Derivation of Equations of Motion for Inverted Pendulum Problem

Filip Jeremic

McMaster University

November 28, 2012

Kinetic Energy

Definition

The energy which an object possesses due to its motion

Kinetic Energy

Definition

The energy which an object possesses due to its motion

• It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity

Kinetic Energy

Definition

The energy which an object possesses due to its motion

- It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity
- In classical mechanics, the kinetic energy E_k of a point object is defined by its mass m and velocity v:

$$E_k = \frac{1}{2}mv^2$$

Potential Energy

Definition

The energy of an object or a system due to the position of the body or the arrangement of the particles of the system

Potential Energy

Definition

The energy of an object or a system due to the position of the body or the arrangement of the particles of the system

• The amount of gravitational potential energy possessed by an elevated object is equal to the work done against gravity in lifting it

Potential Energy

Definition

The energy of an object or a system due to the position of the body or the arrangement of the particles of the system

- The amount of gravitational potential energy possessed by an elevated object is equal to the work done against gravity in lifting it
- Thus, for an object at height *h*, the gravitational potential energy *E_p* is defined by its mass *m*, and the gravitational constant *g*:

$$E_p = mgh$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Lagrangian Mechanics

• An analytical approach to the derivation of E.O.M. of a mechanical system

Lagrangian Mechanics

- An analytical approach to the derivation of E.O.M. of a mechanical system
- Lagrange's equations employ a single scalar function, rather than vector components

Lagrangian Mechanics

- An analytical approach to the derivation of E.O.M. of a mechanical system
- Lagrange's equations employ a single scalar function, rather than vector components
- To derive the equations modeling an inverted pendulum all we need to know is how to take partial derivatives

Lagrangian

Definition

In classical mechanics, the natural form of the Lagrangian is defined as $\mathcal{L}=E_k-E_p$

Lagrangian

Definition

In classical mechanics, the natural form of the Lagrangian is defined as $\mathcal{L}=E_k-E_p$

• E.O.M. can be directly derived by substitution using EulerLagrange equation:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \mathcal{L}}{\partial \dot{\theta}} \right) = \frac{\partial \mathcal{L}}{\partial \theta}$$

Inverted Pendulum Problem

- The pendulum is a stiff bar of length *L* which is supported at one end by a frictionless pin
- The pin is given an oscillating vertical motion *s* defined by:

 $s(t) = A \sin \omega t$

Inverted Pendulum Problem

- The pendulum is a stiff bar of length *L* which is supported at one end by a frictionless pin
- The pin is given an oscillating vertical motion *s* defined by:

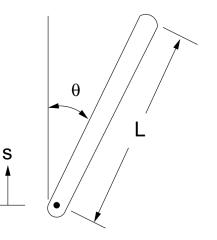
$$s(t) = A \sin \omega t$$

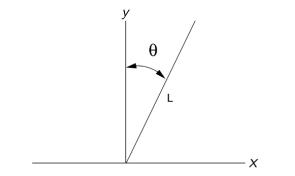
Problem

Our problem is to derive the E.O.M. which relates time with the acceleration of the angle from the vertical position

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

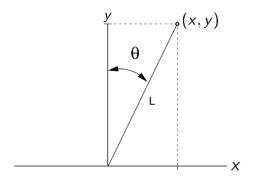
Visualization

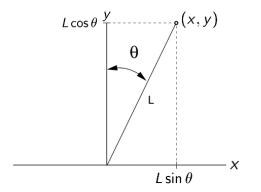




(ロ)、(型)、(E)、(E)、 E) の(の)

Visualization





From the figure on previous page we know

$$x = L \sin \theta$$
 $\dot{x} = L \cos (\theta) \dot{\theta}$ $y = L \cos \theta$ $\dot{y} = -L \sin (\theta) \dot{\theta}$

・ロト・日本・モート モー うへぐ

From the figure on previous page we know

$$x = L \sin \theta$$
 $\dot{x} = L \cos (\theta) \dot{\theta}$ $y = L \cos \theta$ $\dot{y} = -L \sin (\theta) \dot{\theta}$

Recall the definition of the Lagrangian

$$\mathcal{L} = E_k - E_p$$
$$\mathcal{L} = \frac{1}{2}mv^2 - mgy$$

Velocity is a vector representing the change in position, hence

$$v^{2} = \dot{x}^{2} + \dot{y}^{2}$$

= $L^{2}\dot{\theta}^{2}\cos^{2}\theta + L^{2}\dot{\theta}^{2}\sin^{2}\theta$
= $L^{2}\dot{\theta}^{2}(\cos^{2}\theta + \sin^{2}\theta)$
= $L^{2}\dot{\theta}^{2}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Velocity is a vector representing the change in position, hence

$$v^{2} = \dot{x}^{2} + \dot{y}^{2}$$

= $L^{2}\dot{\theta}^{2}\cos^{2}\theta + L^{2}\dot{\theta}^{2}\sin^{2}\theta$
= $L^{2}\dot{\theta}^{2}(\cos^{2}\theta + \sin^{2}\theta)$
= $L^{2}\dot{\theta}^{2}$

