

Department of Applied Electronics & Instrumentation

COURSE HANDOUT : EIGHTH SEMESTER

RSET VISION

To evolve into a premier technological and research institution, moulding eminent professionals with creative minds, innovative ideas and sound practical skill, and to shape a future where technology works for the enrichment of mankind.

RSET MISSION

To impart state-of-the-art knowledge to individuals in various technological disciplines and to inculcate in them a high degree of social consciousness and human values, thereby enabling them to face the challenges of life with courage and conviction.

DEPARTMENT VISION

To evolve into a centre of academic excellence, developing professionals in the field of electronics and instrumentation to excel in academia and industry.

DEPARTMENTMISSION

Facilitate comprehensive knowledge transfer with latest theoretical and practical concepts, developing good relationship with industrial, academic and research institutions thereby moulding competent professionals with social commitment.

PROGRAMME EDUCATIONAL OBJECTIVES

PEOI: Graduates will possess engineering skills, sound knowledge and professional attitude, in electronics and instrumentation to become competent engineers.

PEOII:Graduates will have confidence to design and develop instrument systems and to take up engineering challenges.

PEOIII: Graduates will possess commendable leadership qualities, will maintain the attitude to learn new things and will be capable to adapt themselves to industrial scenario.

PROGRAMME OUTCOMES

Engineering Graduates will be able to:

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineeringproblems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. Design/development of solutions: Design solutions for complex engineering problems and designsystem components or processes that meet the specified needs with appropriate consideration for the publichealth and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methodsincluding design of experiments, analysis and interpretation of data, and synthesis of the information toprovide valid conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineeringand IT tools including prediction and modeling to complex engineering activities with an understanding of thelimitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions insocietal and environmental contexts, and demonstrate the knowledge of, and nee for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of theengineering practice.

PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and designdocumentation, make effective presentations, and give and receive clear instructions.

4

9

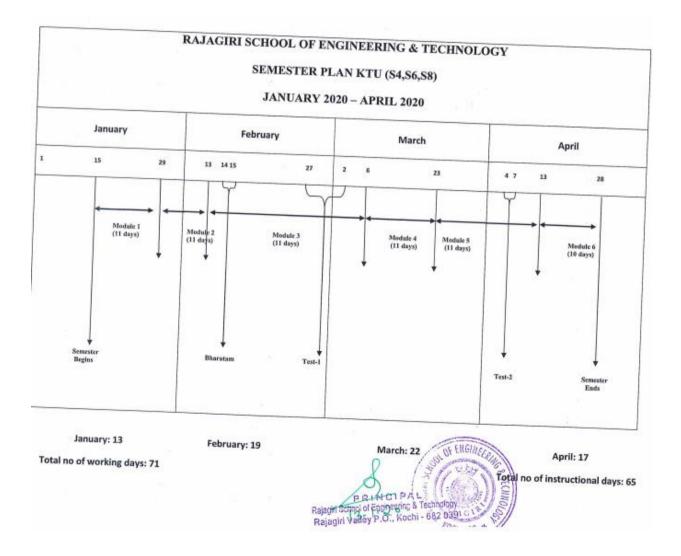
PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcome

Students of the program

PSO 1: will have sound technical skills in electronics and instrumentation.


PSO 2: will be capable of developing instrument systems and methods complying with standards.

PSO 3: will be able to learn new concepts, exhibit leadership qualities and adapt to changing industrial scenarios

	INDEX								
1	ASSIGN	MENT SCHEDULE, SEMESTER PLAN							
2	SCHEME								
3	AE402: ANLYTICAL INSTRUMENTATION								
	3.1.	COURSE INFORMATION SHEET							
	3.2.	COURSE PLAN							
	3.3.	ASSIGNMENT							
4	AE410 I	POWER PLANT INSTRUMENTATION							
	4.1.	COURSE INFORMATION SHEET							
	4.2. COURSE PLAN								
	4.3.	ASSIGNMENT SHEETS							
5	ELECTIV	VE 4:AE466 INDUSTRIAL ROBOTICS							
	5.1.	COURSE INFORMATION SHEET							
	5.2.	COURSE PLAN							
	5.3.	ASSIGNMENT							
6	ELECTIV	VE 4: AE472 PETROLEUM TECHNOLOGY							
	6.1.	COURSE INFORMATION SHEET							
	6.2.	COURSE PLAN							
	6.3.	ASSIGNMENT							
7	AE492 I	PROJECT							
	7.1.	COURSE INFORMATION SHEET							
	7.2.	COURSE PLAN							

	ASSIGNMENT SCHEDULE
Week 4	AE402: ANLYTICAL INSTRUMENTATION
Week 5	AE410 POWER PLANT INSTRUMENTATION
Week 5	ELECTIVE 4:AE466 INDUSTRIAL ROBOTICS
Week 6	ELECTIVE 4: AE472 PETROLEUM TECHNOLOGY
Week 7	AE402: ANLYTICAL INSTRUMENTATION
Week 8	AE410 POWER PLANT INSTRUMENTATION
Week 8	ELECTIVE 4:AE466 INDUSTRIAL ROBOTICS
Week 9	ELECTIVE 4: AE472 PETROLEUM TECHNOLOGY
Week 9	AE402: ANLYTICAL INSTRUMENTATION
Week 12	AE410 POWER PLANT INSTRUMENTATION
Week 12	ELECTIVE 4:AE466 INDUSTRIAL ROBOTICS
Week 13	ELECTIVE 4: AE472 PETROLEUM TECHNOLOGY

SEMESTER PLAN

SCHEME

BRANCH: Applied Electronics and Instrumentation/ Electronics and Instrumentation Engineering

SEMESTER - 8

Course Code	Course Name	L-T-P	Credits	Exam Slot				
AE402	Analytical Instrumentation	3-0-0	3	A				
AE410	Power Plant Instrumentation	3-0-0	3	В				
	Elective 4	3-0-0	3	С				
	Elective 5 (Non Departmental)	3-0-0	3	D				
AE492	Project		6					
	Total C	redits = 1	8	Hours: 30				
	Cumulative Credits= 180							

Elective 4:-

- 1. AE462 Optimal Control System
- 2. AE464 Non-Linear Control System
- 3. AE466 Industrial Robotics
- 4. AE468 Nano Electronics
- 5. AE472 Petroleum Technology

AE402 ANALYTICAL INSTRUMENTATION

COURSE INFORMATION SHEET

PROGRAMME: Applied Electronics &	DEGREE: BTECH
Instrumentation	
COURSE: Analytical Instrumentation	SEMESTER: 8 th CREDITS: 3+0+0
COURSE CODE: AE 402	COURSE TYPE: CORE
REGULATION: KTU	
COURSE AREA/DOMAIN: Instrumentation	CONTACT HOURS: 4 hours/Week.
CORRESPONDING LAB COURSE CODE (IF	LAB COURSE NAME: NIL
ANY):	

SYLLABUS:

UNIT	DETAILS	HOURS
I	Introduction to Analytical Instrumentation: Fundamentals of analytical instruments: Elements of an analytical instrument – PC based analytical instruments –Classification of instrumental techniques. Electromagnetic radiation- Electromagnetic spectrum- Laws relating to absorption of radiation. Absorption spectroscopy: Absorption instruments – Radiation sources- Optical filters- Monochromators- Detectors. Ultra violet and visible absorption spectroscopy.	9
II	Colorimeters/ photometers: Single beam and double beam filter photometer – Spectro photometers: Single beam and double beam spectro photo meters- Infra red spectroscopy: Basic components- Radiation sources- Monochromators- Detectors. Flame Photometry: Principle and constructional details of flame photometer- Emission system – Optical system – Detectors. Atomic absorption spectrophotometers: Theoretical concepts, Instrumentation: Radiation sources – Burners and flames – Plasma excitation sources – Optical and electronic system.	10
III	Fluorescence spectroscopy: Principle of fluorescence – Measurement of fluorescence – Single beam and double beam filter fluorimeter- Ratio fluorimeter. Spectro fluorimeters. Raman spectrometer- Basic theory- Photo acoustic spectroscopy- Photo thermal spectroscopy. Mass spectrometer: Principle of operation- Magnetic deflection mass spectrometers- Components of a mass spectrometer – Inductively coupled plasma mass spectrometer.	10
IV	Nuclear Magnetic Resonance spectroscopy: Basic principle – Constructional details of NMR spectrometer – Nuclear radiation detectors. Electron Spin Resonance spectrometer: Basic ESR spectrometer – Electron spectroscopy: Instrumentation for electron spectroscopy. X- Ray spectrometers: X – ray spectrum –Instrumentation for x –ray spectrometry. X-ray diffractometers- X-ray absorption meters- X- ray fluorescence spectrometry.	8

