 1 dimensional space-time we appear to 
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live in. On large scales, it doesn’t matter which direction you look—the universe 
looks the same. 

In contrast, the Kasner metric is anisotropic, meaning that not all spatial 
dimensions evolve in the same way. As time increases, the universe expands in n of 
the spatial directions but contracts in the other D – n directions. So this metric could 
describe a universe in which some of the dimensions become small (compactifi ed) 
as the universe evolves. As you might imagine, this makes the metric appealing 
within the context of string theory. 

The Kasner metric can be written in the following way:

 ds dt t dx
p

j

D
jj2 2 2

1

= − +
=

∑ ( )  (16.6)

The presence of the term t
pj2  multiplying each spatial direction dx j makes the 

behavior of each dimension dependent on the passage of time. We call the p
j
 Kasner 

exponents and they must satisfy two conditions aptly named the Kasner 
conditions:

 p

p

j
j

D

j
j

=

−

=

∑ =
1

1

2

1

1 (first Kasner condition)

( )
DD−

∑ =
1

1 (second Kasner condition)

 
(16.7)

The Kasner conditions enforce a constraint on the p
j
. What these tell us is that the  

p
j
 cannot all have the same sign. Since the metric term related to each spatial 

dimension depends on t
pj2 , this tells us that some dimensions will expand as time 

increases and some will contract as time increases. That is

• If p
j
 is positive, then t

pj2
1>  and the direction x j is increasing with time. 

• If p
j 
is negative, then t

pj2
1<  and the direction x j is shrinking with time. 

To see this, note a simple illustration. Let p
j
 = 0.2. Then at t

1
 = 5, we have t

2p
j = 

50.2 = 1.38. At a later time t
2
 = 15, we have t

pj2 0 215 1 72= =. . , so the dimension has 
increased by a factor of 1.72/1.38 ≈ 1.25. Now suppose that instead p

j
 = − 0.2. At t

1
 = 5, 

we have t
pj2 0 25 0 72= =− . . . At a later time t

2
 = 15, we have t

pj2 0 215 0 58= =− . . , so 
clearly the dimension is shrinking when the Kasner exponent is negative.

When the Kasner metric is studied in string theory, it must be supplemented by 
equations for the dilaton fi eld f. The dilaton fi eld is related to the metric through the 
Kasner exponents p

j
. In particular, it is possible to take

 φ = − −
⎛

⎝⎜
⎞

⎠⎟=
∑1

1

p t
j

j

D

ln  (16.8)
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Interestingly, the dilaton fi eld introduces a type of duality into the model. In fact, 
this duality is related to T-duality, because it relates large and small distances. Given 
a set of Kasner exponents p

j
 and a dilaton fi eld f, there exists a dual solution with

 ′ = − ′ = −
=

∑p p p tj j j
j

D

φ φ 2
1

ln  (16.9)

Notice that since ′ = −p pj j, expanding dimensions in the theory are the contracting 
dimensions in the dual theory and vice versa. 

Pre-big-bang cosmology can be described in terms of this duality. It allows for 
the universe to go through the following stages of evolution:

• It starts out in a large, fl at, and cold state.

• It contracts to a self-dual point. The universe enters a state where it is small, 
highly curved, and very hot. This is the “big bang.”

• It enters an expansion phase which is the universe we live in.

This was the fi rst attempt at a cosmological model using string theory. However, 
it has since been discarded in favor of brane-based cosmological models. This is 
because several problems with the model could not be resolved, and brane models 
of the universe are compelling because of how the fi elds of the standard model and 
gravity are described. Before going on to brane-world cosmology though, let’s see 
how the Kasner metric can describe an accelerating universe.

An interesting effect that can arise when considering some spatial dimensions 
contracting and others expanding is that the contracting dimensions actually cause 
the expanding dimensions to accelerate.1 Suppose that we have n > 1 contracting 
dimensions with three expanding spatial dimensions. It can be shown that they 
cause the three spatial dimensions not only to expand, but to do so in an infl ationary 
manner without a cosmological constant. 

We write the number of space-time dimensions as D = n + 4, where we 
understand that the n dimensions which contract are all spatial and the remaining 
dimensions are 3 + 1 dimensional space-time. The metric can be written in a 
general form which is split between time, the expanding dimensions, and the 
contracting dimensions as

 ds dt a t dx b t dx
i

i
m

m

D
2 2 2 2

1

3
2 2

4

= − +
⎛
⎝⎜

⎞
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= =
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1

 (16.10)

1 Levin, Janna, “Infl ation from Extra Dimensions,” Phys. Lett. vol. B343, 1995, 69–75.
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Here, a(t) is a scale factor associated with the three expanding spatial dimensions 
and b(t) is a scale factor associated with the contracting spatial dimensions. Solving 
the Einstein equations in vacuum gives the following:
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Here we have introduced two Hubble constants. One is the usual Hubble constant 
associated with our expanding universe H

a
:

 H
a

aa =  (16.11)

The second Hubble constant is associated with the contracting extra dimensions:

 H
b

bb =  (16.12)

The constants k(3) and k(n) are related to the local curvature and so can be +1, 0, −1. 
We choose the locally fl at case and so set k(3) = k(n) = 0. This allows the equations to be 
simplifi ed somewhat, giving three relations for the Hubble constants:
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 can then be written as
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The choice of sign corresponds to an accelerating or decelerating universe (for 
the expanding extra dimensions). Of course, the choice of sign here is arbitrary, the 
model doesn’t dictate why we would pick one sign or the other—it only describes 
that an accelerating universe is possible. We take the + sign for the accelerating 
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case. Using H nH H n n Ha a b b
2 21 6 0+ + − =[ ( ) / ] , we can eliminate H

d
 from the 

equations and write an equation for H
a
 alone:
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Now the accelerating nature of the expansion is apparent since Ha > 0. Integration 
gives
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Now make the defi nition
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Then it can be shown that the Hubble constant is given by

 H t
H
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a( )
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 (16.15)

Further integration gives the scale factor:

 a t
a

t t p
( )

