

Syllabus for the Academic Year 2019 - 2020

Department: Civil Engineering, M.Tech CADS

Semester: I

Sl. No.	Subject Code	Subject Name	L	Т	Р	С
1	18MCAD11	Continuum Mechanics - Classical and FE Approach	4	0	0	4
2	18MCAD12	Computational Structural Mechanics	4	0	0	4
3	18MCAD13	Computational Structural Dynamics	4	0	0	4
4	18MCAD14	Optimum Design of Structures	4	0	0	4
5	18MCAD15X	Elective – I	4	0	0	4
6	18MCAD16	Technical Seminar-I	0	0	0	2
7	18MCADL17	Advance Structural Analysis Laboratory	0	0	3	1
		Total Contact Hours	20	0	3	23

Elective – I

- 18MCAD151 Advanced Numerical Methods
- 18MCAD152 Composite and Smart Materials

18MCAD153 - Concepts of Pre Fabrication and Precast Structures

Subject Name: Continuum Mechanics - Classical and FE Approach

Subject Code: 18MCAD11

L-T-P-C: 4-0-0-4

Course Objectives :

S1.No	Course Objectives
1	The objective of this course is to make students to learn principles of Analysis of Stress and Strain, To predict the stress-strain behaviour of continuum. To evaluate the stress and strain parameters and their inter relations of the continuum

Course outcome	Descriptions
C01	Students will be able to Understand the principles of stress-strain behavior of continuum
CO2	Students will be able to Understand the principles of Polynomials stress functions
соз	Students will be able to Understand the principles of Polar Coordinates & axis symmetric problems
CO4	Students will be able to Understand the concept of Finite element method

SRI SIDDHARTHA INSTITUTE OF TECHNOLOGY- TUMAKURU (A constituent College of Siddhartha Academy of Higher Education, Tumakuru)

UNIT	Description	Hours
I	 Introduction: Elasticity –Notation for forces and stresses-Components of stresses-components of strain–Hook"slaw.Definitionof stress and strain at a point, components of stress and strain at a point in cartesian and polar coordinates, constitutive relations, equilibrium equations, compatibility equations and boundary conditionsin 2-D and 3-D cases, Plane stress, plane strain – Definition.Analysis of Stress and Strain in Three Dimensions : Introduction – Principal stresses– Stress Ellipsoid and stress – director surface – Determination of the principal stress–Stress invariants – Determination of the maximum shearing stress. 	
Π	Plane Stress and Plane Strain: Airy's stress function approach to 2-D problems of elasticity, simple problems of bending of beams.: Solution by Polynominals – End Effects, Saint – Venant''s Principle – Determination of Displacements – bending of a Cantilever Loaded at the end – Bending of Beam by uniform load.	10
III	Two-Dimensional Problems in Polar Coordinates :General equation in Polar coordinates – Stress distribution symmetrical about an axis – Pure bending of curved bars – Strain components in polar coordinates – Displacements for symmetrical stress distributions – Rotating disks – Bending of a curved bar by a force at the end.	10
IV	Solution of Axi-symmetric Problems : The effect of circular holes on stress distribution in plates, stress concentration due to the presence of a circular hole in plates. Elementary problems of in three dimensions, Two - dimensional problems in Rectangular coordinates twist of circular shafts, torsion of non-circular sections, membrane analogy, Propagation of waves in solid media. Applications of finite difference equations in elasticity.	10
V	FE Approach : 2D and 3D Elements - CST, LST, Rectangular family, Tetrahedra and Hexahedra : Shape functions, Element Stiffness matrix, Equivalent Loads, Isoparametric formulation of Triangular and General quadrilateral elements, Axisymmetric elements, Gauss Quadrature.	10

Question paper consists of 08 questions of 20 marks each. Out of 08, students have to answer any 5 full questions.

Text Books:

S1 No	Text Book title	Author	Volume and Year of Edition
1	Theory of elasticity	Timoshenko and Goodier,	McGraw Hill Book Company, III Edition, 2016
2	Foundations of Solid Mechanics	Y.C.Fung	Prentice-Hall.
3	Advanced Mechanics of Solids	L.S. Srinath	TataMcGraw-HillPublishingColtd.,Delhi2016

S1 No	Text Book title	Author	Volume and Year of Edition
1	"Continuum Mechanics Fundamentals",	Valliappan C,	Oxford IBH Publishing Co.Ltd.
2	"Theory of Elasticity"	Sadhu Singh	Khanna Publishers

Subject Name: COMPUTATIONAL STRUCTURAL MECHANICS

Subject Code: 18MCAD12

L-T-P-C: 4-0-0-4

Course Objectives :

Course Objectives

The objective of this course is to make students to learn principles of Structural Analysis, To implement these principles through different methods and to analyse various types of structures. To evaluate the force and displacement parameters of the structures.

Course outcome	Descriptions
C01	Achieve Knowledge of design and development of problem solving skills.
C02	Understand the principles of Structural Analysis
CO3	Design and develop analytical skills
CO4	Understand the concepts of structural behaviour

UNIT	Description	Hours
Ι	Direct Stiffness Method – Trusses: Degrees of static and kinematic indeterminacies, concepts of stiffness and flexibility, local and global coordinate system, analysis of indeterminate trusses, with and without initial strains for different types of boundary conditions such as fixed, hinged, roller, slider, elastic (spring) supports, support settlement.	12Hrs
II	Direct Stiffness Method : Continuous beam, 2d frames: analysis of continuous beams, for different types of boundary conditions such as fixed, hinged, roller, slider, elastic (spring) supports, support settlement. Analysis of simple 2d frames with and without sway, element stiffness matrix for 3d frames and grids	. 10Hrs
III	Basic Concept of Finite Element Method : Concept of FEM, formulation using principle of virtual work, principles minimum potential energy, method of weighted residuals(Galerkin's), choice of displacement function, degree of continuity. Generalized and natural coordinates.	. 10Hrs
IV	FE Analysis using Bar Elements: Derivation of shape function for linear and higher order elements using inverse and Lagrange interpolation formula, element stiffness matrix two and three nodded elements. Examples with constant and varying cross sectional area subjected to concentrated loads, distributed body force and surface traction and initial strains due to temperature. Isoparimetric formulation.	. 10Hrs
V	FE Analysis using Beam Element : Derivation of shape function for two noded beam element, Hermitian interpolation, element stiffness matrix, consistent nodal loads, concept of reduced or lumped loads. Examples: cantilever and simply supported beams.	. 10Hrs

Question paper consists of 08 questions of 20 marks each. Out of 08, students have to answer any 5 full questions.

