# Lafayette College Department of Civil and Environmental Engineering 

CE 321: Introduction to Environmental Engineering
Fall 2010

Homework \#9
SOLUTIONS - Due: Monday, 11/29/10 - SOLUTIONS

1) By volume the concentration of oxygen in air is about $21 \%$. Find the equilibrium
concentration of $\mathrm{O}_{2}$ in water (mole/ L and $\mathrm{mg} / \mathrm{L}$ ) at $25^{\circ} \mathrm{C}$ and 1 atm of pressure. Recalculate it for Denver at an altitude of $1525 \mathrm{~m} .\left(\mathrm{P}=\mathrm{P}_{\mathrm{o}}-1.15^{*}\left(10^{-4}\right)^{*} \mathrm{H} ; \mathbf{P}=\right.$ atmospheric pressure at altitude $\mathrm{H}(\mathrm{atm}), \mathbf{H}=$ altitude $(\mathrm{m}), \mathbf{P}_{\mathbf{0}}=$ atmospheric pressure at sea level (atm)).
2) Suppose the gas above the soda in a bottle of soft drink is pure $\mathrm{CO}_{2}$ at a pressure of 2 atm . Calculate $\left[\mathrm{CO}_{2}\right]$ at $15^{\circ} \mathrm{C}$. Also report your answer as $\mathrm{mg} / \mathrm{L}$.
3) It has been estimated that the concentration of $\mathrm{CO}_{2}$ in the atmosphere before the Industrial Revolution was about $275 \mathrm{ppm}\left(0.000275 \mathrm{~atm}=275 \times 10^{-6} \mathrm{~atm}\right)$. If the accumulation of $\mathrm{CO}_{2}$ in the atmosphere continues, the by the middle of the next century it will probably be around $600 \mathrm{ppm}\left(0.0006 \mathrm{~atm}=600 \times 10^{-6} \mathrm{~atm}\right)$. Calculate the pH of rainwater (neglecting the effect of any other gases such as $\mathrm{H}_{2} \mathrm{~S}$ and $\left.\mathrm{NO}_{2}\right)$ at $25^{\circ} \mathrm{C}$ in each of these times.
4) If the BOD of a municipal wastewater at the end of 7 days is $60 \mathrm{mg} / \mathrm{L}$ and the ultimate BOD is $85.0 \mathrm{mg} / \mathrm{L}$, what is the rate constant?
5) Assuming that the data in Problem 4 were taken at $25^{\circ} \mathrm{C}$, computer the rate constant at $16^{\circ} \mathrm{C}$.
6) A sample of municipal sewage is diluted to $1 \%$ by volume prior to running a $\mathrm{BOD}_{5}$ analysis. After 5 days the oxygen consumption is determined to be $2.00 \mathrm{mg} / \mathrm{L}$. What is the $\mathrm{BOD}_{5}$ of the sewage?
7) If the $\mathrm{BOD}_{5}$ values for two livestock wastes having $k$ values of 0.3800 day $^{-1}$ and 0.240 day $^{-1}$ are $16230.0 \mathrm{mg} / \mathrm{L}$, what would be the ultimate BOD for each?
8) Some wastewater has a five-day BOD ate $20^{\circ} \mathrm{C}$ equal to $210 \mathrm{mg} / \mathrm{L}$ and an ultimate BOD of $350 \mathrm{mg} / \mathrm{L}$. Find the five-day BOD at $25^{\circ} \mathrm{C}$.
9) In a standard five-day BOD test,
a. Why is the BOD bottle stoppered?
b. Why is the test run in the dark (or in a black bottle)?
c. Why is it usually necessary to dilute the sample?
d. Why is it sometimes necessary to seed the sample?
e. Why isn't ultimate BOD measured?
f. What concentration of DO would you suggest as a starting concentration.
10) Assuming 0.1 mM of glutamic acid $\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{4} \mathrm{~N}\right)$ is used in the following stoichiometric reactions, calculate the NBOD of glutamic acid.