( )
=

−1
 (16.16)

where a is a constant of integration and we have defi ned
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The acceleration of the three expanding dimensions of the universe is then
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Using the relation for the ratio H
b
/H

a
 it can be shown that

 b t b t t q( ) ( )= −1  (16.18)
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where b  is a constant of integration and

 q
n n n

n n
=

+ +
+
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3
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 (16.19)

This solution gives a Kasner type metric. Explicitly, we have
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The Randall-Sundrum Model
The approaches described in the previous section are no longer considered tenable. 
The current line of research into cosmology from a string/M-theory perspective was 
launched with a brane-based approach called the Randall-Sundrum model.2 This 
model is not a string/M-theory approach per se. Instead, it is simply a model which 
invokes the existence of extra dimensions and the existence of branes. Moreover, the 
model was not developed for the purposes of cosmology. The model was put forward 
as a possible solution to the hierarchy problem of particle physics. To review, the 
hierarchy problem is the fact that there is an enormous energy gap between the natural 
or fundamental energy scales of gravity and the electroweak theory. The electroweak 
scale is on the order of just 100 GeV, while the gravitational scale is on the order of 
a whopping 1018 GeV. The beauty of the Randall-Sundrum model is that it solves the 
hierarchy problem with a simple model based on branes and higher-dimensional 
space-time. We discuss the Randall-Sundrum model because the basic idea, two 3-
branes connected along an extra spatial dimension, was the starting point for an idea 
of how to approach big-bang cosmology in string theory. 

Now let’s describe the basics of the model, which will form the basis of 
cosmological models more directly connected to string theory. We consider a fi ve-
dimensional space-time with two branes called the visible brane (our universe) and 
the hidden brane. The branes form boundaries to a fi ve-dimensional region called 
the bulk. The branes have the usual 3 + 1 dimensional space-time. Gauge interactions 
are restricted to the brane, while gravity can propagate along the extra dimension 
and hence into the bulk, as well as in the branes.

We denote the extra spatial dimension by y and refer to the other space-time 
coordinates as xµ. The fi ve-dimensional metric is denoted by gAB. The two branes 

2 First proposed by Lisa Randall and Raman Sundrum in “A Large Mass Hierarchy from a Small Extra 
Dimension”, Phys.Rev.Lett. 83 (1999):3370–3373. Available on the arXiv at http://lanl.arxiv.org/abs/
hep-ph/9905221. 

http://lanl.arxiv.org/abs/hep-ph/9905221
http://lanl.arxiv.org/abs/hep-ph/9905221
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have induced metrics given by h g x yi
iµν µν

µ= ( , ), where i = 1 2,  for the visible and 
hidden branes, respectively. The Randall-Sundrum action is

 S dyd x g
M

R d x h L
ii

i
i= − −

⎛
⎝⎜

⎞
⎠⎟ + − +∫ ∫∑

=

4 5
3

4

1

2

2
Λ Λ( )

mmatter
( )i( )  (16.21)

The index i on the second integral indicates that we integrate over each brane 
separately. The additional terms included here are

• M5: The Planck mass in fi ve dimensions. 

• Λ : The cosmological constant in the bulk.

• Λ Λ1 2and : The cosmological constants on the visible and hidden branes.

• R: The scalar curvature in fi ve dimensions.

• L i
matter
( ) : The lagrangian density for matter fi elds on the visible and hidden 

branes. On the visible brane, it is the standard model fi elds but could be 
different on the hidden brane. 

The dimension y ranges over 0 ≤ ≤y r
c

π , where r
c is a constant and the two 

branes are located at the boundaries. The visible brane is located at y r
c1 = π , while 

the hidden brane is located at y2 0= . 
Imposing a requirement that Poincaré invariance is respected, the following 

metric is chosen that is a slice of anti-de Sitter space:

 ds e dx dx dyky2 2 2= +− ηµν
µ ν  (16.22)

The exponential term e ky−2
 is called the warp factor. We will see that the warp 

factor connects mass scales in our 3 + 1 dimensional universe to fi ve-dimensional 
mass parameters. 

It can be shown that the cosmological constants in the bulk and on each of the 
branes are given by

 
Λ

Λ Λ

= −

= − = −

6

6

3 2

1 2
3

M k

M k
P

p

 (16.23)

If k M
p

< , this tells us that the space-time curvature of the bulk is small compared 
to the Planck scale. 

The exponential warp factor causes the large gap between the observed Planck 
and electroweak scales. Moving to an effective four-dimensional theory, Randall 
and Sundrum showed that the Planck mass in four dimensions could be derived 
from the fi ve-dimensional Planck mass via

 M M dye
M

k
eP r

r k y k r

c

c
c2

5
3 2 5

3
21= = −( )

−

− −∫ π

π π  (16.24)
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A physical mass m on the visible three branes (our 3 � 1 dimensional world) is related 
to a fundamental mass parameter m0 in the underlying higher-dimensional theory by

 m m e k rc= −
0

π  (16.25)

This allows us to obtain the electroweak scale where m ~ 100 GeV from the Planck 
mass m0

1810~  GeV if k r
c

π ≈ 37. So the Randall-Sundrum model tells us that the 
scale of the electroweak interactions is a consequence of the curvature of space-
time, as codifi ed in the warp factor.

The Randall-Sundrum model has shed new light on the scales of particle physics, 
but other than setting up an arena with two branes and an extra dimension, it hasn’t 
said anything about cosmology. But this setup sets the stage for an M-theory-based 
cosmology that allows the boundary branes to move along the extra dimension. We 
discuss this scenario in the next section. 

3 See http://lanl.arxiv.org/abs/astro-ph/0204479 for an informal discussion. 

Brane Worlds and the Ekpyrotic Universe
A cosmological model based on M-theory was proposed by Neil Turok and Paul 
Steinhardt.3 In the Randall-Sundrum model, we have a fi ve-dimensional universe 
with two branes fi xed at the boundaries. Now imagine that instead the branes can 
move along the fi fth dimension through the bulk. This idea is the origin of the ekpyrotic 
universe, a model fully rooted in string/M-theory. In particular, the ekpyrotic scenario 
is based on fi ve-dimensional heterotic M-theory. The models are studied with fi ve 
space-time dimensions because we start with 11 space-time dimensions in M-theory, 
and compactify six of the dimensions down to a tiny size which is irrelevant on 
cosmological scales. 

