DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

UNDERGRADUATE PROGRAM CLASS OF 2022

University of Delaware August 2018

Table of Contents

ntroduction	2
Common First Semester in Engineering	2
Undergraduate Degree Programs	2
Civil Engineering Bachelor's Degree Program	2
Civil Engineering Technical Electives	4
Minor in Civil Engineering	4
Minor in Sustainable Infrastructure	6
Construction Engineering and Management Bachelor's Degree Program	7
Environmental Engineering Bachelor's Degree Program	9
Environmental Engineering Technical Electives	13
Minor in Environmental Engineering	14
Minor in Environmental Sustainability	15
4+1 Degree Programs	16
Civil and Environmental Engineering Faculty	16
Administrative and Support Staff	20
Advisement	20
Advisors for the Class of 2022	20
Student Organizations	21
Computing Facilities	22
Engineering Computer Laboratories	22
Personal Computers	22
Computer-Aided Design (CAD) Software	22

Introduction

Welcome to the University of Delaware! The Department of Civil and Environmental Engineering is part of the College of Engineering. In the 2018 fall semester, 2,500 undergraduates are in the College, of which over 400 are undergraduate civil engineering, construction engineering and management, and environmental engineering students. The graduate student enrollment in the department is around 115 students.

Common First Semester in Engineering

The College of Engineering has a common first semester. One of these classes is EGGG101, Introduction to Engineering. In this course, students have the opportunity to learn about the engineering design process from a team of faculty from across the College. EGGG101 will address "grand challenges" in engineering. At the end of first semester, students will have the opportunity to request a change of major into a different engineering major. Admission to another College of Engineering major is contingent on meeting the academic requirements and space available in the major. The College of Engineering Assistant Dean for Undergraduate Services has an up-to-date list of the restricted engineering majors.

Undergraduate Degree Programs

The Department of Civil & Environmental Engineering offers three undergraduate degree programs in civil engineering, construction engineering and management, and in environmental engineering, as well as four minors.

The undergraduate programs prepare graduates for entry-level positions. After four years of work experience, students can qualify for a license to practice by passing a Principles and Practice of Engineering (PE) examination administered by a state board. Students take the introductory Fundamental of Engineering (FE) exam, which is a pre-requisite for the PE, during senior year. In Delaware, the PE license is administered by the Delaware Association of Professional Engineers (DAPE). Information about the exam is at www.dape.org or www.ncees.org.

Civil Engineering Bachelor's Degree Program

The Bachelor of Civil Engineering (BCE) program at the University of Delaware offers training in all of the major disciplines of civil engineering: structural, geotechnical, transportation, environmental, infrastructure systems, railroad, and coastal engineering. The curriculum gives students a unique opportunity to acquaint themselves with the various disciplines within the profession. Civil engineering students may select technical electives in one field or take a variety of courses to explore several areas of civil engineering.

A complete description of the undergraduate curriculum is in the Undergraduate Catalog. The check sheet and diagram shown on the next two pages list the recommended courses for each semester and help students keep track of progress toward graduation. Progress can also be tracked in UDSIS using the degree audit tool.

17 credits

CIEG 161

ENGL 110 (3)

MATH 242 (4)

(3)

(4)

(3)

Sem. Grade

Sem. Grade

CIVIL ENGINEERING PROGRAM (126 hours)

Effective for fall 2018 and subsequent classes.

The required courses are normally taught in fall or spring semesters as indicated below. Each student is responsible for tracking future changes in this schedule.

FIRST YEAR

FALL	16 credits	Sem.	Grade
General Chemistry*	CHEM 103 (4)		
Computer Science	CISC 106 (3)		
Intro. to Engineering	EGGG 101 (2)		
Analy. Geom. & Calc. A*	MATH 241 (4)		
Breadth Requirement	(3)		

SOPHOMORE YEAR

FALL	17 credits	Sem	n. Grade
Statics	CIEG 211	(3)	
Oral Communication	COMM 21	2(3)	
Analy. Geom. & Calc. C	MATH 243	(4)	
General Physics I*	PHYS 207	(4)	
Breadth Requirement		(3)	

JUNIOR YEAR

FALL	15 credits	Sem.	Grade
Structural Analysis	CIEG 301 (4)		
Fluid Mechanics	CIEG 305 (3)		
Fluid Mechanics Lab	CIEG 306 (1)		
Soil Mechanics	CIEG 320 (3)		
Soil Mechanics Lab	CIEG 323 (1)		
Engineering Math III	MATH 353 (3)		

SENIOR YEAR

FALL		

14 credits Sem. Grade

Water Resources Eng.	CIEG 440 (3)	
Senior Design	CIEG 461 (2)	
Eng. Project Management	CIEG 486 (3)	
Tech. Writing/Breadth Req.	ENGL 410 (3)	
Technical Elective	(3)	

*Grade of C- or higher for degree requirement or as pre-requisite for other courses.

All breadth requirements (18 credit hours) and ENGL110 require a C- or better. The three University breadths must be taken from separate departments. See UD Academic Catalog for more information.

Creative Arts & Humanities	Sem.	Grade	History & Cultural Change	Sem.	Grade	Social & Behavioral Sciences	Sem.	Grade
Turnamacs			Change					
			Add'l Breadth Requ	uirement	t (18 cred	its)		
ENGL 410								
two	upper-level (300 and h	igher) courses			Multicultural F	Requirer	nent

a) One course from: BISC207, BISC208, GEOG220/221, GEOL105/115, or GEOL107

SOPHOMORE YEAR

Freshman Design

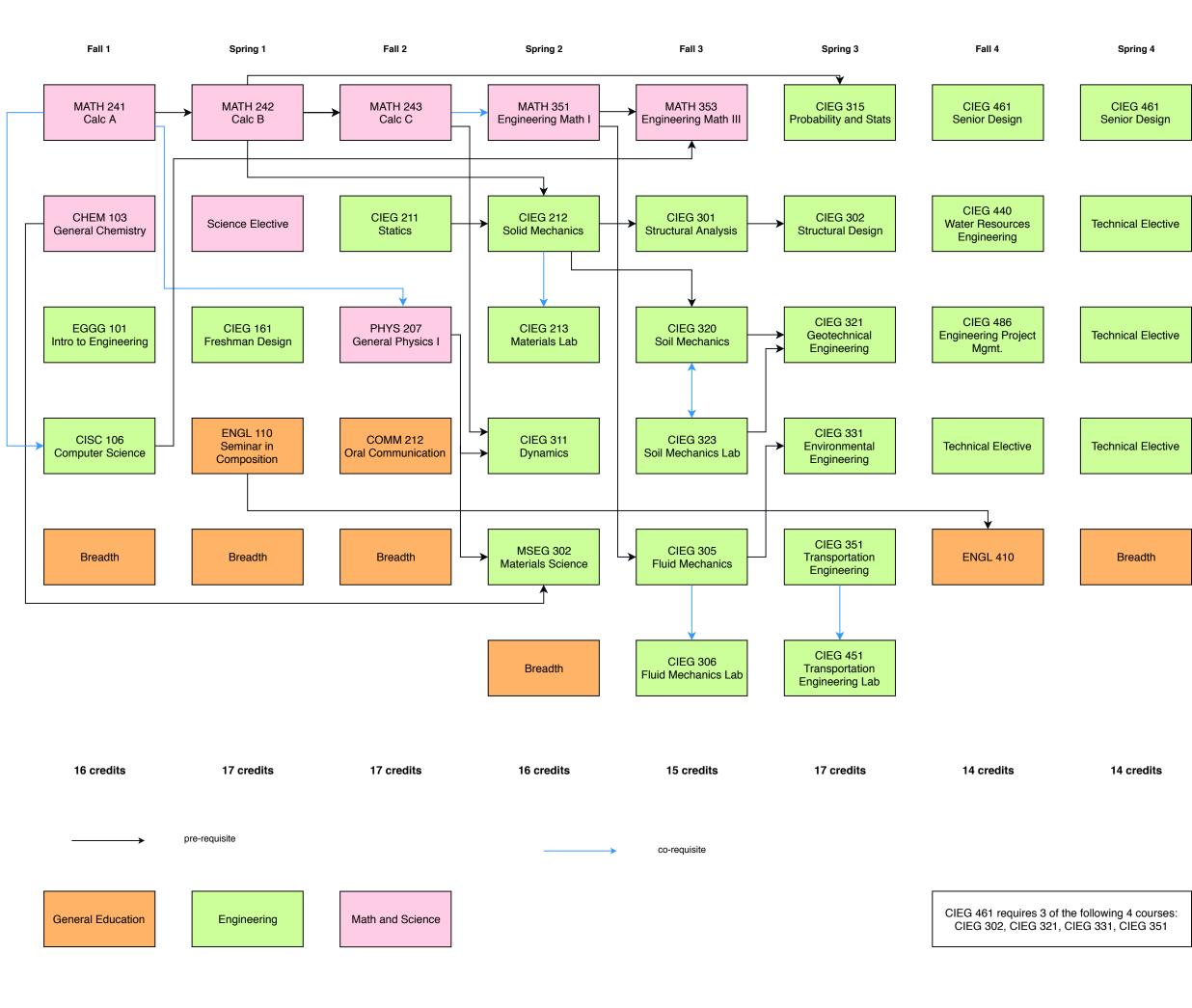
Science Elective (a)

