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Abstract

An explanation of the theory behind signal and image denoising and
compression is presented. Different examples of image and signal denois-
ing and image compression are implemented using MATLAB. Some of their
characteristics are discussed. The project presents other implementations
that were omitted, but we’ll be happy to provide them with the code if
you contact us at jpmadrigalc@unm.edu

1 introduction

1.1 Denoising

It is well known to any scientist and engineer who work with a real world data
that signals do not exist without noise, either negligible or not negligible. How-
ever, there are many cases in which the noise corrupts the signals in significant
manner, and it must be removed from the data in order to proceed with further
data analysis. The process of noise removal is generally referred to as signal
denoising or simply denoising.

Since the 1990s, wavelets have been found to be a powerful tool for remov-
ing noise from a variety of signals (denoising). They allow to analyze the noise
level separately at each wavelet scale and to adapt the denoising algorithm ac-
cordingly. Wavelet thresholding methods for noise removal, in which the wavelet
coefficients are thresholded in order to remove their noisy part, were first intro-
duced by Donoho in 1993.

We consider a Gaussian additive noise model, meaning that if our noisy sig-
nal can be modeled as:

y(t) = x(t) + εµ,σ, (1)

that is, our noisy signal (or image) is composed by a clean image plus some
random noise with mean µ and standard deviation σ. The main idea is then to
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decompose the wave using the DWT. Then we use a threshold for the coefficients
and as such get rid of some of them. After obtaining the coefficients that we
decide to keep, we the reconstruct our image using the IDWT.

1.2 Compression

The goal of compression is to store image data in as little space as possible in
a file. Wavelet compression is a form of data compression well suited for image
compression. Notable implementations are JPEG 2000 and DjVu.

Using a wavelet transform, the wavelet compression methods are adequate for
representing transients, such as percussion sounds in audio, or high-frequency
components in two-dimensional images, for example an image of stars on a night
sky. This means that the transient elements of a data signal can be represented
by a smaller amount of information than would be the case if some other trans-
form, such as the more widespread discrete cosine transform, had been used.

The compression method is as follows. First, we use a wavelet transform. This
will produce as many coefficients as there are pixels in the image. These coeffi-
cients can then be compressed more easily because the information is statistically
concentrated in just a few coefficients. This principle is called transform coding.
After that, the coefficients are quantized and the quantized values are entropy
encoded and/or run length encoded.

A schematic of how the compression works is given by the following image,
taken from MATLAB’s wavelet toolbox user manual:

Figure 1: Schematic of the compression process.
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2 Mathematical Aspects: Wavelets in 2-D:

Analogous to the one dimensional case, we have two-dimensional wavelets. As
in the one dimensional case, we want to show that they form a complete or-
thonormal basis for L2(R2).

2.1 Proof that {ψn,m} is an orthonormal basis in L2(R2).

Let ψn,m,j,k(x)(y) := ψm,k(x)ψm,j(y), where n,m, j, k ∈ Z. We know that
ψn,k(x) forms an orthonormal basis in L2(R). Thus we need to show that
ψn,m,k,j(x)(y) forms an orthonormal basis in L2(R2). Note that we can skip the
k, j notation since unless we are on the same support, i,e, for some k, k′, j, j′

such that k = k′ and j = j′,

〈ψn,m,k,j , ψp,q,j′,k′〉 = 0,

always! Thus we want to show that given a f ∈ L2(R2),

f(x, y) =
∑
n∈Z

∑
m∈Z
〈f, ψn,m〉ψn,m(x, y),

where ψn,m(x, y) = ψn(x)ψm(y).

Define f(x, y) := fx(y). We start by fixing an x ∈ R. Note that since f ∈ L2(R2)
then f(x, y) = fx(y) ∈ L2(R). for almost every x ∈ R. Let

fx(y) =
∑
n∈Z
〈fx, ψm〉ψm(y). (2)

=⇒ f(x, y) =
∑
n∈Z
〈fx, ψm〉ψm(y), (3)

(4)

where the last equality is made in the L2(R) sense. Moreover, let

Fm(x) = 〈fx, ψm〉 =

∫ ∞
−∞

f(x, z)ψm(z)dz ∈ L2(R), since f ∈ L2(R2). (5)

Moreover, since ψn(x) is a basis in L2(R) and fm(x) ∈ L2(R), we have that

Fm(x) =
∑
n∈Z
〈Fm, ψn〉ψn(x). (6)

We need to show that Fm(x) ∈ L2(R). To do so we compute
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||Fm||2 =

∫ ∞
−∞
|Fm(x)|2dx =

∫ ∞
−∞
|
∫ ∞
−∞

f(x, z)ψm(z)dz|2dx (7)

≤
∫ ∞
−∞

(∫ ∞
−∞
|f(x, z)|2dz

∫ ∞
−∞
|ψm(z)|2dz

)
dx (8)

=

∫ ∞
−∞

∫ ∞
−∞
|f(x, z)|2dzdx = ||f(x, z)||2 <∞, (9)

=⇒ Fm(x) ∈ L2(R), (10)

where we used Cauchy-Schwarz from equation (7) to equation (8) and equation
(8) is true because ||ψm|| = 1.