In this model, we are imagining a universe which has always existed, but which goes 
through a cyclic pattern. This pattern begins with an initial state characterized by the 
boundary branes living in a fl at, empty, and cold state. They are located at the boundaries 
of the fi fth dimension and are parallel. As mentioned above, in the ekpyrotic scenario the 
branes are moving, so they move toward one another and collide. The collision of the 
branes, a process called ekpyrosis in the literature, is seen as the “big bang.” The energy 
from the collision creates the matter in the brane. After collision, the branes move off 
apart from one another and cool down. Eventually they return to the cold, empty, fl at 
initial state, and the process begins all over again. The driving force behind this is a scalar 
fi eld φ  called the radion fi eld, which determines the distance between the branes. It 
causes the universe to evolve through a period of slow acceleration, followed by 
deceleration and contraction. It then triggers a bounce and reheating of the universe. 

http://lanl.arxiv.org/abs/astro-ph/0204479
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The scenario depicted here solves many cosmological riddles, if it is to be 
believed. First let’s consider two major riddles solved by infl ation: homogeneity 
and isotropy. Infl ation seeks to address this problem (explaining why the universe 
is homogeneous and isotropic) by postulating the existence of a fi eld that turns on 
for a brief instant causing the universe to expand exponentially. While this scenario 
has been quantifi ed in a plausible manner, it is not unreasonable to have doubts 
about a theory that describes a fi eld that turns on for a fl icker of an instant and turns 
off as fast, never to be seen again in the entire history of the universe. So what does 
the ekpyrotic scenario have to offer?

In the ekpyrotic scenario, there are two fl at, parallel branes that collide like two 
nearly perfectly fl at metal plates, say. Since the branes are parallel they collide at 
the same time (well almost anyway, let quantum theory intervene) at all points 
along the branes. This action endows the visible brane with the same energy density 
at all points with constant initial temperature called the ekpyrotic temperature. This 
explains why the universe looks the same everywhere in all directions and why the 
cosmic microwave background is the same everywhere—the universe began with 
the same initial conditions at all points.

The fl atness problem is solved by setting the initial conditions of the branes to 
the vacuum state. In the vacuum state the branes are fl at and empty, so no mysterious 
fi ne tuning of matter density is required to make the universe turn out fl at. The 
reasonable assumption that the branes start off in the vacuum state forces them to 
be fl at. 

Now, of course, quantum theory means that everything is not as exact as described 
so far. Quantum fl uctuations in the branes called brane ripples result from the 
movement of the branes along the fi fth dimension. These fl uctuations mean that not 
every point on the brane collides with the other brane at exactly the same instant. 
Instead, most will collide at some average time, while some will collide earlier than 
average and some will collide later than average. Hence, rather than producing a 
universe with an absolutely uniform temperature, the collision will produce a 
universe with some regions slightly colder than average (because they collided 
earlier) and some regions slightly hotter than average (because they collided later). 
These are the seeds the universe needs to produce the large scale structures of the 
universe like the galaxies. Once again, quantum effects are seen to give birth to 
large scale cosmological structure, providing a link between the very large and the 
very small in the universe.

One distasteful aspect of general relativity is the presence of “singularities” in 
the theory. These are points in space-time where quantities like curvature (the 
gravitational fi eld) and temperature blow up to infi nity. The “big-bang singularity” 
is one such example.

In the ekpyrotic model, the singularity is far milder than in classical general 
relativity. Two branes move toward each other, they collide, and then they bounce off 
and return to their initial positions. The “big bang” is an event that occurs with a 
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large but fi nite temperature. There is no singularity corresponding to infi nite 
curvature. Matter and radiation densities on the branes are fi nite. And there is no 
infi nitely small point where all of matter, space, and time supposedly sprung from 
by magical fi at. However, there is singular behavior at the “big crunch” when the 
two branes collide, because the extra dimension between them disappears during 
the collision. After the branes separate and move off from each other the extra 
dimension reappears. Of course, while this model dispenses with much of the 
singular behavior of general relativity, it may be just as hard to believe that space 
and time always existed. In the end, experiment and observation will be our guides 
to determine in a scientifi c manner which scenario is closer to the truth.

The ekpyrotic scenario answers another mystery of cosmology, the origin of 
matter. During the collision the kinetic energy of motion of the branes is converted 
to heat or thermal energy. This is just like a car crash, where some of the energy of 
motion of the cars is converted to heat. In the case of the branes, the heat energy can 
be used to create matter via the Einstein relation E mc= 2. 

The current form of the ekpyrotic scenario is called the cyclic model of the 
universe. It proposes that

• The big bang is not the origin of time.

• The universe always existed and runs through a repeated cycle of brane 
collisions.

A cycle in the history of the universe goes as follows:

• Two branes collide providing a big bang which acts as a transition between 
cycles. Matter and radiation are created.

• The hot big-bang phase creates large-scale structure in the universe.

• This is followed by a period of slow but accelerated expansion where the 
universe cools down and dilutes.

The ekpyrotic scenario provides an alternative to infl ation that can be used to 
explain many cosmological mysteries. Suprisingly, they may be able to be 
distinguished by observational tests (at least in principle). Infl ation predicts that 
gravitational waves are scale invariant. This is not the case for the ekpyrotic model.

Summary
We began exploring cosmological scenarios by considering the Kasner metric, 
which allows some dimensions to contract while others expand as the universe 
evolves. Models of this type are not satisfactory and so have been discarded. The 
Randall-Sundrum model imagines the universe to be constructed out of two branes 



 278 String Theory Demystifi ed

that bound a higher-dimensional bulk. This idea was extended in the ekpyrotic 
model, which allows the branes to move and collide, explaining the big bang and 
providing a string theory alternative to infl ation. The ekpyrotic scenario does not 
say the big bang never happened, rather it explains the big bang without evoking a 
singularity. Once the brane collision has occurred, the universe evolves according 
to standard big-bang theory on the branes. 

