CE-221 SOLID MECHANICS

End-Sem Exam
16/11/15
Note: Write your name \& roll no. on answerbook and on summary-answer-sheet provided with the question paper.
You must submit the summary-answer-sheet along with the answerbook.
Closed book, closed notes exam. No formula sheet allowed. No mobile phones allowed in the exam hall.
All questions carry equal marks. Assume suitable data if required and state the same clearly.
Use formulae from provided tables, if applicable.

Problem 1

The rectangular tube shown in Fig. 1 has a uniform wall thickness of $\mathbf{1 2} \mathbf{~ m m}$. For the given loading, determine:
(a) the normal stress acting on the cross section at points \boldsymbol{A} and \boldsymbol{B}.
(b) the distance from \boldsymbol{A} to the point where the neutral axis intersects line $\mathbf{A B}$.

Fig. 1

Problem 2

Two forces are applied to the pipe $\boldsymbol{A B}$ as shown in Fig. 2. The pipe has inner and outer diameters of $\mathbf{3 5} \mathbf{~ m m}$ and $\mathbf{4 2 ~ m m}$ respectively. Determine the maximum shearing stress
(a) acting in the $\boldsymbol{x y}$ plane at point \mathbf{a},
(b) acting in the $\boldsymbol{z} \boldsymbol{y}$ plane at point \mathbf{b}.

Fig. 2

Problem 3

The compound beam shown in Fig. $\mathbf{3}$ has fixed supports at \boldsymbol{A} and \boldsymbol{D} and consists of three members that are pinned together at \boldsymbol{B} and \boldsymbol{C}. Find the vertical deflection of the beam at the point where the load is applied.

Fig. 3

Problem 4

Three uniform rigid bars of length \boldsymbol{a} are interconnected by hinges at points $\mathbf{1}$ and $\mathbf{2}$ in the rigid bar assemblage shown in Fig. 4. The lateral displacements of the assemblage are resisted by linear springs located at each hinge as shown in Fig. 4. The assemblage is hinged at point \boldsymbol{O} and is guided to move vertically by rollers at point $\mathbf{3}$. Calculate the critical load \boldsymbol{P} of the assemblage when $\boldsymbol{k}_{\mathbf{1}}=\boldsymbol{k}, \boldsymbol{k}_{\mathbf{2}}=\mathbf{2 k}$. Your answer should be in terms of \boldsymbol{a} and \boldsymbol{k} only.

Fig. 4

Problem 5

A cantilever beam carries a downward concentrated load of $\mathbf{1 0} \mathbf{~ k N}$ at its free end. The composite cross-section (see Fig. 5) comprises a $\mathbf{3 0 0} \mathbf{m m} \times \mathbf{1 0 0} \mathbf{m m}$ rectangular section having Youngs modulus $\boldsymbol{E}_{\mathbf{1}}=\mathbf{5 0} \mathbf{G P a}$ which is bolted to a symmetric I-section having Youngs modulus $\boldsymbol{E}_{2}=\mathbf{2 0 0} \mathbf{G P a}$. The cross-sectional area and centroidal moment of inertia of the symmetric I-section are $\mathbf{2 . 0 2 \times 1 0 ^ { 4 }} \mathbf{m m}^{2}$ and $7.475 \times 10^{8} \mathbf{m m}^{4}$, respectively. The bolts are placed two in a row (see Fig. 5) and spaced $\mathbf{6 0 0} \mathbf{m m}$ apart along the length of the beam. Determine:
(a) The shear force carried by each bolt
(b)The vertical shear stress in the rectangular section at the interface of the two materials.

Fig. 5

Problem 6

A simply supported beam carrying a uniform load of $\mathbf{1 0 0} \mathbf{~ k N} / \mathbf{m}$ over its span of $\mathbf{1 0} \mathbf{~ m}$ is made of a solid rectangular section. The allowable normal stress of the beam is $\mathbf{1 5 0} \mathbf{~ M P a}$. The maximum deflection of the beam should not exceed $\mathbf{1 0} \mathbf{~ m m}$. Calculate the width and depth of the cross-section such that the above mentioned capacities are fully utilized. $\boldsymbol{E}=$ 200 GPa.