Breadth Requirement

Seminar in Composition

Analy. Geom. & Calc. B*

FIRST YEAR SPRING


SPRING	16 credits	Sem.	Grade
Solid Mechanics	CIEG 212 (3)		
CE Materials Lab	CIEG 213 (1)		
Dynamics	CIEG 311 (3)		
Engineering Math I	MATH 351 (3)		
Materials Science	MSEG 302 (3)		
Breadth Requirement	(3)		

JUNIOR YEAR	
SPRING	17 credits

Structural Design	CIEG 302 (4)
Prob. & Stats. for Engineers	CIEG 315 (3)
Geotechnical Engineering	CIEG 321 (3)
Environmental Engineering	CIEG 331 (3)
Transportation Engineering	CIEG 351 (3)
Transportation Eng. Lab	CIEG 451 (1)

SENIOR YEAR SPRING	14 credits	Sem.	Grade
Senior Design	CIEG 461 (2)		
Technical Elective	(3)		
Technical Elective	(3)		
Technical Elective	(3)		
Breadth Requirement	(3)		

Civil Engineering Curriculum Flowchart

Civil Engineering Technical Electives

Four technical elective courses in the Civil Engineering curriculum give students the opportunity to complete their education by focusing in an area of special interest. The technical electives can also be chosen to provide a more general civil engineering education. Technical electives must satisfy the following requirements:

- 1. Technical electives will include courses from engineering, mathematics, and the sciences, or by the approval of the Civil Engineering undergraduate committee.
- 2. All technical electives must be 300-level or higher, or by approval of the Civil Engineering undergraduate committee.
- 3. Two out of four technical electives must be 400-level or higher CIEG courses.
- 4. Three out of four technical electives must be taken at UD.

Minor in Civil Engineering

A grade of C- or better is required in all of the courses completed for the minor. Before beginning the civil engineering courses, the student must meet the required mathematics, physics, and other pre-requisites for each course. Required courses:

- CIEG 211 Statics (3cr.)
- CIEG 212 Solid Mechanics (3cr.)
- CIEG 305 Fluid Mechanics (3cr.)
- CIEG 311 Dynamics (3cr.)

Nine additional credits (three courses) in civil engineering from the approved minor course list must be taken of which at least six credits must be at the 300-level or higher. CIEG 331 and CIEG 438 cannot both be used toward the minor. CIEG 367 and CIEG 467 can only be used toward the minor if approved by the Civil Engineering undergraduate committee.

All students must complete three of the following courses:

CIEG 222	Introduction to Surveying
CIEG 301	Structural Analysis
CIEG 302	Structural Design
CIEG 315	Probability and Statistics for Engineers
CIEG 318	Introduction to Railroads
CIEG 320	Soil Mechanics
CIEG 321	Geotechnical Engineering
CIEG 331	Environmental Engineering
CIEG 343	Site Engineering
CIEG 351	Transportation Engineering
CIEG 401	Introduction to the Finite Element Method
CIEG 402	Introduction to Sustainability Principles in Civil Engineering
CIEG 403	Sustainability Applications in Infrastructure
CIEG 407	Building Design
CIEG 408	Introduction to Bridge Design
CIEG 409	Forensic Engineering
CIEG 410	Experimental Mechanics of Composites
CIEG 412	Structural Steel Design
CIEG 413	Advanced Structural Analysis

CIEG 417	Introduction to Railroad Safety and Derailment Engineering
CIEG 418	Railroad Engineering
CIEG 421	Foundation Engineering
CIEG 422	Earth Structures Engineering
CIEG 424	Earth Retaining Structures
CIEG 425	Unsaturated Soil Mechanics
CIEG 427	Deep Foundations
CIEG 428	Ground Improvement Methods
CIEG 429	Concrete Design
CIEG 431	Urban Hydrology and Drainage Design
CIEG 436	Processing, Recycling, Management of Solid Wastes
CIEG 438	Water and Wastewater Engineering
CIEG 440	Water Resources Engineering
CIEG 442	Stormwater Management for Sustainable Development
CIEG 443	Watershed Engineering, Planning and Design
CIEG 452	Transportation Facilities Design
CIEG 453	Roadway Geometric Design
CIEG 454	Urban Transportation Planning
CIEG 456	Regional Analysis Methods
CIEG 457	Contemporary Topics in Transportation
CIEG 458	Pavement Analysis and Design
CIEG 459	Optimization in Design and Construction
CIEG 463	Traffic Engineering and Modeling
CIEG 464	Building Information and Modeling
CIEG 465	Global Sustainable Engineering
CIEG 471	Introduction to Coastal Engineering
CIEG 486	Engineering Project Management
CIEG 367	with prior approval of undergraduate committee
CIEG 467	with prior approval of undergraduate committee

Course suggestions for student interested in the following topical areas:

- Earth sciences: CIEG 320, CIEG 323, and CIEG 321
- Environment: CIEG 331 and CIEG 436
- Urban topics: CIEG 331 and CIEG 351
- Structures: CIEG 301 and CIEG 302
- Coastal: CIEG 440 and CIEG 471
- Transportation: CIEG351 and CIEG 452
- Geotechnical: CIEG 320 and CIEG 321
- Railroads: CIEG 318 and CIEG 418

Minor in Sustainable Infrastructure

The objective of this minor is to provide the basic knowledge and skills required in balancing civil infrastructure development with environmental and societal impacts, so that sustainability can be methodically defined and attained. Students will learn the principles of sustainability and the fundamental tools needed to assess sustainability; be able to evaluate the impact of proposed infrastructure development on limited natural resources; recognize and assess the political, economic, environmental, and social impacts of infrastructure development; and develop the insight needed to find solutions that minimize the effect of infrastructure development on the local community and across global boundaries.

To receive a minor in Sustainable Infrastructure, the student must successfully complete a minimum of 15 credits as described below with a minimum grade of C- in each course.

All students must complete the following core course:						
CIEG 402	Introduction to Sustainability Principles in Civil Engineering					
All students must com	plete one of the following core courses:					

- CIEG 403 Sustainability Applications in Infrastructure
- CIEG 465 Global Sustainable Engineering

All students must complete three of the following sustainability-related breadth courses:

APEC 343	Environmental Economics
BUAD 429	Sustainability and Green Business
ECON 311	Economics of Developing Countries
ELEG 415	Electric Power and Renewable Energy Systems
ELEG 491	Ethics/Impacts of Engineering
ENEP 410	Environmental Sustainability: Economic and Policy Analysis
GEOG 422	Resources, Development and the Environment
GEOG 434	Plan Sustainable Communities & Regions
MEEG 435	Wind Power Engineering
PHIL 448	Environmental Economics
POSC 311	Politics of Developing Nations
POSC 350	Politics and the Environment
SOCI 471	Disasters, Vulnerability & Development

Several courses included as electives in the minor may require completion of pre-requisite courses for students in some majors.

Construction Engineering and Management Bachelor's Degree Program

The Bachelor of Construction Engineering and Management (BCEM) program focuses on implementing the engineering solutions designed by the sub-disciplines of civil engineering: structural, environmental, geotechnical, and materials and transportation engineering.

The goal of construction engineering and management is to deliver a physical facility in a safe manner within time and budget constraints. As the industry evolves and progresses, this goal becomes increasingly difficult. The construction enterprise itself becomes complex and technically demanding under increasing economic, time, and quality constraints.

There is a rapidly growing need for engineers prepared for the challenges of construction management in the future. This need is recognized by industry, has been addressed by professional society and accrediting bodies, and validated through market studies. The Department of Civil and Environmental Engineering, with strong encouragement of industry and alumni, launched the bachelor's program in Construction Engineering and Management in 2017. This program requires 126 credit hours and is structured following ABET-accreditation guidelines thereby giving a path to professional licensure. Other distinctive features include:

- mandatory practical experience through a required 26-week guided co-op
- required completion of UD Certificate of Business Essentials or an optional minor through the UD Alfred Lerner College of Business and Economics
- optional international experience through technical electives
- numerous opportunities for professional society involvement

Students complete prescribed breadth courses as part of the curriculum. One breadth course is discretionary and is chosen by the student, who should ensure that the breadth requirements and multicultural requirements of the University are satisfied.