 Quiz
 1. Let g g= det µν, wherge gµν  is the Kasner metric. Using the fi rst Kasner 

condition, fi nd an expression for −g .

 2. Suppose that p
Dj =

−
1

1
for all j in the Kasner metric. Is the second Kasner 

condition satisfi ed?

 3. Consider the metric derived in the text:
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t
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  Show that the Kasner conditions are satisfi ed.



Final Exam

 1. Consider the lagrangian for a classical string L X X X X=
′

′ − ′
1

2
2 2 2

πα µ
µ

µ
µ( ) . 

Write down the canonical momentum.

 2. Consider a classical string which is in a confi guration described by a rigid 

rod rotating about the origin with angular velocity ω . Find the energy of the 

string from E d
l

l
=

′ −−∫
1

2

1

1 2 2πα
σ

ω σ
.

 3. Consider the action for a p-brane with cosmological constant 

S
T

d h h X X d hp p= − − ∂ ⋅∂ + −+ +∫ ∫2
1 1σ σαβ

α β Λ .  Find the classical equations 

of motion for the metric. 

 4. Using the action of the previous problem, fi nd a constraint on the 
cosmological constant Λ using h h pµν

µν = +1.

 5. Consider the classical string, describing its dynamics using the Polyakov 
action. What form does the action take if the worldsheet metric is taken to 
be fl at?

 6. Using the action of Prob. 5, what is the canonical momentum?

Copyright © 2009 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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 7. The mass of a classical open string is M n n
n

2

1

1
=

′
⋅−

=

∞

∑α
α α . How is the mass 

of a closed string different?

 8. Consider the classical string. What is the algebra satisfi ed by the Virasoro 
generators?

 9. Using the normal ordering prescription, Lm m n n
n

= ⋅−
=−∞

∞

∑1

2
: :α α  fi nd L0.

 10. What is the mass-shell condition for states of the bosonic string, written in 
terms of Virasoro operators?

   In Probs. 11–14, consider the bosonic string.

 11. Find the angular momentum operators J µν.

 12. Using the result of Prob. 11, fi nd p J0
µ ρλ,⎡⎣ ⎤⎦.

 13. Find [ , ]J Jµν ρλ .

 14. For the Virasoro operator Lm , fi nd [ , ]L Jm
µν .

 15. Consider the fi rst excited state of the open bosonic string. Let ξµ 
be a 

polarization vector and consider the action of L1 on the state ξ α⋅ −1 0, .k  
What condition on the polarization and momentum follows from the 
Virasoro constraint L1 0ψ =  for physical states ψ ? 

 16. What condition cancels the conformal anomaly for the bosonic string?

 17. Consider the Polyakov action in the conformal gauge. State the constraints 
on the components of the energy momentum tensor.

 18. State the Neumann boundary conditions for classical, open bosonic strings.

 19. Consider a relativistic point particle with space-time coordinates xµ τ( ) and 

action S m d x x= − −∫ τ µ
µ , where x

dx

d
µ

µ

τ
= . Use the usual variational 

procedure to fi nd the equations of motion, and write down these equations in 
terms of the conjugate momentum.

 20. Consider your solution to Prob. 19. What is the condition on pµ?

 21. Consider your solution to Prob. 19. Take the static gauge, where x t0 = .
What is the action in this case if we use the usual defi nition of the particle 

velocity v
dx

dt
= ? 

 22. What is the momentum in this case (using the action from Prob. 21)? 

 23. How do the spinors ψµ 
in the RNS formalism transform under Lorentz 

transformations?

In problems 24–26, let Γµ  be a gamma matrix in D = 10 space-time dimensions 
and following the text let Γ Γ Γ Γ11 0 1 9= .

 24. Calculate { , }Γ Γ11
µ . 

 25. Calculate Γ Γ11
0. 
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 26. Find a simple expression for Γ Γ Γ0 0
µ .

 27. What is the unifying principle of supersymmetry?

 28. What characterizes a supersymmetry transformation?

 29. In string theory, there are two general approaches to introducing 
supersymmetry to the theory. What are they?

 30. What are the supersymmetry transformations in the RNS formalism?

In problems 31–33, consider the uppercurrent in the RNS formalism 

J Xa
b

a b= ∂
1

2
ρ ρ ψ µ

µ, where a b, ,= 0 1.

 31. Calculate ∂a
aJ .

 32. Write down “ladder operator” type expressions J J J± = ±
1

2 0 1( ). 

 33. Find equations satisfi ed by J J J± = ±
1

2 0 1( ). 

 34. What are the Ramond boundary conditions? 

 35. What are the Neveu-Schwarz boundary conditions?

 36. What type of space-time states arise from Ramond boundary conditions?

 37. What type of space-time states arise from the NS sector?

 38. What is the Majorana condition?

 39. How does a Majorana-Weyl spinor differ from a general Dirac spinor?

 40. How are the modal expansions for the R sector and NS sector different?

 41. Consider a closed string. If the boundary conditions for left movers and right 
movers are NS and R, respectively, what type of space-time state is described?

 42. Consider a closed string. If the boundary conditions for left movers and right 
movers are both NS, what type of space-time state is described?

 43. Consider a closed string. If the boundary conditions for left movers and right 
movers are both R, what type of space-time state is described?

 44. How are the Virasoro operators Lm of bosonic string theory generalized in the 
RNS formalism?

 45. Consider the operator F dm n m n
n

= ⋅− +∑α  associated with the R sector. Perform 

an explicit calculation to determine the anticommutator { , }F Fm n  in 10 space-
time dimensions. 

 46. Adding supersymmetry to string theory eliminates a lot of particle states. In 
particular, which particle state does it remove which makes bosonic theory 
unstable?

 47. Using the action S
T

d X X i= − ∂ ∂ − ∂∫2
2σ ψ ρ ψα

µ α
µ

µ α
α µ( ), follow the usual 

variation procedure to deduce the equations of motion obeyed by ψ ψµ µ
0 1and .
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 48. Consider the RNS formalism. What condition on the energy-momentum 
tensor would indicate that negative-norm states have been removed from the 
theory?