SUMMARY ANSWER SHEET
 PAPER CODE: A
 Name:
 Roll no:

Problem 1

(a) $\sigma_{\mathrm{A}}=31.52 \mathrm{MPa}$

$$
\sigma_{B}=-10.39 \mathrm{MPa}
$$

(b) distance from \boldsymbol{A} to point where neutral axis intersects line $\mathbf{A B}=94.01 \mathrm{~mm}$

Problem 2

(a) max shear stress in $\boldsymbol{x y}$ plane at $\mathbf{a}=17.58 \mathrm{GPa}$
(b) max shear stress in $\boldsymbol{z} \boldsymbol{y}$ plane at $\mathbf{b}=22.71 \mathrm{GPa}$

Problem 3

vertical deflection at point where load is applied $=0.15625 \mathrm{~m}$

Problem 4

critical load \boldsymbol{P} of assemblage $=(1-1 / \sqrt{3})=0.4226 \mathrm{ka}$

Problem 5

(a) shear force carried by each bolt $=\mathbf{3 8 6 6 N}$
(b) vertical shear stress in rectangular section at interface $=0.043 \mathrm{MPa}$

Problem 6

width of cross-section $=1.56 \mathrm{~m}$
depth of cross-section $=\mathbf{0 . 0 2 0 4 8} \mathbf{m}$

CE-221 SOLID MECHANICS

End-Sem Exam
16/11/15
Note: Write your name \& roll no. on answerbook and on summary-answer-sheet provided with the question paper.
You must submit the summary-answer-sheet along with the answerbook.
Closed book, closed notes exam. No formula sheet allowed. No mobile phones allowed in the exam hall.
All questions carry equal marks. Assume suitable data if required and state the same clearly.
Use formulae from provided tables, if applicable.

Problem 1

The rectangular tube shown in Fig. $\mathbf{1}$ has a uniform wall thickness of $\mathbf{1 4} \mathbf{~ m m}$. For the given loading, determine:
(a) the normal stress acting on the cross section at points \boldsymbol{A} and \boldsymbol{B}.
(b) the distance from \boldsymbol{A} to the point where the neutral axis intersects line $\mathbf{A B}$.

Fig. 1

Problem 2

Two forces are applied to the pipe $\boldsymbol{A B}$ as shown in Fig. 2. The pipe has inner and outer diameters of $\mathbf{3 2} \mathbf{~ m m}$ and $\mathbf{3 8} \mathbf{~ m m}$ respectively. Determine the maximum shearing stress
(a) acting in the $x y$ plane at point a,
(b) acting in the $\boldsymbol{z} \boldsymbol{y}$ plane at point \mathbf{b}.

Fig. 2

Problem 3

The compound beam shown in Fig. 3 has fixed supports at \boldsymbol{A} and \boldsymbol{D} and consists of three members that are pinned together at \boldsymbol{B} and \boldsymbol{C}. Find the vertical deflection of the beam at the point where the load is applied.

Fig. 3

Problem 4

Three uniform rigid bars of length \boldsymbol{a} are interconnected by hinges at points $\mathbf{1}$ and $\mathbf{2}$ in the rigid bar assemblage shown in Fig. 4. The lateral displacements of the assemblage are resisted by linear springs located at each hinge as shown in Fig. 4. The assemblage is hinged at point \boldsymbol{O} and is guided to move vertically by rollers at point $\mathbf{3}$. Calculate the critical load \boldsymbol{P} of the assemblage when $\boldsymbol{k}_{\mathbf{1}}=\mathbf{2 k}, \boldsymbol{k}_{\mathbf{2}}=\mathbf{3 k}$. Your answer should be in terms of \boldsymbol{a} and \boldsymbol{k} only.

Fig. 4

Problem 5

A cantilever beam carries a downward concentrated load of $\mathbf{1 2} \mathbf{~ k N}$ at its free end. The composite cross-section (see Fig. 5) comprises a $\mathbf{3 0 0} \mathbf{m m} \times 150 \mathrm{~mm}$ rectangular section having Youngs modulus $\boldsymbol{E}_{\mathbf{1}}=\mathbf{1 0 0} \mathbf{G P a}$ which is bolted to a symmetric I-section having Youngs modulus $\boldsymbol{E}_{2}=\mathbf{2 0 0} \mathbf{G P a}$. The cross-sectional area and centroidal moment of inertia of the symmetric I-section are $\mathbf{2 . 0 2 \times 1 0 ^ { 4 }} \mathbf{m m}^{2}$ and $7.475 \times 10^{8} \mathbf{m m}^{4}$, respectively. The bolts are placed two in a row (see Fig. 5) and spaced $\mathbf{8 0 0} \mathbf{m m}$ apart along the length of the beam. Determine:
(a) The shear force carried by each bolt
(b)The vertical shear stress in the rectangular section at the interface of the two materials.