V	Chromatography: Chromatographic process – Classification- Terms in chromatography- Gas chromatography: Block diagram- Principle – Constructional details – Column details- GC detectors. Liquid Chromatography: Types of liquid chromatography- High pressure Liquid Chromatography (HPLC): Principle- Constructional details.	8					
VI	Industrial Gas analyzers- pH meters- Conductivity meters - Dissolved oxygen meters- Sodium analyser- Gas analysers- Paramagnetic oxygen analyser - CO analysers - Flue gas analysers- Blood PH measurement - Thin film technology for gas sensors- Basic concepts. Measurement techniques and application of gas sensors. Thermal Sensors:- Radiation Sensors, Mechanical Sensors and Bio-Chemical sensors.	8					
	TOTAL HOURS						

TEXT/REFERENCE BOOKS:

T/R	BOOK TITLE/AUTHORS/PUBLICATION
1	Instrumental Methods of Analysis, Willard, Merritt, Dean, Settle, CBS Publishers & Distributors, New Delhi, Seventh edition.
2	Principles of Instrumental Analysis, Skoog, Holler, Nieman, Thomson books-cole publications, 5 th edition.
3	Handbook of Analytical Instruments, R. S. Khandpur, Tata McGraw–Hill Publications, 3 rd edition
4	Instrumental Methods of Chemical Analysis, Galen W. Ewing, McGraw-Hill Book Company, Fifth edition.
5	Introduction to Instrumental Analysis, Robert D. Braun, McGraw-Hill Book Company

COURSE PRE-REQUISITES:

C.CODE	COURSE NAME	DESCRIPTION	SEM
1	Sensors and transducers	Covers fundamentals of	4
		instrumentation	
2	Engineering Chemistry	Covers analytical chemistry	1

COURSE OBJECTIVES:

1	To impart a basic knowledge about analytical instruments, its concepts, and its technique.							
2	To give a vast knowledge about different types of spectroscopic analysis.							
3	To study about different types of chromatographic analysis.							
CO	URSE OUTCOMES:							
SN	O DESCRIPTION BLOOMS'							

SNO	DESCRIPTION	BLOOMS'
		TAXONOMY
		LEVEL
1	Graduate will be able to identify, understand and define the	1,3
	fundamentals of Analytical instruments: can you illustrate the	
	elements of Absorption Spectroscopy	

2	Graduate will able to sketch various types of photometry	2,3
3	Graduates will be able to learn the fundamentals and applications of	1,3
	fluorescence spectrometers	
4	Graduate will be able to compare and evaluate the performance of	4,5
	Mass, NMR, ESR, X-ray Spectrometers	
5	Graduate will be able to describe and articulate various aspects of	2,3
	Gas and Liquid Chromatography	
6	Graduate will be able to deduce the relevance with deeper	4,6
	understanding of Gas analyzers, pH meters, conductivity meters,	
	Dissolved Oxygen Meters :They will be able to choose the	
	appropriate method	

CO-PO AND CO-PSO MAPPING

	P01	PO2	PO3	PO4	P05	PO6	P07	P08	PO9	P010	P011	P012	PSO1	<i>PSO2</i>	PSO3
<i>CO1</i>	2		3										1		
СО2			3				2							2	
СО3	2				1										2
<i>CO4</i>					2								3		
<i>CO5</i>	3				2										2
СО6	3				2										2

GAPS IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

SNO	THE SYLLABUS - TO MEET INDUS DESCRIPTION	PROPOSED ACTIONS	RELEVANCE WITH POs	RELEVANCE WITH PSOs
Mapping		Justifications		
C01-P01	Fundamentals of analytical inst	rumentation requ	ires basic know	ledge of science
	and engineering in order to defi	ne complex engin	eering solutions	in the field of
	analytical instrumentation			
CO1-PO3	Consideration of health and env	ironmental conce	rns are to be con	nsidered
C01-PS01	Have capacity of deciding the va	rious scenario wł	nere Analytical i	nstrumentation
	is applicable and necessarily use	ed		
CO2-PO3	Categorization of various types	of photometry sys	stems with their	specifications is
	studied. It helps to find out desig	gn solutions for co	omplex engineer	ring problems in
	the fiel of analytical instrumenta	ation and design s	ystem process.	
CO2-PO 7	Selection criteria of different an	alytical systems ta	akes into consid	eration of
	environmental issues and sustai	nable notes.		
CO2-PSO2	Knowledge about the specificati	ons of and princip	oles of operation	is equips students
	to develop instrument system an	nd methods comp	lying with stand	lards.
CO3-PO1	Considering basic engineering p	roblems the funct	tions of various	spectrometers are
	studied in detail.			
CO3-PO5	established technology for differ	cent types of spec	trometers is we	ll discussed
CO3-PSO3	Open discussion for new concep	ts and technologi	es and other mo	difications for
	spectrometry adept to the indu	strial scenario is c	lone	
CO4-PO5	Appropriate techniques, resource	ces and modern en	ngineering tools	for analytical
	instrumentation are discussed.	Design methods a	re somewhat dis	scussed
CO4-PSO1	Technical skills for analytical ins	strumentation sys	tems are review	ved.
CO5-PO1	Basic understanding of science l	pehind Gas and Li	quid Chromatog	raphy is
	refreshed.			
CO5-PO5	Appropriate technique for Gas a	nd liquid Chroma	tography is well	l discussed.
CO5-PSO3	Concept of chromatography and	its relevance is w	vell studied	
C06-P01	The concept behind Gas Analyze	ers and its differer	nt types is well d	liscussed
CO6-PO5	Measurement techniques and ap	plication of gas s	ensors is well di	scussed
CO6-PSO3	Technical skills for analytical set	nsors are reviewe	d.	

1	Fundamentals and methods of green	Reading	6,7,8	1
	analytical	assignment		
	chemistry/instrumentation			
2	Detailed Applications of Analytical	Written	1,4,6	1,3
	Instruments: Medical,	assignment		
	Environmental, Defense and security			
	etc.			
3	Safety measures and	Reading	1,2	1
	implementation in analytical	assignment/video		
	instrumentation lab			

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

SNO	DESCRIPTION	PROPOSED ACTIONS	RELEVANCE WITH POs	RELEVANCE WITH PSOs
1	Sustainable Analytical Chemistry-	Written	6,7,8	1
	concerns more than green	Assignment		
2	Automated analytical	Reading	1,5,12	1,3
	chemistry/instrumentation	assignment		
3	Portability in analytical chemistry:	Class seminar	6,7,8	1,3
	green and democratic way for	Presentation		
	sustainability			

WEB SOURCE REFERENCES:

1	http://usir.salford.ac.uk/14745/1/D095810.pdf
2	http://onlinelibrary.wiley.com/doi/10.1002/9780470511282.fmatter/pdf
3	http://www.colby.edu/chemistry/CH332/resources.htm
4	http://www.cem.msu.edu/~cem333/
5	http://web.uni-
	plovdiv.bg/plamenpenchev/mag/books/anchem/Handbook%20of%20Analytical%20
	Techniques,%202%20Volume%20Set.pdf
6	https://web-material3.yokogawa.com/Analytical_Product_BU.us.pdf
7	https://www.edinst.com/wp-content/uploads/2015/08/StellarNet-PORTA-LIBS-
	SPEC.pdf
8	http://faculty.rmu.edu/~short/research/antimony/references/Rouessec-F-and-
	Rouessec-A-2007-chemical-analysis-modern-instrumentation-methods-and-
	techniques-2nd-2007.pdf
9	ftp://ftp.unicauca.edu.co/Facultades/FIET/DEIC/Materias/Instrumentacion%20Indu
	strial/Instrument_Engineers_Handbook
	_Process_Measurement_and_Analysis/Instrument%20Engineers'%20Handbook%20-
	%20Process%20Measurement%20and%20Analysis/1083ch8_1.pdf
10	https://www.env.go.jp/en/chemi/pops/Appendix/04-GuideLine/04Chapter3.pdf

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

□ CHALK & TALK ☑	☐ STUD. ASSIGNMENT ☑	□ WEB RESOURCES ☑	□ LCD/SMART BOARDS ☑
□ STUD. SEMINARS⊠	□ ADD-ON COURSES		

ASSESSMENT METHODOLOGIES-DIRECT

□ ASSIGNMENTS ☑	□ STUD. SEMINARS	□ TESTS/MODEL	□ UNIV.
		EXAMS 🗹	EXAMINATION 🗹
STUD. LAB	🗆 STUD. VIVA	□ MINI/MAJOR	□ CERTIFICATIONS
PRACTICES		PROJECTS	
ADD-ON	□ OTHERS		
COURSES			

ASSESSMENT METHODOLOGIES-INDIRECT

□ ASSESSMENT OF COURSE OUTCOMES (BY	STUDENT FEEDBACK ON FACULTY	
FEEDBACK, ONCE) 🗹	(TWICE) 🗹	
□ ASSESSMENT OF MINI/MAJOR PROJECTS	□ OTHERS	
BY EXT. EXPERTS		

Prepared by Fr. Thomas PJ (Faculty) Approved by Ms. Liza Annie Joseph (HOD)

COURSE PLAN

Sl.No	Module	Planned	
1	1	Introduction to Analytical Instrumentation	
2	1	Fundamentals of analytical instruments	
3	1	Fluorescence spectroscopy: Principle of fluorescence	
4	1	Electromagnetic radiation- Electromagnetic spectrum	
5	1	Laws relating to absorption of radiation. Absorption	
U	-	spectroscopy	
6	1	Absorption instruments – Radiation sources- Optical	
		filters-	
7	1	Monochromators- Detectors.	
8	1	Ultra violet and visible absorption spectroscopy	
9	1	Revision/discussion/ class	
10	2	Colorimeters/ photometers: Single beam and double beam	
		filter photometer	
11	2	Spectro photometers: Single beam and double beam	
		spectro photo meters	
12	2	Infra red spectroscopy,Basic components- Radiation	
10	2	sources- Monochromators- Detectors	
13	2	Flame Photometry: Principle and constructional details of	
14	2	flame photometer	
14	2	Emission system – Optical system – Detectors.	
15	Z	Atomic absorption spectrophotometers: Theoretical	
16	2	concepts, Instrumentation Radiation sources - Burners and flames	
10	2	Plasma excitation sources - Optical and electronic system	
17	2	Plasma excitation sources - Optical and electronic system	
10	2	Revision	
20	3	Fluorescence spectroscopy: Principle of fluorescence	
20	3	Measurement of fluorescence – Single beam and double	
21	5	beam filter fluorimeter	
22	3	Ratio fluorimeter. Spectro fluorimeters.	
23	3	Raman spectrometer- Basic theory-	
24	3	Photo acoustic spectroscopy- Photo thermal spectroscopy	
25	3	Mass spectrometer: Principle of operation-	
26	3	Magnetic deflection mass spectrometers	
27	3	Components of a mass spectrometer	
28	3	Inductively coupled plasma mass spectrometer.	
29	3	Revision	
30	4	Nuclear Magnetic Resonance spectroscopy: Basic principle	
		– Constructional details of NMR spectrometer	
31	4	Nuclear radiation detectors.	
32	4	Electron spectroscopy: Instrumentation for electron	
		spectroscopy	
33	4	Electron Spin Resonance spectrometer: Basic ESR	
		spectrometer	

34	4	X- Ray spectrometers: X – ray spectrum –Instrumentation
		for x –ray spectrometry.
35	4	X-ray diffractometers- X-ray absorption meters
36	4	X- ray fluorescence spectrometry
37	4	Revision
38	5	Chromatography: Chromatographic process
39	5	Classification- Terms in chromatography
40	5	Gas chromatography: Block diagram
41	5	Principle - Constructional details
42	5	Column details- GC detectors
43	5	Liquid Chromatography: Types of liquid chromatography
44	5	High pressure Liquid Chromatography (HPLC):
		Principle,Constructional details
45	5	Revision
46	6	Industrial Gas analyzers- pH meters- Conductivity meters
47	6	Dissolved oxygen meters- Sodium analyser
48	6	Gas analysers- Paramagnetic oxygen analyser – CO
		analysers
49	6	Flue gas analysers -Blood PH measurement
50	6	Thin film technology for gas sensors- Basic concepts-
		Measurement techniques and application of gas sensors.
51	6	Thermal Sensors:- Radiation Sensors,
52	6	Mechanical Sensors and Bio-Chemical sensors.
53	6	Revision

Assignment Questions

Assignment I

Detailed Applications of Analytical Instruments: Medical, Environmental, Defense and security etc.

Assignment II

Sustainable Analytical Chemistry-concerns more than green analytical chemistry/Instrumentation

AE410 POWER PLANT INSTRUMENTATION

COURSE INFORMATION SHEET

PROGRAMME: APPLIED ELECTRONICS AND	DEGREE: BTECH
INSTRUMENTATION	
COURSE: POWER PLANT INSTRUMENTATION	SEMESTER: 8 CREDITS: 3
COURSE CODE: AE 410 REGULATION:	COURSE TYPE: CORE
2016	
COURSE AREA/DOMAIN: INSTRUMENTATION	CONTACT HOURS: 3+0 (Tutorial)
	hours/Week.
CORRESPONDING LAB COURSE CODE (IF ANY):	LAB COURSE NAME: NIL
NIL	

SYLLABUS:

UNIT	DETAILS	HOURS
I	Brief survey of methods of power generation-hydro, thermal, nuclear, solar and wind power Introduction to thermal power plant processes – building blocks - ideal steam cycles	6
II	Boiler – types, Boiler - turbine units and its range systems, feed water systems, steam circuits, air preheating. Soot blowers, combustion process, products of combustion, fuel systems, treatment of flue gases, smoke density measurements, steam turbine, condensate systems, alternator, feed water conditioning, turbine bypass valves. Importance of instrumentation in power generation – details of boiler processes, combined cycle power plant, power generation and distribution, burner tilting, and bypass damper.	7
III	Measurement in boiler and turbine: Metal temperature measurement in boilers, piping System for pressure measuring devices, smoke and dust monitor, flame monitoring. Introduction to turbine supervising system, pedestal vibration, shaft vibration, eccentricity measurement. Installation of non-contracting transducers for speed measurement.	7
IV	Measurements in power plants: Electrical measurements – current, voltage, power, frequency, power factor etc. – non electrical parameters – flow of feed water, fuel, air and steam with correction factor for temperature – steam pressure and steam temperature – drum level measurement – radiation detector – smoke density measurement – dust monitor.	7
V	Controls in boiler: Boiler drum level measurement methods, feed water control, soot blowing operation, steam temperature control, Coordinated control, boiler following mode operation, turbine following mode operation, selection between boiler and turbine following modes. Distributed control system in power plants interlocks in boiler operation. Cooling system, Automatic turbine runs up systems.	8
VI	Nuclear power plant instrumentation: Piping and instrumentation diagram of different types of nuclear power plant, Nuclear reactor control loops, reactor dynamics, pulse channel and logarithmic instrumentation,	7

control and safety instrumentation, reliability aspects	
TOTAL HOURS	42

TEXT/REFERENCE BOOKS:

T/R	BOOK TITLE/AUTHORS/PUBLICATION
Т	Gill A.B, "Power Plant Performance", Butterworth, London, 1984.
Т	P.C Martin, I.W Hannah, "Modern Power Station Practice", British Electricity
	International Vol. 1 & VI, Pergamon Press, London, 1992.
Т	Sam. G.Dukelow, "The Control of Boilers", 2nd Edition, ISA Press, New York, 1991
R	David Lindsley, "Boiler Control Systems", McGraw Hill, New York, 1991.
R	Jervis M.J, "Power Station Instrumentation", Butterworth Heinemann, Oxford, 1993.
R	Modern Power Station Practice, Vol.6, "Instrumentation, Controls and Testing", Pergamon Press, Oxford, 1971.