Also, note that

〈Fm, ψn〉L2(R) =

∫ ∞
−∞

Fm(x)ψn(x)dx = (11)∫ ∞
−∞

∫ ∞
−∞

f(x, z)ψm(z)ψn(x)dzdx, (12)

where we used Foubini’s theorem between (11) and (12) Thus

f(x, y) =
∑
m∈Z

(∑
n∈Z
〈Fm, ψn〉L2(R)ψn(x)

)
ψm(y) (By eq. (6)) (13)

=
∑
m∈Z

∑
n∈Z
〈f, ψmψn〉L2(R2)ψn(x)ψm(y) (14)

=
∑
m∈Z

∑
n∈Z
〈f, ψn,m〉L2(R2)ψm,n(x, y) (15)

(16)

=⇒ ψm,n(x, y) is a complete system in L2(R2).

Thus having show that it is indeed a basis, we want to show that it’s also
orthonormal, i.e,

〈ψn,m, ψp,q〉 = δ(p,q),(n,m). (17)

To do so consider

〈ψn,m, ψp,q〉 =

∫ ∞
−∞

∫ ∞
−∞

ψp(x)ψq(y)ψn(x)ψm(y)dxdy (18)

=

∫ ∞
−∞

ψq(y)ψm(y)

(∫ ∞
−∞

ψp(x)ψn(x)dx

)
dy (19)

=

∫ ∞
−∞

ψq(y)ψm(y)δp,ndy = δp,n

∫ ∞
−∞

ψq(y)ψm(y)dy (20)

= δp,nδq,m = δ(p,q),(n,m) (21)
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Therefore, we have that {ψn,m} is an orthonormal basis in L2(R2).

2.2 Proof that they form an Orthogonal MRA

Let Vj = vj ⊗ vj . Naturally, this means that Vj+1 = vj+1 ⊗ vj+1. We want to
show Vj ⊆ Vj+1. We assume that we are in an FIR. Thus it is sufficient to show
that the basis elements of Vj are in Vj+1.

Let’s examine the basis elements of Vj .

Vj = span{φj,k(x)φj,n(y)} = span{φj,k(x)φj,n(y)} (22)

= span{φj,k,n(x, y)} = {
∑
n∈Z

∑
k∈Z

aj,k,nφj,k,n(x, y)|
∑
n∈Z

∑
k∈Z
|aj,k,n|2 <∞}. (23)

Where the right hand side of (22) is closed since we have all possible products
here, including the limit of sequences. Moreover, we have that φj,k,b(x, y) are
the basis elements.

Without loss of generality, we assume that j = 0, otherwise the arguement
is identical but the notation might vary slightly. As we know, the scaling func-
tions in 1-D were φ(x) and φ(y). We define our scaling function in 2-D as
φ(x, y) := φ(x)φ(y). Clearly, since φ(x), φ(y) ∈ V0, then φ(x, y) ∈ V0 ⊗ V0.

Recall that φj,n(x) = 2J/2φ(2Jx− n). This in turn implies that

φj,n,k(x, y) = 2Jφ(2Jx− n)φ(2Jy − k) = 2Jφ(2jx−m, 2Jy − k) (24)

=⇒ φ0,n,k(x, y) = φ(x− n, y − k), (25)

for j = 0. We thus need to show that φ0,n,k(x, y) ∈ V1 ⊗ V1. Recall that
{φ0,n(x)} is an orthonormal basis for V1 and that the set of scaled-translates
of φ(2x), {21/2φ(2x − n)} form an orthonormal basis for V1. Thus a basis for
V0 ⊗ V0 is given by

{φ1,k(x)φ1,n(y)} = {φ1,n,k(x, y)} = {2φ(2x− n, 2y − k)} (26)

Thus, we need to show that

φ(x− n, y − k) = 2
∑
p∈Z

∑
q∈Z

hp,qφ(2x− p, 2y − p)
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, which is a finite sum since we assumed that we had an FIR. Thus, φ(x) =
φ0,0(x) =

