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The out-of-plane velocity component is focused on the flat surface of an isotropic solid sample using the
principle of time reversal. This experiment is often reproduced in the context of nondestructive testing
for imaging features near the surface of the sample. However, it is not clear how deep the focus extends
into the bulk of the sample and what its profile is. In this paper, this question is answered using both
numerical simulations and experimental data. The profiles of the foci are expressed in terms of the wave-
lengths of the dominant waves, based on the interpretation of the Lamb’s problem and the use of the dif-
fraction limit.
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1. Introduction

Over the last decade, a number of sophisticated imaging tech-
niques have emerged that combine the properties of nonlinear
elasticity observed in a damaged material and the principle of time
reversal (TR) [1–7]. A TR mirror (TRM) allows focusing narrowly
energy in space and time. If energy is focused near a damaged
region (e.g. crack, delamination), the relatively large amplitude of
the wave field at that location will activate a nonlinear elastic
response in the test sample, which can then be exploited for imag-
ing applications.

A standard TR experiment in a reverberant elastic medium is
a two-step process [8]. In the first step, or forward propagation, a
known signal is emitted from a transducer (source) at a point A
on the surface of the sample while another transducer (receiver)
records the response at a point B on the surface. The received
signal is the convolution of the source signal with the impulse
response between the source transducer at A and receiver trans-
ducer at B. This impulse response is rather complex due to the
multiple paths (e.g. reflections) that the waves may follow
within the bounded medium. In the second step, or backward
propagation, the received signal is reversed in time and emitted
from the transducer at point B. As a result of the invariance of
the TR operator in a lossless medium [9], the elastic wave field
focuses on point A and reconstructs the original source signal.
There are some imperfections in this reconstruction process,
mainly because the directional information of the energy
received in the forward signals is typically not used, attenuation
that exists in a realistic system, and because a limited (as
opposed to infinite) acquisition time of the forward propagation
signal is available. An alternative to standard TR is reciprocal
TR (R-TR) [10–12]. In R-TR, the reversed signal is emitted from
the original source position A and the elastic wave field focuses
at the original receiver position B. It is possible to interchange
the source and receiver positions thanks to the principle of spa-
tial reciprocity [13].

In the context of a TR experiment, a reverberant medium offers
a number of advantages over an unbounded one. In an unbounded
homogeneous medium, the TRM ideally forms a closed surface
around the source [14]. In practice, however, the TRM often has a
small aperture and does not capture the full wave field propagating
away from the source, which leads to an imperfect reconstruction
of the focused signal [15]. In contrast, the multiple reflections of
the waves on the boundaries of a medium with a finite size act
as virtual sources that improve the quality of the TR focusing.
Therefore, if the modal density within the finite medium is suffi-
ciently large and damping is relatively small, the TRM can be
reduced to a single element. Following this idea, a number of TR
experiments have been conducted using chaotic cavities [16–18],
where one emitter is used within a cavity of arbitrary shape. Such
devices will enhance wave scattering and break any symmetry that
could potentially exist in the problem. In this paper, the cavity has
the shape of a rectangular parallelepiped, so multiple transducers
must be used to break the symmetry of the problem.

TR of elastic waves in a solid is a more complex problem than TR
of acoustic waves in a fluid because the wave field is no longer sca-
lar but vectorial. Consequently, different types of wave motions
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Fig. 1. Photograph of the experimental setup.
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may coexist in a solid: e.g. shear (S), compressional (P), and
Rayleigh (R) waves. Draeger et al. [19] delineated theoretically
the mechanisms involved in the focusing of P and S waves in a solid
half-space using a TRM. A point source in the solid generated P and
S waves, which propagated to a TRM placed in a fluid surrounding
the solid. In the far-field, the P and S waves separate because of
their different propagation speeds and reach the TRM at different
times. This property may be used to focus the P and S waves in
the solid, almost independently from one another. It was shown
that when the signals from both waves are emitted by the TRM
into the fluid, each wave generates a P and an S wave in the solid,
thus leading to a total of four waves propagating in the solid. Two
of these waves will focus properly, while the other two will not and
simply generate some ‘‘low-level noise’’. In experiments, Draeger
et al. [20] related the size of the focal spot to the type of wave used
in the TR process and validated their theoretical analysis. Sutin
et al. [12] designed a TR experiments in a reverberant solid sample
using only one transducer. They successfully focused elastic energy
on the surface of the sample using the out-of-plane velocity com-
ponent at the selected focal point where the receiver was placed.
They reported that the width of the focal spot at �3 dB was equal
to a factor � 0.44 of the shear wavelength at the center frequency
of the pulse for a doped-glass block, which is a weakly dissipative
medium. In fact, if the reference wave is taken as the Rayleigh
wave, then they reach exactly the diffraction limit. Ulrich et al.
[21] showed in a series of R-TR experiments and simulations that
a scalar source (or a source whose radiation characteristics are
not known) may be used to focus selectively vector components
of the motion (either individual components or some combinations
of them) on the surface of a sample. For instance, if energy is
focused at a point on the surface of the sample using the out-of-
plane velocity component, the in-plane components of the velocity
vector will exhibit amplitude levels that are similar to the temporal
side lobes of the reconstructed pulse, i.e. ‘‘low-level noise’’. How-
ever, in their study, they did not relate the size of the focal spot
to the types of waves propagating in the medium. In most TR
experiments it is not possible to probe the elastic wave field in
the bulk of the sample. Numerical simulations are an alternative
to experiments when the wave propagation needs to be character-
ized within the bulk of the sample. Some recent work involving
simulations of TR experiments in solids have been carried out
but were limited to 2D systems [22,23], thus possibly missing
some features that could be observed in a realistic 3D system.