Text Books:

S1 No	Text Book title	Author	Volume and Year of Edition
1	Computational Structural Mechanics	Rajasekaran.S,	PHI, New Delhi 2001
2	Basic Structural Analysis	Reddy.C.S	TMH, New Delhi 2001

S1 No	Text Book title	Author	Volume and Year of Edition
1	Concepts and Applications of Finite Element Analysis	Robert D Cook	3rd Edition, JohnWiley and Sons, New York
2	Finite element procedures in Engineering Analysis	Bathe.K.J	PHI. New Delhi.

Subject Name: COMPUTATIONAL STRUCTURAL DYNAMICS

Subject Code: 18MCAD13

L-T-P-C: 4-0-0-4

Course Objectives :

S1.No	Course Objectives
	After studying this course, students will be able to:
	• Learn the effect of damping in the structures
	• Analyse the systems using FE

Course outcome	Descriptions
C01	Understand effect of structural vibrations on safety and reliability of structural systems
CO2	Apply knowledge of mathematics, science, and engineering by developing the equations of motion for vibratory systems and solving for the free and forced response.
соз	Apply modal methods to calculate the forced response of these systems. Use finite element methods for the analysis of the vibrations of structures.
CO4	Design and develop analytical skills.

UNIT	Description	Hours
Ι	Single degree of freedom system : Degrees of freedom, undamped system, springs in parallel or in series, Newton's law of motion, free body diagram, D'Alembert's principle, solution of the differential equation of motion, frequency and period, amplitude of motion. Damped Single degree of freedom system – viscous damping, equation of motion, critically damped system, overdamped system, underdamped system, logarithmic decrement. Response of one degree of freedom system to harmonic loading – undamped harmonic excitation, damped harmonic excitation, evaluation of damping at resonance, bandwidth method (Half power) to evaluate damping, response to support motion, force transmitted to the foundation, seismic instruments	10
II	Response to general dynamic loading : Impulsive loading and Duhamel's integral, numerical evaluation of Duhamel's integral, undamped system numerical evaluation of Duhamel's integral, damped system. Fourier analysis and response in frequency domain fourier analysis, fourier co-efficients for piece-wise liner functions, exponential form of fourier series, discrete fourier analysis, fast fourier transform.	10
III	Generalised co-ordinates and Rayleigh's method : Principle of virtual work, generalized single degree of freedom system (rigid body and distributed elasticity), Rayligh's method. Multistory shear building. Free vibration – natural frequencies and normalmodes, zero modes of vibration. Forced motion – modal superposition method – response of a shear building to base motion. Damped motion of shear building – equations of motions – uncoupled damped equation – conditions for damping uncoupling	10
IV	Discritiszation of Continuous systems : Longitudinal Vibration of a uniform rods. Transverse vibration of a pretensioned cable. Free transverse vibration of uniform beams – Rotary inertia and shear effects – the effect of axial loading. Orthogonality of normal modes. Undamped forced vibration of beams by mode superposition.	10
V	Dynamic analysis of beams : stiffness matrix, mass matrix (lumped and consistent) equations of motions for the discritiesed beam in matrix form and its solutions	10

Question paper consists of 08 questions of 20 marks each. Out of 08, students have to answer any 5 full questions.

Text Books:

S1 No	Text Book title	Author	Volume and Year of Edition
1	Dynamics of Structures	Ray W Clough and J Penzien	2nd Edition, McGraw-Hill, New Delhi.
2	Vibration, Dynamics and structural problems	Mukopadyaya	Oxford IBH Publishers,New Delhi.

S1 No	Text Book title	Author	Volume and Year of Edition
1	Structural dynamics, Theory and computation	Mario Paz	2nd Edition, CBS Publisher and Distributers, New Delhi
2	Fundamentals of Structural Dynamics	Roy R. Craig, Andrew J. Kurdila	John Wiley & Sons

Subject Name: OPTIMUM DESIGN OF STRUCTURES

Subject Code: 18MCAD14

L-T-P-C: 4-0-0-4

Course Objectives :

S1.No	Course Objectives
1	To Make the student understand the principles of Classical Optimization Techniques
2	To Make the student understand the principles of Linear Programming
3	To Make the student understand the principles of Non-Linear Optimization
4	To Make the student understand the principles of Dynamic Programming and Practical applications of Optimization in Civil Engineering

Course outcome	Descriptions
C01	Students will have the ability to use Principles of Linear and Dynamic Programming
CO2	Students will have the ability to use Classical Optimization techniques
соз	Apply Knowledge of Optimization to Structural Engineering Problems
CO4	Students will have the ability to use Principles Non Linear Optimization

UNIT	Description	Hours
I	Classical Optimization techniques : Engineering application, Statement of Optimization problem, Classification of Optimization problems, Single variable Optimization, Simple problems which can be converted to single variable optimization.	9
II	Linear programming : Standard form of linear programming problem, Graphical method for two variable problem and development of simplex method, simplex problems with two and three variables fundamentals and basic theorems on Linear Programming.	9
III	Multivariable Optimization with constraints : semi-definite case and saddle point. Multivariable optimization with equality constraints: Solution for direct substitution for simple cases, Lagrange's multiplier method, constrained variation method. Multivariable optimization with inequality constraints-Kuhn Tucker conditions. Convex and concave functions.	11
IV	Nonlinear programming: Introduction to one dimensional minimization methods concept of Unimodal function, unrestricted search(search with fixed step size, search with accelerated step size), exhaustive search, dichotomous search, Fibonacci method and Golden section method	11
V	Structural Applicationsand Dynamic programming: Use of Dynamic programming in determining least cost route for transporting water from source to destination given the estimation along a rectangular grid, Use of Dynamic programming in water tank design given the estimation of its component parts. Optimum design of a structural element RC simply supported solid slab, Algorithm for optimum design of simply supported slab by iterative limit state design of IS 456, N Pandian's closed form methodfor simply supported slabs, N Laxmanan's method of minimum weight design of simply supported slabs. Optimum design of RC footings with rectangular columns – equal BM, equal projection, equal ratios, equal shear forces. Procedure of optimum design of cantilever and counterfort retaining wall.	10

Question paper consists of 08 questions of 20 marks each. Out of 08, students have to answer any 5 full questions.

