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Abstract

It is estimated that less than 10 percent of the world’s
species have been described, yet species are being lost daily
due to human destruction of natural habitats. The job of
describing the earth’s remaining species is exacerbated by
the shrinking number of practicing taxonomists and the very
slow pace of traditional taxonomic research. In this article,
we tackle, from a novelty detection perspective, one of the
most important and challenging research objectives in tax-
onomy – new species identification. We propose a unique
and efficient novelty detection framework based on statisti-
cal depth functions. Statistical depth functions provide from
the “deepest” point a “center-outward ordering” of multi-
dimensional data. In this sense, they can detect observa-
tions that appear extreme relative to the rest of the obser-
vations, i.e., novelty. Of the various statistical depths, the
spatial depth is especially appealing because of its compu-
tational efficiency and mathematical tractability. We pro-
pose a novel statistical depth, the kernelized spatial depth
(KSD) that generalizes the spatial depth via positive definite
kernels. By choosing a proper kernel, the KSD can cap-
ture the local structure of a data set while the spatial depth
fails. Observations with depth values less than a threshold
are declared as novel. The proposed algorithm is simple
in structure: the threshold is the only one parameter for a
given kernel. We give an upper bound on the false alarm
probability of a depth-based detector, which can be used to
determine the threshold. Experimental study demonstrates
its excellent potential in new species discovery.

1. Introduction

Approximately 1.4 million species are currently known
to science. However, estimates based on the rate of new
species discovery place the total number of species on
planet earth at 10 to 30 times this number. Human popu-
lation expansion and habitat destruction are causing extinc-
tions of both known and yet to be discovered species. The

accelerated pace of species decline has fueled the current
biodiversity crisis [20], in which it is feared large percent-
age of the earth’s species will be lost before they can be
discovered and described.

The job of discovering and describing new species falls
on taxonomists. The science of taxonomy has also been suf-
fering from dwindling numbers of experts over the past few
decades [25]. Moreover, the pace of taxonomic research,
as traditionally practiced, is very slow. In recognizing a
species as new to science, taxonomists use a gestalt recog-
nition system that integrates multiple characters of body
shape, external body characteristics, and pigmentation pat-
terns. They then make careful counts and measurements
on large numbers of specimens from multiple populations
across the geographic ranges of both the new and closely
related species, and identify a set of external body charac-
ters that uniquely diagnoses the new species as distinct from
all of its known relatives. The process is laborious and can
take years or even decades to complete, depending on the
geographic range of the species.

We believe that the pace of data gathering and analysis in
taxonomy can be greatly increased through the integration
of machine learning and data mining techniques into taxo-
nomic research. In this paper, we tackle one of the most
important and challenging research objectives in taxonomy
– new species discovery.

1.1. Novelty Detection as a One-Class
Learning Problem

From a machine learning perspective, new species dis-
covery is closely related to novelty detection. Novelty de-
tection is one of the most challenging problems in data min-
ing [8]. When “normal” observations are given as a training
data set, novelty detection can be formulated as finding ob-
servations that significantly deviate from the training data,
which is essentially a one-class learning problem.

A statistically natural tool for quantifying the deviation is
the probability density of the normal observations. Roberts
and Tarassenko [24] approximated the distribution of the



training data by a Gaussian mixture model. For every ob-
servation, an novelty score is defined as the maximum of the
likelihood that the observation is generated by each Gaus-
sian component. An observation is identified as novel if the
score is less than a threshold. Schweizer and Moura [29]
modeled normal data, background clutter in hyperspectral
images, as a 3-dimensional Gauss-Markov random field.
Several methods are developed to estimate the random field
parameters. Miller and Browning [18] proposed a mixture
model for a set of labeled and unlabeled samples. The mix-
ture model includes two types of mixture components: pre-
defined components and nonpredefined components. The
former generate data from known classes and assume class
labels are missing at random. The latter only generate un-
labeled data, corresponding to the novelty in the unlabeled
samples. Parra et al. [19] proposed a class of volume con-
serving maps that transforms an arbitrary distribution into a
Gaussian. Given a decision threshold, novelty detection is
based on the corresponding contour of the estimated Gaus-
sian density, i.e., novelty lies outside the hypersphere de-
fined by the contour.