In this paper, the out-of-plane velocity component is focused
on the surface of a 3D aluminum sample using R-TR. The focal
spot has a finite size related to the types of waves propagating
within the medium and to the center frequency of the focused
signal (e.g. pulse). The focal spot observed in experiments on
the surface of a sample also extends into the bulk of the sample
with an unknown depth profile. In this context, the objective of
this paper is to characterize the depth profile of the TR focal spot
for various conditions (e.g. center frequencies and material prop-
erties). In the context of nondestructive testing (NDT), this profile
relates to the portion of a sample that will be probed around the
focal time of a TR experiment and consequently to the nonlinear
signature that will be recorded. Since depth profiles of the TR foci
cannot be measured experimentally, the analysis is supported
mainly by numerical simulations, within the framework of linear
elasticity. Experimental data are used mainly to validate the
numerical model. The paper is organized at follows. Section II val-
idates the numerical model used in the rest of the analysis
against experimental data for the case where elastic energy is
focused near an edge of an aluminum block. Section III examines
the depth profiles of the TR foci on a surface of a block for various
material properties and center frequencies of the focused signal.
Section IV concludes.
2. Experimental validation of the numerical model

2.1. Experiments

Experiments were conducted on an aluminum sample with a
rectangular shape and dimensions of 10 � 10 � 19 cm3. Fig. 1 is
a photograph of the experimental setup. Elastic energy was trans-
mitted into the sample using eight identical piezoelectric disks
(type PZT-5, diameter of 12.7 mm, and thickness of 2 mm) that
were glued onto three surfaces, at locations far from the desired
focal point to allow diffusion of the elastic energy into the sam-
ple. The velocity wave field was measured on the surface of the
sample using single point laser Doppler vibrometers (LDV) from
Polytec Inc. The normal component of the velocity was measured
with the OFV 303 (3001 controller, VD-02, 5 mm/s/V) and the in-
plane components with the OFV 552 (5000 controller, VD-02,
5 mm/s/V) fiber-optic differential laser vibrometer. The angle of
±30� between the fiber-optic laser heads and the surface normal
is used to eliminate the normal component of the velocity vector
through subtraction and provide the in-plane component [24]. A
rotation stage is incorporated to allow measurements in the
two orthogonal in-plane directions of motion when the fiber-
optic laser heads are rotated 90 degrees. Source signals were gen-
erated with an 8-channel, 12-bit A/D Gage CompuGen 8150 card
and received signals were digitized with a 2-channel, 14-bit D/A
Gage CompuScope 14,200 cards using a sampling rate of
10 MHz per channel. Source signals were amplified 50 times with
Tegam 2350 power amplifiers. A scanning system was developed
that allows the laser vibrometer to record the motion of the sam-
ple at various locations within a region of interest with a system
consisting of a Newport ESP300 positioning controller and two
Newport ILS250MVTP linear-axis translation stages that move
the laser and pause during the measurement at each scan point
location. The experiment was setup on a floating, vibration isola-
tion table (Newport LW3048B).