$$
\begin{aligned}
\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{4} \mathrm{~N}+4.5 \mathrm{O}_{2} & \rightarrow 5 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}+\mathrm{NH}_{3} \\
\mathrm{NH}_{3}+2 \mathrm{O}_{2} & \rightarrow \mathrm{NO}_{3}^{-}+\mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

11) If the dissolved oxygen concentration measured during a BOD test is $9 \mathrm{mg} / \mathrm{L}$ initially, 6 $\mathrm{mg} / \mathrm{L}$ after 5 days, and $3 \mathrm{mg} / \mathrm{L}$ after an indefinitely long period of time, calculate the 10 -day BOD.
12) The following figure shows a plot of BOD remaining versus time for a sample of the effluent taken from a wastewater treatment plant.
a. What is the ultimate BOD $\left(\mathrm{L}_{\mathrm{o}}\right)$ ?
b. What is the five-day BOD?
c. What is $L_{t}$ for 7 days?

13) If the $\mathrm{BOD}_{5}$ for some wastewater if $200 \mathrm{mg} / \mathrm{L}$ and the ultimate BOD is $300 \mathrm{mg} / \mathrm{L}$, find the reaction rate constant k (base e) and K (base 10).
14) Suppose some wastewater had a $\mathrm{BOD}_{5}$ equal to a $180 \mathrm{mg} / \mathrm{L}$ and a reaction rate $k$ equal to $0.22 /$ day. It also has total Kjedahl nitrogen content (TKN) of $30 \mathrm{mg} / \mathrm{L}$.
a. Find the ultimate carbonaceous oxygen demand (CBOD).
b. Find the ultimate nitrogenous oxygen demand (NBOD).
c. Find the remaining BOD (nitrogenous plus carbonaceous) after five days have elapsed.
15) Glutamic acid $\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{4} \mathrm{~N}\right)$ is used as one of the regent for a standard to check the BOD test. Determine the theoretical oxygen demand of $150 \mathrm{mg} / \mathrm{L}$ of glutamic acid. Assuming the following reactions:

$$
\begin{gathered}
\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{4} \mathrm{~N}+4.5 \mathrm{O}_{2} \rightarrow 5 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}+\mathrm{NH}_{3} \\
\mathrm{NH}_{3}+2 \mathrm{O}_{2} \rightarrow \mathrm{NO}_{3}^{-}+\mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

diana hasegan
Environ. engr, Hew \#7
\#1 By volume the concentration of oxygen in air is about $21 \%$. Find the equilibrium concentration of $\mathrm{O}_{2}$ in water (mol elL and mg/ $/ L^{2}$ ) at $25^{\circ} \mathrm{C}$ and 1 atm of pressure. Recalculate it for Denver at an altitude of 1525 m $P=P_{0}-1.15 \times\left(10^{-4}\right) H \quad P=$ atmospheric pressure at altititule $H$ $H=$ altitude ( m ), $P_{0}=$ 'atmospheric pressure at sea level (atm)

$$
\begin{aligned}
& P_{\mathrm{O}_{2}}=21 \% \cdot(1 \mathrm{~atm})=0.21 \mathrm{~atm} \\
& K_{H} @ 25^{\circ} \mathrm{C}=0.001233 \mathrm{~m} / \mathrm{atm} \\
& {\left[\mathrm{O}_{2}\right]=K_{H} \cdot P_{\mathrm{O}_{2}}=0.001233 \mathrm{M} / \mathrm{atm} \cdot 0.21 \mathrm{~atm}} \\
& {\left[\mathrm{O}_{2}\right]=2.5893 \times 10^{-4} \mathrm{M} \cdot} \\
& =2.5893 \times 10^{-4} \mathrm{~mol} /_{\mathrm{L}} \cdot 32 \mathrm{~g} /_{\mathrm{mol}}=8.286 \mathrm{mg} /_{\mathrm{L}} \\
& P=1 \mathrm{~atm}-1.15 \times 10^{-4} \times 1525 \mathrm{~m}=0.825 \mathrm{~atm} . \\
& P_{\mathrm{O}_{2}}=21 \% \cdot 0.825 \mathrm{~atm}=0.173 \mathrm{~atm} . \\
& {\left[\mathrm{O}_{2}\right]_{H}=0.001233 \mathrm{~m} /_{\mathrm{atm}} \cdot 0.173 \mathrm{~atm}} \\
& {\left[\mathrm{O}_{2}\right]_{H}=2.135 \times 10^{-4} \mathrm{~m}=2=32 \mathrm{~g} / \mathrm{mol}=6.833 \mathrm{mg} / \mathrm{L}}
\end{aligned}
$$