COURSE PRE-REQUISITES:

C.CODE	COURSE NAME	DESCRIPTION	SEM
AE204	Sensors and Transducers	Study the basics	4
		sensors	
AE304	Industrial Instrumentation II	Instrumentation for	6
		measurement	
AE302	Process Control	Familiarize with the	6
		industry	

COURSE OBJECTIVES:

1	To introduce the basics of Power generation
2	To enable the design of power plant control using various methods

COURSE OUTCOMES:

Sl.	DESCRIPTION	Bloom's
No.		Taxonomy Levels
1	Graduates will be able to describe different power generation	Knowledge(1) &
	station and compare its functionality	Understand(2)
2	Graduates will able to prepare P&I diagram of a boiler	Application (3)
3	Graduates will be able to select proper measuring equipment for	Apply (3)
	the measurements of boilers and turbines.	
4	Graduates will be able choose a method for the measurement of	Application (3)
	parameters in power plant.	

5	Graduates will able to deduce different control scheme for the	Application (3) &
	control of boiler operation.	Analyze (4)
6	Graduates will able to sketch P&I diagrams for Nuclear power	Application (3)
	plant & reactors.	

CO-PO AND CO-PSO MAPPING

	P01	<i>P02</i>	<i>P03</i>	<i>P04</i>	P05	<i>P06</i>	<i>P07</i>	<i>P08</i>	<i>P0</i> 9	P010	P011	P012	PSO1	PSO2
<i>CO.1</i>	3	-	-	1	-	-	-	-	-	-	-	-	2	-
<i>CO.2</i>	2	3	-	-	-	-	-	-	-	-	-	-	-	-
<i>CO.3</i>	-	3	2	-	-	-	-	-	-	-	-	-	-	2
<i>CO.4</i>	-	2	3	-	-	-	-	-	-	-	-	-	-	-
<i>CO.5</i>	2	-	1	-	-	-	-	-	-	-	-	2	-	2
<i>CO.6</i>	3	-	-	-	-	-	-	-	-	-	-	-	-	-

JUSTIFICATIONS FOR CO-PO-PSO MAPPING

MAPPING	LOW/MEDIUM/ HIGH	JUSTIFICATION
CO.1- PO1	Н	Knowledge of power generation station is required for examine its
		functionality.
CO.1 – PO4	L	Complex problems in power generation can be examined properly
CO.1 -	М	Sound technical skill help them to describe the power generation
PSO1		problem.
CO.2 – PO1	М	Fundamental knowledge is appreciated for the formulation of P&I
		diagram.
CO.2 – PO2	Н	Formulation of parameters in a boiler system required the
		principles of mathematics and natural sciences.
CO.2 -	М	New concepts in boiler system will be evaluated
PSO3		
CO.3 – PO2	Н	Selection of measuring equipment requires the proper formulation
		of engineering problems.
CO.3 – PO3	М	Environmental considerations are to be taken care while examine
		the boiler system.
CO.3 -	М	Measuring equipment must be complying with industrial standard.
PSO2		
CO.4 – PO2	М	Identification and formulation of real engineering problem is

		required for the solution.			
CO.4 - PO3	Н	Design of boiler measuring system that meet the specific performance criteria.			
CO.4 – PSO3	М	Better systems can be designed with the help of stability analyzing tool.			
CO.5 - PO1	Н	Recommend different control scheme for analysis and prediction of systems behavior.			
CO.5 - PO12	М	Imparting knowledge for making industry ready graduates that enable lifelong learning.			
CO.5 – PSO2	М	Understanding of universal standard analysis tool like MATLAB, students will realize the practical systems.			
CO.6- PO1	Н	Development of a new system require strong fundamental knowledge			
CO.6- PSO3	М	Students can be adapted to the real industrial scenario.			

GAPS IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

Sl.NO:	DESCRIPTION	PROPOSED	PO Mapping
		ACTIONS	
1	Basics of P&I Diagrams	Session based on this topic	P01, P03, PS02
		planned	

PROPOSED ACTIONS: TOPICS BEYOND SYLLABUS/ASSIGNMENT/INDUSTRY VISIT/GUEST LECTURER/NPTEL ETC

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

1 Case study: Any thermal/combined cycle power plant

WEB SOURCE REFERENCES:

1	https://nptel.ac.in/courses/108105058/8
2	https://nptel.ac.in/courses/108105058/12
3	https://www.youtube.com/watch?v=uVPp8wml9iU
4	https://www.youtube.com/watch?v=Uhjhufhg3Xk
5	https://www.youtube.com/watch?v=IdPTuwKEfmA
6	https://www.youtube.com/watch?v=qSWm_nprfqE

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

CHALK & TALK	STUD. ASSIGNMENT	WEB RESOURCES	
DLCD/SMART	<i>□</i> STUD. SEMINARS	□ ADD-ON COURSES	
BOARDS			

ASSESSMENT METHODOLOGIES-DIRECT

ASSIGNMENTS	□STUD. SEMINARS	TESTS/MODEL	UNIV.
		EXAMS	EXAMINATION
⊡STUD. LAB	⊡STUD. VIVA	<i>□</i> MINI/MAJOR	<i>□</i> CERTIFICATIONS
PRACTICES		PROJECTS	
□ ADD-ON COURSES	DOTHERS		

ASSESSMENT METHODOLOGIES-INDIRECT

ASSESSMENT OF COURSE OUTCOMES (BY	STUDENT FEEDBACK ON FACULTY	
FEEDBACK, ONCE)	(TWICE)	
□ ASSESSMENT OF MINI/MAJOR PROJECTS BY	DOTHERS	
EXT. EXPERTS		

Vimal kumar V

Prepared by

(Faculty)

Approved by

(HOD)

COURSE PLAN

Sl.No	Module	Planned	Topics	
1	1	Day1	Thermal power generation	
2	1	Day2	Brief survey of methods of power generation-hydro	
3	1	Day3	Introduction to thermal power plant processes – building blocks - ideal steam cycles	
4	1	Day4	nuclear power generation	
5	1	Day5	solar power generation	
6	1	Day6	wind power generation	
7	2	Day7	Boiler - turbine units and its range systems,	
8	2	Day8	Boiler – types	
9	2	Day9	Soot blowers, combustion process, products of combustion, fuel systems	
10	2	Day10	feed water systems, steam circuits, air preheating	
11	2	Day11	treatment of flue gases, smoke density measurements	
12	2	Day12	steam turbine, condensate systems, alternator, feed water conditioning, turbine bypass valves.	
13	2	Day13	Importance of instrumentation in power generation – details of boiler processes, combined cycle power plant-power generation and distribution, burner tilting, and bypass damper	
14	3	Day14	Measurement in boiler and turbine: Metal temperature measurement in boilers	
15	3	Day15	Piping system for pressure measuring devices	
16	3	Day16	smoke and dust monitor, flame monitoring	
17	3	Day17	Introduction to turbine supervising system	
18	3	Day18	pedestal vibration, shaft vibration	