The R-TR method [8] is used to create a focus of the vertical, in-
plane component of motion centered at the location of the laser
spot in Fig. 1 (point B). First, impulse responses (IRs) are deter-
mined between the PZT transducers and point B. For this purpose,
a linear chirp signal with appropriate frequency bandwidth is
emitted from a single PZT transducer while the vertical, in-plane
velocity component is measured with the LDV at point B. This oper-
ation is repeated for all PZT transducers. Then, the IRs are deter-
mined from a cross correlation of the input chirp signal with the
measured response, reversed in time, scaled in amplitude to max-
imize the amplifier output, and all reversed signals are broadcast
simultaneously from the corresponding PZT transducers. This cre-
ates a TR focus of the vertical, in-plane velocity component (vz).
The in-plane velocity component (vx) and the out-of-plane velocity
component (vy), are also measured. Spatial scans of the TR focus in
each component of motion are displayed in Fig. 2.
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Fig. 2. Velocity components at the focal time. Focusing was achieved using the vz

component at the focal point. The drawing on the right-hand side indicates the
location of the focal point and the area on the sample surface where results are
displayed. Simulated (left column) and experimental (right column) results. For
each column, data are normalized with respect to the peak amplitude of vz. The vz

signal generated at the focal point (see Fig. 3) consists of a pulse centered at
52.8 kHz in simulations and at 54.7 kHz in experiments. As a result, the spot size of
vz is larger in simulations than in experiments. Witness the dipole motion around
the focal point observed in vx due to the Poisson effect. This motion has a much
smaller amplitude than vz at the focal point but is larger than the background.
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Fig. 3. Time histories of the velocity components at the focal point, for the problem
settings described in Fig. 2. Simulated (left column) and experimental (right
column) results. For each column, data are normalized with respect to the peak
amplitude of vz.
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2.2. Numerical model

The above experiment is simulated using the ‘‘Solid Mechanics’’
module of the commercial finite-element software package COM-
SOL MULTIPHYSICS 4.3a. In the simulations, the aluminum has a
mass density of 2700 kg m�3, a Young’s modulus of 70 GPa, and a
Poisson’s ratio of 0.33. The PZT transducers are not modeled.
Instead, a normal surface load is applied at the location of the
transducers. The time history of the surface load in the forward-
propagation step consists of a 50 kHz tone-burst with a full band-
width at half maximum (FBHM) of 10 kHz, similar to that observed
in the experiments at the focal point. The computational domain is
discretized into quadratic tetrahedral elements with a maximum
size of 5 mm, which corresponds to 10 elements per smallest
wavelength at 55 kHz (center frequency + half bandwidth of the
pulse). The smallest wavelength is that of the Rayleigh wave and
is equal to 52.9 mm, based on a propagation speed of 2910 m.s�1.
Transient simulations are carried out using a time step of 0.1 ls,
which satisfies the Courant–Friedrichs–Lewy condition for a 3D
problem of elastodynamics.
2.3. Discussion

Fig. 2 depicts snapshots of the three simulated and measured
velocity components, vx, vy, and vz, at the focal time of
t = 1.876 ms. Results are displayed on a portion of the surface sur-
rounding the focal point. Time histories of these velocity compo-
nents at the focal point are shown in Fig. 3. The vz component
exhibits the largest peak amplitude at the focal time, which is
expected since this is the component used in the TR process. A sig-
nificant portion of the elastic energy is also contained in the y-
component of the motion, as a result of focusing near an edge par-
allel to the x-axis. The asymmetry of the system in the y-direction
(e.g. fluid or vacuum on one side of the focal point and solid on the
other side) causes motion of the focal-point region in the y–z plane.
Likewise, if the focal point was close to a corner of the sample,
energy would be contained in all three components of the motion,
regardless of the component used in the TR process, due to the
asymmetry of the system in the three Cartesian directions. Last,
it is interesting to observe the dipole structure of the vx component
around the focal point, due to the Poisson effect. This motion has
much smaller amplitude than vz at the focal point but is larger than
the background.

The numerical model captures successfully the main features of
the elastic response observed in experiments, including the dipole
structure of the vx component and the focal spots for the vy and vz

components in Fig. 2. Note that the size of the focal spot for the vz

component is larger in simulations than in experiments. As dis-
cussed in the introduction, the size of the focal spot is related to
the center frequency of the focused signal at the focal point. The
signal of the vz component at the focal point consists of a pulse cen-
tered at 52.8 kHz in simulations and 54.7 kHz in experiments,
which implies a smaller size of the focal spot in experiments. It
is also worth mentioning that, in Fig. 3, the ratios between the peak
amplitudes of the vy and vz components at the focal point are 57%
in simulations and 63% in experiments. The close qualitative and
quantitative agreements between experiments and simulations
are remarkable given the different approaches used to create the
TR signals.
3. Focusing elastic energy at the center of a flat surface

The out-of-plane velocity component (now vz) is focused
numerically at the center of the top surface of the aluminum sam-
ple described in Section 2. A Ricker wavelet is used in the forward-
propagation step of the TR simulation. This pulse has a wider band-
width than that described in Section 2.2, and thus will lead to a
focusing of better quality. For instance, a Ricker pulse centered at
50 kHz has a FBHM of nearly 58 kHz. Besides, the fact that Ricker
wavelets are commonly used in the field of elastodynamics makes
the study more general than using a narrowband pulse mimicking
a particular experiment. The computational domain is discretized
with at least 6 quadratic tetrahedral elements per smallest wave-
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length. For a Ricker wavelet centered at 50 kHz, the maximum ele-
ment size is set to 5 mm (the same mesh is used in Section 2.2).