Text Books:

Sl No	Text Book title	Author	Volume and Year of Edition
1	Engineering Optimization - Theory and Practice, New Age International ,1978.	S.S.Rao	3rd Edition ISBN 978-81-224- 2723-3
2	Operations Research an Introduction	Hamdy A Taha	9 th Edition, 2019 ISBN – 81-203- 2235-5
3	Optimization Methods for Engineering Design, Addison Wesley, 1971.	R.L.Fox	ISBN10: 0201020 785 ISBN-13: 978- 0201020786

S1 No	Text Book title	Author	Volume and Year of Edition
1	Optimization Techniques	K.C.Jain	
2	System simulation with digital computer, Prentice – Hall of India Pvt, Ltd. New Delhi – 1989.	NarsingkDeo	
3	Applied Structural Mechanics: Fundamentals of Elasticity, Load- Bearing Structures, Structural Optimization	Hans Eschenauer	Paperback ISBN- 10: 8184893248 ISBN-13: 978- 8184893243

Subject Name: ADVANCED NUMERICAL METHODS

Subject Code: 18MCAD151

L-T-P-C: 4-0-0-4

Course Objectives :

Course Objectives

The objective of this course is to make students to learn on applications of numerical methods, To implement the numerical methods for the structural engineering problems.

Course outcome	Descriptions
C01	To impart the students the knowledge of algorithms, flowcharts and solution of linear simultaneous equations.
CO2	To educate the students on applications of numerical methods to civil engineering problems.
CO3	To impart skills of development of algorithms, solution of ODE and application of finite difference techniques in structural mechanics

UNIT	Description	Hours
I	Matrices and Linear Algebra : Elementary Concepts of Matrices – Introduction Introduction to Matrices – special matrices – matrix equality – addition and multiplication by a scalar – Multiplication of matrices – the inverse matrix – partitioning of matrices – the trace and determinant of a matrix.	9 Hrs
П	Linear System of Equations (Direct Methods) and Iterative Methods for Solving Linear Equation : Introduction – Cramer's Rule – Gaussian Elimination – Gauss – Jordan Method – Factorization method – Ill conditioned matrix sealing of a matrix – How to solve AX = b on a Computer – Summary – Exercises Iterative Methods for Solving Linear Equation : Introduction – Basic Ingredients- Stationary Methods : Jacobi Iteration – Computer Time Requirement for Jacobi Iteration – Gauss – Seidel Method – Relaxation Method – Condition of Convergence of Iterative Method – Summary – Exercises.	10 Hrs
III	 Statistical Methods 1. Sampling and Frequency Distribution : Sampling – Frequency distribution – measures of central tendency – measures of dispersion – moments – computation of moments 2. Discrete Probability Distributions : Introduction – Probability – discrete distributions – binomial distribution – poisson distribution – hypergemetric distribution – Numerical characteristics 3. Curve Fitting : Regression – Introduction – Linear Least Squares Fit – Non linear fit – Fitting a Polynomial function. 	9 Hrs
IV	Interpolation and Numerical Integration : Introduction – Definition – Newton's Forward difference –Remarks on Newton's forward or backward interpolation formula – Newton's divided differene – Aitken – Neville Iterated Interpolation – Lagrange Interpolation – Hermitian interpolation – method of least square – spline interpolation – chebshev polynomial – Isoparametric style of interpolation – summary - exercises Numerical Integration : Introduction – Newton – Cotes Closed quadrature – Trapezoidal rule – Romberg – integration – Newton – cotes Open quadrature – Gaussian quadrature – Gauss – Laguerre quadrature – Gauss – Chebyshev Quadrature – gauss – Hermitequadrature – numerical integration using spline – monte – carlo method for numerical integration – How to choose a method for estimating a proper integral – discontinuities and improper integrals – Multiple integration – integration by using mapping function-summary exercises.	12 Hrs

	The Approximation for the Solution of Ordinary First Order Differential	12 Hrs		
	Equations : Introduction – nth order differential equation – physical problem –			
	taylor series – euler method or first order taylor series – modified euler method			
	- picard method of successive approximation - Runge - Kutta methods -			
	solution of simultaneous ordinary differential equations by R K Methods.			
V	Predictor / corrector method – How to select numerical integration method –			
	summary exercise. Boundary Value Problems Region Method (Finite			
	Difference Approach) : Introduction – classification – basic methods –			
	practical examples – Numerical solution – One dimension – two dimensions –			
	solution of Elliptic equation – Parabolic Equations (practical examples)			
	solution of Emple equation – Farabolic Equations (practical examples)			
	Hyperbolic equations – summary – exercises.			

Question paper consists of 08 questions of 20 marks each. Out of 08, students have to answer any 5 full questions.

Text	Books:

S1 No	Text Book title	Author	Volume and Year of Edition
1	Numerical Methods: Design, Analysis and Computer Implementation of Algorithms.	A. Greenbaum and T. P. Chartier.	Princeton University Press, 2012
2	Numerical Analysis.	L. R. Scott.	Princeton University Press, 2012

S1 No	Text Book title	Author	Volume and Year of Edition
1	Advanced Numerical Methods	J. Sakthivel	Suchitra Publications

Subject Name: COMPOSITE AND SMART – MATERIALS

Subject Code: 18MCAD152

L-T-P-C: 4-0-0-4

Course Objectives:

Course Objectives

The objective of this course is to make students to learn the basic properties and manufacturing process of various composites, different classes of ceramic and polymeric smart materials and their response of a system.