A complete description of the undergraduate curriculum is in the Undergraduate Catalog. The check sheet and diagram shown on the next two pages list the recommended courses for each semester and help students keep track of progress toward graduation. Progress can also be tracked in UDSIS using the degree audit tool.

CONSTRUCTION ENGINEERING AND MANAGEMENT PROGRAM (126 hours)

Effective for fall 2018 and subsequent classes.

The required courses are normally taught in fall or spring semesters as indicated below.

Each student is responsible for tracking future changes in this schedule.

FIRST YEAR

FALL	16 credits	Sem.	Sem. Grade		
General Chemistry	* CHEM 10)3 (4)			
Computer Science	CISC 106	(3)			
Intro. to Engineerir	ng EGGG 10	1 (2)			
Analy. Geom. & Ca	lc. A* MATH 24	11 (4)			
Breadth Req. (CEM	list)	(3)			

SOPHOMORE YEAR

FALL 1	6 credits		Sem.	Grade	3
Statics	CIEG 211	(3)			
Introduction to Surveying	CIEG 222	(3)			
CAD and BIM in Construct.	CIEG 291	(3)			
Prob. & Stats. for Engineers	CIEG 315	(3)			
Science/Math Elective (a)		(4)			

JUNIOR YEAR

FALL 17	credits		Sem.	Grade
Construct. Est./Cost Control	CIEG 391	(3)		
Struct. Analysis and Design	CIEG 396	(4)		
Soils and Foundations	CIEG 397	(4)		
Constr. Means and Methods	CIEG 393	(3)		
Breadth Req. (CEM list)		(3)		

15

SENIOR YEAR

FALL

credits	Sem.	Grade

Engineering Project Mgmt.	CIEG 486	(3)	
Fluids, Hydraulics, Wtr. Res.	CIEG 398	(3)	
Co-op in Civil/Enviro Eng.	CIEG 481	(3)	
Technical Elective (c)		(3)	
Breadth Req. (CEM list)		(3)	

*Grade of C- or higher for degree requirement or as pre-requisite for other courses.

All breadth requirements (18 credit hours) and ENGL110 require a C- or better. See Undergraduate Catalog for more information.

Creative Arts & Humanities (upper- level)	Sem.	Grade	History & Cultural Change	Sem.	Grade	Social & Behavioral Sciences	Sem.	Grade
			PLSC 170			ECON 100		
Add'l Breadth Req.			Add'l Breadth Req.			Add'l Breadth Req.		
ENGL 410			BUAD 100			FINC 200		

two upper-level (300 and higher) courses

____ Multicultural Requirement

a) one course from: BISC207, GEOL105/115, GEOL107, GEOG152, MATH243, PHYS208, PLSC204/205

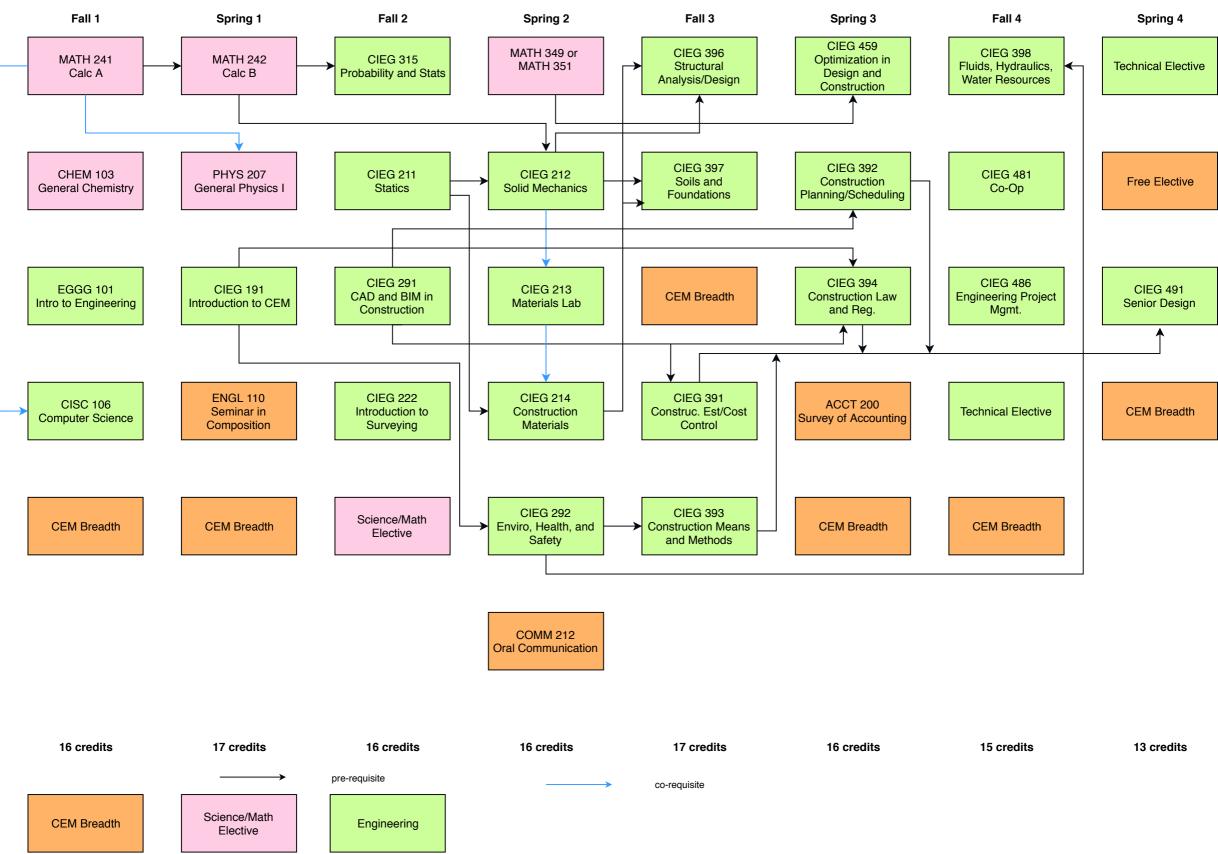
b) MATH 349 (Elementary Linear Algebra) or MATH 351 (Engineering Math I). 351 requires MATH 243.

c) two courses from: CIEG 343, CIEG 402, CIEG 492, CIEG 493, CIEG 494, CIEG 495

FIRST YEAR SPRING	17 credits	Sem. Grade
Introduction to CEM	CIEG 191 (3)	
Seminar in Composition	ENGL 110 (3)	
Analy. Geom. & Calc. B*	MATH 242 (4)	
General Physics I*	PHYS 207 (4)	
Breadth Req. (CEM list)	(3)	

SOPHOMORE YEAR SPRING 16 credits Sem. Grade

Solid Mechanics	CIEG 212 (3)	
Civil Eng. Materials Lab	CIEG 213 (1)	
Construction Materials*	CIEG 214 (3)	
Enviro., Health, and Safety	CIEG 292 (3)	
Oral Communication	COMM 212(3)	
Math Course (b)	(3)	


JUNIOR YEAR SPRING		credits		Sem.	Gra	de
Survey of Accounting		ACCT 200	(4)			
Construction Plan/Sched.		CIEG 392	(3)			
Construction Law and Reg.		CIEG 394	(3)			
Optim. in Design/Const.		CIEG 459	(3)			
Breadth Req. (CEM list)			(3)			

SENIOR YEAR	
SPRING	

13 credits Sem. Grade

Senior Design	CIEG 491 (4)	
Technical Elective (c)	(3)	
Free Elective	(3)	
Breadth Req. (CEM list)	(3)	

Construction Engineering and Management Curricular Flowchart

Environmental Engineering Bachelor's Degree Program

The Bachelor of Environmental Engineering (BENE) program educates students in the causes, control, and prevention of environmental contamination so that they may analyze those processes and improve the quality of the earth's atmospheric, water, and land resources.

The core curriculum includes important aspects of thermodynamics and ecology, as well as courses on treating water and wastewater, controlling air pollution, and managing solid wastes. Laboratory coursework emphasizes the current methods for pollutant analysis and treatment. Through these courses, students develop an understanding of the fate of environmental contaminants; an ability to apply methods of modeling and simulation to environmental processes; and the ability to assess risk and estimate cost. The program emphasizes teaching students to apply knowledge to the conception, analysis, and design of solutions to real-world environmental problems. Students develop the ability to implement technology-based solutions through design, construction, and operation. Graduates will be competent in basic environmental engineering laboratory skills and will have received training in oral and written communications.