Snapshots of the three simulated velocity components at the
focal time are depicted in Fig. 4, for a pulse centered at 79.2 kHz.
Results are displayed on the top surface (x–y plane) and within
the depth of the sample (x–z and y–z planes). As expected, the larg-
est amplitude is observed for the vz component while the in-plane
components, vx and vy, exhibit the Poisson effect (dipole structure)
discussed in Section II. The focus has the shape of a half prolate
spheroid, elongated along the z-axis. It is not perfectly symmetric
with respect to the z-axis, indicating an imperfect reconstruction
of the original source. The normalized surface and depth profiles
of the focus are shown in Fig. 5. Their respective size can be ana-
lyzed in connection with Lamb’s problem described below.

Fig. 6 shows snapshots of the vx and vz components in the x–z
plane due to a normal point load on the surface of a larger alumi-
num sample with dimensions of 0.4 � 0.2 � 0.2 m3. This is a for-
ward-propagation problem that does not involve TR. The load
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signal consists of a Ricker wavelet centered at 75 kHz. Results are
displayed at times t = 17 ls (near-field radiation) and 37 ls (mid-
field radiation). For convenience, the vx and vz components at the
focal time of the R-TR simulation (see center column in Fig. 4)
are scaled appropriately and reproduced in this figure (top row).
This forward-propagation problem would be equivalent to Lamb’s
normal point load problem [25] if the medium was an elastic half
space. Analytical solutions have been derived for this problem but
are mostly limited to the far-field radiation [26,27], as shown in
Fig. 7 for a harmonic, point-load (3D) configuration. Most of the
features of the far-field radiation can also be observed in the
mid-field: (i) S waves dominate the elastic wave field in the bulk
of the sample, with their amplitude being the largest between
the angles of p/6 and 2p/6 with respect to the vertical axis; (ii)
the vertical component of the R wave reaches a maximum beneath
the surface while its horizontal component experiences a phase
change along the depth. The R-wave features are also observed in
the vertical and horizontal components of the velocity field at
the focal time of the TR simulation indicating that R waves domi-
nate the propagation in the vicinity of the surface in a TR experi-
ment. This would explain why the peak amplitude of the focal
spot in Fig. 5 is not found exactly on the surface (where the velocity
component is focused) but beneath it. Last, it is interesting to
observe that the R-TR process recreates an approximate snapshot
of the near-field forward radiation. The size of the virtual source
is controlled by the diffraction limit, thus preventing the recon-
struction of details smaller than the wavelength(s) of the wave(s)
involved in the propagation.

In a perfect TR experiment, the diameter of a focal spot mea-
sured at the half maximum value is equal to one half of the dom-
inant wavelength, as a consequence of the diffraction limit. On the
surface of the sample, the propagation is dominated by the R
waves. Therefore, the diameter of the focal spot in the x–y plane
can be expressed as,

wemp ¼ kR=2; ð1Þ

where the superscript ‘‘emp’’ refers to empirical. Along the z-axis,
the propagation is dominated by R waves close to the surface and
S waves in the bulk of the sample. As a result, the focal spot in a ver-
tical plane of the sample has the shape of a half ellipse. Although
two types of waves dominate the propagation, their wavelengths



Table 1
Measured and simulated sizes (width and depth) of the focal spot during the TR focusing of the out-of-plane motion component (vz) for various materials and center frequencies
of the focused signals.