 49. Calculate [ , ]ρ ρ0 1 .

 50. Let a and b be two Grassman numbers. What is their defi ning characteristic?

 51. Why is the Dirac delta function δ σ σ( )− ′
 
included in the commutation 

relations of string theory?

 52. In conformal fi eld theory, we defi ne the coordinates of the string ( , )τ σ  in terms 
of a complex variable z and its complex conjugate. How can this be done?

 53. If you are given that X w X z w z( ) ( ) ~ log( )− , fi nd 〈 〉−e eikX w ikX z( ) ( ) .

 54. A fi eld φ( )z
 
has conformal weight h and so under z z z→ 1( ) transforms as 

φ φ( ) ( )z z
dz

dz

h

=
⎛
⎝⎜

⎞
⎠⎟1

1 . How does it transform under a second transformation 

z z z z z1 2 1( ) [ ( )]→ ?

 55. By examining its behavior under a conformal transformation, fi nd the 
conformal weight of the bosonic fi eld X µ .

 56. Find the conformal weight of ∂X .

 57. Find the conformal weight of ∂ ⋅∂X X .

 58. Calculate T z T w( ) ( ).

 59. What can you conclude for your result in Prob. 58?

 60. Let θ  be a Grassman variable and defi ne the supersymmetry derivative 
∂
∂

+
∂
∂θ

θ
z

. Find D2. 

 61. Do the Majorana-Weyl fermions ψ µ
−  used in the RNS formalism describe left 

movers or right movers?

 62. What is the normal ordering constant for the R sector?

 63. What is the normal ordering constant for the NS sector? 

 64. Given the winding number n, what is the winding w?

 65. Consider bosonic string theory. If the 25th dimension is compactifi ed, 
what is the winding mode?

 66. How is the level matching condition modifi ed if a single spatial dimension is 
compactifi ed on a circle of radius R?

 67. If a single spatial dimension is compactifi ed on a circle of radius R, what is 
the mass formula for a closed string?
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 68. When a single spatial dimension is compactifi ed on a circle of radius R, there 
are extra terms in the expression used to determine the mass of the state. 
What factors are these? Is the mass increased or decreased?

 69. What is the effect of compactifi cation on the center of mass momentum?

 70. Consider the compactifi cation of a single spatial dimension to a circle of 
radius R and consider the limiting behavior as R → 0. Why do the winding 
states go to the continuum limit?

 71. How does T-duality relate winding and momentum states?

 72. How does T-duality relate distance scales in different theories?

 73. What string theories are related by T-duality?

 74. A certain string theory has orientable strings. What does this mean?

 75. What is the mass of a tachyon state in bosonic string theory?

 76. How is Type I string theory different from all the other superstring theories?

 77. What symmetry groups are associated with heterotic string theory?

 78. How does the Kasner metric describe the behavior of space-time as the 
universe evoles?

 79. What is the effect of the dilaton fi eld on the Kasner metric?

 80. What is the self-dual point?

 81. In the Horava-Witten model, how are the uncompactifi ed dimensions laid 
out?

 82. What condition on the beta function of the dilaton fi eld must be satisfi ed for 
scale invariance?

 83. What property of space-time is implied by conformal invariance as related to 
the dilaton fi eld?

 84. How is the vanishing of the beta function related to general relativity?

 85. Einstein’s relativity allows for the description of “extreme” black holes that 
carry electric charge. How is this extended in string theory?

 86. Let K be the Kaluza-Klein excitation and n the winding number. How 
is a state ( , )K n  in a theory with a compactifi ed dimension of radius R 
transformed under T-duality?

 87. How are the number operators transformed under T-duality?

 88. A state has mass m. How is the mass changed under T-duality?

 89. How are the equations of motion related for the compactifi ed dimension 
under T-duality between a theory and its dual?
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 90. Consider an open bosonic string under a T-duality transformation. What 
happens to the momentum of the dual string along the compactifi ed dimension?

 91. The string momenta along a certain spatial direction are found to be 
fractional. How are the fi elds described in the dual theory?

 92. What type of boundary condition is ∂ ==σ
µ

σ πX 0 0, ? 

 93. In type II A superstring theory, what dimensions are allowed for Dp-branes?

 94. If the value of the fi elds X µ
 are specifi ed on the boundary, what type of 

problem is being posed?

In Probs. 95–96 let D = 10 and suppose that there is a pure electric background 
fi eld F Ei i0 = . 

 95. What is the form of the Born-Infeld action?

 96. What is the maximum value of the electric fi eld?

 97. How is the dilaton fi eld φ  related to string coupling gs?

The fi nal problems will be very challenging for many readers. For problems 
98, 99, and 100, suppose that you have closed strings with periodic boundary 
conditions for µ = 0 1 24, ,...,  but X X s

25 25( , ) ( , )σ τ σ τ= − + . Use the light-cone 
gauge (based on Polchinski 1.9). 

 98. How does the modal expansion change for X 25
 as opposed to the usual 

modal expansion for closed bosonic strings? 

 99. Using Πµ
τ

µ= ∂
+p

X
s

 and ( ) ( )n
n

− = − −
=

∞

∑ θ θ
1

21

24

1

8
2 1  fi nd the hamiltonian 

from H
p

d X Xs i i i is=
′

′ +
′
∂ ∂⎛

⎝⎜
⎞
⎠+ ∫4

2
1

20πα
σ πα

πα σ σΠ Π ⎟⎟ . 

 100. What is the mass spectrum? Note that the level-matching condition is still 
satisfi ed. 



Quiz Solutions

Chapter 1
 1. b  6. a

 2. a  7. c

 3. c  8. b

 4. b  9. c

 5. d 10. a

Chapter 2
 1. Use 

d

d

L

a

L

aτ
∂
∂

⎛
⎝⎜

⎞
⎠⎟ =

∂
∂

.

 2. 
∂
∂

−
∂
∂

=
2

2

2

2
0

X Xµ µ

τ σ
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 3. The Polyakov action is invariant under a Weyl transformation.