Course outcome	Descriptions
C01	Students will be able to use basic properties and manufacturing process along with their application in various industries for different types of composites.
C02	Students will be Familiarised with different classes of ceramic and polymeric smart materials; development of actuators and sensors and Their integration into a smart structure
СОЗ	Students will be able to Generate controllable force and response of a system.
CO4	Students will be able to Monitor the response of the system.

UNIT	Description	Hours
I	Introduction to Composite materials : Classifications and applications. Anisotropic elasticity - unidirectional and anisotropic laminae, thermo- mechanical properties, micro- mechanical analysis, characterization tests. Classical composite lamination theory, cross and angle play laminates, symmetric, antisymmetric and general symmetric laminates, mechanical coupling. Analysis of simple laminated structural elements ply-stress and strain, lamina failure theories - first fly failure, vibration and buckling analysis. Sandwich structures face and core materials, secondary failure modes environmental effects, manufacturing of composites	10 Hrs
II	Introduction-smart materials and structures- piezoelectric materials – coupled electro-mechanical constitutive relations – depoling and coercive field – field-strain relation - hysterics – creep-strain rate effects – manufacturing.	10 Hrs
III	Actuators and sensors – single and dual actuators – pure extension, pure bending – bending extension relations – uniform strain beam model – symmetric induced strain actuators – bond shearing force – Bernoulli-Euler (BE) beam model – embedded actuators – Asymmetric induced strain actuators in uniform strain and Euler-Bernoulli models. Uniform strain model – energy principle formulation –BE model –single and dual surface bonded actuators- Extension-bending and torsion model.	10 Hrs
IV	Introductions to control systems – open loop and close loop transfer functionsstability criteria – deflection control of beam like structures - using piezoelectric sensors and actuators – shape memory alloys.	10 Hrs
V	Beam modeling with strain actuator, bending extension relation.	10 Hrs

Question paper consists of 08 questions of 20 marks each. Out of 08, students have to answer any 5 full questions.

Text Books:

S1 No	Text Book title	Author	Volume and Year of Edition
1	Mechanic of Composite Materials	Robert M Jones	McGraw Hill Publishing Co.
2	Analysis and Performance of Fiber Composites	Bhagwan D Agarwal, and Lawrence J Brutman	John Willy and Sons

Subject Name: CONCEPT OF PRE FABRICATION AND PRECAST STRUCTURES

Subject Code: 18MCAD153

L-T-P-C: 4-0-0-4

Course Objectives:

S1.No	Course Objectives	
1	To study the technology of Prefabricated construction and precast structures in Civil Engineering	

Course outcome	Descriptions	
C01	Students are able to understand the concept of prefabrication structures	
C02	Students are able to use the National Building Code Specifications codes for concept of prefabrication structures as per the design.	
CO3	Students are able to design of prefabricated elements	
C04	Students are able to understand Construction techniques and equipments used in construction	

UNIT	Description	Hours
Ι	Concept of Prefabricated construction, necessity, advantages, disadvantages, Mass produced steel, reinforced concrete and masonry systems Industrialized buildings.	10
II	Concept of modular coordination, basic module, planning and design modules, modular grid systems, National Building Code Specifications, standardization, dimensioning of products, preferred dimensions and sizes, tolerances and deviations, layout and process.	11
III	Prefabricates classification, foundation, columns, beams, roof and floor panels, wall panels, clay units, box prefabricates, erection and assembly.	10
IV	Design of prefabricated elements, Lift points beams, slabs, columns, wall panels, footings, design of joints to transfer axial forces, moments and shear forces and design of Ferro cement and faro concrete elements	11
V	Construction techniques, large panel construction, lift slab system, Glover system, Constraints' Jack - block system, Constraint V-plate system, Bison system, Silber – Kuhi system, control of construction processes. Equipments for horizontal and vertical transportation.	10

Question paper consists of 08 questions of 20 marks each. Out of 08 students have to answer any 5 full questions.

Text Books:

S1 No	Text Book title	Author	Volume and Year of Edition
1	Precast Concrete	Hass A.M.	2000.
2	Precast concrete structures	Kim S Elliott	2016.

S1 No	Text Book title	Author	Volume and Year of Edition
1	Plant cast, Precast and Prestressed concrete	David Sheppard	McGraw Hill; 1989.
2	Multi–Storey Precast Concrete Framed Structures	Kim S Elliott, Collin K Jolly.	2 nd edition 2014

Subject Name: ADVANCED STRUCTURAL ANALYSIS LABORATORY

Subject Code: 18MCADL17

L-T-P-C: 0-0-3-1

Course Objectives:

Sl.No	Course Objectives
1	This course will enable students to use industry standard software in a professional set up.

Course outcome	Descriptions
CO1	Understand the elements of finite element modeling, specification of loads and boundary condition,
C02	Analysis and interpretation of results for final design

Description				
Description				
EXPERIMENT 1:				
Modeling of Tall structure with DBR (Design Based Report)- using STADPRO/ ETABS				
EXPERIMENT 2:				
Static analysis of Tall structure- using STADPRO/ ETABS				
EXPERIMENT 3:				
Dynamic analysis of Tall structure- using STADPRO/ ETABS				
EXPERIMENT 4:				
Design of the following structural elements- using STADPRO/ ETABS				
i) Foundation				
ii) Column				
iii) Beam				
iv) Slab				
v) Stair case				

SRI SIDDHARTHA INSTITUTE OF TECHNOLOGY- TUMAKURU (A constituent College of Siddhartha Academy of Higher Education, Tumakuru)