Fig. 5

Problem 6

A simply supported beam carrying a uniform load of $\mathbf{1 5 0} \mathbf{~ k N} / \mathbf{m}$ over its span of $\mathbf{1 5 ~ m}$ is made of a solid rectangular section. The allowable normal stress of the beam is $\mathbf{1 7 5} \mathbf{~ M P a}$. The maximum deflection of the beam should not exceed $\mathbf{1 5} \mathbf{~ m m}$. Calculate the width and depth of the cross-section such that the above mentioned capacities are fully utilized. $\boldsymbol{E}=$ 250 GPa.

SUMMARY ANSWER SHEET

PAPER CODE: B
Name:
Roll no:

Problem 1

(a) $\sigma_{\mathrm{A}}=23.04 \mathrm{MPa}$

$$
\sigma_{\mathrm{B}}=-6.99 \mathrm{MPa}
$$

(b) distance from \boldsymbol{A} to point where neutral axis intersects line $\mathbf{A B}=115.07 \mathrm{~mm}$

Problem 2

(a) max shear stress in $\boldsymbol{x} \boldsymbol{y}$ plane at $\mathbf{a}=29.83 \mathrm{GPa}$
(b) max shear stress in $\boldsymbol{z} \boldsymbol{y}$ plane at $\mathbf{b}=35.77 \mathrm{GPa}$

Problem 3

vertical deflection at point where load is applied $=0.3125 \mathrm{~m}$

Problem 4

$$
\text { critical load } P \text { of assemblage }=\left(\frac{5-\sqrt{7}}{3}\right)=0.7848 \mathrm{ka}
$$

Problem 5

(a) shear force carried by each bolt $=\mathbf{8 8 1 0} \mathbf{N}$
(b)vertical shear stress in rectangular section at interface $=\mathbf{0 . 0 7 3 M P a}$

Problem 6

width of cross-section $=2.1875 \mathrm{~m}$
depth of cross-section $=\mathbf{0 . 0 3 0 2 3} \mathbf{m}$

End-Sem Exam

Note: Write your name \& roll no. on answerbook and on summary-answer-sheet provided with the question paper. You must submit the summary-answer-sheet along with the answerbook.
Closed book, closed notes exam. No formula sheet allowed. No mobile phones allowed in the exam hall.
All questions carry equal marks. Assume suitable data if required and state the same clearly.
Use formulae from provided tables, if applicable.

Problem 1

The rectangular tube shown in Fig. $\mathbf{1}$ has a uniform wall thickness of $\mathbf{1 0} \mathbf{~ m m}$. For the given loading, determine:
(a) the normal stress acting on the cross section at points \boldsymbol{A} and \boldsymbol{B}.
(b) the distance from \boldsymbol{A} to the point where the neutral axis intersects line $\mathbf{A B}$.

Fig. 1

Problem 2

Two forces are applied to the pipe $\boldsymbol{A B}$ as shown in Fig. 2. The pipe has inner and outer diameters of $\mathbf{4 2} \mathbf{~ m m}$ and $\mathbf{4 8} \mathbf{~ m m}$ respectively. Determine the maximum shearing stress
(a) acting in the $\boldsymbol{x} \boldsymbol{y}$ plane at point a,
(b) acting in the $\boldsymbol{z y}$ plane at point \mathbf{b}.

Fig. 2

Problem 3

The compound beam shown in Fig. $\mathbf{3}$ has fixed supports at \boldsymbol{A} and \boldsymbol{D} and consists of three members that are pinned together at \boldsymbol{B} and \boldsymbol{C}. Find the vertical deflection of the beam at the point where the load is applied.

Fig. 3

Problem 4

Three uniform rigid bars of length \boldsymbol{a} are interconnected by hinges at points $\mathbf{1}$ and $\mathbf{2}$ in the rigid bar assemblage shown in Fig. 4. The lateral displacements of the assemblage are resisted by linear springs located at each hinge as shown in Fig. 4. The assemblage is hinged at point \boldsymbol{O} and is guided to move vertically by rollers at point $\mathbf{3}$. Calculate the critical load \boldsymbol{P} of the assemblage when $\boldsymbol{k}_{\mathbf{1}}=\mathbf{3} \boldsymbol{k}, \boldsymbol{k}_{\mathbf{2}}=\mathbf{4} \boldsymbol{k}$. Your answer should be in terms of \boldsymbol{a} and \boldsymbol{k} only.