19	3	Day19	eccentricity measurement	
20	3	Day20	Installation of non-contracting transducers for speed measurement.	
21	4	Day21	Measurements in power plants: Electrical measurements – current, voltage	
22	4	Day22	Measurements in power plants: Electrical measurements – power,frequency, power factor	
23	4	Day23	non electrical parameters – flow of feed water	
24	4	Day24	fuel, air and steam with correction factor for temperature	
25	4	Day25	steam pressure and steam temperature – drum level measurement	
26	4	Day26	radiation detector	
27	4	Day27	smoke density measurement – dust monitor	
28	4	Day28	Revision Module 4	
29	5	Day29	Controls in boiler: Boiler drum level measurement methods, feed water control, soot blowing operation	
30	5	Day30	steam temperature control	
31	5	Day31	Coordinated control	
32	5	Day32	boiler following mode operation	
33	5	Day33	turbine following mode operation, selection between boiler and turbine following modes	
34	5	Day34	Distributed control system in power plants interlocks in boiler operation	
35	5	Day35	Automatic turbine runs up systems	
36	5	Day36	Cooling system	
37	6	Day37	Nuclear power plant instrumentation	
38	6	Day38	Piping and instrumentation diagram of different types of nuclear power plant	
39	6	Day39	Nuclear reactor control loops	
40	6	Day40	reactor dynamics	

41	6	Day41	control and safety instrumentation
42	6	Day42	pulse channel and logarithmic instrumentation
43	6	Day43	reliability aspects
44	6	Day44	Revision
45	5	Day45	Revision
46	6	Day46	Question paper discussion

ASSIGNMENTS

Assignment1 (Module1 & 2):

Q.No	Question
a)	Sketch the schematic of following power plants and list advantages and disadvantages i)Hydro ii)Thermal ii)Nuclear.
b)	Draw the schematic of a combined cycle power plant and write a brief description of its function near the corresponding symbol.

Assignment2 (Module5 & 6):

Q.No	Question
a)	i) Explain about various control loops in boilers ii) Explain in detail about drum level control
b)	Explain in detail about piping and instrumentation diagram of nuclear power plant

ELECTIVE 4 AE466 INDUSTRIAL ROBOTICS

COURSE INFORMATION SHEET

PROGRAMME: Applied Electronics and	DEGREE: BTECH
Instrumentation Engg.	
COURSE: INDUSTRIAL ROBOTICS	SEMESTER: 8 CREDITS: 3
COURSE CODE: AE466	COURSE TYPE: ELECTIVE
REGULATION: 2016	
COURSE AREA/DOMAIN: ELECTRONICS	CONTACT HOURS: 3 hours/Week.
CORRESPONDING LAB COURSE CODE (IF	LAB COURSE NAME: nil
ANY): nil	

SYLLABUS:

UNIT	DETAILS	HOURS
I	Automation and Robotics, Robot anatomy, configuration of robots, joint notation schemes, work volume, introduction to manipulator kinematics, position representation, forward and reverse transformations of a 2- DOF arm, a 3- DOF arm in two dimension, a 4 – DOF arm in three dimension, homogeneous transformations in robot kinematics, D-H notations, solving kinematics equations, introduction to robot arm dynamics.	7
II	Basic control system models, slew motion, joint –interpolated motion and straight line motion, controllers like on/off, proportional, integral, proportional plus integral, proportional plus derivative, proportional plus integral plus derivative.	7
III	Robot actuation and feedback components position and velocity sensors, actuators and power transmission devices, mechanical grippers, vacuum cups, magnetic grippers, pneumatic, electric, hydraulic and mechanical methods of power and control signals to end effectors.	7
IV	General considerations in robot material handling, material transfer applications, pick and place operations, palletizing and related operations, machine loading and unloading, die casting, plastic molding, forging, machining operations, stamping press operations using robots.	7
V	Robot Programming and AI: Methods - Languages -Computer control and Robot Software -VAL Language – Trajectory Planning, Basic robot motions - Point to point control & continuous path control and interpolations AI – Basics – Goals-AI Techniques – AI & Robotics.	7
VI	Robot cell layouts , multiple robots and machine interface, other considerations in work cell design, work cell control, interlocks, error detection and recovery, work cell controller, robot cycle time analysis.	7
	TOTAL HOURS	42

TEXT/REFERENCE BOOKS:

T/R	BOOK TITLE/AUTHORS/PUBLICATION
Т	Richard D. Klafter, Thomas A. Chmielewski and Michael Negin, "Robotic
	Engineering - An Integrated Approach", Prentice Hall India, 2002
R	Deb S.R., " Robotics Technology and Flexible Automation ", Tata McGraw-Hill,
	Publishing Co., Ltd., 1994.
R	K.S. Fu., R.C.Gonalez, C.S.G.Lee, " Robotics Control Sensing ", Vision and
	Intelligence, McGraw Hill International Edition, 1987.
R	Mikell P. Groover, Mitchell Weiss, "Industrial Robotics, Technology,
	Programming and Applications ", McGraw Hill International Editions, 1st
	Edition, 2000

COURSE PRE-REQUISITES: NIL

C.CODE	COURSE NAME	DESCRIPTION	SEM
	NIL		

COURSE OBJECTIVES:

1	To familiarize automation & brief history of robot & applications.
2	To study the kinematics of robot
3	To give knowledge about end effectors & their design
4	To learn about Robot programming methods & Languages of robot

COURSE OUTCOMES:

SNO	DESCRIPTION	Blooms' Taxonomy Level
1	Students will be equipped with the automation and	Understand
	understand the robot anatomy and manipulator kinematics	(Level 2)
	(DOF) in 2D and 3D.	
2	Students will get the knowledge of the basic control system	Knowledge &
	models and understand it.	Understand (Level
		1, 2)
3	Students will have good knowledge about robot actuation	Knowledge & Apply
	and feedback components like sensors, grippers and actuators and illustrate their usage.	(Level 2&3)
4	Students will get the knowledge of robot material handling and material transfer applications.	Knowledge (Level 2)
5	Students learn about Robot programming methods &	Understand
	understand the Languages of robot.	(Level 2)
6	Students will get the knowledge of robot cell layouts.	Understand
		(Level 2)

CO-PO AND CO-PSO MAPPING

 PO1
 PO2
 PO3
 PO4
 PO5
 PO6
 PO7
 PO8
 PO9
 PO10
 PO11
 PO12
 PS01
 PS02

CO.1	2	-	-	-	-	-	-	-	-	-	-	-	2	-
CO.2	2	1	-	1	-	-	-	-	-	-	-	-	2	-
CO.3	2	1	-	1	-	-	-	-	-	-	-	-	2	-
CO.4	2	-	1	1	-	-	-	-	-	-	-	-	2	-
CO.5	2	-	1	1	1	-	-	-	-	-	-	-	2	-
CO.6	2	-	1	1	-	-	-	-	-	-	-	_	2	-

JUSTIFATIONS FOR CO-PO-PSO MAPPING

MAPPING	LOW/MEDIUM	JUSTIFICATION	
	/HIGH		
CO.1- PO1	М	Understands the fundamentals of robot & its applications.	
CO.1 –	М	Has sound technical knowledge in electronics.	
PSO1			
CO.1 -	L	Will be able to learn new concepts.	
PSO3			
CO.2- PO1	М	Understands the kinematic motions of robot.	
CO.2 – PO2	L	Aware of basic control system models.	
CO.2 - PO4	L	Understands the motion control of robot	
CO.2 –	М	Has sound technical knowledge in electronics.	
PSO1			
CO.2 -	L	Will be able to learn new concepts.	
PSO3			
CO.3- PO1	М	Understands the robot end effectors.	
CO.3 – PO2	L	Able to illustrate their design concepts.	
CO.3 - PO4	L	Able to attempt design experiments	
CO.3 –	М	Has sound technical knowledge in electronics.	
PSO1			
CO.3 -	L	Able to develop programs for various concepts.	
PSO3			
CO.4- PO1	М	Understands the robot material handling.	
CO.4- PO3	L	Able to understand material transfer applications.	
CO.4- PO4	L	Understands pick and place operations, plastic molding etc.	
CO.4 –	М	Has sound technical knowledge in electronics.	
PSO1			
CO.4 -	L	Able to develop programs for various concepts.	
PSO3			
CO.5- PO1	М	Understand the memory management unit of ARM processor.	
CO.5- PO3	L	Understands the basic robot programming methods.	