\#2 Suppose the gas above the soda in a bottle of soft drink is pure $\mathrm{CO}_{2}$ at a pressure of 2 atm. calculate $\left[\mathrm{CO}_{2}\right]$ at $15^{\circ} \mathrm{C}$. Also, report your answer as $\mathrm{mg} / \mathrm{L}$.

$$
\begin{aligned}
{\left[\mathrm{CO}_{2}\right] } & =K_{H} \cdot \mathrm{Pg}_{\mathrm{g}} \quad(\text { Henry's Law }) \\
K_{H} & =0.045726 \mathrm{M} /_{\mathrm{atm}} \quad \mathrm{Pg}_{\mathrm{g}}
\end{aligned}=2 \mathrm{~atm} .\left[\mathrm{CO}_{2}\right]=0.09145 \mathrm{M} . \quad \begin{aligned}
{\left[\mathrm{CO}_{2}\right] } & =\left.0.09145 \mathrm{~mol}\right|_{\mathrm{L}} \cdot 44000 \mathrm{mg} /_{\mathrm{mol}}=4023.8 \mathrm{mg} / \mathrm{L} \\
M_{\mathrm{CO}_{2}} & =12+2 \times 16=44 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

\#3. It has been estimated that the concentration of $\mathrm{CO}_{2}$ in the atmosphere before the Industrial Revolution was about 215 ppm. If the accumulation of $\mathrm{CO}_{2}$ in the atmosphere continues, then by the middle of the next century it will probably be a pound 600 Pr . Calculate the $\mathrm{p}^{H}$ of tainwaker (neglecting the effect of any in each of these times.

$$
\begin{aligned}
& \left.\left[\mathrm{H}^{+}\right]=\left[\mathrm{HCO}_{3}^{-}\right]+2\left[\mathrm{CO}_{3}\right]^{2}\right]^{\circ}+\left[\mathrm{OH}^{-}\right] \\
& {\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=K_{w}=10^{-14}} \\
& \text { based can eliminate this } \\
& \begin{array}{l}
\text { based } \mathrm{On}_{2} \text { our understancling } \\
\text { of } \mathrm{CO}_{3} \text { in water \& tHy }
\end{array} \\
& {\left[\mathrm{H}^{+}\right] \approx\left[\mathrm{HCO}_{3}^{-}\right]+\left[\mathrm{OH}^{-}\right]=\left[\mathrm{HCO}_{3}^{-}\right]+\frac{10^{-14}}{\left[\mathrm{H}^{+}\right]}} \\
& \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HCO}_{3}^{-}+\mathrm{H}^{+} k_{1} \\
& \left.k_{1}=\frac{[\mathrm{HCO}}{3}-{ }^{-}\right]\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]=\frac{k_{1}\left[\mathrm{CO}_{2}\right]}{\left[\mathrm{H}_{2}^{+}\right]} \\
& {\left[\mathrm{H}^{+}\right]=\frac{k_{1}\left[\mathrm{CO}_{2}\right]+10^{-14}}{\left[H^{+}\right]}}
\end{aligned}
$$

diana hasegan
ENVIRO. ENGR. HWN \#7

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]^{2}=k_{1}\left[\mathrm{CO}_{2}\right]+10^{-14}} \\
& {\left[\mathrm{CO}_{2}\right]=k_{H} \cdot \mathrm{Pg} \quad \quad k_{H} @ 25^{\circ} \mathrm{C}=0.033363 \mathrm{~mol} / \mathrm{Latm}}
\end{aligned}
$$