Syllabus for the Academic Year 2019 - 2020

Department: Civil Engineering, M.Tech CADS

Semester: II

Sl. No.	Subject Code	Subject Name	L	Т	Р	С
1	18MCAD21	Stability Analysis of Structures	4	0	0	4
2	18MCAD22	Analysis of Plates and Shells with FE Approach	4	0	0	4
3	18MCAD23	Design of Structural Systems for Bridges	4	0	0	4
4	18MCAD24	Applications of AI and Expert Systems in Structural Engineering	4	0	0	4
5	18MCAD25X	Elective – II	4	0	0	4
6	18MCAD26	Technical Seminar-II	0	0	0	2
7	18MCADL27	Advance Structural Computational Laboratory	0	0	3	1
		Total Contact Hours	20	0	3	23

Elective – II

18MCAD251 - Special Concrete

18MCAD252 - Reliability Analysis and Reliability Based Design of Structures

18MCAD253 - Foundation Engineering

Subject Name: STABILITY ANALYSIS OF STRUCTURES

Subject Code: 18MCAD21

L-T-P-C: 4-0-0-4

Course Objectives:

-

SI. No.	Course Objectives: This course will enable students to	
1	Understand the concepts of stability; types of buckling	
2	Compute buckling loads of columns; elastic buckling of frames and Plates	

Course outcome	Descriptions: After studying this course, students will be able to:
CO1 Determine the critical loads for discrete and continuous systems	
CO2	Application of the shape functions in the structures
CO3	Determine the critical load of the plates
CO4	Determine the critical load of the plates along with its combined effects

UNIT	Description		
I	Beam column- Differential equation: Beam column subjected to (i) lateral concentrated load, (ii) several concentrated loads, (iii) continuous lateral load. I Application of trigonometric series. Euler's formulation using fourth order differential equation for pined-pined, fixed-fixed, fixed-free and fixed-pined column. Buckling of frames and continuous beams. Elastic Energy method: Approximate calculation of critical loads for a cantilever. Exact critical load for hinged-hinged column using energy approach. Buckling of bar on elastic foundation. Buckling of cantilever column under distributed loads. Determination of critical loads by successive approximation. Bars with varying cross section. Effect of shear force on critical load. Columns subjected to non-conservative follower and pulsating forces. III Stability analysis by finite element approach : derivation of shape functions for a two noded Bernoulli-Euler beam element (lateral and translational dof) – element stiffness and element geometric stiffness matrices – assembled stiffness matric so for a discretised column with different boundary conditions – evaluation of critical loads for a discretised (two elements) column(both ends built-in). Algorithm to generate geometric stiffness matrix for four noded and eight node disoparametric elements. Buckling of pine jointed frames (maximum of two active dof)-symmetrical single way portal frame.		
II			
III			
IV	Buckling of simply supported rectangular plate: Buckling of uniformly compressed rectangular plate simply supported along two opposite sidesIVperpendicular to the direction of compression and having various edge condition along the other two sides- Buckling of a Rectangular Plate Simply Supported along Two opposite sides and uniformly compressed in the Direction Parallel to those sides.		
V Buckling of simply supported rectangular plate – Combined effects Buckling of a Simply Supported Rectangular Plate under Combined Bending and Compression – Buckling of Rectangular Plates under the Action of Shearing Stresses – Other Cases of Buckling of Rectangular Plates.			

Question paper consists of 08 questions of 20 marks each. Out of 08, students have to answer any 5 full questions.

Text Books:

S1 No	Text Book title	Author	Volume and Year of Edition
1	Theory of Elastic Stability	Stephen P. Timoshenko, James M. Gere	2 nd Edition, McGraw- Hill, New Delhi
2	Concepts and Applications of Finite Element Analysis",	Robert D Cook et al,	3 rd Edition, John Wiley and Sons, New York
3	Computational Structural Mechanics	S.Rajashekaran,	Prentice-Hall, India

S1 No	Text Book title	Author	Volume and Year of Edition
1	Dynamics of Structures	Ray W Clough and J Penzien,	2 nd Edition,McGraw- Hill, New Delhi.

Subject Name: ANALYSIS OF PLATES AND SHELLS WITH FE APPROACH

Subject Code: 18MCAD22

L-T-P-C: 4-0-0-4

Course Objectives:

1	Course Objectives		
1	The objective of this course is to make students to learn different methods of analysis and design of plates and shells, To critically detail the plates, folded plates and shells. To evaluate the performance of spatial structures.		

Course outcome	Descriptions	
CO1	Achieve Knowledge of design and development of problem solving skills.	
CO2	CO2 Understand the principles of Analysis and Design	
CO3 Design and develop analytical skills.		
CO4 Summarize the performance of shells		
CO5	Understand the concepts of energy principle.	

UNIT	Description	Hours
Ι	Differential equation for cylindrical bending of plates : Bending of plates subjected to uniformly distributed loads – (i) two opposite sides free and other two opposite sides simply supported (ii) two opposite sides free and other two opposite sides fixed. Pure bending of plates – slope and curvature of slightly bent plates – relations between bending moments and curvature in pure bending of plates – strain energy in pure bending.	10Hrs
Π	Centrally loaded clamped circular plate. circular plate, exact solution for circular plate with clamped edge, rectangular plates with simple supported edges.	
III	Bending of rectangular simply supported plate: Subjected to distributed moments at a pair of opposite edges. Bending of rectangular pates subjected to udl (i) two opposite edges simply supported and the other two edgesIIIclamed,(ii) three edges simply supported and one edge buit-in and (iii) all edges built in. Bending of rectangular plates subjected to uniformly varying lateral load (i)all edges built-in and (ii) three edges simply supported and one edge built-in.Circular plate on elastic foundation.	
IV	Bending of orthotropic plates: Application of finite difference technique for the analysis of isotropic and orthotropic rectangular plates subjected to uniformly distributed lateral loads. Large deflections of plates – approximate formulas for uniformly loaded Plate bending analysis: Basic theories of thin plates, displacement functions, plate bending elements, shear deformation in plates,. Basic relationships in finite element formulation, four and eight nodded isoparamatric elements.	10Hrs

V

	Differential geometry of curves and surfaces: Classifications of shells –	
	membrane action and bending action – force resultants and moment resultant	
	in terms of mid surface strains and changes in curvatures -analysis of simple	
/	shells of revolution subjected to symmetrical loading. General bending theory	12Hrs
	of shells of double curvature, shells of revolution and cylindrical shells.	
	Analysis of shells: Thin shell theory, review of shell elements, four and eight	
	nodded shell element and finite element formulation.	