Fig. 4

Problem 5

A cantilever beam carries a downward concentrated load of $\mathbf{1 8} \mathbf{~ k N}$ at its free end. The composite cross-section (see Fig. 5) comprises a $\mathbf{3 0 0} \mathbf{m m} \times \mathbf{2 0 0 m m}$ rectangular section having Youngs modulus $\boldsymbol{E}_{\mathbf{1}}=75$ GPa which is bolted to a symmetric I-section having Youngs modulus $\boldsymbol{E}_{2}=\mathbf{2 0 0} \mathbf{G P a}$. The cross-sectional area and centroidal moment of inertia of the symmetric I-section are $\mathbf{2 . 0 2 \times 1 0 ^ { 4 }} \mathbf{m m}^{2}$ and $7.475 \times 10^{8} \mathbf{m m}^{4}$, respectively. The bolts are placed two in a row (see Fig. 5) and spaced $\mathbf{1 0 0 0} \mathbf{m m}$ apart along the length of the beam. Determine:
(a) The shear force carried by each bolt
(b)The vertical shear stress in the rectangular section at the interface of the two materials.

Fig. 5

Problem 6

A simply supported beam carrying a uniform load of $\mathbf{2 0 0} \mathbf{~ k N} / \mathbf{m}$ over its span of $\mathbf{2 0} \mathbf{~ m}$ is made of a solid rectangular section. The allowable normal stress of the beam is $\mathbf{2 0 0} \mathbf{~ M P a}$. The maximum deflection of the beam should not exceed $\mathbf{4 0} \mathbf{~ m m}$. Calculate the width and depth of the cross-section such that the above mentioned capacities are fully utilized. $\boldsymbol{E}=$ 150 GPa.

SUMMARY ANSWER SHEET

PAPER CODE: C
Name:
Roll no:

Problem 1

(a) $\sigma_{\mathrm{A}}=47.96 \mathrm{MPa}$

$$
\sigma_{\mathrm{B}}=-17.86 \mathrm{MPa}
$$

(b) distance from A to point where neutral axis intersects line $A B=72.87 \mathrm{~mm}$

Problem 2

(a) max shear stress in $\boldsymbol{x} \boldsymbol{y}$ plane at $\mathbf{a}=23.44 \mathrm{GPa}$
(b) max shear stress in $z \boldsymbol{y}$ plane at $\mathbf{b}=28.63 \mathrm{GPa}$

Problem 3

vertical deflection at point where load is applied $=0.46875 \mathrm{~m}$

Problem 4

critical load P of assemblage $=\left(\frac{7-\sqrt{13}}{3}\right)=1.1315 \mathrm{ka}$

Problem 5

(a) shear force carried by each bolt $=15768 \mathrm{~N}$
(b) vertical shear stress in rectangular section at interface $=0.105 \mathrm{MPa}$

Problem 6

width of cross-section $=2.778 \mathrm{~m}$
depth of cross-section $=\mathbf{0 . 0 3 8 8 8} \mathbf{m}$

End-Sem Exam

Note: Write your name \& roll no. on answerbook and on summary-answer-sheet provided with the question paper.
You must submit the summary-answer-sheet along with the answerbook.
Closed book, closed notes exam. No formula sheet allowed. No mobile phones allowed in the exam hall.
All questions carry equal marks. Assume suitable data if required and state the same clearly.
Use formulae from provided tables, if applicable.

Problem 1

The rectangular tube shown in Fig. 1 has a uniform wall thickness of $\mathbf{8} \mathbf{~ m m}$. For the given loading, determine:
(a) the normal stress acting on the cross section at points \boldsymbol{A} and \boldsymbol{B}.
(b) the distance from \boldsymbol{A} to the point where the neutral axis intersects line $\mathbf{A B}$.

Fig. 1

Problem 2

Two forces are applied to the pipe $\boldsymbol{A B}$ as shown in Fig. 2. The pipe has inner and outer diameters of $\mathbf{2 8} \mathbf{~ m m}$ and $\mathbf{3 2} \mathbf{~ m m}$ respectively. Determine the maximum shearing stress
(a) acting in the $\boldsymbol{x} \boldsymbol{y}$ plane at point a,
(b) acting in the $\boldsymbol{z} \boldsymbol{y}$ plane at point \mathbf{b}.

Fig. 2

Problem 3

The compound beam shown in Fig. $\mathbf{3}$ has fixed supports at \boldsymbol{A} and \boldsymbol{D} and consists of three members that are pinned together at \boldsymbol{B} and \boldsymbol{C}. Find the vertical deflection of the beam at the point where the load is applied.