$275 \mathrm{ppm} \rightarrow 0.000275 \mathrm{~atm}=275 \times 10^{-6} \mathrm{~atm}$.
$600 \mathrm{ppm} \rightarrow 0.0006 \mathrm{~atm}=600 \times 10^{-6} \mathrm{~atm}$.

$$
\begin{aligned}
& {\left[\mathrm{CO}_{2}\right]_{1}=0.033363 \mathrm{~mol} / \mathrm{Latm} \cdot\left(275 \times 10^{-6} \mathrm{~atm}\right)} \\
& =9.175 \times 10^{-6} \mathrm{~mol} / \mathrm{L} \\
& {\left[\omega_{2}\right]_{2}=0.033363 \mathrm{~mol} / \text { Latm }-\left(600 \times 10^{-6} \mathrm{~atm}\right)} \\
& =20.018 \times 10^{-6} \mathrm{~mol} / \mathrm{L} \\
& {\left[\mathrm{H}^{+}\right]_{1}^{2}=\left(4.47 \times 10^{-7} \times 9.175 \times 10^{-6}+10^{-14}\right) \mathrm{mol} /_{\mathrm{L}} \Rightarrow} \\
& \Rightarrow\left[\mathrm{H}^{+}\right]_{1}=2.028 \times 10^{-6} \mathrm{~mol} / \mathrm{L} \Rightarrow \mathrm{PH}_{1}=-\log \left[\mathrm{H}^{+}\right]_{1} \Rightarrow \\
& \Rightarrow p H_{1}=5.69 @ 275 \text { ppm } \\
& {\left[H^{+}\right]_{2}^{2}=\left(4.47 \times 10^{-7} \times 20.018 \times 10^{-6}+10^{-14}\right) \mathrm{mol} / L_{L} \Rightarrow} \\
& \Rightarrow\left[\mathrm{H}^{+}\right]_{2}=2.993 \times 10^{-6} \mathrm{mo} / \mathrm{L} \Rightarrow \mathrm{pH}_{2}=-\log \left[\mathrm{H}^{+}\right]_{2} \\
& \Rightarrow p^{H_{2}}=5.52 @ 600 \mathrm{ppm}
\end{aligned}
$$

DIANA HASEGAM
Environ. ENGR. How \#7
$\$ 4 \frac{8-4}{0} 7$ days is 60.0 of a municipal wasters, 1 ter at the end of 7 days is $60.0 \mathrm{mg} / \mathrm{L}$ and the ultimate BOD is
$85.0 \mathrm{mg} / \mathrm{L}, ~ w h a t ~ i s ~$ the rate constant? $85.0 \mathrm{mg} / \mathrm{L}$, what is the rate constant?

$$
\begin{aligned}
& \mathrm{BOD}_{7}=60 \mathrm{mg} / \mathrm{L} \\
& L_{0}=85.0 \mathrm{mg} / \mathrm{L} \\
& t=7 \text { days } \\
& B O \Delta_{7}=L_{0}\left(1-e^{-k \cdot 7}\right) \\
& \frac{B O D_{7}}{L_{0}}=1-e^{-7 k} \\
& k=? \\
& -\left(\frac{B_{0} D_{7}}{L_{0}}-1\right)=e^{-7 k} \Rightarrow \\
& \Rightarrow \ln \left(\frac{-B O D_{1}+L_{0}}{L_{0}}\right)=-7 k \ln e \Rightarrow k=\frac{\ln \left(\frac{-B O D_{1}+L_{0}}{L_{0}}\right)}{-7} \\
& \Rightarrow k=\frac{\ln \left[\frac{(-60.0+85.0) \mathrm{mg} / \mathrm{L}}{85.0 \mathrm{mg} / \mathrm{L}}\right]}{-7}=0.1748 \\
& k=0.1748 / \mathrm{day}
\end{aligned}
$$