These offerings are integrated into a plan of study that also provides many essential courses from the civil engineering curriculum, such as solid mechanics and fluid mechanics. Beyond the core curriculum, students select one of three concentrations:

- *Environmental biological and chemical processes,* providing a background in chemical engineering kinetics, thermodynamics, heat and mass transfer, and physical chemistry
- Environmental facilities design and construction, including coursework in structural analysis, structural design, and soil mechanics
- Water resources and water quality, providing background in stormwater management and the modeling of water and pollutant movement on the land surface (e.g. rivers) and below ground (e.g. groundwater)

Students in each concentration also take additional technical electives, allowing them to obtain greater depth within their concentration or to broaden their training through additional upper-level courses in engineering, science, and mathematics.

A complete description of the undergraduate curriculum is in the Undergraduate Catalog. The check sheets and diagram shown on the next two pages list the recommended courses for each semester and help students keep track of progress toward graduation. Progress can also be tracked in UDSIS using the degree audit tool.

Following the check sheets is a list of technical electives that are frequently taken by students in junior and senior years. Depending on the environmental engineering concentration selected, students are required to take additional technical elective coursework. These courses are typically upper-level (300-400 level) and can be taken from mathematics, science, and engineering departments. Students should select technical electives with their faculty advisor.

ENVIRONMENTAL ENGINEERING PROGRAM Environmental Biological and Chemical Processes (125 hours)

Effective for fall 2018 class. The required courses are normally taught in fall or spring semesters as indicated below. Each student is responsible for tracking future changes in this schedule.

FIRST YEAR

FALL	16 credits	Sem. Grade
General Chemistry*	CHEM 103 (4)	
Computer Science	CISC 106 (3)	
Intro. to Engineering	EGGG 101 (2)	
Analy. Geom. & Calc. A*	MATH 241 (4)	
Breadth Requirement	(3)	

SOPHOMORE YEAR

FALL	15 credits	Sem. Grade
Quantitative Analysis	CHEM 220 (3)	
Quantitative Analysis Lab	CHEM 221 (1)	
Statics	CIEG 211 (3)	
Analy. Geom. & Calc. C*	MATH 243 (4)	
General Physics I*	PHYS 207 (4)	

JUNIOR YEAR

FALL 16		o credits		Sem.	Gra	de
	Chem. Eng. Thermo.*	CHEG 231 (3)			
	Fluid Mechanics	CIEG 305 (3	3)			
	Fluid Mechanics Lab	CIEG 306 (1	.)			
	Water Resources Eng.	CIEG 440 (3	3)			
	Air Pollution or Tech Elec.(a)	(3	;)			
	Breadth Requirement	(3	;)			

SENIOR YEAR

FALL	15 credits	Sem. Grade
Chem. Eng. Kinetics	CHEG 332 (3)	
Organic Chemistry	CHEM 321 (3)	
Organic Chemistry Lab	CHEM 325 (1)	
Enviro Eng. Lab	CIEG 337 (3)	
Senior Design	CIEG 461 (2)	
General Elective	(3)	

*Grade of C- or higher for degree requirement or as pre-requisite for other courses.

All breadth requirements (18 credit hours) require a C- or better. See UD Undergraduate Catalog for more information.

Creative Arts & Humanities	Sem.	Grade	History & Cultural Change	Sem.	Grade	Social & Behavioral Sciences	Sem.	Grade
			0.00.80					
Add'l Breadth Requirement (18 credits)								
ENGL 410								

_____ two upper-level (300 and higher) courses

_____ Multicultural Requirement

a) CIEG415 (spring) or CIEG434 (fall)-must take earth science course if 434 is taken;

b) Can take CIEG444

c) Engineering Topic—must consult advisor

FIRST YEAR SPRING	17	credits	Sem.	Grad	de
General Chemistry*		CHEM 104 (4)			
Enviro. Eng. Processes*		CIEG 233 (3)			
Seminar in Composition		ENGL 110 (3)			
Analy. Geom. & Calc. B*		MATH 242 (4)			
Breadth Requirement		(3)			

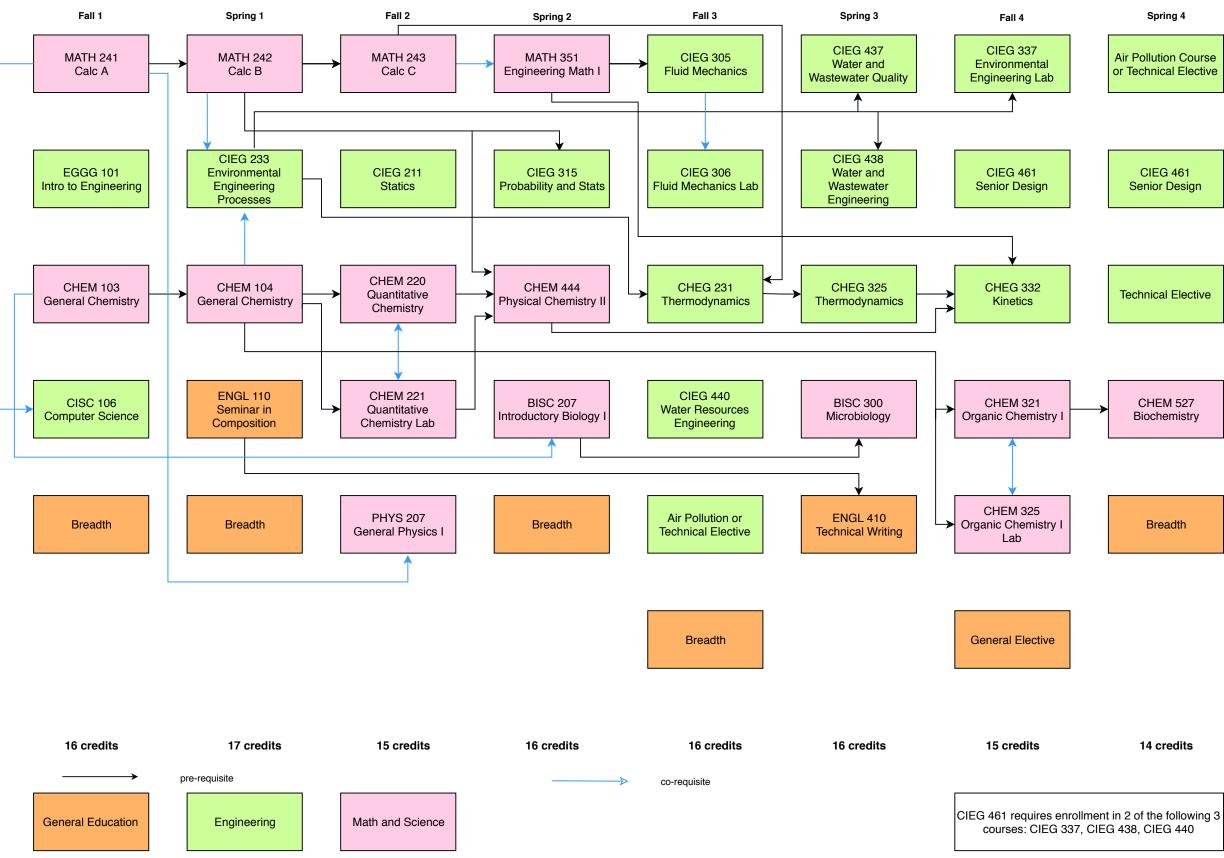
SOPHOMORE YEAR

SPRING	16 credits	Sem. Grade
Introductory Biology I	BISC 207 (4)	
Physical Chemistry II	CHEM 444 (3)	
Prob. & Stats. for Engineers	CIEG 315 (3)	
Engineering Math I	MATH 351 (3)	
Breadth Requirement	(3)	

JUNIOR YEAR

SPRING	16 credits	Sem. Grade
Intro. to Microbiology (b)	BISC 300 (4)	
Chem. Eng. Thermo.*	CHEG 325 (3)	
Water and WW Quality	CIEG 437 (3)	
Tech. Writing/Breadth Req	. ENGL 410 (3)	
Water and Wastewater	CIEG 438 (3)	

SENIOR YEAR


SPRING

Sem. Grade

Introductory Biochemistry	CHEM 527 (3)	
Senior Design	CIEG 461 (2)	
Air Pollution or Tech Elec.(a)	(3)	
Technical Elective (c)	(3)	
Breadth Requirement	(3)	

14 credits

Environmental Engineering-Biological and Chemical Processes Curricular Flowchart

ENVIRONMENTAL ENGINEERING PROGRAM Environmental Facilities Design and Construction (125 hours)

Effective for fall 2018 class. The required courses are normally taught in fall or spring semesters as indicated below. Each student is responsible for tracking future changes in this schedule.