Fig. 3

Problem 4

Three uniform rigid bars of length \boldsymbol{a} are interconnected by hinges at points $\mathbf{1}$ and $\mathbf{2}$ in the rigid bar assemblage shown in Fig. 4. The lateral displacements of the assemblage are resisted by linear springs located at each hinge as shown in Fig. 4. The assemblage is hinged at point \boldsymbol{O} and is guided to move vertically by rollers at point 3 . Calculate the critical load \boldsymbol{P} of the assemblage when $\boldsymbol{k}_{\mathbf{1}}=\mathbf{4} \boldsymbol{k}, \boldsymbol{k}_{\mathbf{2}}=\mathbf{5} \boldsymbol{k}$. Your answer should be in terms of \boldsymbol{a} and \boldsymbol{k} only.

Fig. 4

Problem 5

A cantilever beam carries a downward concentrated load of $\mathbf{3 0} \mathbf{~ k N}$ at its free end. The composite cross-section (see Fig. 5) comprises a $\mathbf{3 0 0} \mathbf{m m} \times \mathbf{2 5 0 m m}$ rectangular section having Youngs modulus $\boldsymbol{E}_{\mathbf{1}}=\mathbf{5 0} \mathbf{G P a}$ which is bolted to a symmetric I-section having Youngs modulus $\boldsymbol{E}_{2}=\mathbf{4 0 0} \mathbf{G P a}$. The cross-sectional area and centroidal moment of inertia of the symmetric I-section are $\mathbf{2 . 0 2 \times 1 0 ^ { 4 }} \mathbf{m m}^{2}$ and $7.475 \times 10^{8} \mathbf{m m}^{4}$, respectively. The bolts are placed two in a row (see Fig. 5) and spaced $\mathbf{1 2 0 0} \mathbf{m m}$ apart along the length of the beam. Determine:
(a) The shear force carried by each bolt
(b)The vertical shear stress in the rectangular section at the interface of the two materials.

Fig. 5

Problem 6

A simply supported beam carrying a uniform load of $\mathbf{1 2 0} \mathbf{~ k N} / \mathbf{m}$ over its span of $\mathbf{5 ~ m}$ is made of a solid rectangular section. The allowable normal stress of the beam is $\mathbf{2 5 0} \mathbf{~ M P a}$. The maximum deflection of the beam should not exceed $\mathbf{5} \mathbf{~ m m}$. Calculate the width and depth of the cross-section such that the above mentioned capacities are fully utilized. $\boldsymbol{E}=$ 300 GPa.

SUMMARY ANSWER SHEET

PAPER CODE: D
Name:
Roll no:

Problem 1

(a) $\sigma_{\mathrm{A}}=\mathbf{6 0 . 6 6 M P a}$

$$
\sigma_{\mathrm{B}}=-20.66 \mathrm{MPa}
$$

(b) distance from \boldsymbol{A} to point where neutral axis intersects line $\mathbf{A B}=55.94 \mathrm{~mm}$

Problem 2

(a) max shear stress in $\boldsymbol{x} \boldsymbol{y}$ plane at $\mathbf{a}=45.08 \mathrm{GPa}$
(b) max shear stress in $z \boldsymbol{y}$ plane at $\mathbf{b}=55.90 \mathrm{GPa}$

Problem 3

vertical deflection at point where load is applied $=0.625 \mathrm{~m}$

Problem 4

$$
\text { critical load } P \text { of assemblage }=\left(\frac{9-\sqrt{21}}{3}\right)=1.4725 \mathrm{ka}
$$

Problem 5

(a) shear force carried by each bolt $=\mathbf{2 5 3 1 9 N}$
(b) vertical shear stress in rectangular section at interface $=0.141 \mathrm{MPa}$

Problem 6

width of cross-section $=0.8681 \mathrm{~m}$
depth of cross-section $=\mathbf{0 . 0 1 1 9 4} \mathbf{m}$

CE22 ENDSEM.
PI

$$
\begin{aligned}
& P=14+28+28=70 \\
& M_{z}=(2)(28)\left(\frac{125}{2}\right)-(14)\left(\frac{125}{2}\right)=2625 \\
& M_{y}=-(14)\left(\frac{75}{2}\right)=-525 \\
& \sigma_{x}=\frac{P}{A}-\frac{M_{z} y}{I_{z}}+\frac{M_{y} z}{I_{y}} \\
& A=(125)(75)-(125-24)(75-24)=4224 \\
& I_{z}=\frac{1}{12}\left[75 * 125^{3}-51 * 101^{3}\right]=7828252 \\
& I_{y}=\frac{1}{12}\left[125 * 75^{3}-101 * 51^{3}\right]=3278052 \mathrm{~mm}^{4}
\end{aligned}
$$