Question paper Pattern:

Question paper consists of 08 questions of 20 marks each. Out of 08, students have to answer any 5 full questions.

ICAL	DUUKS.	1	1
Sl No	Text Book title	Author	Volume and Year of Edition
1	Theory of Plates and Shells	Timoshenko, S. and Woinowsky-Krieger, W.	2nd Edition, McGraw-Hill Co., New York, 1959
2	Theory and analysis of plates—classical and numerical methods,	R. Szilard,	Published in 1974 - 1974 in Englewood Cliffs NJ by Prentice- Hall. Services.
3	Stress in Plates and shells	Ugural A C	2nd edition, McGraw-Hill, 1999

Text Books:

Sl No	Text Book title	Author	Volume and Year of Edition
1	Finite Element Analysis	S S Bhavaikatti	McGraw-Hill International Edition, 1984.
2	Theory of Plates	Chandrashekara K	University Press, Hyderabad, 2001

Subject Name: DESIGN OF STRUCTURAL SYSTEMS FOR BRIDGES

Subject Code: 18MCAD23

L-T-P-C: 4-0-0-4

Course Objectives :

Course Objectives

The objective of this course is to make students to learn principles of Structural Design, To design different types of structures and to detail the structures. To evaluate performance of the structures.

Course outcome	Descriptions
C01	Students will be made familiar about hydrological data regarding the bridge site.
C02	Students will be made familiar about bridge sub structure and IRC loads, design and maintenance of bridges.
соз	Students will be made familiar about components of bridge structure and design Of RC bridge for IRC loads.
CO4	Students will be made familiar about design of steel bridges, moveable steel Bridges and bearings.

UNIT	Description	Hours
Ι	Introduction : Classification, investigations and planning, choice of type – economic span length – IRC specifications for road bridges, standard live loads, other forces acting on bridges, general design considerations.General aspects – Design loads – Design moments, shears and thrusts – Design of critical section.	10Hrs
Π	Design of Slab Bridges: Effective width of analysis – workings stress design and detailing of slab bridges for IRC loading.bridge bearings– General features – Types of bearings – forces on bearings basis for selection of bearings – Design principles of steel rocker and roller bearings and its design – Design of elastomeric pad bearing detailing of elastomeric pot bearings	10Hrs
III	T-Beam Bridges : Introduction – wheel load analysis – B.M. in slab – Pigaud''s theory –analysis of longitudinal girders by Courbon''s theory working stress design and detailing of reinforced concrete T-beam bridges for IRC loading. Design of Box cuverts.	10Hrs
IV	Prestressed Concrete Bridge :General features – Advantages of Prestressed concrete bridges – pretensionedPrestressed concrete bridges – post tensioned Prestressed concrete Bridge decks. Design of post tensioned Prestressed concrete slab bridge deck.	10Hrs
V	Piers and Abutments : General features – Bed block – Materials for piers and abutments – typies of piers – forces acting on piers – Design of pier – stability analysis of piers – general features of abutments – forces acting on abutments – stability analysis of abutments. bridge foundations– General Aspects – Types of foundations – Pile foundations – well foundations – caisson foundations.	12Hrs

Question paper consists of 08 questions of 20 marks each. Out of 08, students have to answer any 5 full questions.

Text Books:

S1 No	Text Book title	Author	Volume and Year of Edition
1	Essentials of bridges engineering	D. Johnson Victor	oxford & IBH publishers co- Private Ltd
2	Bridge Engineering	S. Ponnuswamy.	
3	Reinforced concrete Bridges	Taylor F.W., Thomson, S.E., and Smulski E	John wiley and sons, New york

S1 No	Text Book title	Author	Volume and Year of Edition
1	Concrete Bridge Design	B Rowe, R.E	C.R.Books Ltd., London.
2	Design of Bridges	N.Krishna Raju	Oxford & IBH

Subject Name: APPLICATION OF AI AND EXPERT SYSTEMS IN STRUCTURAL ENGINEERING

Subject Code: 18MCAD24

L-T-P-C: 4-0-0-4

Course Objectives:

S1.No	Course Objectives
1.	Use expert systems to achieve fairly high levels of performance in task areas which require a good deal of specialized knowledge and training.

Course outcome	Descriptions
CO1	To identify the logical reasons in the system
C02	To know various AI search algorithms
CO3	Develop expert systems to perform tasks which are physically difficult, tedious, or expensive to have a human perform
C04	Knowledge on the entire system of neural networks and application in the structural system

UNIT	Description	Hours
Ι	Artificial Intelligence: Introduction: AI – Applications fields, defining the problems – state space representation – problem characteristics – production system – production system characteristics. Knowledge representation: Formal logic – predicate logic – logic programming – forward v/s backward reasoning – matching control knowledge.	10
Π	Search and control : Concepts – uniformed / blind search: depth first search – breadth first search - bi-directional search – informed search – heuristic graph search – generate and test - hill climbing – best–first search – AND OR graph search. Non-formal knowledge – semantic networks – frames – scripts – production systems. Programming in LISP	12
III	Expert Systems : Their superiority over conventional software – components of an expert system – expert system life cycle – expert system developments process – nature of expert knowledge – techniques of soliciting and encoding expert knowledge. Inference: Forward chaining – backward chaining – rule value approach.	10
IV	Uncertainty : symbolic reasoning under uncertainty: logic for non-monotonic reasoning. Statistical reasoning: Probability and Bayes' theorem – certainty factor and rule based systems – Bayesian network -Dempster – Shafer theory.	10
V	Fuzzy reasoning and Neural Networks : Features of rule based, networks based and frame based expert systems – examples of expert systems in Construction Management and Structural Engg. Expert systems shells. Neural Networks: An introduction – their possible applications in Civil Engineering	10

Question paper consists of 08 questions of 20 marks each. Out of 08, students have to answer any 5 full questions.