CO.5- PO4	L	Understands the Languages of Robot
CO.5- PO5	L	Will be aware of modern tool.
CO.5 -	М	Has sound technical knowledge in electronics.
PSO1		
CO.5 -	L	Able to develop programs for various concepts.
PSO3		
CO.6- PO1	L	Understand the basic robot cell layouts.
CO.6 – PO3	L	Understands the multiple robots and machine interface.
CO.6- PO4	L	Understands the basic cell work design.
CO.6- PS01	М	Has sound technical knowledge in electronics.
CO.6- PSO3	L	Able to provide various engineering solutions to society.

GAPS IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

SN O	DESCRIPTION	PROPOSED ACTIONS	RELEVANCE WITH POs	RELEVAN CE WITH PSOs		
1	How to build a Robot	Reading material	PO1, PO3,PO4, PO5	PSO1		
PROF	PROPOSED ACTIONS: TOPICS BEYOND SYLLABUS/ASSIGNMENT/INDUSTRY VISIT/GUEST					

LECTURER/NPTEL ETC

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

SNO	DESCRIPTION	PROPOSED	RELEVANCE	RELEVANCE
		ACTIONS	WITH POs	WITH PSOs
1	Human Robot	Reading material	PO1,	PSO1
	Collabration		PO3,PO4,	
			PO5	

WEB SOURCE REFERENCES:

1	https://www.robotshop.com/community/tutorials/show/how-to-make-a-
	robot-lesson-10-programming-your-robot
2	https://www.youtube.com/watch?v=00fXhz4In w
3	http://www.montana.edu/dsobek/teaching/ime471/lectures/Lecture%2014b%20-
	%20Industrial%20Robotics%20-%20Ch%208.pdf

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

□ CHALK & TALK	□ STUD. ASSIGNMENT	□ WEB RESOURCES
□ LCD/SMART BOARDS	□ STUD. SEMINARS	□ ADD-ON COURSES

ASSESSMENT METHODOLOGIES-DIRECT

□ ASSIGNMENTS	□ STUD. SEMINARS	□ TESTS/MODEL	🗆 UNIV.
		EXAMS	EXAMINATION
STUD. LAB	🗆 STUD. VIVA	☐ MINI/MAJOR	□ CERTIFICATIONS
PRACTICES		PROJECTS	
□ ADD-ON COURSES	□ OTHERS		

ASSESSMENT METHODOLOGIES-INDIRECT

□ ASSESSMENT OF COURSE OUTCOMES (BY	□ STUDENT FEEDBACK ON
FEEDBACK, ONCE)	FACULTY (TWICE)
□ ASSESSMENT OF MINI/MAJOR PROJECTS BY	□ OTHERS
EXT. EXPERTS	

Prepared by Abraham Thomas (Course in-charge) Approved by Ms. Liza Annie Joseph (HOD/DAEI)

COURSE PLAN

lanned

	D		
1	Day 1	Automation and Robotics, Robot anatomy	
1	Day 2	Configuration of robots, joint notation schemes, work volume	
1	Day 3	Introduction to manipulator kinematics, position representation, forward and reverse transformations of a 2- DOF arm,	
1	Day 4	a 3- DOF arm in two dimension , a 4 – DOF arm in three dimension	
1	Day 5	homogeneous transformations in robot kinematics,	
1	Day 6	D-H notations solving kinematixcs equations	
1	Day 7	solving kinematics equations, introduction to robot arm dynamics.	
2	Day 8	Basic control system models, slew motion,	
2	Day 9	Joint -interpolated motion and straight line motion	
2	Day 10	Controllers like on/off, proportional, integral	
2	Day 11	Proportional plus integral,	
2	Day 12	Proportional plus derivative	
2	Day 13	Proportional plus integral plus derivative.	
3	Day 14	Robot actuation and feedback components	
3	Day 15	position and velocity sensors, actuators and power transmission devices	
3	Day 16	mechanical grippers , vacuum cups, magnetic grippers	
3	Day 17	Pneumatic methods of power and control signals to end effectors.	
3	Day 18	Electric methods of power and control signals to end effectors.	
3	Day 19	Hydraulic methods of power and control signals to end effectors.	
3	Day 20	Mechanical methods of power and control signals to end effectors.	
4	Day 21	General considerations in robot material handling, material transfer applications	
4	Day 22	Pick and place operations	
4	Day 23	Palletizing and related operations	
4	Day 24	Machine loading and unloading,	
4		Die casting, plastic molding	
4	Day 26	Forging, machining operations,	
4	Day 27	Stamping press operations using robots.	
5	Day 28	Robot Programming and AI: Methods - Languages	
5	Day 29	Computer control and Robot Software -VAL Language	
5	Day 30	Trajectory Planning, Basic robot motions	
5	Day 31	Point to point control & continuous path control and interpolations	
5	Day 32	AI – Basics	
5	Day 33	Goals-AI Techniques	
5	Day 34	AI & Robotics.	
6	Day 35	Robot cell layouts , multiple robots and machine interface,	
6	Day 36	Other considerations in work cell design	
6	Day 37	Work cell control, interlocks	
6	Day 38	Error detection and recovery,	
6	Day 39	Work cell controller	
6	Day 40	Robot cycle time analysis.	

ASSIGNMENT I

Answer all questions.

Write detailed notes on the following topics.

- 1. Robot Actuation and feedback components (sensors).
- 2. Position and velocity sensors.
- 3. Actuators.
- 4. Power transmission devices (systems).
- 5. Mechanical grippers.
- 6. Vacuum Cups.
- 7. Magnetic grippers.

8. Pneumatic, electric, hydraulic and mechanical methods of transmitting power and control signals to the end effectors.

Refer

1. 'Industrial Robotics : Technology, Programming and Applications' by Mikell P

Groover, Mitchell Weiss et.al. (chapters 3 and 5)

2. `Robotics Technology and Flexible Automation' by S R Deb.

ASSIGNMENT II

Answer all questions.

Write detailed notes on the following topics.

- 1. General considerations in robot material handling.
- 2. Material transfer applications.
- 3. Pick-and-place operations.
- 4. Palletizing and related operations.
- 5. Machine loading and unloading.
- 6. Die casting.
- 7. Plastic molding.
- 8. Forging and related operations.
- 9. Machining operations.
- 10. Stamping press operations.

Refer

1. 'Industrial Robotics : Technology, Programming and Applications' by Mikell P

Groover, Mitchell Weiss et.al. (chapter 13)

2. 'Robotics Technology and Flexible Automation' by S R Deb.

