Various Techniques for Nonlinear Energy-Related Optimizations

Javad Lavaei

Department of Electrical Engineering Columbia University

Acknowledgements

Caltech: Steven Low, Somayeh Sojoudi

Columbia University: Ramtin Madani

UC Berkeley: David Tse, Baosen Zhang

Stanford University: Stephen Boyd, Eric Chu, Matt Kranning

- J. Lavaei and S. Low, "Zero Duality Gap in Optimal Power Flow Problem," IEEE Transactions on Power Systems, 2012.
- J. Lavaei, D. Tse and B. Zhang, "Geometry of Power Flows in Tree Networks," in IEEE Power & Energy Society General Meeting, 2012.
- S. Sojoudi and J. Lavaei, "Physics of Power Networks Makes Hard Optimization Problems Easy To Solve," in IEEE Power & Energy Society General Meeting, 2012.
- M. Kraning, E. Chu, J. Lavaei and S. Boyd, "Message Passing for Dynamic Network Energy Management," Submitted for publication, 2012.
- S. Sojoudi and J. Lavaei, "Semidefinite Relaxation for Nonlinear Optimization over Graphs with Application to Optimal Power Flow Problem," Working draft, 2012.
- S. Sojoudi and J. Lavaei, "Convexification of Generalized Network Flow Problem with Application to Optimal Power Flow," Working draft, 2012.

Power Networks (CDC 10, Allerton 10, ACC 11, TPS 11, ACC 12, PGM 12)

Optimizations:

- Resource allocation
- State estimation
- Scheduling

Issue: Nonlinearities

□ Transition from traditional grid to smart grid:

- More variables (10X)
- Time constraints (100X)

Resource Allocation: Optimal Power Flow (OPF)

OPF: Given constant-power loads, find optimal *P*'s subject to:

- Demand constraints
- Constraints on V's, P's, and Q's.

Summary of Results

Project 1: How to solve a given OPF in polynomial time? (joint work with Steven Low)

□ A sufficient condition to globally solve OPF:

- Numerous randomly generated systems
- IEEE systems with 14, 30, 57, 118, 300 buses
- European grid

□ Various theories: It holds widely in practice

Project 2: Find network topologies over which optimization is easy? (joint work with Somayeh Sojoudi, David Tse and Baosen Zhang)

- Distribution networks are fine.
- Every transmission network can be turned into a good one.

Summary of Results

Project 3: How to design a parallel algorithm for solving OPF? (joint work with Stephen Boyd, Eric Chu and Matt Kranning)

A practical (infinitely) parallelizable algorithm

□ It solves 10,000-bus OPF in 0.85 seconds on a single core machine.

Project 4: How to do optimization for mesh networks? (joint work with Ramtin Madani)

Project 5: How to relate the polynomial-time solvability of an optimization to its structural properties? (joint work with Somayeh Sojoudi)

Project 6: How to solve generalized network flow (CS problem)? (joint work with Somayeh Sojoudi)

Convexification

□ Flow:
$$P_{ij} + Q_{ij}\sqrt{-1} = V_i(V_i - V_j)^* \frac{1}{Z_{ij}^*}$$

$$\Box \text{ Injection: } P_i = \sum_{j \in \mathcal{N}(i)} P_{ij}$$

□ Polar:
$$V_i \implies (|V_i|, \theta_i)$$

□ Rectangular: $V_i \implies (\operatorname{Re}\{V_i\}, \operatorname{Im}\{V_i\})$