Text	Text Books:				
Sl No	Text Book title	Author	Volume and Year of Edition		
1	Artificial Intelligence and Expert Systems	Patterson D W	Prentice-Hall, New Jersy.		
2	Artificial Intelligence and Expert Systems	Rich, E. and Knight K	McGraw Hill, New York		

Reference Book:

S1 No	Text Book title	Author	Volume and Year of Edition
1	Principals of Artificial Intelligence	Nilsson, N.J	Narosa., New Delhi
2	Expert Systems in Constructions and Structural Engg	Adeli, H	Chapman & Hall, New York.

Civil Engineering Department-M.Tech CADS

Subject Name: SPECIAL CONCRETE

Subject Code: 18MCAD251

L-T-P-C: 4-0-0-4

Course Objectives:

S1. No	Course Objectives	
1	To Make the student understand the fundamental material properties of concrete	
2	To Make the student understand the principles ofMix design of Light Weight Concrete	
3	To Make the student understand the principles of Ferro Cement and Fibre reinforced concrete	
4	To Make the student understand the principles of High Performance Concrete	

Course Outcomes

Course Descriptions outcome	
CO1Students will have the ability to understand behavior of c knowing fundamental properties of ingredients	
CO2 Students will have the ability to design Light Weight Cond	
CO3 Students will have the ability to design Ferrocement	
CO4 Students will have the ability to design Fibre Reinforced and High Performance Concretes	

UNIT	Description	Hours
	Components of modern concrete and developments in the process and	10Hrs
	constituent materials: Role of constituents, Development in cements and	
Ι	cement replacement materials, pozzolona, fly ash, silica fume, rice husk ash,	
	recycled aggregates, chemical admixtures. Mix proportioning of Concrete:	
	Principles and methods.	
	Light Weight concrete: Introduction, classification, properties, strength and	10Hrs
	durability, mix proportioning and problems. High density concrete: Radiation	
II	shielding ability of concrete, materials for high density concrete, mix	
	proportioning, properties in fresh and hardened state, placement methods.	
	Ferro cement: Ferrocement materials, mechanical properties, cracking of	12Hrs
	ferrocement, strength and behaviour in tension, compression and flexure,	
III	Design of ferrocement in tension, ferrocement constructions, durability, and	
	applications.	
	Fibre reinforced concrete: Fibre materials, mix proportioning, distribution	10Hrs
	and orientation, interfacial bond, properties in fresh state, strength and	
IV	behavior in tension, compression and flexure of steel fibre reinforced concrete,	
	mechanical properties, crack arrest and toughening mechanism, applications.	
	High Performance concrete: constituents, mix 8 Hours proportioning,	10Hrs
	properties in fresh and hardened states, applications and limitations. Ready	
V	Mixed Concrete-QCI-RMCPC scheme requirements, Self Compacting	
	Concrete, Reactive powder concrete.	

Question paper Pattern:

Question paper consists of 08 questions of 20 marks each. Out of 08, students have to answer any 5 full questions.

Text Books:

S1 No	Text Book title	Author	Volume and Year of Edition
1	Design of Concrete Mixes	N. Krishna Raju	5 th Edition ISBN: 978-81-239- 2467-0
2	Concrete Technology Theory and Practice	M. L. Gambhir	5 th Edition ISBN-10 1259062554 ISBN-13 9781259062551
3	Concrete Technology"-Oxford University Press, New Delhi, 2007	A.R.Santhakumar,	2 nd Edition ISBN10- 0199458529 ISBN13-978- 0199458523

Reference Book:

S1 No	Text Book title	Author	Volume and Year of Edition
1	Properties of Concrete	A.M.Neville	5 th Edition2011 ISBN 978-81-317- 9107-3
2	Corrosion Of Reinforcement In Concrete Construction (Special Publications)	C.L.Page P.B. Bamforth And JWFigg	1996 Edition
3	High Performance Fiber Reinforced Cement Composites 6 HPFRCC 6 (RILEM Bookseries)	Gustavao J Parra, Montesinos	2011 Edition

Subject Name: RELIABILITY ANALYSIS AND RELIABILITY BASED

DESIGN OF STRUCTURES

Subject Code: 18MCAD252

L-T-P-C: 4-0-0-4

Course Objectives :

S1.No	Course Objectives		
1	To Make the student understand the in depth principles of Probability and Statitics		
2	To Make the student understand the principles of Level 2 Reliability Methods		
3	To Make the student understand the principles of Monte Carlo Simulation		
4	To make student pply principles of Reliability to Structures		

Course Outcomes

Course outcome	Descriptions
CO1 Students will have the ability to use Principles of Stat Probability	
CO2 Students will have the ability to apply Level 2 Reliability meth	
CO3 Students will have the ability to apply principles of Monte Simulation	
CO4	Students will have the ability to analyze Structure in light of theory of reliability

UNIT	Description	Hours
	Introduction to reliability and difference in approach used in civil	
I	engineering: Statistics for raw data and classified data. Mean Median Mode,	
1	Standard deviation and Coefficient of variation, Moments, Skewness and	
	Kurtosis.	
	Curve fitting :Method of least squares linear and nonlinear nonlinear.	10
II	Introduction to Probability axioms of probability mutually exclusive and	
	independent events, fundamental of set theory De morgan's rule conditional	
	probability probability tree diagram.	
	Normal distribution, Lognormal distribution and their properties, Probability	10
	and exceedance probability. Statistical sensitivity analysis, Calculation of	
III	statistic of RC beam in flexure(Ultimate Resistance) and probability of its	
	failiure, Design of a tension member for a given probability of failure when	
	load is normally and lognormally distributed Chi square test, Suitability of	
	probabilistic model(Log Normal distribution) by Chi square test.	
	Concepts of Reliability reliability index problems on column simply supported	10
	beam cantilever be statistical sensitivity analysis, establishing statisistics of	
	Resistance of column and simply supported beam	
	Application of Monte Carlo technique[[with Box Muller Technique, when	
IV	parameters are normally distributed] for cube strength of concrete the	
	strength, Comparison of standard deviation and mean strength of axially	
	loaded short column obtained by simulation and theory. Obtaining the	
	probability of failure by simulation when load of short column when all	
	parameters are either non-random or normally distributed.	
	Level 2 reliability methods FOSM and AFOSM methods, determination of	10
	Cornell's Beta for steel tensile member, Column, I section. HasoferLind	
V	method for invariant beta, Problem on I section & steel tension member to	
	check invariance of Beta. Fiessler's method for invariant beta, problem on	
	short column, simply supported beam, Elastic cantilever beam for a given	
	deflection.	