\#5 8-8 Assuming that the data in problem 8-4 were taken at $25^{\circ} \mathrm{C}$, compute the rate constant at $16^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \left.\begin{array}{rl}
K_{25}=K_{20} \cdot \theta^{\left(25-i_{0}\right)} \quad \theta & =1.056 . \\
K_{25} & =0.1748
\end{array}\right\} \Rightarrow \\
& \Rightarrow k_{20}=\frac{0.2867}{1.056}=0.1331 \\
& k_{16}=k_{20} \cdot \theta^{(16-20)} \quad \theta=1.135 \\
& k_{16}=(0.1331) \cdot 1.135^{-4} \Rightarrow k_{16}=0.0802 / \text { day }
\end{aligned}
$$

$$
\begin{aligned}
& C E 321 \\
& 11 / 9 / 2007 \\
& 5
\end{aligned} 13
$$

\#6 $\frac{8-9}{\text { by volume sample of municipal sewage is diluted to } 1 \%}$ by volume prior to running a BOD 5 analysis. After 5 days the oxygen consumption is determined to be $2.00 \mathrm{mg} / \mathrm{L}$. What is the BoDs of the sewage?

$$
\begin{aligned}
& \text { BOD }_{5 \text { dill }}=2.00 \mathrm{mg} /_{\mathrm{L}} \\
& \text { BODs sewage. } 1 \%=\text { BoDs dill } \\
& \text { BOD } 5 \text { sewage }=\frac{B 0 D_{5} \mathrm{dil}^{2}}{0.01}=\frac{2.00 \mathrm{mg} / \mathrm{L}}{0.01} \\
& \text { BOD } 5 \text { sewage }=200 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

\#7 7 -12 the BODs values for two livestock wastes having $k$ values of $0.3800 /$ day and $0.240 /$ day are both
16230.0 mg what would be the ultimate Baas tor each? $16230.0 \mathrm{mg} / \mathrm{L}$, what would be the ultimate Bod for each?

$$
\begin{aligned}
& B 0 D_{5}=L_{0}\left(1-e^{-k 5}\right) \Rightarrow L_{0}=\frac{B 0 \Delta 5}{1-e^{-5 k}} \\
& L_{0}=\frac{16230.0 \mathrm{mg} / \mathrm{L}}{1-e^{-5 \text { days } \times 0.3400 / d a y}}=19,084.4 \mathrm{mg} / \mathrm{L} \\
& L_{0}=\frac{16230.0 \mathrm{mg} / \mathrm{L}}{1-e^{-5 d a 45 \times 0.240 / \text { day }}}=23,225.3 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

\#8 Some wastewater has a five-day BOD at $20^{\circ} \mathrm{C}$ equal to $210 \mathrm{mg} / \mathrm{L}$ and an ultimate BOD of $350 \mathrm{mg} / \mathrm{L}$ Find the five-clay BOD at $25^{\circ} \mathrm{C}$.
ultimate $B O D: \quad L_{0}=350 \mathrm{mg} / \mathrm{L}$
BOD

$$
\begin{aligned}
& B O D_{5}=L_{0}\left(1-e^{-k, 5}\right) \Rightarrow \frac{B 0 \Delta_{5}}{L_{0}}-1=-e^{-k 5} \\
& 1-\frac{B_{0} \Delta 5}{L_{0}}=e^{-k 5} \Rightarrow \ln \left(1-\frac{B 0 \Delta 5}{L_{0}}\right)=-k 5 \\
& \Rightarrow \quad k=\frac{\ln \left(1-\frac{B O A 5}{L 0}\right)}{-5}=\frac{\ln \left(1-\frac{210 \mathrm{mg} / \mathrm{L}}{350 \mathrm{mg} / L}\right)}{-5} \\
& k_{20}=0.183 \\
& k_{25} \equiv k_{20} \cdot \theta^{(25-20)}=0.183 \cdot(1.056)^{5}=0.241 \\
& B_{0 D}\left(\text { at } 25^{\circ} \mathrm{C}\right)=L_{0}\left(1-e^{-k_{25^{\prime}} t}\right) \\
& =\left.350 \mathrm{mg}\right|_{L} \cdot\left(1-e^{-0.241 \cdot 5}\right) \\
& \operatorname{BoD}_{5}\left(\text { at } 25^{\circ} \mathrm{C}\right)=\left.244.92 \mathrm{mg}\right|_{\mathrm{L}}
\end{aligned}
$$

diana hasegan
Environ. ENGR. Haw \#7
\#9 In a standard five-day BoD test, a. Why is the BOD bottle stoppered?