∑
p∈Z hpφ1,p(x) is a finite sequence. This in turn implies that

φ0,n(x) = φ(x− n) =
∑
p∈Z

hpφ1,p(x− n) =
∑
p∈Z

hp2
1/2φ(2(x− n)− p) (27)

=
∑
p∈Z

hp2
1/2φ(2x− (2n+ p)). Let r = 2n+ p =⇒ p = r − 2n (28)

∑
r∈Z

hr−2nφ(2x− r) =
∑
r∈Z

hr−2nφ1,r(x) (29)

=⇒ φ0,n(x) =
∑
r∈Z

hr−2nφ1,r(x). (30)

Similarly, φ0,k(x) =
∑
s∈Z hs−2kφ1,s(y), which implies that

φ0,n,k(x, y) = φ0,n(x)φ0,k(y) =
∑
r∈Z

∑
r∈Z

hr−2nhs−2kφ1,r(x)φ1,s(y) (31)

=
∑
r∈Z

∑
r∈Z

hr,s,n,kφ1,r,s(x, y) (32)

=⇒ φ0,n,k ∈ V1 ⊗ V1. (33)

Now let’s show that the orthogonal complement of Vj is Wj . Note that the rules
of arithmetic hold for direct sums and tensor products.

Vj+1 = vj+1 ⊗ vj+1 = (vj ⊕ wj)⊗ (vj ⊕ wj) (34)

= (vj ⊗ vj)⊕ ((vj ⊗ vj)⊕ (vj ⊗ wj)⊕ (wj ⊗ vj)⊕ (wj ⊗ wj)) (35)

= (vj ⊗ vj) ((vj ⊗ wj)⊕ (wj ⊗ vj)⊕ (wj ⊗ wj)) (36)

Vj ⊕Wj . (37)

Since Wj is the direct sum of three tensor products we need three wavelets to
span the detail space. We need one to span Vj , thus, we need four in total:

for (vj ⊗ vj) =⇒ ϕ(x)ϕ(y) (38)

for (vj ⊗Wj) =⇒ ϕ(x)φ(y) (39)

for (Wj ⊗ vj) =⇒ φ(x)ϕ(y) (40)

for (Wj ⊗Wj) =⇒ φ(x)φ(y). (41)

Define the Haar basis in 2D, ϕ(x, y) = χ[0,1]2(x, y) = χ[0,1](x)χ[0,1](y). The two
dimensional MRA process is given by:
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Figure 2: 2D Haar
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Figure 3:

2.3 Fast Wavelet Transform

The Fast Wavelet Transform is a mathematical algorithm designed to turn a
waveform or signal in the time domain int o a sequence of coefficients based
on an orthogonal basis of small finite waves, or wavelets. The transform can
be easily extended to multidimensional signals, such as images, where the time
domain is replaced with the space domain.

It has as theoretical foundation the device of a finitely generated, orthogonal
multiresolution analysis (MRA). In the terms given there, one selects a sampling
scale J with sampling rate of 2J per unit interval, and projects the given signal
f onto the space VJ ; in theory by computing the scalar products

s(J)n = 2J〈f(t), φ(2J t− n)〉. (42)

where φ is the scaling function of the chosen wavelet transform; in practice by
any suitable sampling procedure under the condition that the signal is highly
oversampled, so
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PJ [f ](x) =
∑
n∈Z

s(J)n φ(2Jx− n)

is the orthogonal projection or at least some good approximation of the orig-
inal signal in VJ . The MRA is characterized by its scaling sequence a =
(a−N , . . . , a0, . . . , aN ) and its wavelet sequence b = (b−N , . . . , b0, . . . , bN ) (some
coefficients might be zero). Those allow to compute the wavelet coefficients

d
(k)
n , at least some range k = M, ..., J − 1, without having to approximate the

integrals in the corresponding scalar products. Instead, one can directly, with
the help of convolution and decimation operators, compute those coefficients
from the first approximation s(J).

2.3.1 Mallat’s Algorithm

In 1988, Mallat produced a fast wavelet decomposition and reconstruction algo-
rithm. The Mallat algorithm for discrete wavelet transform (DWT) is, in fact,
a classical scheme in the signal processing community, known as a two-channel
subband coder using conjugate quadrature filters or quadrature mirror filters
(QMFs). Denote Ai and Di as the ith approximate and detailed coefficients
respectively.

1. he decomposition algorithm starts with signal s, next calculates the coor-
dinates of A1 and D1, and then those of A2 and D2, and so on.