 4. h X Xαβ α
µ

β
ν

µνη= ∂ ∂

 5. X x pcm s
µ µ µτ= + 2 2

 6. 
1

2
0

s

α µ

Chapter 3
 1. δ ε ε εαβ α β β α

ρ
αβ ρh h= ∂ + ∂ − ∂

 2. The derivative can be evaluated as follows: 
dp

d
d

dP

d
d

dP

d
P Pµ σ µ

τ
σ µ

τ

µ
τ

τ
σ

τ
σ

σ
σ= = − = = −∫ ∫0 0

1 1

0( ) µµ
τ σ σ( )= 1

 3. Consider 
δ
δφ

δ
δ

δ
δφαβ

αβS S

h

hp p= .

 4. Use T T++ −−= = 0.

 5. ∂ + ∂ = = −∫ ∫τ
τ
µν σ

σ
µν µν

τ
µν

σ
µνσ τJ J J d J d J0, , boosts and rotations

Chapter 4
 1. 0,0

 2. iηµν

 3. 0

 4. 
1

1
′

−
α

( )a

 5. α α δ δm
i

n
j ij

m nm, ,⎡⎣ ⎤⎦ = + 0

 6. α α δ δ α αm
i

n
j ij

m n m
i

n
jm, , ,,⎡⎣ ⎤⎦ = ⎡⎣ ⎤⎦ =+ 0 0

Chapter 5
 1. 0

 2. No, T T z
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az b
T zb a a b( ) ( )( ) =

+
+ +

≠ +
1

1



Quiz Solutions 287

 3. i( )1 1−

 4. 
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Chapter 6
 1. 0

 2. 
3

2 12

2

3
2 3∂ ∂ + −⎛

⎝⎜
⎞
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∂
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Chapter 7
 1. You will need the supplementary boundary condition 

d dσ τ ψ δψ ψ δψ
π

0

2
0∫ ∫−∞

∞

+ − − − + +∂ + ∂[ ] =( ) ( )

 2. i
T

2
ψ ρ ψµ

α
ν .
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 3. J
T

X X X X iα
µν µ

α
ν ν

α
µ µ

α
νψ ρ ψ= ∂ − ∂ +

2
( )

 4. 0

 5. δ ε δβ
α β

µ β
µ

α
β λ

µ λ
µL X X XB = ∂ ∂ ∂ − ∂ ∂

⎛
⎝⎜

⎞
⎠⎟X

1

2
 6. 0

 7. 0

 8. 0

 9. 1

 10. Massless vector boson, spin-3/2 fermion

Chapter 8
 1. 

′ ( ) + =
′ ( ) +

α α
4 4

25 2 25 2
p N p NR R L L

Chapter 9
 1. Use ε θ ε θ

θ
ε ρ θ θα

αQ iA B
A
B B BC C A, ,⎡⎣ ⎤⎦ =

∂
∂

+ ⎡⎣ ⎤⎦ ∂
 2. 0

 3. Γµ

 4. 0

Chapter 10
 1. c

 2. b

 3. a

 4. c

 5. b

 6. d



Quiz Solutions 289

Chapter 11
 1. c

 2. b

 3. b

 4. a

 5. c

Chapter 12
 1. There are eight states, because there are eight transverse directions in space-

time in the light-cone gauge.

 2. These are the 16 states associated with the extra bosonic dimensions.

 3. This keeps them in the left-moving sector.

 4. α α α α δ δm
i

n
j

m
i

n
j

m n
ijm, , ,

⎡⎣ ⎤⎦ = ⎡⎣ ⎤⎦ = + 0 α α δ δm
I

n
J

m n
IJm, ,

⎡⎣ ⎤⎦ = + 0

 5. 0

Chapter 13
 1. φ = ±0 1,

 2. φ φ= = − = ± = >0
3

1
4

3
02 2, ( ), , (m

A
m

A
tachyon nott a tachyon)

 3. φ φ= ±0 0,

 4. φ
φ
α

= = −
′

0
2

2 0,m

 5. The stretching adds an energy 
1

2 0 0′α
α αa a  to the string where 

1

2 20 0
2 1

2

′
=

−
′

⎛
⎝⎜

⎞
⎠⎟α

α α
πα

a a
a ax x

comes from the stretching between the branes.
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Chapter 14

 1. T
mG Q G

r
=

−

+

( )4
2 2

4

22π

 2. T TH≤ =
′

1

4π α
 3. ~ 10 8− K

 4. 2 1068×  years

 5. S Q Q n J= −2 1 5
2π

Chapter 15
 1. F

z

ag Ns

≈
2

 2. It transforms the metric to the anti-de Sitter form 

ds R z dt dx
z

dz2 2 2 2 2
2

21
≈ − −⎡

⎣⎢
⎤
⎦⎥

( ) .

 3. b

 4. c

 5. b

Chapter 16
 1. − = =+ + + −g t tp p pD1 2 1

 2. No, because p
Dj

j

D
2

1

1 1

1
1

=

−

∑ =
−

≠ . If p
Dj =

−
1

1
 for all j, then this is an isotropic 

universe. This shows that the Kasner metric cannot describe an isotropic 
universe if Kasner conditions are applied.

 3. It is necessary to incorporate the fact that we are applying p to all three 
expanding dimensions and q to all n contracting dimensions. So the Kasner 
conditions are − + = + =3 1 3 12 2p nq p nq, .
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 1. P
X X X X X

X X
µ

µ ν
ν

µ

α
ν

β ν
πα

=
′

′ − ′ ′

∂ ∂
1

2

2( ) ( )

det | |

 2. E
l

~
2 ′α

 3. T X X h h X X h∂ ⋅∂ − ∂ ⋅∂{ }+ =µ ν µν
αβ

α β µν
1

2
0( ) Λ

 4. Λ = −( )T
p

2
1

 5. S
T

d X X= − ′∫2
2 2 2σ ( )

 6. P TXµ µ=
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 7. The mass of a closed string must include left movers and right movers. 