$$P_{ij} = |V_i|^2 G_{ij} - |Y_{ij}| |V_i| |V_j| \cos(\theta_{ij} + \measuredangle Z_{ij}) \qquad Q_{ij} = |V_i|^2 (-B_{ij}) - |Y_{ij}| |V_i| |V_j| \sin(\theta_{ij} + \measuredangle Z_{ij}) = |V_j|^2 G_{ij} - |Y_{ij}| |V_i| |V_j| \sin(\theta_{ij} + \measuredangle Z_{ij}) \qquad Q_{ji} = |V_j|^2 (-B_{ij}) - |Y_{ij}| |V_i| |V_j| \sin(\theta_{ij} + \measuredangle Z_{ij}) = |V_j|^2 (-B_{ij}) - |Y_{ij}| |V_i| |V_j| \sin(\theta_{ij} + \measuredangle Z_{ij}) = |V_j|^2 (-B_{ij}) - |Y_{ij}| |V_i| |V_j| \sin(\theta_{ij} + \measuredangle Z_{ij}) = |V_j|^2 (-B_{ij}) - |Y_{ij}| |V_i| |V_j| \sin(\theta_{ij} + \measuredangle Z_{ij}) = |V_j|^2 (-B_{ij}) - |Y_{ij}| |V_i| |V_j| \sin(\theta_{ij} + \measuredangle Z_{ij}) = |V_j|^2 (-B_{ij}) - |Y_{ij}| |V_i| |V_j| \sin(\theta_{ij} + \measuredangle Z_{ij}) = |V_j|^2 (-B_{ij}) - |Y_{ij}| |V_i| |V_j| \sin(\theta_{ij} + \measuredangle Z_{ij}) = |V_j|^2 (-B_{ij}) - |Y_{ij}| |V_i| |V_j| \sin(\theta_{ij} + \measuredangle Z_{ij}) = |V_j|^2 (-B_{ij}) - |Y_{ij}| |V_i| |V_j| \sin(\theta_{ij} + \measuredangle Z_{ij}) = |V_j|^2 (-B_{ij}) - |Y_{ij}| |V_i| |V_j| \sin(\theta_{ij} + \measuredangle Z_{ij}) = |V_j|^2 (-B_{ij}) - |Y_{ij}| |V_i| |V_j| \sin(\theta_{ij} + \measuredangle Z_{ij}) = |V_j|^2 (-B_{ij}) - |Y_{ij}| |V_i| |V_j| \sin(\theta_{ij} + \measuredangle Z_{ij}) = |V_j|^2 (-B_{ij}) - |Y_{ij}| |V_i| |V_j| \sin(\theta_{ij} + \measuredangle Z_{ij}) = |V_j|^2 (-B_{ij}) - |Y_{ij}| |V_i| |V_j| \sin(\theta_{ij} + \oiint Z_{ij}) = |V_j|^2 (-B_{ij}) - |Y_{ij}| |V_i| |V_j| \sin(\theta_{ij} + \oiint Z_{ij}) = |V_j|^2 (-B_{ij}) - |V_j| |V_j| \sin(\theta_{ij} + \oiint Z_{ij}) = |V_j|^2 (-B_{ij}) - |V_j| |V_j| \sin(\theta_{ij} + \oiint Z_{ij}) = |V_j|^2 (-B_{ij}) - |V_j| |V_j| \sin(\theta_{ij} + \oiint Z_{ij}) = |V_j|^2 (-B_{ij}) - |V_j| |V_j| \sin(\theta_{ij} + \oiint Z_{ij}) = |V_j|^2 (-B_{ij}) - |V_j| |V_j| \sin(\theta_{ij} + \oiint Z_{ij}) = |V_j|^2 (-B_{ij}) - |V_j| |V_j| \sin(\theta_{ij} + \oiint Z_{ij}) = |V_j|^2 (-B_{ij}) - |V_j| |V_j| \sin(\theta_{ij} + \oiint Z_{ij}) = |V_j|^2 (-B_{ij}) - |V_j| |V_j| \sin(\theta_{ij} + \oiint Z_{ij}) = |V_j|^2 (-B_{ij}) - |V_j| |V_j| \sin(\theta_{ij} + \oiint Z_{ij}) = |V_j|^2 (-B_{ij}) - |V_j| |V_j| \sin(\theta_{ij} + \oiint Z_{ij}) = |V_j|^2 (-B_{ij}) - |V_j| |V_j| \sin(\theta_{ij} + \dotsb Z_{ij}) = |V_j|^2 (-B_{ij}) - |V_j| |V_j| \sin(\theta_{ij} + \dotsb Z_{ij}) = |V_j|^2 (-B_{ij}) - |V_j| |V_j| \sin(\theta_{ij} + \dotsb Z_{ij}) = |V_j|^2 (-B_{ij}) - |V_j| |V_j| \sin(\theta_{ij} + \dotsb Z_{ij}) = |V_j|^2 (-B_{ij}) - |V_j| |V_j| \sin(\theta_{ij} + \dotsb Z_{ij}) = |V_j|^2 (-B_{ij}) - |V_j| |V_j| \otimes \|V_j| \otimes \|V_j$$

Theorem

Having fixed $|V_1|, ..., |V_n|$, the functions P_{ij} , Q_{ij} , P_i and Q_i 's are all convex in $\theta_1, ..., \theta_n$ if

$$0 \leq \pm \theta_{ij} + \measuredangle Z_{ij} \leq 90^{\circ}$$

Similar to the condition derived in Ross Baldick's book

$\frac{X_{ij}}{R_{ij}}$	3	5	7	9
$\max \theta_{ij} $	18.43°	11.30°	8.13°	6.34°

Imposed implicitly (thermal, stability, etc.)

