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ABSTRACT

Three-dimensional velocity models for the basins along the coast of Washington and in
Puget Lowland provide a means for better understanding the lateral variations in strong ground
motions recorded there. We have compiled 16 sonic and 18 density logs from 22 oil test wells to
help us determine the geometry and physical properties of the Cenozoic basins along coastal
Washington. The depth ranges sampled by the test well logs fall between 0.3 and 2.1 km. These
well logs sample Quaternary to middle Eocene sedimentary rocks of the Quinault Formation,
Montesano Formation, and Hoh rock assemblage. Most (18 or 82%) of the wells are from Grays
Harbor County, many of these are from the Ocean City area. These Grays Harbor County wells
sample the Quinault Formation, Montesano Formation, and frequently bottom in the Hoh rock
assemblage. These wells show that the sonic velocity and density normally increase significantly
across the contacts between the Quinault or the Montesano Formations and the Hoh rock
assemblage. Reflection coefficients calculated for vertically traveling compressional waves from
the average velocities and densities for these units suggest that the top of the Hoh rock
assemblage is a strong reflector of downward propagating seismic waves: these reflection
coefficients lie between 11 and 20%. Thus this boundary may reflect seismic energy upward and
trap a substantial portion of the seismic energy generated by future earthquakes within the
Miocene and younger sedimentary basins found along the Washington coast.

Three wells from Jefferson County provide data for the Hoh rock assemblage for the
entire length of the logs. One well (Eastern Petroleum Sniffer Forks #1), from the Forks area in
Clallam County, also exclusively samples the Hoh rock assemblage. This report presents the
locations, elevations, depths, stratigraphic and other information for all the oil test wells, and
provides plots showing the density and sonic velocities as a function of depth for each well log.
We also present two-way travel times for 15 of the wells calculated from the sonic velocities.
Average velocities and densities for the wells having both logs can be reasonably well related
using a modified Gardner’s rule, with p = 1825v"*, where p is density in kg/m® and v is the sonic
velocity in km/s. In contrast, a similar analysis of published well logs from Puget Lowland is
best matched by a Gardner’s rule of p = 1730v"*, close to the p = 1740v" proposed by Gardner
etal. (1974).

Finally, we present laboratory measurements of compressional-wave velocity, shear-
wave velocity, and density for 11 greywackes and 29 mafic rocks from the Olympic Peninsula
and Puget Lowland. These units have significance for earthquake hazard investigations in Puget
Lowland as they dip eastward beneath the Lowland, forming the “bedrock” beneath much of the
lowland. Average Vp/Vs ratios for the mafic rocks, mainly Crescent Formation volcanics, lie
between 1.81 and 1.86. Average Vp/Vs ratios for the greywackes from the accretionary core
complex in the Olympic Peninsula show greater scatter but lie between 1.77 and 1.88. Both the
Olympic Peninsula mafic rocks and greywackes have lower shear-wave velocities than would be
expected for a Poisson solid (Vp/Vs=1.732). Although the P-wave velocities and densities in the
greywackes can be related by a Gardner’s rule of p = 1720v", close to the p = 1740v"* proposed
by Gardner et al. (1974), the velocities and densities of the mafic rocks are best related by a
Gardner’s rule of p = 1840v"*. Thus, the density/velocity relations are similar for the Puget
Lowland well logs and greywackes from the Olympic Peninsula. Density/velocity relations are
similar for the Washington coastal well logs and mafic rocks from the Olympic Peninsula, but
differ from those of the Puget Lowland well logs and greywackes from the Olympic Peninsula.



INTRODUCTION

We present data from 16 sonic and 18 density logs from 22 oil test wells to categorize the
sonic velocities and densities of Cenozoic sedimentary basins in coastal Washington (Fig. 1).

We also present laboratory measurements of compressional-wave and shear-wave
velocities for 40 basement rocks outcropping in the Olympic Peninsula and Puget Lowland.
These measurements were made on twenty-nine mafic rocks (mainly Crescent Formation
volcanics) and eleven greywackes at room temperatures and confining pressures up to 1000 MPa
(10 Kbar). These measurements represent the first laboratory measurements of the shear-wave
velocities for these important bedrock units.