The BOD bottle is stoppered to exclude air bubbles.
b. Why is the test run in the dark (or in a black bottle)? The test is run in the dark to prevent photosynthesis from adding oxygen to the water and invalidating the oxygen consumption results.
C. Why is it usually necessary to dilute the sample? The samples are usually diluted because the only oxygen available to the organisms is dissolved in water. The most oxygen that can dissolve is about $9 \mathrm{mg} / \mathrm{L}$, so the BOD of the diluted sample should be in the range of 2 to $6 \mathrm{mg} / \mathrm{L}$.
d. Why is it sometimes necessary to seed the sample? It is sometimes necessary to seed the sample, meaning to put live bacteria into water so that the degradation of the organic matter is not limited by the lack of bacterial growth. The microorganisms are bosically introduced in the water to ensure the supply of oxygen meets the demand.
diana hasegan
ENVIRO. ENGR. HW/ \#7

CE 321
$11 / 9 / 2007$
8
e. Why isn't ultimate BOD measured?

We don't measure the ultimate BOD because it has become tradition to measure the BOD after 5 days. The 5 day BOD was chosen by sanitary engineers in England, where the River Thames has a travel time to the sea of less than 5 days. Because no other time is any more rational than 5 days, this value has become tradition \& UBOD would take too long
f. What concentration of Do would you suggest as a starting point?

The concentration of Do at the starting point should be as high as possible. Since the most oxygen that can dissolve in water is about $9 \mathrm{mg} /_{L}$. that is the concentration of Do 1 would suggest as a starting point.
diana hasegan
Environ. Engr. HW \# 7

$$
\begin{aligned}
& C E 321 \\
& 11|9| 2007 \\
& 9 \quad 13
\end{aligned}
$$

\#10 8-13 Using the data from 8-1, calculate the MBOD of glutamic acid. Assume the concentration of glutamic
acid is 0.1 mM .

$$
\begin{aligned}
& \mathrm{C}_{5} \mathrm{HgO}_{4} \mathrm{~N}+4.5 \mathrm{O}_{2} \rightarrow 5 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}+\mathrm{NH}_{3} \text {. } \\
& 0.1 \mathrm{mMC}_{5} \mathrm{HgO}_{4} \mathrm{~N} \times \frac{4.5 \mathrm{~mol} \mathrm{O}_{2}}{1 \mathrm{molC}_{5} \mathrm{H}_{4} \mathrm{H}}=0.45 \mathrm{mM} \mathrm{O}_{2} \\
& \text { BOD }=0.45 \mathrm{mM} 0_{2} \times 32 \mathrm{mg} / \mathrm{mmol}=14.4 \mathrm{mg} / \mathrm{L} \\
& \mathrm{NH}_{3}+2 \mathrm{O}_{2} \rightarrow \mathrm{NO}_{3}^{-}+\mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{O} \\
& 0.1 \mathrm{mMC}_{5} \mathrm{HgO}_{4} \mathrm{H} \times \frac{1 \mathrm{~mol}_{\mathrm{MH}}}{1 \mathrm{~mol} \mathrm{CH}_{5} \mathrm{HOO}_{4} \mathrm{M}}=0.1 \mathrm{mM} \mathrm{NH}_{3} \\
& 0.1 \mathrm{mM} \mathrm{NH}_{3} \times \frac{2 \mathrm{~mol} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{NH}} 3 \mathrm{O} \\
& N B O D=0.2 \mathrm{mM} 0_{2} \times 32 \mathrm{mg} /_{\mathrm{mmol}}=6.4 \mathrm{mg} /_{\mathrm{L}}
\end{aligned}
$$