AHA: $z=\frac{75}{2}, y=-\frac{125}{2} \Rightarrow\left(\sigma_{x}\right)_{A}=31.52 \mathrm{MPa}$
ARB $=z=\frac{75}{2}, y=\frac{125}{2}, \Rightarrow\left(\sigma_{x}\right)_{B}=-10.39 \mathrm{MPa}$
Put $\sigma_{x}=0 \Rightarrow 16.572-0.3353 y-0.1602 z=0$
Intercept in $A B \Rightarrow z=\frac{75}{2} \Rightarrow y=31.51$, ie $\left(31.51, \frac{75}{2}\right)$
Intercept on $B D \Rightarrow y=\frac{125}{2} \Rightarrow z=-27.37$

$$
\text { ie }\left(\frac{125}{2},-27.37\right)
$$

Dist from $A=\frac{125}{2}+31.51=94.01$ mum
Code $A=$

$$
\begin{array}{rlrl}
\text { Code } A \\
\text { Gre } B=\left(\sigma_{x}\right)_{A} & =31.52,\left(\sigma_{x}\right)_{B} & =-10.39, \text { Dist } & =94.01 \\
& =23.04, & & =-6.99, \\
\text { from } A & =115.07 \\
\text { Code } C= & & =-17.86, & \\
& =47.96,87 \\
& & & =-20.66,
\end{array}
$$

$$
\overline{C o d e c}=\quad=47.96
$$

Code $D==60.66$,

PL

$$
\begin{align*}
& P=-1500 \mathrm{~N}, M_{y}=(1200)(90), M_{x}=-(1200)(75), M_{z}=-(1500)(45) \\
& V_{z}=-1200 \mathrm{~N}, \tag{2}
\end{align*}
$$

PLANE TRES' $\because A, B$ are boundary points
(x yplane) (z yplane)
$A \in A=$

$$
\begin{aligned}
& \sigma_{y}=\frac{p}{\pi\left(r_{0}^{2}-r_{i}^{2}\right)}-\frac{M_{x} r_{0}}{\pi\left(r_{0}^{4}-r_{i}^{4}\right) / 4}=\frac{(-1500)}{\pi\left(21^{2}-17.5^{2}\right)}-\frac{(-1200)(75)(21)}{\pi\left(21^{4}-17.5^{4}\right) / 4} \\
&=20.36 \mathrm{MPa} \\
& \tau_{x y}=\text { due to torsion only }=\frac{M_{y} r_{0}}{\pi\left(r_{0}^{4}-r_{i}^{4}\right) / 2}=\frac{(1200)(90)(21)}{\pi\left(21^{4}-17.5^{4}\right) / 2} \\
&=14.34 \mathrm{MPa} \\
& \sigma_{x}=0 \quad
\end{aligned}
$$

$\underline{A+B}=\sigma_{y}=\frac{\rho}{\pi\left(r_{0}^{2}-r_{i}^{2}\right)}+\frac{M_{z} r_{0}}{\pi\left(r_{0}^{4}-r_{i}^{4}\right) /^{4}}=\frac{(-1500)}{\pi\left(4^{2}-17.5^{2}\right)}+\frac{(-1500)(45)(21)}{\pi\left(21^{4}-17.5^{4}\right) / 4}$

$$
=-21.47 \mathrm{MPa}
$$

$$
\begin{aligned}
& T_{y z}=\text { due to torsion + due to bending sheer }=\frac{-M_{y} r_{0}}{\pi\left(r_{0}^{4}-r_{i}^{4}\right) / 2}+\frac{V_{z} Q_{x}}{I_{x} t_{x}} \\
&=\underbrace{\frac{-(1200)(90)(21)}{\pi\left(21^{4}-17.5^{4}\right) / 2}}_{1}+\frac{(-1200)\left(\frac{2 F}{\pi}\right)(\pi \bar{r})\left(r_{0}-r_{i}\right)^{7}}{\left(2 \pi F\left(r_{0}-r_{i}\right)(\bar{r})^{2} / 2\right)\left(r_{0}-r_{i}\right) * 2}, \bar{r}=\text { mean } \\
& \text { radius. } \\
& t \leq \leq \bar{r}
\end{aligned}
$$