We use these well log and laboratory measurements to examine velocity-density
relationships for rock suites found in coastal Washington, the Olympic Peninsula, and Puget
Lowland. For two of the suites of rocks investigated here, we note significant departures of these
measurements from the density/velocity relationship proposed for sedimentary rocks by Gardner
etal. (1974).

Finally, we use the average velocity and densities determined for sedimentary units in
coastal Washington (the Quinault and Montesano Formations and the Hoh rock assemblage) to
obtain estimates of the average seismic reflection coefficients in the sedimentary basins found
along the coast of Washington. These estimates suggest that seismic waves might be efficiently
trapped in the basins during future large earthquakes in the Pacific Northwest, enhancing the
ground motions for the basins relative to nearby bedrock sites.

WELL LOG ANALYSIS

We first report the new sonic and density logs for the 22 oil test wells along coastal
Washington. The locations, elevations, and depths of the wells, as well as the operator, lease
name, well number, and completion year are presented in Table 1: the wells in this table are
ordered by latitude from south to north. The well information in Table 1 is taken from the Well
History Control System (WHCS) One-line File, an on-line digital well-log database leased from
Petroleum Information by the USGS Office of Energy Resources at Denver. Table 1 provides
information on the type of sonic and density tool used to make the log, as well as the other tools
which were run simultaneously with these tools (normally caliper, spontaneous potential, and
gamma-ray). Only a few of the sonic logs were made with older, short tools, with short spans
between the source and receivers. Stratigraphic control is available for 21 of the 22 wells [Rau
and McFarland, 1982; Palmer and Lingley, 1989].

Sonic and density logs were hand digitized at non-uniform intervals between 0.3 and 30
m to capture the significant variations of the logs with depth for frequencies up to 20 Hz. The
average sampling interval was 1 to 3 m. The sampling interval was adequate to estimate linear
trends in the data over these intervals. We note that our sampling interval was not intended and
is not sufficiently dense for the calculation of high-frequency (say >50 Hz) synthetic
seismograms. For higher-frequency synthetics, it will be necessary to redigitize the logs with a
finer sampling interval.

For the sonic logs, we picked transit times (us/ft) as a function of depth down the well.
For the gamma-gamma density logs, we picked bulk density in kg/m’ as a function of depth
down the well. For the neutron density porosity logs, we converted the logged density porosity
(¢) to formation density (pg) using Py = P + (Ps - Pw)P, Where the matrix density p,, = 2650
kg/m’, and the fluid density p; = 1000 kg/m’ [Ellis, 1987]. All of the logs analyzed here are
plotted at a scale of 30.49 m:5.08 cm (100 feet:2.5 inches) or 30.49 m:2.54 cm (100 feet:1 inch).
Depths are measured from an arbitrary reference datum, normally the Kelley Bushing (KB),
located 3.65 m (12 feet) above ground level. The downhole depths reported here have not been
corrected for this small upward shift. Cased intervals of the wells and sections identified on the
logs as having cycle skipping problems were not digitized. In some cases data from the logs
were ignored: these data were associated with washouts, thick mudcake, invasion of drill fluids
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or large deviations from the general trend of density and sonic values having very limited depth
extent, generally less than a few meters [Ellis, 1987]. The digitized sonic log data were
converted from transit times to velocities (m/s) and depths from feet to meters for both the sonic
and density logs. Plots are presented in Figures 2 to 11 showing seismic velocities and densities
as a function of depth for each well.

We have calculated two-way travel times from the sonic logs and displayed these in
Figures 12 to 15. This calculation required us to extrapolate sonic velocities to the surface. In
one case, Belco Petroleum Corp. Milwaukee Land 1-1, the depth to the first measured sonic
velocity was judged to be too great to extrapolate the sonic velocity to the surface.

BOREHOLE LITHOLOGIES
The following discussion of the borehole lithologies (Table 2) is summarized from Rau
and McFarland (1982) and Palmer and Lingley (1989), who described the lithologies in the wells
reported here. The reader is referred to these references for a more detailed discussion of the

units sampled in the boreholes.

Hoh rock assemblage

The Hoh rock assemblage is composed of middle Eocene to middle Miocene, deep-water
marine rocks thought to have been accreted to North America during the subduction process.
Many of these rocks are turbidites and are mainly greywacke clastic sedimentary rocks. In the
Forks area, most of the Hoh rock assemblage consists of thick sequences of siltstone, claystone,
and sandstone. Alternations of these lithologies may explain the undulations observed in sonic
and density logs of this formation.