Data type Material E (GPa) m q (kg m�3) fc (kHz) kP (mm) kS (mm) kR (mm) wobs (mm) wemp (mm) dobs (mm) demp (mm)

Num Aluminum 70 0.33 2700 53.4 116.1 58.5 54.5 28 27.3 (�2.5%) 19.2 19 (�1%)
Num Aluminum 70 0.33 2700 79.2 78.3 39.4 36.7 18.7 18.4 (�1.6%) 13.5 12.8 (�5.2%)
Num Undefined 70 0.15 2700 59.2 88.4 56.7 51.2 26 25.6 (�1.5%) 19.2 18.4 (�4.2%)
Num Undefined 70 0.2 2700 59.4 90.4 55.3 50.4 25.6 25.2 (�1.6%) 18.8 18 (�4.3%)
Num Undefined 70 0.45 2700 55 180 54.4 51.5 26 25.8 (�0.8%) 17.8 17.7 (�0.6%)
Exp Aluminum / / 2705 75 83.4 42 39.2 20.1 19.6 (�2.5%) / /
Exp Aluminum / / 2705 123 50.9 25.6 23.9 12.3 12 (�2.4%) / /
Exp Aluminum / / 2705 152 41.2 20.7 19.3 10.2 9.7 (�4.9%) / /
Exp Aluminum / / 2705 169 37 18.7 17.4 8.9 8.7 (�2.2%) / /
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are proportional to one another so that the depth of the focus can be
expressed in terms of one wavelength only as,

demp ¼ 1:3kS=4; ð2Þ

where the factor 1/4 is assumed because the diffraction-limit theory
is applied to a half focal spot and the factor 1.3 is found by inspect-
ing the radii of the focal spots in the z-direction for all the numerical
simulations.

Results from simulations and experiments for various material
properties and center frequencies of the focused signals are sum-
marized in Table 1. Material properties were those of aluminum
but with a Poisson’s ratio varied from 0.15 to 0.45. Center frequen-
cies were varied from 53 to 169 kHz. There is a fair agreement
between the observed and predicted sizes of the focal spots, with
differences mostly within 5% for all cases considered. Besides the
use of an empirical expression, variations of the results can be
attributed to the imperfect reconstruction of the source in the R-
TR process. Note that an expression of demp involving kP would
not be robust to changes of the Poisson’s ratio. This is another indi-
cation that in the bulk of the sample, the diffuse wave field is
mostly dominated by S waves.

Before closing this section, some important differences between
2D and 3D modeling are outlined in the context of TR near the sur-
face of an elastic solid. The volumetric strain is chosen for the anal-
ysis since it has been used in previous numerical work related to
imaging applications where the principle of TR is combined with
the properties of nonlinear elasticity [23]. The volumetric strain
is an eigenvector of the elasticity tensor and thus can be used to
apply scalar nonlinearity laws in which, for instance, the volumet-
ric stiffness is a power series of the volumetric strain. The volumet-
ric strains obtained at the focal time of a TR experiment simulated
with 2D and 3D models are shown in Fig. 8. In both simulations, a
Ricker wavelet centered at 75 kHz was used in the forward-propa-
Fig. 8. Simulated volumetric strain fields at the focal time with (a) 2D and (b) 3D
models. In 3D, a slice of the data is extracted in the x–z plane, following the cut
depicted in Fig. 4. Due to symmetry, identical results are obtained in the y–z plane.
Focusing was achieved using the vz component. A Ricker wavelet centered at 75 kHz
was used in the forward-propagation problem.
gation problem and the out-of-plane velocity component was
focused. In 2D, the volumetric strain has a pear-like shape, which
was also predicted by Janssen and Van Den Abeele [23]. It reaches
two local maxima, one close to the surface where the R waves
dominate and one in the bulk of the sample where the P and S
waves dominate. In 3D, the volumetric strain field has the shape
of a half ellipse with only one local maximum obtained on the sur-
face of the sample and a penetration depth of only 5.3 mm, for the
case of a pulse centered at 75 kHz. In this case, the depth profile of
the volumetric strain seems to be dominated by the R waves only,
which decay exponentially with depth.
4. Conclusion

This paper investigated the problem of focusing the out-of-
plane velocity component on the surface of an isotropic solid sam-
ple. The numerical model used in the analysis was first validated
against experimental data. Subsequently, empirical expressions
for the width and depth of the focal spot (that of the out-of-plane
velocity component) were found based on (i) an interpretation of
Lamb’s problem to determine which waves dominate the propaga-
tion in the regions of interest (surface and bulk) and (ii) the use of
the diffraction limit. In these expressions: the width of the focal
spot depends only on the wavelength of the Rayleigh wave and
the depth on the wavelength of the shear wave, at the center fre-
quency of the focused pulse. The empirical expressions were found
to be robust to changes of the center frequency of the focused pulse
and of the Poisson’s ratio of the material. The problem studied in
this paper is of interest in a number of NDT applications. In the
experiments conducted recently by the authors [7], it is now suffi-
cient to measure the size of the TR focal spot on the surface of the
sample to infer how deep the sample is probed.
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