Instead of estimating the probability density of the nor-
mal observations, Schölkopf et al. [28] introduced a tech-
nique to capture the support of the probability density, i.e.,
a region in the input space where most of the normal obser-
vations reside in. Hence novel observations lie outside the
boundary of the support region. The problem is formulated
as finding the smallest hypersphere to enclose most of the
training samples in a kernel induced feature space, which
can be converted to a quadratic program. Because of its
similarity to support vector machines (SVM) [34] from an
optimization viewpoint, the method is called 1-class SVM.
Along the line of 1-class SVM, Campbell and Bennett [5]
estimated the support region of a density using hyperplanes
in a kernel induced feature space. The “optimal” hyper-
plane is defined as one that puts all normal observations on
the same side of the hyperplane (the support region) and as
close to the hyperplane as possible. Such a hyperplane is
the solution of a linear program. Rätsch et al. [22] devel-
oped a boosting algorithm for one-class classification based
on connections between boosting and SVMs. Banerjee et
al. [3] applied 1-class SVM for anomaly detection in hyper-
spectral images and demonstrated improved performance
compared with the method described in [23].

There is an abundance of prior work that applies stan-
dard supervised learning techniques to tackle novelty de-
tection [1, 11, 17, 32]. These methods generate a labeled
data set by assigning one label to the given normal exam-
ples and the other label to a set of artificially generated
novel observations. In [17], a neural network-based nov-
elty detector is trained based on normal observations and
artificial novel examples generated by a uniform distribu-
tion. Han and Cho [11] use artificially generated intrusive

sequences to train an evolutionary neural network for intru-
sion detection. Abe et al. [1] propose a selective sampling
method that chooses a small portion of artificial novelty in
each training iteration. In general, the performance of these
algorithms depends on the choice of the distribution of the
artificial examples and the employed sampling plan. Stein-
wart et al. [32] provide an interesting justification for the
above heuristic by converting novelty detection to a prob-
lem of finding level sets of data generating density.

1.2. An Overview of Our Approach

In this paper, we propose a new novelty detection frame-
work based on the notion of statistical depths. Nov-
elty detection methods that are based on statistical depths
have been studied in statistics and computational geome-
try [21, 27]. These methods provide a center-outward or-
dering of observations. Novel observations are expected to
appear more likely in outer layers with small depth values
than in inner layers with large depth values. Depth-based
methods are completely data-driven and avoid strong dis-
tributional assumption. Moreover, they provide intuitive
visualization of the data set via depth contours for a low
dimensional input space. However, most of the current
depth-based methods do not scale up with the dimension-
ality of the input space. For example, finding peeling and
depth contours, in practice, require the computation of d-
dimensional convex hulls [21, 27], for which the compu-
tational complexity is of magnitude O(�d/2), where � is
the sample size and d is the dimension of an input space.
The computational complexity for halfspace depth [33] and
simplicial depth [16] is O(�d−1 log �) [26]; for projection
depth [36], it is O([

(
2(d−1)

d−1

)
/d]2�3) [9].

Of the various depths the spatial depth is especially ap-
pealing because of its computational efficiency and math-
ematical tractability [30]. Its computational complexity is
of magnitude O(�2), independent of dimension d. Because
each observation from a data set contributes equally to the
value of depth function, spatial depth takes a global view
of the data set. Consequently the novelty can be called as
“globally” novel observations. Nevertheless, many data sets
from real-world applications exhibit more delicate struc-
tures that entail identification of novelty relative to its neigh-
borhood, i.e., “locally” novel observations.

We develop a novelty detection framework that avoids
the above limitation of spatial depth. Specifically, we intro-
duce a new depth function, kernelized spatial depth (KSD),
which defines the spatial depth in a feature space induced by
a positive definite kernel. By choosing a proper kernel, e.g.,
Gaussian kernel, the contours of a kernelized spatial depth
function conform with the structure of the data set. Conse-
quently the kernelized spatial depth can provide a local per-
spective of the data set. The kernelized spatial depth of any



observation can be evaluated directly from the data set with
computational complexity O(�2). Observations with depth
values less than certain threshold are declared as novel. For
a given kernel, the threshold on the depth value is the only
parameter of the algorithm. We provide an upper bound on
the false alarm probability of the detector, i.e., the proba-
bility of misclassifying a normal observation as novel. The
upper bound can be used to determine the threshold. We ap-
ply the proposed novelty detector method to a small group
of cypriniform fishes, comprising five species of suckers of
the family Catostomidae and five species of minnows of the
family Cyprinidae, in order to demonstrate its excellent po-
tential in new species discovery.

The remainder of the paper is organized as follows. Sec-
tion 2 motivates spatial depth-based novelty detection via
the connection between spatial depth and spatial median.
Section 3 introduces kernelized spatial depth. Section 4
presents an upper bound on the false alarm probability of
the proposed kernelized spatial depth-based novelty detec-
tor and provides an algorithmic view of the approach. In
Section 5, we explain the experimental studies conducted
and demonstrate the results. We conclude and discuss pos-
sible future work in Section 6.