FIRST YEAR

FALL	16 credits	Sem	. Grade
General Chemistry*	CHEM 103 (4)		
Computer Science	CISC 106 (3)	
Intro. to Engineering	EGGG 101 (2))	
Analy. Geom. & Calc. A*	MATH 241 (4))	
Breadth Requirement	(3))	

SOPHOMORE YEAR

FALL	17 credits	Sem. Grade
Statics	CIEG 211 (3)	
Enviro. Eng. Thermo.	CIEG 333 (3)	
Analy. Geom. & Calc. C*	MATH 243 (4)	
General Physics I*	PHYS 207 (4)	
Breadth Requirement	(3)	

JUNIOR YEAR

FALL 1	7 credits		Sem.	Gra	ade
Structural Analysis	CIEG 301 (4)			
Fluid Mechanics	CIEG 305 (3)			
Fluid Mechanics Lab	CIEG 306 (1)			
Water Resources Eng.	CIEG 440 (3)			
Tech. Writing/Breadth Req.	ENGL 410 (3)			
Air Pollution or Tech Elec (a)	(3)			

SENIOR YEAR

I	FALL	12	credits		Sem.	Gr	ade
	Envio. Eng. Lab		CIEG 337	(3)			
	Senior Design		CIEG 461	(2)			
	Soil Mechanics		CIEG 320	(3)			
	Soil Mechanics Lab		CIEG 323	(1)			
	PRM of Solid Waste		CIEG 436	(3)			

SOPHOMORE YEAR

SPRING 17	credits		Sem.	Gr	ade
Introductory Biology I	BISC 207	(4)			
Solid Mechanics	CIEG 212	(3)			
CE Materials Lab	CIEG 213	(1)			
Prob. & Stats. for Engineers	CIEG 315	(3)			
Engineering Math I	MATH 351	L (3)			
Breadth Requirement		(3)			

JUNIOR YEAR

SPRING	16 credits	Sem.	Grade
Structural Design	CIEG 302 (4)		
Water and WW Quality	CIEG 437 (3)		
Water and Wastewater	CIEG 438 (3)		
Computer Elective (b)	(3)		
Breadth Requirement	(3)		

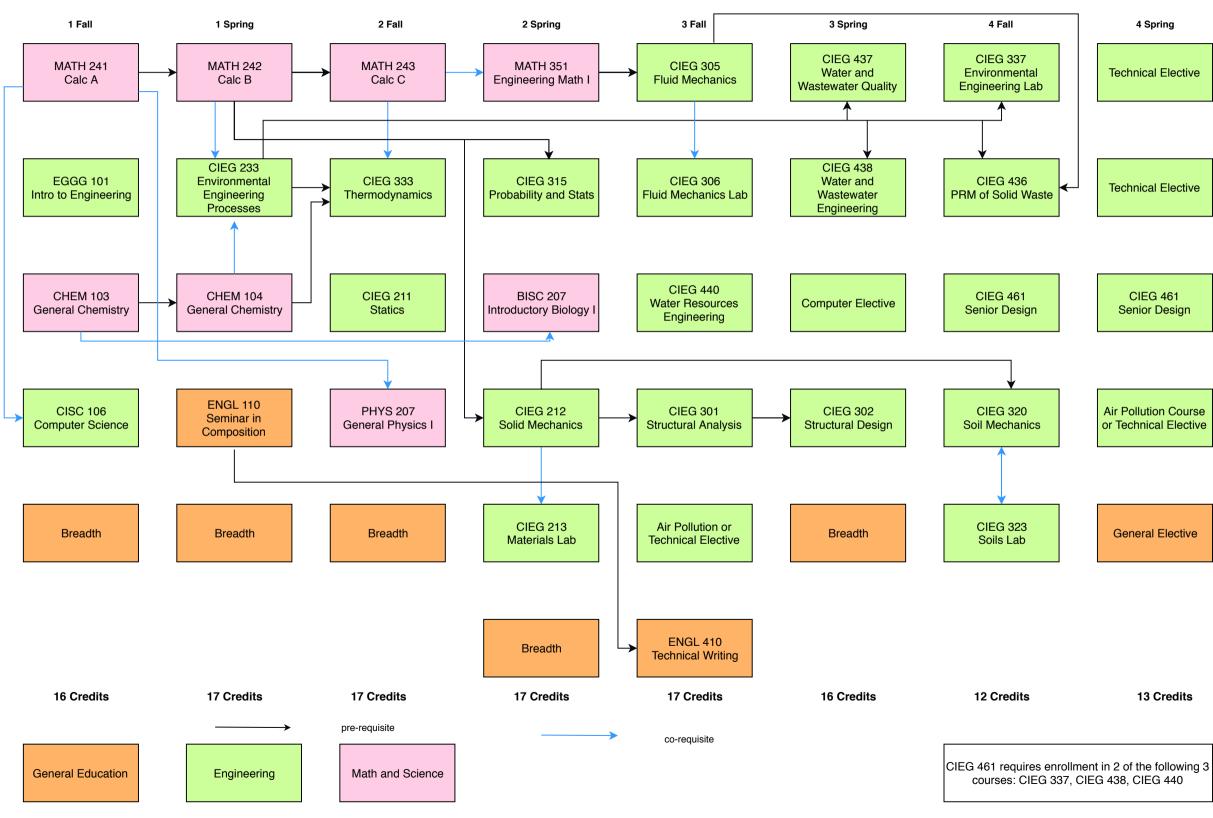
SENIOR YEAR

SPRING	13	credits		Sem.	Gr	ade
Senior Design		CIEG 461	(2)			
Air Pollution or Tech	Elec (a)		(3)			
Technical Elective			(3)			
Technical Elective			(2)			
General Elective			(3)			

*Grade of C- or higher for degree requirement or as pre-requisite for other courses.

All breadth requirements (18 credit hours) require a C- or better. See UD Undergraduate Catalog for more information.

Creative Arts &	Sem.	Grade	History & Cultural	Sem.	Grade	Social & Behavioral Sciences	Sem.	Grade			
Humanities			Change								
	Add'l Breadth Requirement (18 credits)										
ENGL 410											


two upper-level (300 and higher) courses

___ Multicultural Requirement

a) CIEG415 (spring) or CIEG434 (fall)—must take Earth Science course if 434 is taken;

b) APEC480, CIEG367 (CAD course), GEOG250, GEOG372, or PLSC150

Environmental Engineering-Facilities Design and Construction Curricular Flowchart

ENVIRONMENTAL ENGINEERING PROGRAM

Water Resources and Water Quality (125 hours)

Effective for fall 2018 class. The required courses are normally taught in fall or spring semesters as indicated below. Each student is responsible for tracking future changes in this schedule.

FIRST YEAR FALL		16	credits	Sem.	Gra	ade
	General Chemistry*		CHEM 103 (4)			
	Computer Science		CISC 106 (3)			
	Intro. to Engineering		EGGG 101 (2)			
	Analy. Geom. & Calc. A*		MATH 241 (4)			
	Breadth Requirement		(3)			

SOPHOMORE YEAR

FALL	17 credits	Sem.	Grade
Statics	CIEG 211 (3)		
Enviro. Eng. Thermo.	CIEG 333 (3)		
Analy. Geom. & Calc. C*	MATH 243 (4)		
General Physics I*	PHYS 207 (4)		
Breadth Requirement	(3)		

JUNIOR YEAR

FALL	16 credits	Sem. Grade
Fluid Mechanics	CIEG 305 (3	3)
Fluid Mechanics Lab	CIEG 306 (3	1)
Technical Elective	(3	3)
General Elective	(3	3)
Water Resources Eng.	CIEG 440 (3	3)
Breadth Requirement	(3	3)

SENIOR YEAR

FALL 14		credits		Sem.	Gr	ade
	PRM of Solid Waste	CIEG 436	(3)			
	Senior Design	CIEG 461	(2)			
	Envio. Eng. Lab.	CIEG 337	(3)			
	Air Pollution or Tech Elec (d)		(3)			
	Watershed or Tech Elec (c)		(3)			

SOPHOMORE YEAR

SPRING	16	credits		Sem.	Gr	ad
Introductory Biology I		BISC 207	(4)			
Prob. & Stats. for Engineers		CIEG 315	(3)			
Engineering Math I		MATH 351	. (3)			
Computer Elective (a)			(3)			
Breadth Requirement			(3)			

JUNIOR YEAR			
SPRING	15 credits	Sem.	Grade

Water and WW Quality	CIEG 437 (3)	
Tech. Writing/Breadth Req.	ENGL 410 (3)	
Grndwater or Tech Elec (b)	(3)	
Watershed of Tech Elec (c)	(3)	
Water and Wastewater	CIEG 438 (3)	

SENIOR YEAR

SPRING 14		Sem.	Gr	ade	
Urban Hydrol./Drain. Design	CIEG 431	(3)			
Senior Design	CIEG 461	(2)			
Air Pollution or Tech Elec (d)		(3)			
Grndwater or Tech Elec (b)		(3)			
Surface Water Course (e)		(3)			

*Grade of C- or higher for degree requirement or as pre-requisite for other courses.