Hence it is given by M n n n n
n

2

1

2
=

′
⋅ + ⋅− −

=

∞

∑α
α α α α( ) .

 8. [ , ] ( )L L i m n Lm n m n= − +

 9. L n n
n

0 0
2

1

1

2
= + ⋅−

=

∞

∑α α α

 10. ( )L0 1 0− =ψ

 11. J x p x p i
n n n n n

n

µν µ ν ν µ µ ν ν µα α α α= − − −( )− −
=

∞

∑0 0 0 0
1

1

 12. [ , ]p J i p i p0 0 0
µ ρλ µρ λ µλ ρη η= − +

 13. [ , ]J J i J i J i J i Jµν ρλ µρ νλ νλ µρ νρ µλ µλ νρη η η η= + − −

 14. [ , ]L Jm
µν = 0

 15. ξ ⋅ =k 0

 16. Setting the number of space-time dimensions to D = 26

 17. T T X X T T X X00 11
2 2

01 10

1

2
0 0= = + ′ = = = ⋅ ′ =( ) ,

 18. 
∂
∂

=
X µ

σ
0  at the string endpoints.

 19. p
mx

x x

µ
µ

ν
ν

=
−

 20. Momentum is constant, so pµ = 0.

 21. S m dt v= − −∫ 1 2

 22. p
mv

v
=

−1 2

 23. As space-time vectors

 24. 0

 25. −Γ Γ0
11

 26. Γµ
†
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 27. Supersymmetry is a symmetry that unifi es fermions and bosons.

 28. It takes fermions into bosons and vice versa.

 29. RNS formalism uses worldsheet supersymmetry, while GS formalism uses 
space-time supersymmetry.

 30. 
δ εψ

δψ ρ ε

µ µ

µ α
α

µ

X

i X

=

= − ∂

 31. 0

 32. J X J X+ −= ∂ + ∂( ) = ∂ − ∂( )1

2

1

21 0ψ ψµ
τ σ µ

µ
τ σ µ

 33. ∂ − ∂( ) = ∂ + ∂( ) =+ −τ σ τ σJ J 0

 34. ψ π τ ψ π τµ µ
+ −=( , ) ( , ), periodic boundary condition.

 35. eψ π τ ψ π τµ µ
+ −= −( , ) ( , ), antiperiodic.

 36. Fermions

 37. Bosons

 38. The components of a spinor are real.

 39. They have real components, and have half the number of overall components.

 40. In the R sector, the summation is over integers, in the NS sector it is over 
half integers.

 41. Fermion

 42. Boson

 43. Boson

 44. A fermionic operator is added, as in L L Lm m
B

m
F→ +( ) ( ) .

 45. F F L mm n m n m n, ,{ } = ++ +2 5 2
0δ

 46. The tachyon

 47. ∂ + ∂( ) = ∂ − ∂( ) =τ σ
µ

τ σ
µψ ψ0 1 0

 48. Tαβ = 0

 49. 2 3ρ
 50. They anticommute, that is, ab ba+ = 0.

 51. To ensure that operators do commute at different points σ  along the string.
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 52. τ σ=
+

=
−z z z z

i2 2

 53. ( )w z k− − 2

 54. φ φ→ ( )⎛
⎝⎜

⎞
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⎛
⎝⎜

⎞
⎠⎟z

dz

dz

dz
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h h
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 55. 0

 56. 1

 57. 2

 58. T z T w
D

z w
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∝
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+
26

4

 59. D = 26

 60. 
∂
∂z

 61. Right movers

 62. 0 
63. 1/2

 64. w
nR

=
′α

 65. 
1

2
25 25p p nRL R−( ) =

 66. N N nKR L− =

 67. ′ =
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⎛
⎝

⎞
⎠ + ⎛

⎝
⎞
⎠ + +( ) −α

α
m

nR K

R
N NR L

2
2 2

2 4

 68. Kaluza-Klein excitations and winding increase the rest-energy of the string. 
The mass is increased.

 69. It becomes quantized.

 70. It costs less energy to wrap around the small extra dimension.

 71. The winding states in one theory become the Kaluza-Klein excitations in the 
dual theory, and vice versa.

 72. T-duality relates a small compactifi ed dimension in one theory to a large 
dimension in the dual theory.
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 73. Types II A and II B, and the two heterotic theories.

 74. You can tell direction along the string.

 75. m2 1= − ′/α
 76. It contains open and closed strings, all other superstring theories describe 

closed strings.

 77. There are two theories, one with E E8 8×  and one with SO(32).

 78. The universe expands in n directions but contracts in D-n directions as time 
increases.

 79. It makes contracting and expanding solutions dual to one another.

 80. It defi nes a minimum radius such that Rmin = ′α .

 81. There are two 3-branes separated along a fourth spatial dimension.

 82. βφ → 0

 83. The number of space-time dimensions is 26.

 84. It is equivalent to Einstein’s equation for a scalar fi eld.

 85. Extreme black holes in string theory can have magnetic charge as well.

 86. In a theory with ′ = ′R Rα / , the state is transformed to ( , )n K .

 87. They are unchanged.

 88. The state has the same mass m in the dual theory.

 89. ∂ = ∂ ∂ = −∂+ + − −X X X X25 25 25 25

 90. It vanishes.

 91. The winding numbers are fractional.

 92. Neumann

 93. p = 0 2 4 6 8, , , ,

 94. Dirichlet

 95. S
g

T
d x E T

s

= ⎛
⎝

⎞
⎠ − ( )∫

1

2
1

5
10 2

π

 96. E T= =
′

1

2πα

 97. e
gs

φ =
1



 296 String Theory Demystifi ed

 98. Constant terms x p25 25 0= = , sum over modes goes to sum over half-

integral modes, that is, 
α α α αµ µ µ µ

n n n n

n n n n
→

+
→

+
+ +1 2 1 2

1 2 1 2
/ /

/
,

/
.