ELECTIVE 4 AE472 PETROLEUM TECHNOLOGY

COURSE INFORMATION SHEET

PROGRAMME: APPLIED ELECTRONICS & INSTRUMENTATION	DEGREE: B TECH
COURSE: PETROLEUM ENGINEERING	SEMESTER: 8 CREDITS: 3
COURSE CODE:AE472REGULATION:2016	COURSE TYPE: Elective
COURSE AREA/DOMAIN: Process Control/Mining/Chemical/Petroleum	CONTACT HOURS: 3
Eng	
CORRESPONDING LAB COURSE CODE (IF ANY): NA	LAB COURSE NAME: NA

SYLLABUS:

UNIT	DETAILS	HOURS
Ι	Refinery products – Refinery Feeds – Crude distillation Coking and thermal process : Classification and description of some common rocks	6
	with special reference to clastic and nonclastic reservoir rocks. Origin, migration and accumulation of Petroleum. Petroleum exploration methods.	
II	Catalytic Cracking - Catalytical hydro cracking – Hydro processing and Reused processing hydro treating. Petrophysical properties of reservoir rocks. Coring and core analysis. Reservoir fluid properties. Phase behavior of hydrocarbon system. Flow of fluids through porous media. Water and gas coning.	6
III	Well equipments. Well completion techniques. Well production problems and mitigation. Well servicing &Workover operations. Workover& completion fluids. Formation damage. Well stimulation techniques. Artificial lift techniques. Field processing of oil & gas. Storage and transportation of petroleum and petroleum products. Metering and measurements oil & gas.	7
IV	Production system analysis & optimization. Production testing. Multiphase flow in tubing and flow-lines. Nodal system analysis. Pressure vessels, storage tanks, shell and tube heat exchangers, pumps and compressors, LNG value chain.	7
V	Lubricating oil blending stocks petrochemical feedstocks. Evaluation of petro physical of sub-surface formations: Principles applications, advantages and disadvantages of SP, resistivity, radioactive, acoustic logs and types of tools used. Evaluation of CBL/VDL, USIT, SFT, RFT. Production logging tools, principles, limitations and applications.	8
VI	Special type of logging tools. Casing inspection tools (principles, applications and limitations), Formations micro scanner (FMS), NMR	8

me ref	gging principles. Standard log interpretation methods. Cross-plotting ethods. Cost Evaluation – Economic evaluation of petroleum reused and fineries. Latest trends in Petroleum Engineering: Coal bed methane, ale gas, oil shale, gas hydrate, and heavy oil.	
	TOTAL HOURS	42

TEXT/REFERENCE BOOKS:

T/R	BOOK TITLE/AUTHORS/PUBLICATION
T1	A. Lucas Hurley , Modern Petroleum Technology Upstream Vol I Edition 2002.
T2	A.G. Lucas Hurley , Modern Petroleum Technology Downstream Vol II Edition 2002
T3	J.CH Garry, Hardward G.E and M.J.Kaiser, Petroleum Refining : Technology and economics CRC Press V Edition

COURSE PRE-REQUISITES:

C.CODE	COURSE NAME	DESCRIPTION	SEM
	N.A		

COURSE OBJECTIVES:

1	To impart the basic concepts of petroleum production, testing etc.					
2	To impart idea on Health Safety and Environment in Petroleum Industry.					
3	To update with the latest trends in Petroleum Engineering.					
4	To impart some knowledge in petroleum mining and associated equipment's					

COURSE OUTCOMES:

SNO	DESCRIPTION	Blooms'

COURSE HANDOUT: S6

		Taxonomy Level
1	To gain knowledge in petroleum engineering	Knowledge (Level 1)
2	To get knowledge in industrial safety and cost evaluation	Understand
		(Level 2)
3	To get knowledge in petroleum mining and associated	Apply
	equipment's	(Level 3)
4	N.A	Analyze
		(Level 4)
5	N.A	Evaluate
		(Level 5)

CO - PO and CO - PSO mapping

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	P
1	Х					Х							х		
2			Х										х		
3	Х	Х											х		
4															
5															

Justification

Course Outcome	Justification
CO.1-PO1&6	The syllabus cover basic aspect of petroleum mining its safety and environmental aspects
CO.2-PO3	Some design and cost evaluations of mining process covered in syllabus
CO.3-PO1&2	Typical petroleum exploration aspects and thereby economics of mining details in Module 2&4
CO.1.2.3-PSO1	This subject given only elementary knowledge more outcomes could only attained by industrial experience and there by only maps to PSO1

GAPES IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

SNO	DESCRIPTION	PROPOSED	RELEVANCE	RELEVANCE
		ACTIONS	WITH POs	WITH PSOs
1	Ant surge control of centrifugal	Material	P01	PSO1
	compressor for gas /LNG pumping not	Provided		
	given			

PROPOSED ACTIONS: TOPICS BEYOND SYLLABUS/ASSIGNMENT/INDUSTRY VISIT/GUEST LECTURER/NPTEL ETC

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

SNO	DESCRIPTION	PROPOSED ACTIONS	RELEVANCE WITH POs	RELEVANCE WITH PSOs
1	Petrochemical Instrumentation	Lecture	P01	PSO1

WEB SOURCE REFERENCES:

1	https://new.abb.com/oil-and-gas/downloads
2	

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

CHALK & TALK 🛛	ESTUD. ASSIGNMENT	DWEB	□LCD/SMART	
		RESOURCES	BOARDS	
□STUD. SEMINARS □ADD-ON COURSES				

ASSESSMENT METHODOLOGIES-DIRECT

□ASSIGNMENTS ☐	ESTUD. SEMINARS	□TESTS/MODEL	□UNIV.		
		EXAMS 🛛	EXAMINATION 2		
□STUD. LAB	⊏STUD. VIVA	□MINI/MAJOR	CERTIFICATIONS		
PRACTICES		PROJECTS			
□ ADD-ON COURSES	DTHERS				

ASSESSMENT METHODOLOGIES-INDIRECT

□ASSESSMENT OF COURSE OUTCOMES (BY	☐STUDENT FEEDBACK ON FACULTY
FEEDBACK, ONCE) 🛛	(TWICE) 🛛
□ASSESSMENT OF MINI/MAJOR PROJECTS	DTHERS
BY EXT. EXPERTS	

Prepared by Mr Krishna Kumar K.P (Faculty) Approved by Ms. Liza Annie Joseph (HOD)

Sl.No	Module	Planned							
1	1	Introduction							
2	1	Refinery products – Refinery Feeds – Crude distillation – Coking and thermal process :							
3	1	Classification and description of some common rocks with special reference to clastic and nonclastic reservoir rocks							
4	1	Classification and description of some common rocks with special reference to clastic and nonclastic reservoir rocks							
5	1	Origin, migration and accumulation of Petroleum.							
6	1	Petroleum exploration methods.							
7	2	Catalytic Cracking							
8	3	Well stimulation techniques.							
9	2	Catalytical hydro cracking							
10	2	Hydro processing and Reused processing hydro treating.							
11	2	Petrophysical properties of reservoir rocks. Coring and core analysis.							
12	2	Reservoir fluid properties							
13	2	Phase behavior of hydrocarbon system.							
14	2	Flow of fluids through porous media.							
15	2	Water and gas coning.							
16	3	Well equipments							
17	3	Well completion techniques							
18	3	Well production problems and mitigation.							
19	3	Well servicing & Workover operations.							
20	3	Workover & completion fluids.							
21	3	Formation damage							
22	3	Well stimulation techniques.							
23	3	Artificial lift techniques. Field processing of oil & gas.							
24	3	Buffer Slot							
25	3	Storage and transportation of petroleum and petroleum products. Metering and measurements oil & gas.							
26	4	Production system analysis & optimization							
27	4	Production testing.							
28	4	Multiphase flow in tubing and flow-lines							
29	4	Nodal system analysis.							
30	4	Pressure vessels							
31	4	storage tanks, shell and tube heat exchangers,							
32	4	pumps and compressors							

COURSE PLAN

33	4	LNG value chain.
34	4	Class Assignment
35	5	Buffer Slot
36	5	Lubricating oil blending stocks petrochemical feedstocks
37	5	Evaluation of petro physical of sub-surface formations:
38	5	Principles applications, advantages and disadvantages of SP, resistivity, radioactive, acoustic logs and types of tools used.
39	5	Principles applications, advantages and disadvantages of SP, resistivity, radioactive, acoustic logs and types of tools used.
40	5	Principles applications, advantages and disadvantages of SP, resistivity, radioactive, acoustic logs and types of tools used.
41	5	Evaluation of CBL/VDL, USIT, SFT, RFT.
42	5	Evaluation of CBL/VDL, USIT, SFT, RFT.
43	5	Production logging tools, principles, limitations and applications.
44	6	Special type of logging tools.
45	6	Casing inspection tools (principles, applications and limitations),
46	6	Formations micro scanner (FMS), NMR logging principles.
47	6	Standard log interpretation methods.
48	6	Standard log interpretation methods.
49	6	Cross-plotting methods.
50	6	Cost Evaluation – Economic evaluation of petroleum reused and refineries
51	6	Class assignment
52	6	Buffer Slot
53	6	Latest trends in Petroleum Engineering:
54	6	Coal bed methane, shale gas
55	6	oil shale, gas hydrate
56	6	heavy oil.