2. The reconstruction algorithm called the inverse discrete wavelet transform
(IDWT) starts from the coordinates of AJ and DJ , next calculates the
coordinates of AJ−1, and then using the coordinates of AJ1 and DJ1

calculates those of AJ2, and so on. More precisely, the algorithm is given
by

Figure 4: Schematic of Mallat’s algorithm.

3 Introduction to MATLAB’s Wavelet Toolbox

MATLABhas its own in-built functions to apply wavelets to signals, images, etc.
Moreover, they also include an app that implements these functions, but we
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found out that it is usually more efficient and easier to generalize to just use
the inbuilt functions and write the script. A good source of information for the
Wavelet toolbox app can be found at https://www.mathworks.com/help/wavelet/index.html.
The wavelet toolbox includes different wavelets to work with. Among them are
Haar, Doubechies, symlets (almost symmetric wavelet), and many more. Some
of these wavelets and their scaling functions look like the following picture:

Figure 5: Graph of different wavelets used throughout the project

In order to find more information on these wavelets, we just need to type
waveinfo from the MATLABcommand bar. We now show the codes that we used
for the project.

3.1 Codes for the 1D Case

The code for the one dimensional denoising is fairly simple. It just consist
of the MATLABfunction XD=wden(X,TPTR,SORH,SCAL,N,WNAME) , which returns a
denoised version XD of the input signal X obtained by thresholding the wavelet
coefficients. TPTR is the threshold selection rule specified as a string, SORH
specifies soft or hard thresholding with ’s’ or ’h’. SCAL defines the type
of threshold rescaling N is the level of the wavelet transform and WNAME is the
wavelet (i.e, Haar,. . . ). An implementation of this code is as follows:

Listing 1: Implementation of Signal Denoising

1 %let yn be a noisy signal; audio , electric ,
etc.

2 %wden performs the denoising
3 yden = wden(yn,’rigrsure ’,’s’,’mln’,4,’sym4’

);
4 %plots the results
5 figure (121)
6 plot(yn); title(’noisy signal ’);
7 figure (122)
8 plot(yn); title(’denoised signal ’);

10



3.2 Codes for the 2D Case

The code for two dimensional case is a little more complicated. Initially, we
want to convert our image into a matrix, which is done by the MATLABcommand
I=imread(’name of file.ext’). After doing this, we convert our image into
gray scale by using I=rgb2gray(I). After loading and processing our image, we
obtain the decomposition coefficients by [C,S] = wavedec2(J,level,wname),
which corresponds to a wavelet packet decomposition of the matrix X, at level
N, with a particular wavelet. We then use thr = wthrmngr(’dw2ddenoLVL’,...
’penalhi’,C,S,1) in order the obtain the threshold, and, finally, we use
[XDEN,cfsDEN,dimCFS] = wdencmp(’lvd’,C,S,wname,level,thr,sorh) in order
to perform the denoising. A script for the implementation is given by:

Listing 2: Implementation of Image Denoising

1 %loads a noisy picture
2 J=imread(’noisy.png’);
3 level = 10;
4 %converts it to gray scale
5 J=rgb2gray(I);
6 %Let ’s make it noisy (Gaussian white noise)
7 %obtain the wavelet transform
8 %of a noisy
9 %image down to level 5 using a

10 %biorthogonal spline wavelet.
11 wname = ’haar’;
12 level = 10;
13 [C,S] = wavedec2(J,level ,wname);
14

15 % to see other wavelets that can be called uncomment
"

16 % help waveinfo
17

18 %Obtain denoising (wavelet shrinkage) thresholds.
Use the Birge -Massart strategy with a tuning
parameter of 3.

19 thr = wthrmngr(’dw2ddenoLVL ’,’penalhi ’,C,S,1);
20 sorh = ’s’;
21 %Performs the denosing.
22 [XDEN ,cfsDEN ,dimCFS] = wdencmp(’lvd’,C,S,wname ,level

,thr ,sorh);

3.3 Compression

The compression algorithm is fairly similar to the image denoising algorithm.
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1. Do the 2-dimensional wavelet composition using [c l] = wavedec2(x,n,w)

2. Perform the compression using
[xd,cxd,lxd,perf0,perfl2] = wdencmp(opt,c,l,w,n,thr,sorh,keepapp);

When implemented, this code looks like

Listing 3: Implementation of Image Compression

1 [xx,map] = imread(’audrey.jpg’) ; %reads Image
2 xx=rgb2gray(xx);% Makes Image in grayscale
3 colormap(map)
4 n = 5; % Decomposition Level
5 w = ’sym8’; % Near symmetric wavelet
6 [c l] = wavedec2(xx,n,w); % Multilevel 2-D wavelet

decomposition.
7 %he WDENCMP function performs a compression process

from the wavelet decomposition structure [c,l]
of the image.