$$
\begin{gathered}
C E 321 \\
11 / 9 / 2007 \\
10 \quad 13
\end{gathered}
$$

\#11 If the dissolved oxygen concentration measured 5 days a dod test is $9 \mathrm{mg} / \mathrm{L}$ initially measured $6 \mathrm{mg} / \mathrm{L}$ after


$$
\begin{aligned}
& \left.\begin{array}{rl}
B O D_{5} & =D_{O_{\text {init }}}-D_{5}= \\
& =9_{m g L_{L}-6 m g L_{L}}=3 m g L_{L} \\
L_{0} & =\Delta 0_{\text {init }}-\Delta O_{u}=
\end{array}\right\} \Rightarrow B_{5} \Delta_{5}=L_{0}\left(1-e^{-k .5}\right) \\
& \left.\begin{array}{rl}
L_{0} & =D_{0_{\text {in }}}-\Delta_{u}= \\
& =a_{m g} l_{L}-3 m g /_{L}=6 m q l_{L}
\end{array}\right\} \Rightarrow \frac{3 m g / L}{6 m q / L}=1-e^{-k \cdot 5} \\
& \frac{1}{2}-1=-e^{-k \cdot 5} \Rightarrow \ln \left(\frac{1}{2}\right)=-k \cdot 5 \ln c \Rightarrow \\
& \Rightarrow k=\frac{-\ln (2)}{-5} \Rightarrow k=0.1386 / \text { day } \\
& B^{B O D} 10=4.50 \mathrm{mg} / \mathrm{c}
\end{aligned}
$$

diana hasegan
Environ. EMGR. HuN \#7

$$
\begin{gathered}
C E 321 \\
11 / 9 / 2007 \\
11
\end{gathered}
$$

\#12 The following figure shows a plot of BoD remaining versus time to a sample of effluent taken from a wastewater treatment plant.

a) What is the ultimate BoDs ( $L_{0}$ )?

$$
\text { Ultimate BoD }=L_{0}=40 \mathrm{mg} / \mathrm{L}
$$

b) what is the five-day BOD?

$$
\begin{aligned}
& L_{0}=L_{t}+B O D_{t} \Rightarrow B O D_{5}=L_{0}-L_{t} \\
& B O D_{5}=\left.40 \mathrm{mg}\right|_{L}-\left.15 \mathrm{mg}\right|_{L} \Rightarrow B O D_{5}=\left.25 \mathrm{mq}\right|_{\mathrm{L}}
\end{aligned}
$$

c) What is $L_{t}$ for 7 days?

$$
L_{t}=\left.10 \mathrm{mg}\right|_{L}
$$

DIAMA hasegan
environ. E'MGR, $H \times 1 \# 7$

$$
\begin{array}{cc}
1119 / 2007 \\
12 & 13
\end{array}
$$

\#13 It the BOD 5 for some wastewater is $200 \mathrm{mg} /_{\mathrm{L}}$ and the ultimate BoD is $300 \mathrm{mg} / \mathrm{L}$ find the (bass ion rate constant $k$ (base end $K$ (base lo).

$$
\begin{aligned}
& B O D_{5}=200 \mathrm{mg} / L_{\mathrm{L}} \\
& L_{0}=300 \mathrm{mg} / \mathrm{L} \\
& k=? \quad k=?
\end{aligned}
$$

$$
\begin{aligned}
& B O \Delta_{t}=L_{0}\left(1-e^{-k t}\right) \\
& B O D_{t}=L_{0}\left(1-10^{-K t}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 200 \mathrm{mg} /_{L}=300 \mathrm{mg} / L\left(1+e^{-k \cdot 5}\right) \Rightarrow \frac{2}{3}-1=-e^{-5 k} \\
& \Rightarrow \ln \left(\frac{1}{3}\right)=-5 k \ln e \Rightarrow k=-\frac{\ln (3)}{-5}=0.2197 \\
& \Rightarrow k=0.2197 / \text { day }
\end{aligned}
$$