All breadth requirements (18 credit hours) require a C- or better. See UD Undergraduate Catalog for more information.

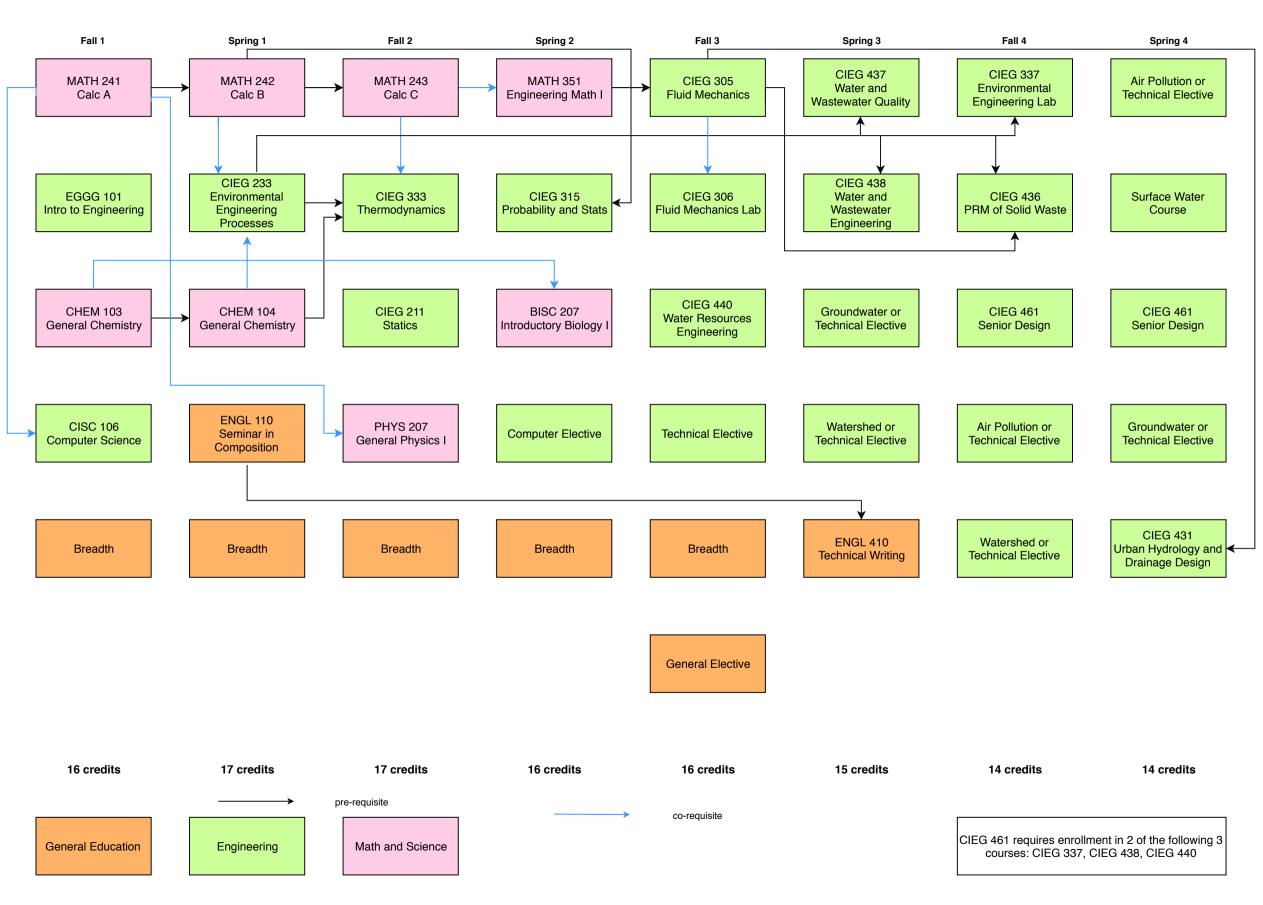
Creative Arts & Humanities	Sem.	Grade	History & Cultural Change	Sem.	Grade	Social & Behavioral Sciences	Sem.	Grade
Add'l Breadth Requirement (18 credits)								
ENGL 410								

two upper-level (300 and higher) courses

_____ Multicultural Requirement

a) APEC480, GEOG250, GEOG372, CIEG367 (CAD course), or PLSC150;

b) CIEG498 or GEOL428 and take tech elective in alt. semester;


c) GEOG432 (fall), PLSC421 (fall), or UAPP411 (spring) and take tech elective in alt. semester;

d) CIEG415 (spring) or CIEG434 (fall);

e) CIEG430 (even years) or CIEG468 (odd years)

Advisor _____

Environmental Engineering: Water Resources and Water Quality

Environmental Engineering Technical Electives

Students in each concentration select two to four technical electives. These courses must be upper-level courses in engineering, science, computer science, or mathematics and must combine for sufficient credit hours to satisfy the requirements of each concentration. It is advisable to select technical electives in the spring of the sophomore year to avoid scheduling conflicts and ensure that any pre-requisite courses are taken.

Courses that satisfy the technical elective requirements are listed below. Students may select courses in the other two degree concentrations not otherwise required for their concentration. This list is not exhaustive.

Technical electives satisfying the earth science requirement:

CIEG 430	Water Quality Modeling
CIEG 498	Groundwater Flow and Contaminant Transport
GEOL 107	Geology of Dynamic Earth
PLSC 419	Soil Microbiology

Other recommended technical electives:

BISC 300 CHEG 342 CHEM 331 CHEM 333 CHEM 443 CHEM 444 CIEG 311 CIEG 321 CIEG 433 CIEG 445 CIEG 465 GEOG 372 GEOG 431 GEOL 421 MATH 352	Introduction to Microbiology Heat and Mass Transfer Organic Chemistry Organic Chemistry Lab Physical Chemistry I Physical Chemistry II Dynamics Geotechnical Engineering Hazardous Waste Management Industrial Ecology Global Sustainable Engineering Introduction to GIS Watershed Hydro-Ecology Environmental and Applied Geology Engineering Math II
	, 0,
	Engineering Math II
MATH 426 MSEG 302	Computational Math Materials Science for Engineers
	-

Minor in Environmental Engineering

A minor in environmental engineering may be earned by a student in any University bachelor's degree program through the successful completion of a minimum of 18 credits as described below. Before beginning the environmental engineering courses, the student must meet the required mathematics, physics, and other pre-requisites for each course. A grade of C- or better is required in all of the courses completed for the minor.

One chemistry course is required:

CHEM 104* General Chemistry *Can be replaced with CHEM 112

Two environmental engineering courses are required:

CIEG 233* Environmental Engineering Processes CIEG305** Fluid Mechanics (lab optional) *Can be replaced with CIEG 331 **Can be replaced with MEEG 331 or CHEG 341

An additional three courses in environmental engineering must be taken from the following:

- CIEG 430 Water Quality Modeling
- CIEG 433 Hazardous Waste Management
- CIEG 434 Air Pollution Control
- CIEG 436 Processing, Recycling, Management of Solid Wastes
- CIEG 438* Water and Wastewater Engineering
- CIEG 440 Water Resources Engineering
- CIEG 498 Groundwater Flow and Contaminant Transport

*Will not count if CIEG 331 is taken in place of CIEG 233

Minor in Environmental Sustainability

The objective of this minor is to provide basic knowledge and skills required in balancing technological development and environmental impacts, so that sustainability can be methodically defined and attained. Students will have the opportunity to assess sustainability using tools such as lifecycle analysis, risk assessment, and the triple bottom line of economic, environmental, and societal effects; recognize and specify engineering solutions to resource, pollution, and sanitation problems that are in harmony with local cultures; relate environmental issues to local political, societal, and economic factors to provide a proper context for sustainable solutions; and evaluate and compare appropriate technologies and other sustainable solutions across global boundaries.

To receive a minor in environmental sustainability, students must complete a total of 15 credits in accordance with the requirements specified below. Before beginning these courses, the student must meet the required course pre-requisites. A minimum grace of C- must be achieved in each course qualifying for the minor.

Recommend pre-requisite:

The student is advised to have completed an introductory course in mass and energy balances such as CHEG 112, CIEG 233, or MEEG 331.