□ Imposed explicitly in the algorithm

$$P_{ij} = V_i|^2 G_{ij} - |Y_{ij}||V_i||V_j| \cos(\theta_{ij} + \measuredangle Z_{ij}) \qquad Q_{ji} = |V_i|^2 (-B_{ij}) - |Y_{ij}||V_i||V_j| \sin(\theta_{ij} + \measuredangle Z_{ij})$$
$$P_{ji} = |V_j|^2 G_{ij} - |Y_{ij}||V_i||V_j| \cos(-\theta_{ij} + \measuredangle Z_{ij}) \qquad Q_{ji} = |V_j|^2 (-B_{ij}) - |Y_{ij}||V_i||V_j| \sin(-\theta_{ij} + \measuredangle Z_{ij})$$

Theorem

Having fixed θ_{ii} 's satisfying

$$0 \leq \pm \theta_{ij} + \measuredangle Z_{ij} \leq 90^{\circ},$$

the functions P_{ij} , Q_{ij} , P_i and Q_i 's are all convex in $\sqrt{|V_1|}$, ..., $\sqrt{|V_n|}$.

Idea:

$$|V_i|^2 \Longrightarrow X_i$$

- $|V_i||V_j| \Longrightarrow -\sqrt{X_i}\sqrt{X_j}$

□ Algorithm:

- Fix magnitudes and optimize phases
- Fix phases and optimize magnitudes

$$P_{ij} = V_i|^2 G_{ij} - V_{ij}||V_i||V_j|\cos(\theta_{ij} + \measuredangle Z_{ij})) \qquad Q_{ji} = |V_i|^2 (-B_{ij}) - |Y_{ij}||V_i||V_j|\sin(\theta_{ij} + \measuredangle Z_{ij}))$$

$$P_{ji} = |V_j|^2 G_{ij} - |Y_{ij}||V_i||V_j|\cos(-\theta_{ij} + \measuredangle Z_{ij})) \qquad Q_{ji} = |V_j|^2 (-B_{ij}) - |Y_{ij}||V_i||V_j|\sin(-\theta_{ij} + \measuredangle Z_{ij}))$$

□ Can we jointly optimize phases and magnitudes?

Change of variables:Assumption (implicit or explicit):
$$|V_i| \Longrightarrow X_i^{\frac{1}{m}}$$
 $45^\circ < \pm \theta_{ij} + \measuredangle Z_{ij} < 90^\circ$

Observation 1: Bounding $|V_i|$ is the same as bounding X_i .

D Observation 2: $-|V_i||V_j|\sin(\pm\theta_{ij} + \measuredangle Z_{ij})$ is convex for a large enough *m*.

Deservation 3: $-|V_i||V_j|\cos(\pm\theta_{ij} + \measuredangle Z_{ij})$ is convex for a large enough *m*.

Observation 4: $|V_i|^2$ is convex for $m \le 2$.

Strategy 1: Choose *m*=2.

$$P_{ij} = |V_i|^2 G_{ij} - |Y_{ij}||V_i||V_j|\cos(heta_{ij} + \measuredangle Z_{ij})$$
 $P_{ij} \approx |V_i|^2 G_{ij} - |Y_{ij}|\cos(heta_{ij} + \measuredangle Z_{ij})$

Strategy 2: Choose *m* large enough

• P_{ii} , Q_{ii} , P_i and Q_i become convex after the following approximation:

Replace $|V_i|^2$ with its nominal value.

Example 1

Example 1

Opt:
$$\min_{x_1, x_2} x_1^4 + a_0 x_2^2 + b_0 x_1^2 x_2 + c_0 x_1 x_2$$

s.t.
$$x_1^4 + a_j x_2^2 + b_j x_1^2 x_2 + c_j x_1 x_2 \le \alpha_j \quad j = 1, ..., m$$

- **Sufficient condition for exactness:** Sign definite sets.
- * What if the condition is not satisfied? Rank-2 W (but hidden)