$$
\begin{aligned}
& \left.200 \mathrm{mg}\right|_{L}=300 \mathrm{mg} /_{L}\left(1-10^{-K \cdot 5}\right) \\
& \frac{2}{3}-1=-10^{-5 K} \log \left(\frac{1}{3}\right)=-5 K \log 10 \\
& \Rightarrow K=\frac{-\log (3)}{-5}=0.0954 \Rightarrow K=0.09541 \mathrm{acy}
\end{aligned}
$$

diana hasegany
ENVIRO. ENGR. $H(w \# 7$

$$
\begin{gathered}
\text { CE } 321 \\
11 / 9 / 2007 \\
13
\end{gathered} 13
$$

\#14 Suppose some wastewater had a BoDs equal to it also $180 \mathrm{mg} / \mathrm{L}$ and a reaction rate $k$ equal to $0.22 /$ day content of (TKM) $30 \mathrm{mg} / \mathrm{L}$.
a. Find the ultimate carbonaceous oxygen demand (CBOD)

$$
\begin{aligned}
& B O D_{t}=L_{0}\left(1-e^{-k t}\right) \\
& L_{0}=\text { BOD Ultimate }=B O D u \quad \Rightarrow \quad L_{0}=B O D_{5} /\left(1-e^{-k .5}\right) \\
& B O D_{5}=180 \mathrm{mg} / \mathrm{L} \quad k=0.22 / \text { day } \\
& L_{0}=\left.180 \mathrm{mg}\right|_{L} /\left[1-e^{(-0.22 / \text { dog } \cdot 5 d a y s)}\right]=269.81 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

b. Find the ultimate nitrogenous oxygen demand (NBOD)

$$
\begin{aligned}
& \mathrm{NBOD}=\left(4.57 \mathrm{mg} \mathrm{O}_{2} / /_{\mathrm{mg}} \mathrm{~N}\right) \cdot\left(\mathrm{x} \mathrm{mg}_{\uparrow} \mathrm{M}\right) \\
& N B O D=\left.4.57 \mathrm{mg} O_{2}\right|_{\mathrm{mg}}{ }_{N} \cdot 30 \mathrm{mg} N /_{L}=137.1 \mathrm{mg} \mathrm{O} \mathrm{O}_{2}
\end{aligned}
$$

c. Find the remaining BOD (nitrogenous plus carbonaceous) after five days have elapsed.
Remaining BOD at 5 days $=$ Total $B O D-B O D 5=$

$$
\begin{aligned}
= & 269.81 \mathrm{mg} / L+137.1 \mathrm{mg} / L-180 \mathrm{mg} / L=226.9 \mathrm{mg} / \mathrm{L} \\
\text { or. } & =L_{t}+\mathrm{HBOD} \\
& L_{t}=L_{0} \cdot e^{-k t}=269.81 \mathrm{mg} /_{L} \cdot e^{-0.22 \cdot 5}=89.81 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

Remaining BOD at 5 days $=89.81 \mathrm{mg} / \mathrm{L}+137.1 \mathrm{mg} / \mathrm{L}=$

$$
=226.91 \mathrm{mg} / \mathrm{L}
$$

15) Glutamic acid $\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{4} \mathrm{~N}\right)$ is used as one of the regent for a standard to check the BOD test.

Determine the theoretical oxygen demand of $150 \mathrm{mg} / \mathrm{L}$ of glutamic acid. Assuming the following reactions:

$$
\begin{gathered}
\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{4} \mathrm{~N}+4.5 \mathrm{O}_{2} \rightarrow 5 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}+\mathrm{NH}_{3} \\
\mathrm{NH}_{3}+2 \mathrm{O}_{2} \rightarrow \mathrm{NO}_{3}^{-}+\mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

Given: $150 \mathrm{mg} \cdot \mathrm{L}-1$ of glutamic acid and oxidation reactions Solution:
a. Compute the gram molecular weights of glutamic acid and oxygen consumed MW of $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{4} \mathrm{~N}=147$
MW of oxygen $\left(4.5 \mathrm{O}_{2}+2 \mathrm{O}_{2}\right)=208$
b. Calculate the ThOD

TOD $-(150 \mathrm{mg} / \mathrm{L})(208 / 147)=212 \mathrm{mg} / \mathrm{L}$