using thin-walled approx, e $t \ll \bar{r}$

$$
+\frac{(-1200)}{\pi(19.25)(21-17.5) / 2}=-25.68 \mathrm{Ma}
$$

$$
+\frac{(-1200)\left(\frac{\pi r_{0}^{2}}{2} \frac{4 r_{0}}{3 \pi}-\frac{\pi r_{i}^{2}}{2} \frac{4 r_{i}}{3 \pi}\right)}{\left(\pi r_{0}^{2} \frac{r_{0}^{2}}{4}-\pi r_{i}^{2} \frac{r_{i}^{2}}{4}\right)\left(r_{0}-r_{i}\right) * 2}=-2562
$$

exact (no thin walled apprixused)

$$
\begin{array}{r}
\tau_{\text {max }}=R=\frac{1}{2} \sqrt{21.47^{2}+(2 * 25.68)^{2}}=27.83 \mathrm{MPa} \\
\quad \text { Cade } c:\left(T_{A}\right)_{\text {max }}=23.44
\end{array}
$$

Code $A:\left(\tau_{A}\right)_{\text {max }}=17.58 \mathrm{MPa}$
$\left(\tau_{B}\right)_{\text {max }}=27.83$
cade B: $\left(T_{A}\right)_{\text {max }}=29.83,\left(T_{B}\right)_{\text {max }}=46.37$
Cade C: $\left(T_{A}\right)_{\text {max }}=23.44 \mathrm{MPa}$
(TB) max $=35.06$
Code D: $\left(T_{A}\right)_{\text {max }}=45.08$
$\left(\tau_{B}\right)_{\text {max }}=74.23$

P3

$4^{\text {tha order method }}$

$$
\begin{aligned}
& E I y^{\text {IV }}=-w=-P\langle x-b\rangle^{-1} \\
& E I y^{I I I}=-P\langle x-b\rangle+c_{1} \\
& E I y^{I I}=-P\langle x-b\rangle^{\prime}+c_{1} x+c_{2} \\
& E I y^{I}=-\frac{P(x-b\rangle^{2}}{2}+\frac{c_{1}}{2} x^{2}+c_{2} x+c_{3} \\
& E I y=-\frac{P}{6}\langle x-b\rangle^{3}+\frac{c_{1}}{6} x^{3}+\frac{c_{2}}{2} x^{2}+c_{3} x+c_{4}
\end{aligned}
$$

$$
\begin{aligned}
& M=E I y I=0 \text { at } x=0 \Rightarrow c_{2}=0 ; M=E I_{y} y^{I}=0 \text { at } x=2 t \Rightarrow c_{1}=\frac{P(2 t-b)}{2 t} \\
& \left.y\right|_{x=0}=-\frac{9}{2} P b^{3}=\frac{C_{4}}{E I} \\
& \left.y\right|_{x=2 G}=-\frac{P b^{3}}{6 E I}=\frac{1}{E I}\left[-\frac{P b^{3}}{6}+\frac{P}{2} \frac{8 b^{3}}{6}+2 b c_{3}-\frac{9 P}{2} P b^{3}\right] \Rightarrow c_{3}=\frac{23 P b^{2}}{12}
\end{aligned}
$$

2nd order methed

$$
\begin{aligned}
& \frac{x}{\leftrightarrows x} \leftarrow \leftarrow^{\xi} \\
& T_{P / 2} \uparrow_{P / 2}
\end{aligned}
$$

$$
E I y^{\prime \prime}=\frac{p}{2} x
$$

$$
E I y^{\prime}=\frac{p}{2} \frac{x^{2}}{2}+c_{1}
$$

$$
\begin{aligned}
& (1) \equiv \frac{d}{d} \\
& c+c_{2}
\end{aligned}
$$

$$
E I_{y}=\frac{p}{2} \frac{x^{2}}{6}+c_{1} x+c_{2} \quad E I_{y}=\frac{p}{2} \frac{c^{2}}{6}+c_{3} \xi+c_{y}
$$

$$
\left.y\right|_{x=0}=-\frac{9}{2} \frac{9 b^{3}}{E I}=\frac{C_{2}}{E I} ;\left.\quad y\right|_{\xi=0}=-\frac{P b^{3}}{6 E I}=\frac{C_{y}}{E I}
$$