2. Medians, Spatial Depth, and Novelty Detec-
tion

As Barnett and Lewis described [4], “what characterizes
the ‘outlier’ is its impact on the observer (not only will it ap-
pear extreme but it will seem, to some extent, surprisingly
extreme)”. An intuitive way of measuring the extremeness
is to examine the relative location of an observation with
respect to the rest of the population. An observation that is
far away from the center of the distribution is more likely to
be novel than observations that are closer to the center. This
suggests a simple novelty detection approach based on the
distance between an observation and the center of a distri-
bution.

2.1. Medians

Although both the sample mean and median of a data set
are natural estimates for the center of a distribution, the me-
dian is insensitive to extreme observations while the mean
is highly sensitive. A single contaminating point to a data
set can send the sample mean, in the worst case, to infin-
ity, whereas in order to have the same effect on the median,
at least 50% of the data points must be moved to infinity.
Let x1, . . . ,x� be observations from a univariate distribu-
tion F and x(1) ≤ . . . ≤ x(�) be the sorted observations
in an ascending order. The sample median is x((�+1)/2)

when � is odd. When � is even, any number in the inter-
val [x(�/2),x((�+1)/2)] can be defined to be the sample me-

dian. A convenient choice is the average
x(�/2)+x((�+1)/2)

2 .
Next, we present an equivalent definition that can be natu-
rally generalized to a higher dimensional setting.

Let s : � → {−1, 0, 1} be the sign function, i.e.,

s(x) =
{ x

|x| , x �= 0,

0, x = 0.

For x ∈ �, the difference between the numbers of observa-

tions on the left and right of x is
∣∣∣∑�

i=1 s(xi − x)
∣∣∣. There

are an equal number of observations on both sides of the
sample median, so that the sample median is

any x ∈ � that satisfies

∣∣∣∣∣
�∑

i=1

s(xi − x)

∣∣∣∣∣ = 0. (1)

Replacing the absolute value | · | with the 2-norm (Euclidean
norm) ‖ · ‖, the sign function is readily generalized to mul-
tidimensional data: the spatial sign function or the unit vec-
tor [6], which is a map S : �n → �

n given by

S(x) =
{ x

‖x‖ , x �= 0,

0, x = 0

where ‖x‖ =
√

xTx and 0 is the zero vector in �n . With
the spatial sign function, the multidimensional sample me-
dian for multidimensional data {x1,x2, . . . ,x�} ⊂ �

n is a
straightforward analogy of the univariate version (1), i.e., it
is

any x ∈ �
n that satisfies

∥∥∥∥∥
�∑

i=1

S(xi − x)

∥∥∥∥∥ = 0. (2)

The median defined in (2) is named as the spatial median
or the L1 median [35]. Next we give another equivalent
definition of the spatial median that motivates the depth-
based novelty detection.

2.2. The Spatial Depth

The concept of spatial depth was formally introduced by
Serfling [30] based on the notion of spatial quantiles pro-
posed by Chaudhuri [7], while a similar concept, L1 depth,
was first described by Vardi and Zhang [35]. For a multi-
variate cumulative distribution function (cdf) F on �n , the
spatial depth of a point x ∈ �

n with respect to the distribu-
tion F is defined as

D(x, F ) = 1 −
∥∥∥∥∫

S(y − x)dF (y)
∥∥∥∥ .

For an unknown cdf F , the spatial depth is unknown and
can be approximated by the sample spatial depth:

D(x,X ) = 1 − 1
|X ∪ {x}| − 1

∥∥∥∥∥∥
∑
y∈X

S(y − x)

∥∥∥∥∥∥ (3)
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Figure 1. A contour plot of the sample spa-
tial depth based on 100 random observations
(represented by ◦’s) from a bi-variate Gaus-
sian distribution. The depth values are indi-
cated on the contours. The example marked
with ∗ represents a possible novel observa-
tion. It has a very low depth value of 0.0219.

where X = {x1,x2, . . . ,x�} and |X ∪ {x}| denotes the
cardinality of the union X ∪ {x}. Note that both D(x, F )
and its sample version have a range [0, 1].

Observing (2) and (3), it is easy to see that the depth
value at the spatial median is 1. In other words, the spa-
tial median is a set of data points that have the “deepest”
depth 1. Indeed, the spatial depth provides from the “deep-
est” point a “center-outward” ordering of multidimensional
data. The depth attains the maximum value 1 at the deepest
point and decreases to zero as a point moves away from the
deepest to the infinity. Thus it gives us a measure of the
“extremeness” of a data point, which can be used for nov-
elty detection. From now on all depths refer to the sample
depth.