Assignment

1)Make a 2 page report clasticrock structures and oil reserves.

2)Class test on refinery cost estimation and shale gas mining.

AE492 PROJECT

COURSE INFORMATION SHEET

PROGRAMME: APPLIED ELECTRONICS AND	DEGREE: BTECH
INSTRUMENTATION	
COURSE: PROJECT	SEMESTER: 8 CREDITS: 6
COURSE CODE: AE 492 REGULATION:	COURSE TYPE: CORE
2016	
COURSE AREA/DOMAIN: INSTRUMENTATION	CONTACT HOURS: 19 hours/Week.
CORRESPONDING LAB COURSE CODE (IF ANY):	LAB COURSE NAME: NIL
NIL	

SYLLABUS:

UNIT	DETAILS	HOURS
Ι	In depth study of the topic assigned in the light of the preliminary report prepared in the seventh semester	
	Review and finalization of the approach to the problem relating to the assigned topic Preparing a detailed action plan for conducting the investigation, including team work Detailed Analysis/Modelling/Simulation/Design/Problem Solving/Experiment as needed	
	Final development of product/process, testing, results, conclusions and future directions	
	Preparing a paper for Conference presentation/Publication in Journals, if possible Preparing a report in the standard format for being evaluated by the dept. assessment board Final project presentation and viva voce by the assessment board including external expert	
	TOTAL HOURS	19
		hours/Week

COURSE OBJECTIVES:

1	To apply engineering knowledge in practical problem solving
2	To foster innovation in design of products, processes or systems
3	To develop creative thinking in finding viable solutions to engineering problems

COURSE OUTCOMES:

Sl.	DESCRIPTION	Bloom's Taxonomy							
No.		Levels							
1	Students will be able to apply literature survey and	Apply &							
	understand research methodologies	Understand level 2							
		& Level 3)							
2	Students get familiar with industrial standards/ notations and	Knowledge (Level							
	define them.	1)							
3	Graduates will be able to understand Project management and	Understand (Level							
	team working.	2)							
4	Graduates will be able to analyze and evaluate the Analyze & Evaluat								
	construction of the application and record in their work diaries. (level 4 & level 5)								
5	Graduates will be able to plan their work like making	Create (level 6)							
	specification list, Bill of material and Documentation ,Product								
	spec sheets etc								
6	Graduates will be able to integrate all the results and conclude	Synthesis (level 5)							
	their findings by publishing technical review paper on reputed	and Evaluation							
	Conference or Journals	(level 6)							

CO-PO AND CO-PSO MAPPING

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
CO.1	2	3	1	3	-	1	-	-	-	2	-	2	2	-
CO.2	2	-	-	-	2	-	-	-	-	-	-	-	2	2
CO.3	-	-	-	-	-	1	1	1	3	2	3	2	-	-
CO.4	2	3	-	-	-	1	-	-	-	-	-	1	2	2
CO.5	2	-	-	3	-	-	-	-	-	-	3	2	2	-
CO.6	2	-	-	-	-	-	-	-	-	2	-	-	-	-

JUSTIFATIONS FOR CO-PO-PSO MAPPING

MAPPING	LOW/MEDIUM/ HIGH	JUSTIFICATION
CO.1-PO1	М	Understands the how to apply engineering fundamentals already learnt.
CO.1 – PO2	Н	Able to formulate solutions based on the review of literature survey
CO.1 – PO3	L	Will be able to design solutions for problems arises.

CO.1- PO4	М	Understands the research methodology from the literature survey.	
CO.1- PO6	L	Will be able to apply knowledge gained to access various	
		engineering practice.	
CO.1 -	М	Gets the demonstration knowledge of their work done.	
P010			
CO.1 -	М	With research methodologies students get the ability to engage in	
P012		technological change.	
CO.1- PSO1	М	Gets technical skills in electronics.	
CO.1- PSO3	L	Literature survey helps to understand the new concepts.	
CO.2-PO1	М	Understands the application of engineering specialization.	
CO.2- PO5	М	Get used with the engineering standards defined.	
CO.2 -	М	Familiarization of the industrial standards.	
PSO2			
CO.2 –	М	Aware of modern tools in the trend.	
PSO1			
CO.3 – PO6	L	Project management skill is developed.	
CO.3-P07	L	Team management skill is developed.	
CO.3 – PO8	L	With project management skill students understands the	
		professional ethics.	
CO.3- PO9	Н	Understands how to work efficiently in multidisciplinary settings.	
CO.3 -	М	Development of communication skill.	
P010			
CO.3- PO11	Н	Understand the project management principles.	
CO.3 –	М	Acquire the ability to the context of technological change.	
P012			
CO.3 –	М	Students exhibit leadership quality and understand how to work in	
PSO3		team.	
CO.4-PO1	М	Ability to analyze and evaluate the applications.	
CO.4-PO2	Н	Various analysis and synthesis methods are being handled to solve	
		the practical problems.	
CO.4-PO6	L	The product being developed is done with the responsibility to	
		societal focus.	
CO.4 -	L	Acquire the ability to the context of technological change	
P012			
CO.4- PSO1	М	Acquire knowledge in the electronics and instrumentation.	
CO.4 – PSO2	М	Students get confidence to develop instrument systems	
CO.4-PSO3	L	Learning of new concepts in various aspects is done.	
CO.5-PO1	М	Ability to plan, analyze and evaluate the applications.	
CO.5-PO4	Н	Valid conclusion of their work is done.	

CO.5-PO11	Н	Making of spread sheets for the various project components is studied and done.
CO.5 - PO12	М	Acquire the ability to the context of technological change
CO.5 - PSO1	М	Acquire knowledge in the electronics and instrumentation.
CO.6 - PO1	М	Integrate the results using the fundamental knowledge.
CO.6- PO10	М	Demonstration of the work can be carried out after the conclusion of the project
CO.6 - PSO3	Н	Technology up gradation occurs during the project work

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

CHALK & TALK	STUD. ASSIGNMENT	WEB RESOURCES	
□LCD/SMART BOARDS	□STUD. SEMINARS	□ADD-ON COURSES	
BUARDS			

ASSESSMENT METHODOLOGIES-DIRECT

□ASSIGNMENTS	□STUD. SEMINARS	□TESTS/MODEL	□UNIV.
		EXAMS	EXAMINATION
STUD. LAB	■ STUD. VIVA	■ MINI/MAJOR	
PRACTICES		PROJECTS	
□ADD-ON COURSES	□OTHERS		

ASSESSMENT METHODOLOGIES-INDIRECT

∠ASSESSMENT OF COURSE OUTCOMES (BY	STUDENT FEEDBACK ON FACULTY
FEEDBACK, ONCE)	(TWICE)
□ ASSESSMENT OF MINI/MAJOR PROJECTS BY	DOTHERS
EXT. EXPERTS	

Dr. Hari C V

Prepared by

Approved by

(Faculty)

(HOD)

Project	Serial Number	Project Plan	Evaluation
Schedule – S8	1	First Review	AEI
	2	Second Review	
	3	Project Rough Report	
	4	Project Exhibition (Demo Evaluation)	
	5	Final Project Report	
	6	Final Presentation with external expert	