Core courses:

CIEG 445	Industrial Ecology
CIEG 465	Global Sustainable Engineering

One of the following pollution control technology courses:

- CIEG 433 Hazardous Waste Management
- CIEG 436 Processing, Recycling, Management of Solid Wastes
- CIEG 438 Water and Wastewater Engineering

Two of the following sustainability-related breadth courses:

- APEC 343 Environmental Economics
- BUAD 429 Sustainability and Green Business
- ECON 311 Economics of Developing Countries
- ENEP 410 Environmental Sustainability: Economic and Policy Analysis
- GEOG 320 Water and Society
- GEOG 422 Resources, Development and the Environment
- PHIL 448 Environmental Ethics
- POSC 311 Politics of Developing Nations
- POSC 350 Politics and the Environment
- SOCI 471 Disasters, Vulnerability & Development

4+1 Degree Programs

Well-qualified civil and environmental engineering majors may apply to the 4+1 program which culminates in the student earning a Bachelor degree in Civil Engineering (BCE) or a Bachelor degree in Environmental Engineering (BENE), and a Master of Civil Engineering (MCE) degree within five years. The program is limited to University of Delaware undergraduates pursuing the BCE or BENE degree with a minimum grade point average of 3.25 at the time of application. Students must complete at least 90 credits toward the undergraduate degree before they can be enrolled in the program. Only full-time students at the time of application are eligible.

Additionally, the College of Engineering and the College of Business and Economics offer a joint five-year program that leads to a bachelor's degree in an engineering major and a Master of Business Administration degree from the College of Business and Economics. Discuss this program with the Assistant Dean for more information:

http://graduate.lerner.udel.edu/mba-programs/mba-41-options/engineering

Name	Office	Title	Ph.D.	Areas of Expertise
Busby Attoh-Okine	354 DuPont Hall	Professor	University of Kansas	Civil Infrastructure Systems, Developing World, Sustainable Transportation &
Daniel Cha	346A DuPont Hall	Professor	University of California, Berkeley	Developing World, Environmental & Water Resources, Waste Management, Recycling, and Remediation, Water Needs
Michael Chajes	358A DuPont Hall	Professor	University of California, Davis	Bridges for the Future, Structural
Yu-Ping Chin	474 Harker Lab	Professor	University of Michigan	Climate Change/Adaptation, Environmental & Water Resources, Water Needs
Pei Chiu	468 Harker Lab	Professor	Stanford University	Climate Change/Adaptation, Waste Management, Recycling, and Remediation, Water Needs
Rachel Davidson	360B DuPont Hall	Associate Dean and Professor	Stanford University	Civil Infrastructure Systems, Developing World, Disaster Resiliency, Structural
Dominic DiToro	356A DuPont Hall	Edward C. Davis Professor	Princeton University	Environmental & Water Resources, Sustainable Materials, Water Needs
Ardeshir Faghri	360C DuPont Hall	Professor	University of Virginia	Civil Infrastructure Systems, Developing World, Sustainable Transportation & Infrastructure Systems, Transportation
John Gillespie, Jr.	201C Composite Center	Donald C. Phillips Professor	University of Delaware	Civil Infrastructure Systems, Structural, Sustainable Materials

Civil and Environmental Engineering Faculty

Monique Head	360H DuPont Hall	Associate Professor	Georgia Institute of Technology	Civil Infrastructure Systems, Structural
Tianjian Hsu	205 Ocean Eng. Lab	Professor	Cornell University	Climate Change/Adaptation, Coastal & Ocean, Disaster Resiliency
Chin-Pao Huang	352A DuPont Hall	Donald C. Phillips Professor	Harvard University	Climate Change/Adaptation, Environmental & Water Resources, Sustainable Materials, Waste Management, Recycling, and Remediation, Water Needs
Paul Imhoff	344A DuPont Hall	Professor	Princeton University	Climate Change/Adaptation, Environmental & Water Resources, Sustainable Materials, Waste Management, Recycling, and Remediation
Allen Jayne	307 DuPont	Assistant Professor	University of Delaware	Developing World, Structural, Sustainable Materials
Victor Kaliakin	360F DuPont Hall	Professor	University of California, Davis	Geotechnical, Sustainable Geotechnical Systems, Sustainable Materials
James Kirby	201 Ocean Eng. Lab	Edward C. Davis Professor	University of Delaware	Climate Change/Adaptation, Coastal & Ocean, Disaster Resiliency
Nobuhisa Kobayashi	207 Ocean Eng. Lab	Professor	Massachusetts Institute of Technology	Climate Change/Adaptation, Coastal & Ocean, Disaster Resiliency
Earl "Rusty" Lee	308 DuPont Hall	Assistant Professor	Rensselaer Polytechnic Institute	Civil Infrastructure Systems, Climate Change/Adaptation, Disaster Resiliency, Transportation
Kalehiwot Manahiloh	360G DuPont Hall	Assistant Professor	Washington State University	Developing World, Geotechnical, Sustainable Geotechnical Systems, Sustainable Transportation & Infrastructure Systems
Julia Maresca	344B DuPont Hall	Assistant Professor	Penn State University	Environmental & Water Resources, Sustainable Materials, Water Needs
Jennifer McConnell	358B DuPont Hall	Associate Professor	West Virginia University	Bridges for the Future, Disaster Resiliency, Structural, Sustainable Materials

Sue McNeil	301B	Chair and	Carnegie Mellon	Civil Infrastructure Systems, Climate
	DuPont Hall	Professor	University	Change/Adaptation, Disaster Resiliency, Sustainable Transportation &
				Infrastructure Systems, Transportation
Chris Meehan	355B	Bentley	Virginia Tech	Disaster Resiliency, Geotechnical,
	DuPont Hall	Systems Professor	University	Sustainable Geotechnical Systems
Holly Michael	101A Penny	Associate	Massachusetts	Climate Change/Adaptation, Coastal &
	Hall	Professor	Institute of Technology	Ocean, Developing World, Environmental & Water Resources, Water Needs
Paramita Mondal	360A DuPont	Associate	Northwestern	Sustainable Materials
	Hall	Professor	University	
Ri Na	342B DuPont	Assistant	University of	Sustainable buildings and infrastructures,
	Hall	Professor	Nebraska— Lincoln	BIM
Mark Nejad	352 DuPont	Assistant	Wayne State	Civil Infrastructure Systems, Climate
	Hall	Professor	University	Change/Adaptation, Transportation
Jack Puleo	203 Ocean	Associate	University of	Climate Change/Adaptation, Coastal &
	Eng. Lab	Chair and Professor	Florida	Ocean
David Salzer	342D DuPont Hall	Senior Instructor		
Jennie Perey Saxe	343A DuPont	Assistant	University of	Environmental & Water
	Hall	Professor	Delaware	Resources
Harry "Tripp" Shenton	360E DuPont Hall	Professor	Johns Hopkins University	Bridges for the Future, Structural, Sustainable Materials
Fengyan Shi	204 Ocean	Associate	Ocean University	Coastal & Ocean, Water Needs
	Eng. Lab	Professor	of Qingdao	
Mohsin Siddiqui	342C DuPont	Assistant	University of	Structural
	Hall	Professor	Texas at Austin	
Edgar Small	360D DuPont	Associate	State University	Civil Infrastructure Systems, Structural,
	Hall	Professor	of New York at Buffalo	Sustainable Transportation & Infrastructure Systems
Jovan Tatar	356B DuPont	Assistant	University of	, Civil Infrastructure Systems, Structural,
	Hall	Professor	Florida	Sustainable Transportation &
				Infrastructure Systems

Allan Zarembski	343B DuPont	Professor of	Princeton	Civil Infrastructure Systems, Sustainable
	Hall	Practice	University	Transportation & Infrastructure Systems,
				Transportation

Administrative and Support Staff

Name	Position	Office	Phone	Email
Christine Murray	Staff Assistant	301 DuPont Hall	302-831-2442	camurray@udel.edu
Michael Davidson	Senior Electronics Specialist	147 DuPont Hall	302-831-6814	michaeld@udel.edu
Karen Greco	Assistant to the Chair	301A DuPont Hall	302-831-3017	kgreco@udel.edu
Sarah Palmer*	Undergraduate Academic Advisor	301 DuPont Hall	302-831-0438	sbpalmer@udel.edu
Christine Reoli	Graduate Academic Advisor	301 DuPont Hall	302-831-6570	creoli@udel.edu
Gary Wenczel	Structures Lab Manager	281 DuPont Hall	302-831-6936	wenczel@udel.edu
Yu-Han Yu	Environmental Lab Manager	143A DuPont Hall	302-831-4457	yuhanyu@udel.edu

* primary contact for all undergraduate concerns

Advisement

Students are assigned faculty advisors upon arrival on campus. Students in civil engineering and environmental engineering will normally have the same faculty advisor for the entire time they are enrolled in the undergraduate program in the Department of Civil or Environmental Engineering. Students in construction engineering and management will change advisors each year. It is suggested that students meet with their advisor once each semester.

There is a two-week advising period every semester, just prior to the time when students will be registering for courses for the following semester. Students will register for appointments with their faculty advisor using the Blue Hen Success Collaborative. The University will assign students a registration appointment, after which they may enroll in courses.