$$
\left.y\right|_{x=b}=\left.y\right|_{\xi=b} \Rightarrow \frac{p}{2} \frac{b^{3}}{6}+c_{1} b+c_{2}=\frac{p}{2} \frac{v^{3}}{6}+c_{3} h+c_{4}
$$

$$
\left.y^{\prime}\right|_{x=b}=-\left.y^{\prime}\right|_{\xi=b} \Rightarrow \frac{\rho}{2} \frac{b^{2}}{2}+c_{1}=-\left(\frac{p}{2} \frac{b^{2}}{2}+c_{3}\right)
$$

$$
\Rightarrow c_{1}=c_{3}+\frac{c_{1}-c_{2}}{b} \Rightarrow 2 c_{3}=\frac{-1 b^{2}}{2}+\frac{c_{2}-\xi_{3}}{b} \Rightarrow c_{3}=-\frac{29}{12} P b^{2}, c_{1}=\frac{23}{12} P b^{2}
$$

PS

$$
\frac{E_{1}}{E_{2}}=\frac{1}{4}=\frac{50}{200}
$$

$$
\begin{aligned}
& \text { Jor transformed section, } \\
& \begin{aligned}
& \bar{y}_{t}=\frac{\left(2.02 * 10^{4}\right)(225)+(100)(300)\left(\frac{1}{4}\right)(500)}{2.02 * 10^{4}+100 * 300 * \frac{1}{4}}=299.46 \mathrm{~mm} \\
& I_{t}=7.475 * 10^{8}+\left(2.02 * 10^{4}\right)(225-299.46)^{2} \\
&+\left(\frac{300}{4}\right)(100)^{3} \frac{1}{12}+\left(\frac{300}{4}\right)(100)(500-299.46)^{2}=1.167 * 10^{9} \\
& \mathrm{~mm}^{4}
\end{aligned} \\
& \begin{aligned}
& Q_{t}=\frac{300}{4} * 100(500-299.46)=1.504 * 10^{6} \mathrm{~mm}^{3} \\
& \frac{\Delta H}{\Delta x}=\frac{\left(10 * 10^{3}\right)\left(1.504 * 10^{6}\right)}{\left(1.167 * 10^{9}\right)}=12.89 \mathrm{~N} / \mathrm{Mm} \\
&
\end{aligned}
\end{aligned}
$$

Force in each holt $=\frac{12.89 * 600}{2}=3866 \mathrm{~N}$

$$
T_{\text {interface }}=\frac{12.89}{300}=0.043 \mathrm{MPa}
$$

Code A: Force in each holt $=3866 \mathrm{~N} ; \tau_{\text {interfere }}=0.043 \mathrm{MA}$
Code B:
Code C:
Code D:

$$
\begin{array}{ll}
=88(0 \mathrm{Nj} & =0.073 \\
=15768 \mathrm{Nj} & =0.105 \\
=25319 \mathrm{Nj} & =0.141
\end{array}
$$

16
$\delta=\frac{5}{\text { nax }} \frac{\omega L^{4}}{E I}$ at mid span (frum tables provided)

$$
T_{\max }=\frac{M_{\max }}{b h^{2} / 6}=\frac{\omega L^{2} / 8}{b h^{2} / 6}
$$

Foon $\delta_{\max },\left(v h^{3}\right)_{\min }=\frac{5 * 12}{384} \frac{\omega L^{4}}{E} \frac{1}{\delta_{\max }}$
From $\sigma_{a l l},\left(b h^{2}\right)_{\min }=\frac{6}{8} \frac{\omega L^{2}}{\sigma_{a l l}}$
If loth limists arereached sumintaneously,

$$
\begin{aligned}
& h=\frac{\left(b h^{3}\right)_{\min }}{\left(b h^{2}\right)_{\min }}=\left(\frac{5 * R}{38 h}\right) \frac{\omega L^{2}-2}{E} \frac{1}{\delta_{\max }} /\left(\frac{6}{8} \frac{\omega \chi^{2}}{\sigma_{a \mu}}\right) \\
& v=\frac{6}{8} \frac{w L^{2}}{\sigma_{a \mu}} / h^{2}
\end{aligned}
$$

Code $A: h=1.56 \mathrm{~m} ; \quad V=0.02048 \mathrm{~m}$
Code B: $h=2.1875 \mathrm{~m} ; V=0.03023 \mathrm{~m}$
Code $C: h=2.778 \mathrm{~m} ; \quad b=0.03888 \mathrm{~m}$
Code $D: h=0.8681 \mathrm{~m} ; b=0.01194 \mathrm{~m}$