2.3. Novelty Detection Using Spatial Depth

Figure 1 shows a contour plot of the spatial depth
D(x,X ) based on 100 random observations (marked with
◦’s) generated from a bi-variate Gaussian distribution with
mean zero and a covariance matrix whose diagonal and off-
diagonal entries are 2.5 and 1.5, respectively. On each con-
tour the depth function is constant with the indicated value.
The depth values decrease outward from the “center” (i.e.,
the spatial median) of the cloud. This suggests that a point
with a low depth value is more likely to be novel than a
point with a high depth value. For example, the point on the
upper right corner on Figure 1 (marked with ∗) has a very
low depth value of 0.0219. It is isolated and far away from
the rest of the data points. This example motivates a simple
novelty detection algorithm: Identify a data point as novel
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Figure 2. Contour plot of the sample spatial
depths based on 100 random observations
(denoted by ◦’s) of a ring shaped distribution.
The depth values are indicated on the con-
tours. The example (denoted by ∗) at the cen-
ter represents a possible novel observation.
It is depth value is 0.9544.

if its depth value is less than a threshold.
In order to make this a practical method, the following

two issues need to be addressed: (1) How can we decide the
threshold? (2) Can the spatial depth function capture the
structure of the data cloud? We postpone the discussion on
the first question to Section 4 where we present a framework
to determine the threshold. The second question is related
to the shape of depth contours. The depth contours of a
spatial depth function tend to be circular [12], especially at
low depth values (e.g., the outer contour in Figure 1). For
a spherical symmetric distribution, such contours fit nicely
to the shape of the data cloud. It is therefore reasonable to
view a data point as novel if its depth is low because a lower
depth implies a larger distance from the “center” of the data
cloud. However, in general, the relationship between the
depth and the novelty in a data cloud may not be as straight-
forward as is depicted in Figure 1. For example, Figure 2
shows the contours of the spatial depth function based on
100 random observations generated from a ring shaped dis-
tribution. From the shape of the distribution, it is reasonable
to view the point (marked with ∗) in the center as a novel
observation. However, the depth at the location of the ∗ is as
high as 0.9544. In fact, all of the 100 normal observations
have depth smaller than that of the “novel” observation at
the center.

The above example demonstrates that the spatial depth
function may not capture the structure of a data cloud in the
sense that a point isolated from the rest of the population
may have a large depth value. This is due to the fact that the
value of the depth function at a point depends only upon the
sum of the unit vectors, each of which represents the direc-



tion from the point to an observation. This definition down-
plays the significance of distance hence reduces the impact
of those extreme observations whose extremity is measured
in (Euclidean) distance, so that it gains resistance against
these extreme observations. On the other hand, the acquire-
ment of the robustness of the depth function trades off some
distance measurement, resulting in certain loss of the mea-
surement of similarity of the data points. The distance of
a point from the data cloud plays an important role in re-
vealing the structure of the data cloud. In the following, we
propose a method to tackle this limitation of spatial depth
by incorporating into the depth function a distance metric
(or a similarity measure) induced by a positive definite ker-
nel function.

3. Kernelized Spatial Depth

In various applications of machine learning and pattern
analysis, carefully recoding the data can make “patterns”
standing out. Positive definite kernels provide a computa-
tionally efficient way to recode the data. A positive definite
kernel, κ : �n × �

n → �, implicitly defines an embedding
map

φ : x ∈ �
n �−→ φ(x) ∈ �

via an inner product in the feature space �,

κ(x,y) = 〈φ(x), φ(y)〉, x,y ∈ �
n .

For certain stationary kernels, e.g., the Gaussian kernel
κ(x,y) = exp

(‖x− y‖2/σ2
)
, κ(x,y) can be interpreted

as a similarity between x and y, hence it encodes a similar-
ity measure.

The basic idea of the kernelized spatial depth is to evalu-
ate the spatial depth in a feature space induced by a positive
definite kernel. Noticing that

‖x−y‖2 = 〈x,x〉+〈y,y〉−2〈x,y〉 = xTx+yT y−2xTy,

with simple algebra, one rewrites the norm in (3) as∥∥∥∥∥∥
∑
y∈X

S(y − x)

∥∥∥∥∥∥
2

=

∑
y,z∈X

xT x + yT z− xT y − xT z√
xT x + yT y − 2xTy

√
xTx + zT z − 2xT z

.