A professional Undergraduate Academic Advisor is available to meet with students as well.

Advisors for the Class of 2022

Student Group	Name	Office	Email
Construction Eng. and Mgmt.	Prof. E. Small	360D DuPont Hall	esmall@udel.edu
Environmental Eng. Students A – K	Prof. J. Maresca	343A DuPont Hall	jmaresca@udel.edu
Environmental Eng. Students L – Z	Prof. P. Chiu	468 ISE	pei@udel.edu
Civil Eng. Students A – C	Prof. M. Head	360H DuPont Hall	head@udel.edu
Civil Eng. Students D–K	Prof. J. Tatar	356B DuPont Hall	jtatar@udel.edu
Civil Eng. Students L – R	Prof. A. Jayne	307 DuPont Hall	ajayne@udel.edu
Civil Eng. Students S – Z	Prof. N. Kobayashi	207 Ocean Eng. Lab	nk@udel.edu
Civil Eng. Honors Students	Prof. R. Davidson	360B DuPont Hall	rdavidso@udel.edu
Env. Eng. Honors Students	Prof. D. Cha	346A DuPont Hall	cha@udel.edu

Student Organizations

There are hundreds of clubs and organizations on campus. Student organizations in the College of Engineering are listed at https://www.engr.udel.edu/academic-affairs/student-organizations/. Below are organizations with specific relevance to students in the Department of Civil and Environmental Engineering.

Organization	Faculty Advisor	Email
American Society of Civil Engineers (ASCE)	Prof. Allen Jayne	ajayne@udel.edu
Institute of Transportation Engineers (ITE)	Prof. Rusty Lee	elee@udel.edu
Chi Epsilon Civil Engineering Honor Society	Prof. Kalehiwot Manahiloh	knega@udel.edu
Environmental Engineering Student Association	Prof. Daniel Cha	cha@udel.edu
Engineers Without Borders (EWB)	Kimberly Bothi	kbothi@udel.edu
American Society of Highway Engineers (ASHE)	Matheu Carter	matheu@udel.edu
National Society of Black Engineers (NSBE)	Marianne Johnson	mtj@udel.edu
Society of Women Engineers (SWE)	Prof. Megan Killian	killianm@udel.edu

I

UD Student Resources

Academic Fr	nrichment Center/Tutoring
Website:	www.ae.udel.edu
Location:	148-150 S. College Avenue
Phone:	302-831-4555
Career Servi	ces Center
Website:	www.udel.edu/CSC
Location:	BOA Career Services Center
	401 Academy Street
Phone:	302-831-2392
Center for C	ounseling and Student
Developmen	•
Website:	http://sites.udel.edu/counseling
Locations:	261 Perkins – Counseling Services
Phone:	302-831-2141
	209 Laurel Hall – Psychiatric Serv.
	302-831-8992
Dean of Stud	
Website:	http://sites.udel.edu/studentlife
Location:	101 Hullihen Hall
Phone:	302-831-8939
	ipport Services
Website:	https://sites.udel.edu/dss
Location:	130 Alison Hall
Phone:	302-831-4643 (Voice)
	302-831-4563 (TDD)
	302-831-3261 (Fax)
Harker Inter	rdisciplinary Science Learning
Laboratories	
Website:	
	.edu/news/Pages/isll-learning-
center.aspx	<u>ioua</u> , nono, nagoonon ioanning_
Location:	221 Academy St. Room 402
Phone:	302-831-6400
	Technologies
Website:	www.udel.edu/help
Phone:	302-831-6000
Library	
Website:	www.lib.udel.edu
Phone:	302-831-2965
i none.	
Office of Lat	ernational Students and Scholars
Website:	www.udel.edu/oiss/
Location:	Elliott Hall, 26 E. Main Street
Phone:	302-831-2115
	502-051-2115
Physics Help	Center
Website:	
	udel.edu/undergrad/resources
Location:	

web.physics.udei.edu/undergrad/resources			
Location:	114 Sharp Lab		
Hours:	Hours vary; check website		

Departmen	y Mathematics Tutorial Lab of the t of Mathematical Sciences
Website:	
	udel.edu/courses-placement/resources
Location:	Kent Dining Hall 103
Phone:	302-831-1134
Registrar	
Website:	www.udel.edu/registrar
Location:	210 S. College Ave./Visitors Center
Phone:	302-831-2131
Student Se	rvices for Athletes
Website:	www.udel.edu/ssa
Location:	108G Delaware Field House
Phone:	302-831-2748
Student Fir	nancial Services
Website:	www.udel.edu/students/student-
financial-ser	<u>vices</u>
Location:	30 Lovett Avenue
Phone	302-831-2126
Study Abro	ad
Website:	www.udel.edu/global
Location:	Clayton Hall 100 David Hollowell Dr
Phone:	302-831-2852
Undergrad	uate Research & Experimental
Learning P	•
Website:	www.urp.udel.edu
Location:	180 S. College Avenue
Phone:	302-831-8995
University	Honors Program
Website:	www.honors.udel.edu
Location:	186 S. College Avenue
Phone:	302-831-1195
	nters – 2 Locations
Website:	www.writingcenter.udel.edu
Location:	016 Memorial Hall
Phone:	302-831-1168
THUNE.	302-031-1100
Location:	Lower Level of Morris Library
	(MultiMedia Writing Center)
Dhono	302-831-1168
Phone:	302-031-1100

College Advising & Student Services Offices

College of:	
Ag. & Natural Resources	302-831-2508
Arts & Sciences	302-831-3020
Earth, Ocean and Environment	302-831-2841
Education & Human Development	302-831-2396
Engineering	302-831-8659
Health Sciences	302-831-8073
Lerner Coll. of Bus. & Economics	302-831-4369
University Studies Program	302-831-4555
Continuing Education/ACCESS	302-831-8843

www.advising.udel.edu

Computing Facilities

The University maintains general access computing sites throughout the campus. The list is available at http://www.it.udel.edu/computingsites

Engineering Computer Laboratories

The College maintains computing sites specifically for engineering students. Students can use 046 Colburn Lab, 010 Spencer Lab, and 101-D Pearson Hall when they are not in use for teaching. Computer lounges are located in Spencer Lab as well. For more information, see https://www.engr.udel.edu/it/ecalc/

Personal Computers

The College of Engineering has no specific requirements regarding brand, operating system (i.e., Windows vs. Macintosh), or configuration. Please refer to http://sites.udel.edu/computing-purchases/personal-specs/ for recommended specifications when purchasing a new computer or laptop. Students in all programs will benefit from using a laptop computer (vs. a desktop), due to an emphasis on in-class and group technology-based projects.

- One of the unique features of Apple computers is that they can be set up to run both Mac and Windows operating systems and software. For some students, this flexibility is very helpful.
- AppsAnywhere is a web-based App Store that allows you to access software licensed for your use by the College of Engineering, on university-owned and personally-owned computers running Windows. AppsAnywhere is easy to use and enables you to launch software titles with a single click via a new on-demand streaming technology. It is possible to use AppsAnywhere on a Mac, but you will need to run Windows on your Mac (via virtual machine or Boot Camp).
- Students in programs such as Mechanical Engineering and Chemical Engineering will benefit by having
 a computer powerful enough to support the demanding video and computational requirements
 necessary for their coursework. For these academic programs we recommend a computer with a
 discrete graphics processor from AMD or NVidia.

Computer-Aided Design (CAD) Software

Computer-Aided Design, otherwise known as CAD, is commonly used today in engineering practice. Years ago engineers would hand off their preliminary designs and sketches to CAD operators or technicians for them to produce a professional drawing. Today, however, having proficiency in CAD as an engineer is as critical as using a word processor, email, or spreadsheet: CAD is simply another tool in the modern engineer's toolbox. Engineering students need to develop a certain level of competency in using CAD programs while they are in school. Students who have CAD experience may be more marketable for internships, summer jobs, co-ops, and full-time employment

There are two major CAD programs in use today in the civil and environmental engineering professions – Bentley Systems Inc. "MicroStation" and Autodesk's "AutoCAD." Neither is an industry standard, but MicroStation tends to be used more in the transportation and civil/site development fields (the "horizontal" fields) and AutoCAD tends to be used more in the structural/building fields (the "vertical" fields). The platform choice; however, is often dictated by the client, and therefore, consulting firms will frequently use both programs.

Engineering students at the University of Delaware may access these programs on their personal computers using AppsAnywhere. AppsAnywhere is a web-based software portal similar to an app store that enables students to stream software on personal computers with a single click. Access AppsAnywhere at https://appsanywhere.engr.udel.edu

Civil engineering majors will be introduced to MicroStation in CIEG161 Freshmen Design. Construction Engineering and Management students will be introduced to Computer-Aided Drawing software in CIEG291 CAD and Building Information Modeling in Construction.