Formal Definition: Optimization over Graph

Optimization of interest:
$$\min_{\mathbf{x}\in\mathcal{D}^n} f_0(\mathbf{y}, \mathbf{z})$$
(real or complex)s.t. $f_j(\mathbf{y}, \mathbf{z}) \leq 0$, $j = 1, 2, ..., m$ **Define:** $\mathbf{y} = \{|x_i|^2 \mid \forall i \in \mathcal{G}\}$ $\mathbf{z} = \left\{ \operatorname{Re}\{c_{ij}^1 x_i x_j^*\}, ..., \operatorname{Re}\{c_{ij}^k x_i x_j^*\} \mid \forall (i, j) \in \mathcal{G} \right\}$

- ***** SDP relaxation for **y** and **z** (replace $\mathbf{x}\mathbf{x}^*$ with W).
- * f(y, z) is increasing in z (no convexity assumption).
- ***** Generalized weighted graph: weight set $\{c_{ii}^1, ..., c_{ii}^k\}$ for edge (i,j).

Highly Structured Optimization

Theorem (Real Case)

Exact relaxation if

$$\sigma_{ij} \neq 0, \qquad (i,j) \in \mathcal{G} \qquad \longleftarrow \qquad \mathsf{Edge}$$
$$\prod_{j,j) \in \mathcal{O}_r} \sigma_{ij} = (-1)^{|\mathcal{O}_r|}, \qquad r \in \{1, \dots, p\} \qquad \longleftarrow \qquad \mathsf{Cycle}$$

Theorem (Complex Case)

(i

Exact relaxation for acyclic graphs with sign-definite weight sets.

Theorem (Imaginary Case)

Exact relaxation for weakly cyclic graphs with homogeneous weight sets.

Convexification in Rectangular Coordinates

Express the last constraint as an inequality.

Trick: Replace VV^* with a matrix $W \succeq 0$ subject to rank $\{W\} = 1$.

Convexification in Rectangular Coordinates

$$egin{aligned} & \min_{\mathbf{V}} & h_0(\mathbf{P},\mathbf{Q},|\mathbf{V}|) \ & ext{s.t.} & h_j(\mathbf{P},\mathbf{Q},|\mathbf{V}|) \leq 0, \quad j=1,...,m \end{aligned}$$

Theorem

Exact relaxation for DC/AC distribution and DC transmission networks.

□ Partial results for AC lossless transmission networks.

□ **Practical approach:** Add phase shifters and then penalize their effects.

Javad Lavaei, Columbia University

110 MW

Bus 3

50 MW

Bus 2

Integrated OPF + Dynamics

 \Box Synchronous machine with interval voltage $|E|e^{j\delta}$ and terminal voltage $|V|e^{j\theta}$.

Define: $\mathbf{x}(t) = \begin{bmatrix} 1 & \omega(t) & \text{Re}\{E\} & \text{Im}\{E\} & \text{Re}\{V(t)\} & \text{Im}\{V(t)\} \end{bmatrix}^{H}$

Linear system:

$$egin{aligned} &rac{dW_{14}(t)}{dt} = W_{32}(t) \ &rac{dW_{12}(t)}{dt} = -rac{D}{M}W_{12}(t) - rac{1}{Mlpha}(W_{45}(t) - W_{36}(t)) + rac{1}{M}P_M(t) \end{aligned}$$

Sparse Solution to OPF

IEEE system	14 bus	30 bus	118 bus
No. of "on" generators	4-1	6-3	54-9

□ Relationship between polar and rectangular?

Assumption (implicit or explicit):

 $45^{\circ} < \pm \theta_{ij} + \measuredangle Z_{ij} < 90^{\circ}$

Conjecture: This assumptions leads to convexification in rectangular coordinates.

□ **Partial Result:** Proof for optimization of reactive powers.

Lossless Networks

□ Consider a lossless AC transmission network.

Theorem: The injection region is never convex for $n \ge 5$ if

$$| heta_{ij}| \leq heta_{ij}^{\max} < 90^\circ, \quad (i,j) \in \mathcal{E}$$

Current approach: Use polynomial Lagrange multiplier (SOS) to study the problem

OPF With Equality Constraints

Javad Lavaei, Columbia University

Generalized Network Flow (GNF)

Assumption:

- $f_i(p_i)$: convex and increasing
- $f_{ii}(p_{ii})$: convex and decreasing

Convexification of GNF

$$lacksim extsf{Convexification:} \quad p_{ji} = f_{ij}(p_{ij}) \quad lacksim p_{ji} \geq f_{ij}(p_{ij})$$

It finds correct injection vector but not necessarily correct flow vector.

Conclusions

- Convexification in polar coordinates
- □ Convexification in rectangular coordinates
- **Exact relaxation in several cases**
- Some problems yet to be solved.