Replacing the inner products with the values of kernel κ, we
obtain the (sample) kernelized spatial depth (KSD) function

Dκ(x,X ) = 1 − 1
|X ∪ {x}| − 1

×√√√√ ∑
y,z∈X

κ(x,x) + κ(y, z) − κ(x,y) − κ(x, z)
δκ(x,y)δκ(x, z)

,(4)
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Figure 3. Contour plots of KSD functions
based on 100 random observations (marked
with ◦’s) from a ring-shaped distribution. The
depth values are marked on the contours.
The depth is kernelized with a Gaussian ker-
nel with σ = 3. The example (marked with ∗)
at the center represents a possible novel ob-
servation. It has a depth value of 0.2651.

where δκ(x,y) =
√

κ(x,x) + κ(y,y) − 2κ(x,y). Anal-
ogous to the spatial sign function at 0, we define

κ(x,x) + κ(y, z) − κ(x,y) − κ(x, z)
δκ(x,y)δκ(x, z)

= 0

for x = y or x = z.
The KSD (4) is defined for any positive definite kernels.

Here we shall be particularly interested in stationary kernels
(e.g., the Gaussian kernel), because of their close relation-
ship with similarity measures. Figure 3 shows the contour
plot of the KSD based on the same 100 random observations
generated from the ring shaped distribution in Figure 2. The
Gaussian kernel with σ = 3 is used to kernelize the spatial
depth. Interestingly, unlike the spatial depth, we observe
that the kernelized spatial depth captures the shapes of the
data cloud. Moreover, the depth values are small for the
possible novelty. The depth values at the location of the ∗ is
0.2651. A threshold of 0.27 can separate the novel observa-
tion from the rest of the ring data. The remaining question
is how we determine the threshold. This is addressed in the
following section.

4. A Bound on the False Alarm Probability

The idea of selecting a threshold is rather simple, i.e.,
choose a value which controls the false alarm probability
(FAP) under a given significance level. FAP is the probabil-
ity that normal observations are classified as novel. In the
following, we derive a probabilistic bound on FAP.



Novelty detection formulated as a one-class learning
problem can be described as follows. We have observations
X = {x1,x2, . . . ,x�} ⊂ �

n from an unknown cdf, F .
Based on the observations X , a given datum x is classified
as normal or novel according to whether or not it is gener-
ated from F . Let g : �n → [0, 1] be a novelty detector
where g(x) = 1 indicates that x is novel. The FAP of a
novelty detector g, PFA(g), is the probability that an obser-
vation generated from F is classified by the detector g as
novel, i.e.

PFA(g) =
∫
x∈Ro

dF (x)

where Ro = {x ∈ �
n : g(x) = 1} is the collection of all

observations that are classified as novel. The FAP can be es-
timated by the false alarm rate, P̂FA(g), which is computed
by

P̂FA(g) =
|{x ∈ X : g(x) = 1|

|X | .

For a given data set X and kernel κ, we define a novelty
detector gκ(x,X ) by

gκ(x,X ) =
{

1, if Dκ(x,X ) ≤ t,
0, otherwise, (5)

where t ∈ [0, 1] is a threshold. An observation x is clas-
sified as novel according to gκ(x,X ) = 1. Denote �F the
expectation calculated under cdf F . It follows that

PFA(gκ) = �F [gκ(x,X )] .

We have the following theorem for the bound of the FAP.

Theorem 1 Let X = {x1,x2, . . . ,x�train} ⊂ �
n and

Y = {y1,y2, . . . ,y�test} ⊂ �
n be i.i.d. samples from a

distribution F on �
n . Let gκ(x,X ) be a novelty detector

defined in (5). Fix δ ∈ (0, 1). For a new random observa-
tion x from cdf F , the following bound holds with probabil-
ity at least 1 − δ:

�F [gκ(x,X )] ≤ 1
�test

�test∑
i=1

gκ(yi,X ) +

√
ln 1/δ

2�test
. (6)

It is worthwhile to note that there are two sources of
randomness in the above inequality: the random sample Y
and the random observation x. For a specific Y , the above
bound is either true or false, i.e., it is not random. For a
random sample Y , the probability that the bound is true is
at least 1 − δ. Theorem 1 suggests that we can control the
FAP by adjusting the t parameter of the detector. Although
t does not appear explicitly in (6), it affects the value of

1
�test

∑�test

i=1 gκ(yi,X ), which is the false alarm rate – the
sample version of FAP.

Note that the detector is constructed from the training set
X and evaluated using an independent test set Y . A bound

as such is usually called a test set bound [14]. The FAP is
bounded by the false alarm rate, evaluated on the test set,
plus a term that shrinks in a rate proportional to the square
root of the size of the test set. For a given desired FAP, we
should choose the threshold to be the maximum value of t
such that the right-hand side of (6) does not exceed the de-
sired FAP. A proof of Theorem 1 is given in the Appendix.