Quinault and Montesano Formations

The Quinault Formation rests unconformably on the Hoh rock assemblage. Rau and
McFarland (1982) discuss the uncertainty in the age of this unit, which includes late Miocene
and Pliocene members. Rau and McFarland (1982) use the Quinault Formation for the
sedimentary rocks of this age lying unconformably on the Hoh rock assemblage. Bergen and
Bird (1972) and Palmer and Lingley (1989) believe most of these rocks to be late Miocene in age
and refer to them as the Montesano Formation. Palmer and Lingley (1989) group rocks above
the Montesano Formation and call them undifferentiated Quaternary deposits and Quinault
Formation. For four of the Ocean City wells studied here we show the Montesano Formation as
described by Palmer and Lingley (1989); for the remainder of the 22 wells we follow the
formation identification provided by Rau and McFarland (1982).

From top to bottom the Montesano Formation contains a thick siltstone, sandstone, and
claystone member. Similarly, the Quinault Formation identified by Rau and McFarland (1982)
has claystone, sandstone, and siltstone members, which have fairly distinctive signatures in the
sonic and density logs.

Quaternary Deposits

Few, if any, of the well logs sample Quaternary deposits, which are inferred to overlie the
sampled units. The Shell John’s 1-15 and Shell Sampson Johns OCA 2-15 wells may sample
Quaternary deposits at the tops of the logs, but the available formation identifications are not
definitive (Table 2).



COMMENTS ON THE WELL LOG DATA

We superimposed the formation tops from Table 2 onto the well logs shown in this
report. Often these formation contacts correspond to significant changes in the sonic velocity
and density, and/or in the character of these logs.

In Table 3 we show average velocities and linear regressions over intervals corresponding
to known or inferred formations. Similar averages and linear regressions on the density log data
are shown in Table 4. As anticipated, average sonic velocities (generally 1400 to 2000 m/s) and
densities (2000 kg/m”) in the Quaternary deposits are significantly lower than those of
underlying Tertiary sedimentary rocks (Tables 3 and 4). The contact between the Hoh rock
assemblage and overlying Tertiary sedimentary rocks represents a large (about 0.3 km/s)
increase in sonic velocity (Table 3).

Hoh rock assemblage

Long sections of the Hoh rock assemblage were logged at three wells near Joe Creek in
Greys Harbor County as well as at four northernmost wells analyzed in this study (Figures 1, 10,
and 11). In the Joe Creek area (Figure 1; T20N, R12W), the well logs show a substantial
decrease in density and sonic velocity at a depth of about 1000 m (3280 ft). The logs for the four
northernmost wells in Jefferson and Clallam Counties (Figure 10) show more minor variations
with depth, particularly with respect to the density. The high scatter in sonic velocities in the
Belco Petroleum Milwaukee Land 1-1 well (Figure 10) are due to cyclic skipping. Density logs
for the El Paso Lacey No. 22-1 and Belco Petroleum Milwaukee Land 1-1 wells show a well-
defined increase in density with depth (Figure 10).

Quinault and Montesano Formations

The Quinault Formation is characterized by low sonic velocities and densities. Sonic
velocities generally lie between 2 and 2.5 km/s; densities generally lie between 2100 and 2300
kg/m’. In many of the wells there is a distinctive unit within the Quinault Formation that is
typified by rapid fluctuations in sonic velocity and density. This unit contains pebbles in a
sandstone matrix. The rapid fluctuations in the logs are caused by sampling the higher sonic
velocities and densities of the pebbles versus the lower-velocity and lower density matrix. This
conglomeratic unit is especially well developed in Shell OCA Hogan #1-13 (Figure 2), but is
also seen in the Shell Hogan #1-8 (Fig. 2), Shell Grays Harbor Co. OCA #1-11 (Fig. 3), Shell
Ocean City Land Development Co. #1-14 (Fig. 3), Shell Sampson Johns OCA #2-15 (in the
Montesano Formation) (Fig. 4), Shell Luse #1-23 (Fig. 5), and Shell Grays Harbor Co. #1-35
(Fig. 7) wells.