 99. H
p p

p p
N N

Di i

n

= +
′

+ −
−

+⎡
⎣⎢

⎤
⎦⎥+ +

=

∞

∑
2

1 3

12

1

241α

 100. ′ = −⎛
⎝

⎞
⎠α m N2 4

15

16
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Critical mass density, 267
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Curved space-time, 3
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tachyons and decay, 235–237

DD coordinates, 224–226
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Decay, D-brane, 235–237
Diffeomorphism, 57–58
Dilaton, 85, 188
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critical

bosonic string theory, 82
RNS superstrings, 149–150

higher, 16–17
spatial, 188

Dirac delta function, 71
Dirichlet boundary conditions
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space-time arena, 223–224
and T-duality, 164

Distinct particles, 156
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EE
E

8
 × E

8 
theory, 192

Einstein fi eld equations, 266
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Ekpyrotic temperature, 276
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Electromagnetic interactions, 8
Electron-positron pair, 7f
Electrons, heavy, 17
Electroweak theory, 232
Endpoints, dual string, 164
Energy-momentum tensor, 3, 52, 106, 136–139
Entropy, 249–253, 257

Equal-time anticommutation relations, 184
Equations of motion

closed strings, 46–47
Euler characteristic, 36–39
light-cone coordinates, 39–43
open strings

with fi xed endpoints, 47–48
with free endpoints, 44–46

overview, 21–22
Poisson brackets, 49
Polyakov action, 36
relativistic point particle, 22–28
for string, 32–35
strings in space-time, 28–32
wave equation solutions, 43–44

Euclidean metrics, 93
Euclidean quantum fi eld theories, 90
Euler characteristic (χ), 36–39
Euler-Lagrange equations, 39, 55
Event horizon, 242
Extremal black hole, 245

FF
Families of particles, 17
Fermion number operators, 148
Fermionic coordinates, 168–169, 176, 184–185
Fermionic fi elds, 116
Fermions, 5, 8, 22, 127, 138. See also RNS superstrings; 

Supersymmetry
Feynman diagram, 6–7
Fiducial metric, 59
Fine structure constant, 11
First quantization, 69
Five-dimensional black holes, 249
Five-dimensional gravity, 257
Fixed point boundary conditions

equations of motion for string, 33
open strings with fi xed endpoints, 47
space-time arena, 223–224
and T-duality, 164

Flat metrics, 59–63
Flatness problem, 267
Fluctuations, brane, 276
Fock space, 76, 197, 201
Force-mediating particles, 127
Fourier expansion, 49
Free endpoint boundary conditions

equations of motion for string, 33
open strings with free endpoints, 44–45
space-time arena, 223
and T-duality, 164

Free point particles, 22–28, 176
Fundamental constants, 11–12
Fundamental particles, 13f

GG
Gamma matrices, 197–198
Gauge freedom, 59
General relativity (GR), 1–3, 240–243
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Generators of conformal transformations, 98–100
Geometry, non-euclidean, 2–3
Ghost number operator U, 117
Ghost states, 115
Ghost vacuum state, 124
Gliozzi-Scherk-Olive (GSO) projection, 148–149, 195
Global internal symmetries, 57
Global symmetries, 53, 131
GR (general relativity), 1–3, 240–243
Grassman coordinates, 168–169, 176, 184–185
Grassman integration, 173–174
Grassman numbers, 132
Gravitational constants, 10
Gravitational fi elds

Einstein’s equation, 3
quantizing, 8–10

Gravitational scalar fi eld, 188
Gravitons, 8–9, 15–16, 85
Gravity

and bosonic string theory, 188
and D-branes, 222
fi ve-dimensional, 257

Green-Schwarz action, 175–179
Ground state

bosonic string theory, 81, 188
D-branes, 228–229

GS formalism, 212
GSO (Gliozzi-Scherk-Olive) projection, 

148–149, 195

HH
Half-integral spin, 22
Hamiltonian, 67
Harmonic oscillator, 76
Hawking, Stephen, 239–240, 244
Heavy electrons, 17
Heterotic string theory

compactifi cation, 216–219
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E

8
 × E
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theory, 192

overview, 187, 207–208
quantized momentum, 216–219
SO(32) theory

action for, 208–209
overview, 192
quantization of, 209–214

spectrum of, 214–216
Hidden brane, 273
Hierarchy problem of particle physics, 273
Higgs boson, 8
Higher dimensions, 16–17
Holographic principle

AdS/CFT correspondence, 257, 260–261
and M-theory, 258–260
overview, 255–257

Holomorphic functions, 97
Homeomorphism, 36–37
Homogeneity, 267
Horizon, 242
Hubble constant, 266, 271

II
Induced metrics, 30–31
Infi nities, 7
Infl ation, 266–268
Instantons, 230
Integral spin, 22
Interactions in particle physics, 6f
Intrinsic distance, 51
Invariant states, BRST, 118–120
IR-UV connection, 261
Isotropic space, 266
Isotropy, 267

JJ
Janna, Levin, 270
Johnson, Clifford V., 237

KK
Kaluza-Klein excitation number, 158
Kappa symmetry, 180
Kasner conditions, 269
Kasner metric, 268–273
Kerr black holes, 243
Klein bottle, 37f
Klein operators, 149

LL
Lagrangian, 26
Large Hadron Collider (LHC), 190
Laws of black hole mechanics, 240, 246–247
Left moving holomorphic functions, 97
Left-moving modes, GS formalism, 212
Left-moving sector, 197, 207
Level matching condition, 84, 157–158
LHC (Large Hadron Collider), 190
Lie algebra, 116
Light-cone coordinates, 39–43
Light-cone gauge, 181–184, 216
Light-cone quantization, 85–87, 115
Local symmetries, 53
Loop integral, 7
Lorentz invariance, 85, 150
Lowercase letters in coordinates, 22
Lowering operators, 78

MM
Majorana condition, 142
Majorana spinors, 130–132
Majorana-Weyl fermions, 209
Majorana-Weyl spinors, 198
Maldacena, Juan, 258
Massive states, 147
Massless spectrum of sectors, 203–204
Massless vector state, 189
Matter particles, 127
Maxwell equations, 54
Measurable observables, 4
Mechanics, laws of black hole, 240, 246–247
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