8 %Does Various compressions with different thresholds
9 for i=1:5

10 opt = ’gbl’; % Global threshold
11 thr = 200*i; % Threshold
12 sorh = ’h’; % Hard thresholding
13 keepapp = 1; % Approximation coefficients cannot be

thresholded
14 [xd,cxd ,lxd ,perf0 ,perfl2] = wdencmp(opt ,c,l,w,n,thr ,

sorh ,keepapp);
15 colormap(map)
16 %plot results in same figure
17 subplot(3,2,i),imshow(xd,map)
18 title([’Compressed. Threshold = ’ num2str (200*i)])
19 colormap(map)
20 end
21 subplot (3,2,6), imshow(xx, map)
22 title(’Original Image’)

4 Implementations

4.1 One Dimensional Signals

We know put our knowledge into use. Let’s start by considering a simple ex-
ample: a signal with some noise associated to it. We use a symlet as well as
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Figure 6: First example: a bumpy signal denoised by a symlet, using both a
soft threshold (bottom right) and a hard threshold (bottom left)

As we can see from Figure 6, the soft threshold seems to work better than a
hard threshold. Moreover, note that not all the noise was able to be eliminated
from the signal, which is something that we should expect. Note that this is
the case for a symlet, which is way smoother than, say, the Haar wavelet. Had
we used this wavelet the denoised version would not have been very smooth, as
we can see in Figure 7 bellow

Figure 7: Note how this figure is far less smooth than the bottom two picfure
on Figure 7

We continue our application of signal denoising and now consider a real world
example: an electrocardiogram (ECG). In practice, physicians are interested in
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finding 4 peaks denoted by PQRS, which denote the phases of the heartbeat1.
We obtained a raw signal for the ECG. Given their electronical characteristics,
these devices tend to be somewhat sensitive to noise. Performing a denoising on
the raw signal using a symlet and a soft thresholding we get that the constrat
between the raw and denoised signal is given by Figure 8:

Figure 8: We can see the noisy signal (gray) and the denoised signal. As we can
see, there’s no much information that can be obtained from the noisy signal!

Moreover, doing the same denoising but with other wavelets yields Figure
9. From this figure we can see how different wavelets behave for the same task.
Note again that the Haar wavelet is much less smooth than Daubechis and the
Biorthogonal.

Figure 9:

Let us now consider 2 dimensional denoising on Images.

4.2 Two-Dimensional Denoising

We are now interested in showing the denoising results for 2 dimensional sig-
nals, i.e, images. Let’s start with a (rather unpleasant) example. Consider the
following noise image:

1see http://www.practicalclinicalskills.com/reading-ekg
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Figure 10: A picture of the president-elect on a rather windy day.

If we denoise the image using a bi-orthogonal wavelet and a soft thresholding,
we obtain the following:

Figure 11: Comparisson between noisy, denoised and original..

Note from Figure 11 even thought the noisy image looks good, some infor-
mation is lost while denoising it, which makes it seem blurry. Again, comparing
against a denosing made with Haar wavelet we get the following:
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Figure 12: Trump denoised using a Haar transform.

As we can see from Figure 12, it is almost impossible to distinguish the
denoised picture, and as such, the denoising procedure creates a more cryptic
image than the noisy one (although noise-free). Denoising with a variety of
wavelets on a picture that has both more resolution and more contrast is shown
in the next page.

16



Haar Daubechis Symlet

Biorthogonal Rev. Biorth Disc Meyer

Fejer-Korovkin Original Image Noisy Image



Note that the Haar and Daubechis wavelet become somewhat pixelated.
Moreover, note that, while the more complicated waves (such as the bi-orthogonal)
get really similar to the original image, they loose a little bit of contrast with
respect to the original picture. This is more evident in the carpeted part of the
picture.

Finally, this can also be applied to videos, because videos are nothing else but
a collection of images, thus, if we manage to extract the frames of the video
(about 30 to 60 pictures per second of video), we can denoise them individually
and as such clean a video. moreover, if we extract the sound file of the video,
we can also denoise this, By using it as a one dimensional signal. All of this can
be done using MATLABand the methods described in section 3!

4.3 Image Compression

Consider the following image to which we will perform compression with differ-
ent threshold

Figure 13: Image from the MATLAB.
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Figure 14: Different thresholding levels

Now, let’s consider a different picture with a higher resolution.

Figure 15: A higher resolution picture of Audrey Hepburn.

Compressing this image for higher thresholding values we get that
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Figure 16: Compression for different threshold levels.
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