Reliability based design by inverse formulation, Determination of mean depthof an I beam using Hasofer Lind method. Definitions of Nominal value, meanvalue, characteristic value. Finding partial safety factor for RC beam forultimate strength, simply supported beam[RSJ], . Theory of LRFD designfactors. Theory of LRFD [procedure] for Indian Standards.

Question paper Pattern:

Question paper consists of 08 questions of 20 marks each. Out of 08, students have to answer any 5 full questions.

Text Books:

S1 No	Text Book title	Author	Volume and Year of Edition
1	Reliability Analysis and Design of Structures, Tata McGraw Hill publishing Co. Ltd., New Delhi.	R.Ranganthan,	First Edition
2	Basic Statstical Methods for Engineers and Scientists, Harper and Row Publishers, New York.	John B.Kennedy and Adam M.Neville,	First Edition
3	Probability concepts in Engineering planning and Design, John Wiley and sons, New York,	Ang A.H.S and W.H.Tang,	Vol.I and II.

Reference Book:

S1 No	Text Book title	Author	Volume and Year of Edition
1	Probability and Statistics in Engineering and Management Sciences	William W. Hines, Douglas C. Montegomery	1990, 3 rd Edition
2	Concepts in reliability Engineering	L.S.Srinath	2 nd Edition
3	Theory of Probability	B. Gnedenko	1969

Subject Name: FOUNDATION ENGINEERING

Subject Code: 18MCAD253

L-T-P-C: 4-0-0-4

Sl. No	Course Objectives
1	Gain the knowledge of shallow and deep foundation design with analysis and to incorporate the soil parameters into consideration.

Course outcome	Descriptions
CO1	To understand the concept of bearing capacity and settlement of footings.
CO2	To know the different types of foundations and their suitability.
СОЗ	To understand the necessity of pile and well foundation including design.
CO4	To enhance the knowledge of placing of foundations in expansive soils.

UNIT	Description	Hours
Ι	Bearing Capacity & Settlement: Introduction to bearing capacity and settlement, Factors affecting bearing capacity. Numerical problems on bearing capacity of soils. Types and modes of settlement. Computation of settlement for cohesion and cohesionless soils.	
II	Shallow Foundations : Principles of Design of foundation, Requirements for geotechnical and structural aspects of design, Proportioning of Isolated footing, Combined Footing, Strap footing, Strip footing and Raft foundation.	
III	Pile Foundation: Historical Development, Necessity of pile foundations, Classification, Load carrying capacity of piles by Static formula in cohesive and cohesionless soils. Pile groups, group action of piles in sand and clay, group efficiency of piles and negative skin friction. Numerical problems on above.	
IV	Well Foundations : Introduction, Classification of well foundation, Components of well foundation, Forces acting on well foundation, Sinking of wells, Causes and remedies for tilts and shifts. Drilled Piers and Caissons- Construction, advantages and disadvantages of drilled piers. Design concepts and Advantages and disadvantages of open, pneumatic and floating caissons.	08
V	Foundations on Expansive Soils : Definition, Identification, Mineral Structure, Index properties of expansive soils, Swell potential and Swell pressure, Free swell Tests on expansive soils, foundation treatment for structures in expansive soil, CNS layer.	08

Question paper Pattern:

Question paper consists of 08 questions of 20 marks each. Out of 08, students have to answer any 5 full questions.

Text Books:

S1 No	Text Book title	Author	Volume and Year of Edition
1	"Pile Design, Construction And Practice", Taylor And Francis Publications, New York.	Michael Tomlinson And John Woodward	5 th Edition, 2008
2	"Soil Mechanics And Foundation Engineering", UBS Publishers And Distributors, New Delhi.	V N S Murthy	6 th Edition, 2009
3	"Theory And Practice Of Foundation Design", Prentice Hall Of India, New Delhi.	N N Som And S C Das	3 rd Edition, 2009

Reference Books:

S1 No	Text Book title	Author	Volume and Year of Edition
1	"Soil Mechanics Fundamentals", John Wiley And Sons Publications, New York.	Muni Budhu And Wiley Blackwell	1 st Edition, 2006
2	"Pile Foundations In Engineering", Wiley Inter-Science Publications, New York.	Shamsher Prakash And Hari D Sharma	2 nd Edition, 2005
3	"Geotechnical Engineering", New Age Publications, New Delhi	Venkatramaiah C	3 rd Edition, 2009

Subject Name: ADVANCED STRUCTRAL COMPUTATIONAL

LABORATORY

Subject Code: 18MCADL27

L-T-P-C: 0-0-3-1

Course Objectives:

Sl.No	Course Objectives	
	This course will enable students to use industry standard software in a professional set up.	

Course Outcomes

Course outcome	Descriptions
C01	Understand the elements of finite element modeling, specification of loads and boundary condition
CO2	Performing analysis and interpretation of results for final design

Description

EXPERIMENT 1:

Analysis of 2D & 3D Trusses (using ANSYS/ETABS)

EXPERIMENT 2:

Structural Analysis of Beam for Different Loading Conditions (using ANSYS)

EXPERIMENT 3:

FE Analysis of Framed Structures Due to Seismic Forces (SAP2000)

EXPERIMENT 4:

SSI using winkler approach (SAP2000)