Within the Quinault and Montesano Formations, the claystone member generally has the
lowest velocities and densities and the sandstone member generally has the highest velocities and
densities. The low densities and sonic velocities of the claystone member of the Quinault
Formation are well displayed at the Shell Ocean City Land Development Co. #1-14 well (Figure
3). The higher seismic velocities and densities of the sandstone member are typified by the Shell
John’s #1-15 and Shell Sampson Johns OCA #2-15 wells (Figure 4).

Quaternary Deposits

Only the Shell John’s 1-15 and Shell Sampson Johns OCA 2-15 wells may sample
Quaternary deposits at the tops of the logs (Figure 4). In these wells undifferentiated Quaternary
deposits and Quinault Formation have velocities between 1.5 and 2.0 km/s (Figure 4). The
higher velocities in the John’s #1-15 well at about 300 m depth correspond to a pebbly sandstone



member, most likely of the Quinault Formation (Rau and McFarland, 1982). No density logs
were made for these intervals.

TRAVEL TIME CURVES

Individual travel time curves calculated for the wells having sonic well logs are shown in
Figures 12 to 15. The calculated travel time curves are summarized in Figure 15. For the
majority of the wells the curves plot closely together and nearly intersect the 1 second mark at a
depth of 1000 m, consistent with an average velocity of 2 km/s to this depth. One curve, for the
Shell-Minard 1-34 well, yields consistently larger travel times, consistent with its lower velocity
(Figure 15). Both the travel time curve and sonic velocities are anomalous at the Shell-Minard
1-34 relative to nearby sites. The sonic log at Shell-Minard 1-34 was not compensated, and it
may be possible that the sonic velocities measured there are systematically too low. [An
alternative explanation is that the interval transit time scale was incorrectly read for this well.]

In contrast to these wells in Grays Harbor County, the travel time curves calculated for
the Hoh River Barlow No. 1 (Figure 15) and Humble Oil Ollar State No. 1 (Figure 14) wells
yield smaller travel times at all depths sampled. These smaller travel times are consistent with
the higher sonic velocities found in the wells associated with the Hoh rock assemblage.

LABORATORY MEASUREMENTS

Laboratory determined velocities for 40 basement rocks outcropping in the Olympic
Peninsula and Puget Lowland provide the first measurements of shear wave velocities for the
Crescent Formation volcanics and greywackes in the Olympic accretionary core complex (Figure
16). Brocher et al. [2001] showed the compressional-wave velocity as a function of confining
pressure for these rocks, but did not present the shear-wave velocity information, nor did they
describe the variability of the measurements (summarized by Tables 5 to 12).

The eleven greywackes were taken from the accretionary wedge of the Olympic core
complex; the 29 mafic samples are mainly basalts from the Crescent Formation (Figure 16).
Mafic samples OL-10 and OL-15 represent gabbros within the Crescent Formation; the other
mafic samples are basalts. Samples were field oriented by their bedding and flow structure.
Velocities were measured in a hydrostatic pressure apparatus at room temperature using a pulse
transmission technique described by Christensen [1985]. The laboratory data in Tables 5-12 and
Figures 17 and 18 are uncorrected for increasing temperature in the crust, which can significantly
lower the velocities in the lower crust (corrections are approximately —0.02 to —0.06 km/s per
100°C increase in temperature [Christensen, 1979]). Mean P-wave velocities for the two different
rock suites at almost all confining pressures differ by at least 1 km/s: even the standard
deviations of the velocities for the two suites are distinct (Figures 17 and 18). Mean S-wave
velocities for the mafic rocks and greywackes differ less significantly. We have also plotted
Vp/Vs and Poisson’s ration as a function of confining pressure for the two rock suites.

The Vp/Vs ratio for both the Olympic mafic rocks and greywackes are higher than
average than would be expected for a Poisson solid (Vp/Vs=1.732). Thus, the shear wave
velocities expected for these lithologies are lower than might be predicted from their P-wave
velocity assuming a Poisson’s ratio of 0.25. The Vp/Vs ratio shows relatively little sensitivity to
confining pressure for the mafic rocks, but increases more significantly for the greywackes.