We summarize the above discussion in pseudo code. The
input is a set of observations X = {x1,x2, . . . ,x�train} ⊂
�

n from an unknown cdf F and a kernel κ. The following
pseudo codes determine whether an observation x is novel.

Algorithm 1 Learning a Novelty Detector

1 FOR (every pair of xi and xj in X)
2 Kij = κ(xi,xj)
3 END
4 given input x
5 FOR (every xi in X)
6 ζi = κ(x,xi)
7 δi =

√
κ(x,x) + Kii − 2ζi

8 IF δi = 0
9 zi = 0
10 ELSE
11 zi = 1

δi

12 END
13 END
14 FOR (every pair of xi and xj in X)
14 K̃ij = κ(x,x) + Kij − ζi − ζj

15 END

16 Dκ(x,X ) = 1 − 1
|X∪{x}|−1

√
zT K̃z

17 OUTPUT (x is novel if Dκ(x,X ) ≤ t)

In terms of the number of kernel evaluations and multi-
plications, the cost of computing the KSD depth for a given
observation is O(�2). The above pseudo code assumes that
the kernel κ is given. Specifically, for Gaussian kernel,
which is used in our experimental study, this requires the
knowledge of σ value. Finding an optimal kernel for a given
problem is an interesting research issue for its own sake, but
is out of the scope of this paper. We propose the following
method to select the σ parameter for a given set of observa-
tions.

Algorithm 2 Deciding σ for Gaussian Kernel

1 FOR (every observation xi in X)
2 di = minj=1,...,�,j �=i ‖xi − xj‖
3 END
4 OUTPUT (σ = median(d1, d2, . . . , d�))

5. Experimental Results

We apply the proposed novelty detector method to a
small group of cypriniform fishes, comprising five species
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Figure 4. Sample specimens from ten species of the family Catostomidae (suckers) and Cyprinidae
(minnows).

of suckers of the family Catostomidae and five species of
minnows of the family Cyprinidae. In all the experiments,
the KSD is computed using the Gaussian kernel with the σ
parameter being determined from Algorithm 2.

5.1. Data Set and Shape Features

The data set consists of 989 specimens from Tulane Uni-
versity Museum of Natural History (TUMNH). The 989
specimens include 128 Carpiodes carpio, 297 Carpiodes
cyprinus, 172 Carpiodes velifer, 42 Hypentelium nigricans,
36 Pantosteus discobolus, 53 Campostoma oligolepis, 39
Cyprinus carpio, 60 Hybopsis storeriana, 76 Notropis pe-
tersoni, and 86 Luxilus zonatus. We assign identifiers 1 to
10 to the above species. The first five species belong to
the family Catostomidae (suckers). The next five species
belong to the family Cyprinidae (minnows). Both families
are under the order Cypriniformes. Sample images of spec-
imens from the above 10 known species are shown in Fig-
ure 4.

Figure 5. Digitized 15 homologous landmarks
using TpsDIG Version 1.4 ( c©2004 by F. James
Rohlf).

Over the past decade, digital landmarking techniques
have been widely used to analyze body shape variation, in a
procedure called Geometric Morphometrics [15, 2, 31]. The
landmarks (LM) are biologically definable points along the
body outline, which are arguably related by evolutionary
descent. The LM of each specimen are saved as two di-
mensional coordinates. Non-shape related variation in LM
coordinates can be removed using techniques such as Gen-

eralized Procrustes Analysis [10, 13]. Figure 5 shows 15
homologous LM digitized on a fish specimen using the Tps-
DIG software tool developed by F. James Rohlf of SUNY
Stony Brook 1. Various body shape characters can be ex-
tracted from these LM and expressed in a fairly simple lan-
guage of lengths, angles, areas, and ratios of these. For
example, “the length of the snout” is directly related to the
slope of the line connecting the tip of the snout (LM1) and
the naris (LM2), which can be computed as the angle be-
tween the vertical axis and the line connecting LM1 and
LM2. The “slenderness of the body” can be defined as the
ratio of the body depth (computed as the distance between
LM4 and LM11) to the body length (computed as the dis-
tance between LM13 and LM7).

Digital images of all specimens are uploaded into the
TpsDIG software tool, and 15 homologous LM are digi-
tized along the body outline of each specimen (Figure 5).
The LM of each specimen are saved as 2-dimensional coor-
dinates. Next, Generalized Procrustes Analysis [13] is used
to remove non-shape related variation in LM coordinates.
Specifically, the centroid of each configuration (based on
the 15 LM associated with each specimen) is translated to
the origin, and configurations are scaled to a common unit
size. We then compute 12 features, x1, . . . , x12, for each
specimen using the 15 LM. The description of each feature
is given in Table 1.