DENSITY AND VELOCITY RELATIONSHIP

Gardner et al. (1974) proposed an empirical relationship, based on borehole
measurements, between sonic velocity and density in sedimentary rocks. The rule proposed by
Gardner et al. (1974) is p = 1740v""*, where p is density in kg/m’ and v is the sonic velocity in



km/s. For the purpose of discussion, we will refer to the coefficient multiplying the factor of v'*

as Gardner’s coefficient.

In Figure 19 we plot average compressional-wave velocities and densities for the
laboratory measurements of Olympic Peninsula greywackes and mafic rocks at 100 MPa (Tables
5 and 9), for the wells in Coastal Washington reported here, and in Puget Lowland as reported by
Brocher and Ruebel (1998) are plotted in Figure 19. We determined the Gardner’s coefficient
for each suite of rocks by minimizing the misfit between the observed and calculated density
(Figure 20). For each suite of rocks the Gardner’s coefficient was determined from a well-
defined minima in the root-mean-square (RMS) curves of misfit versus Gardner’s coefficient
(Figure 20).

P-wave velocities and densities of the Olympic Peninsula greywackes and well log data
sampling sedimentary rocks in the Puget Lowland (Brocher and Ruebel, 1998) are best fit by
Gardner’s coefficients of 1720 and 1730, respectively (Figure 20). These values are very close
to the coefficient of 1740 proposed for sedimentary rocks by Gardner et al. (1974).

In contrast, the velocities and densities for the Washington Coast wells and Olympic
Peninsula mafic rocks are best fit by much higher Gardner’s coefficients of 1835 and 1840,
respectively (Figures 19 and 20). These coefficients are significantly higher than the value of
1740 determined by Gardner et al. (1974) for sedimentary rocks.

Figure 20 demonstrates that there are significant differences between the Olympic
Peninsula greywackes and mafic rocks and between the Puget Lowland and the Coastal
Washington sedimentary rocks measured in the sonic and density logs.

To what can we ascribe the high Gardner’s coefficient needed for the sedimentary rocks
sampled in the coastal Washington well logs? Figure 20 suggests that the high Gardner’s
coefficient required for the coastal Washington wells may result from the inclusion of Olympic
mafic rocks within the Quinault and Montesano Formations and in the Hoh rock assemblage.

EARTHQUAKE HAZARDS IMPLICATIONS

The low sonic velocities and densities within the Quinault and Montesano Formations
and the abrupt increase of these parameters in the underlying Hoh rock assemblage suggest that
strong ground motions along the coast will be amplified due to the presence of these formations.

Reflection coefficients calculated for vertically traveling compressional waves were
calculated from

Rpp = (V20,- Vip)/( Vopot ViPy) (1)

where v is the sonic velocity and p is the density, and 1 represents the upper layer and 2 the
bottom layer.

Reflection coefficients (Table 14) calculated from the average velocities and densities for
these units (Table 13) suggest that the top of the Hoh rock assemblage is a strong reflector of
downward propagating seismic waves: these reflection coefficients lie between 11 and 20%. The
magnitudes of these coefficients are all consistent with strong seismic reflectors. Thus this
boundary may reflect upwards and trap a substantial portion of the seismic energy generated by
future earthquakes within the Miocene and younger sedimentary basins found along the
Washington coast. The largest reflection coefficients (20%) would be expected for the case
when Quaternary deposits directly overlie the Hoh rock assemblage.

Although we have calculated compressional-wave reflection coefficients, we believe that
these are appropriate for shear-waves as well. If the Vp/Vs ratio is constant for these rocks, then
Rss should be identical to Rpp. If Vp/Vs increases with formation age and/or depth, then Rss
would be higher than the Rpp calculated here.



DATA AVAILABILITY

The densities, seismic velocities, and two-way travel times shown in Figures 2 to 15 and
Tables 5 to 12 are available in Excel5 spreadsheets using anonymous ftp (swave.wr.usgs.gov at
/pub/outgoing/brocher)
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Figure 16. Map of the Olympic Peninsula showing the rock samples whose compressional and shear waves were
measured in the laboratory. Abbreviations: HCF-Hood Canal fault, KA-Kingston Arch, SF-Seattle fault,
TF-Tacoma fault. Figure modified from Brocher et al. (2001).
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