5.2. Results

In the first experiment, we held specimens from one
of the 10 species as “unknown” specimens and specimens
of the other 9 species as known. Specimens from the 9
known species are then randomly divided into two groups
of roughly equal size. One group is used to build the
KSD function. The other group is used to compute the up-
per bound on the false alarm probability based on (6) for
δ = 0.05. The parameter t is chosen such that the upper
bound on the FAP is equal to one minus the detection rate
evaluated from the “unknown” specimens. We denote this
critical value of the upper bound on the FAP by e∗. The de-
tection rate is therefore 1−e∗. Loosely speaking, e∗ implies

1http://life.bio.sunysb.edu/morph/



Table 1. Features describing shape characters. LMi denotes the coordinates of the i-th landmark.
Non-shape related variation has been removed from the landmarks.

x1 The distance between the tip of the snout and the naris, computed as the distance between LM1 and LM2.
x2 The slope of the line connecting the tip of the snout and the naris, computed as the angle between the

vertical axis and the line connecting LM1 and LM2.
x3 The distance between the naris and the back of the mouth, computed as the distance between LM2 and LM14.
x4 The slope of the line connecting the naris and the back of the mouth, computed as the angle between the

vertical axis and the line connecting LM2 and LM14.
x5 The size of head in proportion of the size of the body, computed as the area of the head polygon (vertices

defined in sequence by LM1, LM2, LM3, LM13, LM12, and LM14) divided by the area of the body polygon
(vertices defined in sequence by LM3, LM4, LM5, LM6, LM7, LM8, LM9, LM10, LM11, LM12, and LM13)

x6 The length of the head in proportion of the length of the body, computed as the distance between LM1 and
LM13 divided by the distance between LM13 and LM7.

x7 The distance between LM7 and LM8.
x8 The sum of the distance between LM3 and LM13, the distance between LM12 and LM13, and the distance

between LM1 and LM13 divided by the distance between LM13 and LM7.
x9 The distance between the naris and the tip of the snout in proportion to the distance between the naris and the

eye, computed as the distance between LM1 and LM2 divided by the distance between LM2 and LM15

x10 The distance between LM4 and LM11 divided by the distance between LM13 and LM7.
x11 The distance between LM3 and LM4 divided by the distance between LM13 and LM7.
x12 The angle between the vertical axis and the line connecting LM10 and LM5.

Table 2. With probability at least 0.95, the FAP
is less than e∗, and the detection rate is 1−e∗.
A smaller value of e∗ indicates a smaller FAP
and a larger detection rate.

Unknown Species e∗ Unknown Species e∗

Carpiodes carpio 0.258 Campostoma oligolepis 0.302
Carpiodes cyprinus 0.202 Cyprinus carpio 0.051
Carpiodes velifer 0.192 Hybopsis storeriana 0.517
Hypentelium nigricans 0.071 Notropis petersoni 0.592
Pantosteus discobolus 0.083 Luxilus zonatus 0.547

that the FAP of the novelty detector is less than e∗ when its
detection rate is 1 − e∗. Therefore, a smaller value of e∗

indicates that a larger percentage of the “unknown” spec-
imens are novel with respect to the known species, which
in turn suggests the possibility that the unknown specimens
represent a new species.

The results are given in Table 2. As you can see, the
proposed novelty detector identifies most of the “unknown”
species as novel, i.e., “new” with high detection rates and
low FAPs: the detection rate of Cyprinus carpio is 0.949
and its FAP is less than 0.051, the detection rate of Hypen-
telium nigricans is 0.929 and its FAP is less than 0.071,
Pantosteus discobolus has a detection rate 0.917 and FAP
less than 0.083, Carpiodes velifer has a detection rate 0.808
and FAP less than 0.192, Carpiodes cyprinus has a detec-
tion rate 0.798 and FAP less than 0.202, Carpiodes car-
pio has a detection rate 0.742 and FAP less than 0.258,
and Campostoma oligolepis has a detection rate 0.698 and
FAP less than 0.302. On the other hand, the method does
not produce good detection rate for Hybopsis storeriana,
Notropis petersoni, and Luxilus zonatus. The detection rate
for Notropis petersoni is especially low at 0.408.

We interpret the low detection rates for some species as a
consequence of a “masking” effect as illustrated in Figure 6.
The 20 novel observations, marked with ∗’s, are i.i.d. obser-
vations from a uniform distribution over [−1, 1] × [−1, 1].
The 400 known observations come from one of the follow-
ing Gaussian distributions: N1 ∼ N([2, 2]T , I) (marked
with ◦’s), N2 ∼ N([−2, 2]T , I) (marked with �’s), N3 ∼
N([2,−2]T , I) (marked with �’s), N4 ∼ N([−2,−2]T , I)
(marked with �’s). Clearly, the novel observations are sub-
merged into (or masked by) the known observations. If we
construct the KSD function using 200 known observations
and evaluate the upper bound on the FAP from the remain-
ing 200 known observations, we obtain e∗ = 0.85, i.e., a
detection rate 0.15 when the FAP is less then 0.85 (a de-
crease in the upper bound on the FAP will further reduce
the detection rate). However, if we consider one Gaussian
at a time, we get (1) N1: detection rate 0.9 and FAP less
than 0.1; (2) N2: detection rate 0.75 and FAP less than 0.25;
(3) N3: detection rate 0.85 and FAP less than 0.15; (4) N4:
detection rate 0.75 and FAP less than 0.25. This suggests
that one may reduce the masking effect via a pairwise test,
i.e., testing the specimens from the unknown species against
each known species separately.

We summarize the pair-wise test results of the above
10 species in Table 3. Since the sample size of several
species is rather small, the upper bound derived using (6)
is very loose. Instead of reporting e∗ values, we present
equal error rates, the value at which the false alarm rate (the

1
�test

∑�test

i=1 gκ(yi,X ) term in (6)) is identical to one mi-
nus the detection rate. The ij-th entry of Table 3 presents
the value of equal error rate at testing the unknown species
i against the known species j (the numerical identifier of
species is given at the beginning of Section 5.1). The three
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Figure 6. An example of the masking effect.
With high detection rate and low FAP, novel
observations (marked with ∗’s) can be de-
tected from a group of known observations
generated by any one of the four Gaussian
distributions (marked with ◦’s, �’s, �’s, and
�’s, respectively), but are masked by the
union of them.

species, Hybopsis storeriana, Notropis petersoni, and Lux-
ilus zonatus, which are masked when each is compared
against the remaining species, are easily distinguished in the
pair-wise tests (the last three rows in Table 3). Among all
90 comparisons, the top two largest equal error rates occur
between Notropis petersoni and Luxilus zonatus: the detec-
tion rate for Notropis petersoni is 0.7791 (FAP is 0.2209)
when it is tested against Luxilus zonatus; the detection rate
for Luxilus zonatus is 0.75 (FAP is 0.25) when it is tested
against Notropic petersoni. The above results demonstrate
high potential for applying the proposed novelty detection
algorithm in taxonomic research, specifically, to problems
of new species discovery.

6. Conclusions

We have proposed a new statistical depth function, the
kernelized spatial depth (KSD), and a novelty detection
method using the KSD function. The KSD is a general-
ization of the spatial depth [30, 7, 35]. It defines a depth
function in a feature space induced by a positive definite
kernel. The KSD of any observation can be evaluated using
a given set of samples. The depth value is always within
the interval [0, 1], and decreases as a data point moves away
from the center, the spatial median, of the data cloud. This
motivates a simple novelty detection algorithm that identi-
fies an observation as novel if its KSD value is smaller than
a threshold. We derived an upper bound for the false alarm
probability of a novelty detector, which can be applied to
determine the threshold. Experimental results demonstrate

high potential for applying the proposed novelty detection
algorithm in taxonomic research, specifically, to problems
of new species discovery.

Appendix

We need an inequality attributed to McDiarmid.

Lemma 1 (McDiarmid) Let X1, X2, . . . , Xn be indepen-
dent random variables taking values in a set �. Suppose
that f : �n → � satisfies

sup
x1,...,xn,x̂i∈�

|f(x1, . . . ,xn)−f(x1, . . . , x̂i, . . . ,xn)| ≤ ci

for constants ci, 1 ≤ i ≤ n. Then for every ε > 0,

Pr[f(X1, . . . , Xn) − �f(X1 , . . . , Xn) ≥ ε] ≤ e
−2ε2
�n

i=1 c2
i .

Proof of Theorem 1: Because yi /∈ X and gκ is
bounded by 1, a change of one yi in 1

�test

∑�test

i=1 gκ(yi,X )
results in at most a change of 1

�test
. Thus an application of

the McDiarmid’s inequality yields

Pr

[
�F [gκ(y1,X )] − 1

�test

�test∑
i=1

gκ(yi,X ) ≥ ε

]
≤ e−2�ε2 .

Setting δ = exp
(−2�ε2

)
and solving for ε, we obtain ε =√

ln(1/δ)/2�. This completes the proof. �
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