Substituting into the equation for the Lagrangian we get

Velocity is a vector representing the change in position, hence

$$v^{2} = \dot{x}^{2} + \dot{y}^{2}$$

= $L^{2}\dot{\theta}^{2}\cos^{2}\theta + L^{2}\dot{\theta}^{2}\sin^{2}\theta$
= $L^{2}\dot{\theta}^{2}(\cos^{2}\theta + \sin^{2}\theta)$
= $L^{2}\dot{\theta}^{2}$

Substituting into the equation for the Lagrangian we get

$$\mathcal{L} = \frac{1}{2}mv^2 - mgy$$
$$\mathcal{L} = \frac{1}{2}mL^2\dot{\theta}^2 - mgL\cos\theta$$

Setup Continued...

Recall the Euler-Lagrange equation

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \mathcal{L}}{\partial \dot{\theta}} \right) = \frac{\partial \mathcal{L}}{\partial \theta}$$

We shall now compute both sides of the equation and solve for $\ddot{ heta}$

$$\mathcal{L} = \frac{1}{2}mL^2\dot{\theta}^2 - mgL\cos\theta$$

(ロ)、(型)、(E)、(E)、 E) の(の)

$$\mathcal{L} = rac{1}{2}mL^2\dot{ heta}^2 - mgL\cos heta$$

$$\frac{\partial \mathcal{L}}{\partial \theta} = 0 + mgL\sin\theta$$
$$= mgL\sin\theta$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Background Inverted Pendulum Visualization Derivation Without Oscillator Derivation With Oscillator $\begin{array}{c}
\text{Computing } \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{\theta}} \right)
\end{array}$

$$\mathcal{L} = rac{1}{2}mL^2\dot{ heta}^2 - mgL\cos heta$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\mathcal{L}=rac{1}{2}mL^2\dot{ heta}^2-mgL\cos heta$$

$$\frac{\partial \mathcal{L}}{\partial \dot{\theta}} = mL^2 \dot{\theta} - 0$$
$$= mL^2 \dot{\theta}$$

$$\mathcal{L}=rac{1}{2}mL^2\dot{ heta}^2-mgL\cos heta$$

$$\frac{\partial \mathcal{L}}{\partial \dot{\theta}} = mL^2 \dot{\theta} - 0$$
$$= mL^2 \dot{\theta}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\partial\mathcal{L}}{\partial\dot{\theta}}\right) = mL^2\ddot{\theta}$$

Applying Euler-Lagrange Equation

Applying Euler-Lagrange Equation

Now that we have both sides of the Euler-Lagrange Equation we can solve for $\ddot{\theta}$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \mathcal{L}}{\partial \dot{\theta}} \right) = \frac{\partial \mathcal{L}}{\partial \theta}$$
$$mL^2 \ddot{\theta} = mgL \sin \theta$$
$$\ddot{\theta} = \frac{g}{I} \sin \theta$$

Which is the equation presented in the assignment.

With the oscillator we must modify the equation for y

$$\begin{aligned} x &= L\sin\theta & \dot{x} &= L\cos\left(\theta\right)\theta \\ y &= L\cos\theta + A\sin\omega t & \dot{y} &= -L\sin\left(\theta\right)\dot{\theta} + A\omega\cos\omega t \end{aligned}$$

(ロ)、(型)、(E)、(E)、 E) の(の)

With the oscillator we must modify the equation for y

$$\begin{aligned} x &= L\sin\theta & \dot{x} &= L\cos\left(\theta\right)\dot{\theta} \\ y &= L\cos\theta + A\sin\omega t & \dot{y} &= -L\sin\left(\theta\right)\dot{\theta} + A\omega\cos\omega t \end{aligned}$$

Again, we use the definition of the Lagrangian

$$\mathcal{L} = E_k - E_p$$
$$\mathcal{L} = \frac{1}{2}mv^2 - mgy$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Setup Continued...

Velocity is a vector representing the change in position, hence

Setup Continued...

Velocity is a vector representing the change in position, hence

$$v^{2} = \dot{x}^{2} + \dot{y}^{2}$$

= $L^{2}\dot{\theta}^{2}\cos^{2}\theta + L^{2}\dot{\theta}^{2}\sin^{2}\theta - 2AL\omega\sin\theta\cos(\omega t)\dot{\theta} + A^{2}\omega^{2}\cos^{2}(\omega t)$
= $L^{2}\dot{\theta}^{2}(\cos^{2}\theta + \sin^{2}\theta) - 2AL\omega\sin\theta\cos(\omega t)\dot{\theta} + A^{2}\omega^{2}\cos^{2}(\omega t)$
= $L^{2}\dot{\theta}^{2} - 2AL\omega\sin\theta\cos(\omega t)\dot{\theta} + A^{2}\omega^{2}\cos^{2}(\omega t)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Setup Continued...

Velocity is a vector representing the change in position, hence

$$v^{2} = \dot{x}^{2} + \dot{y}^{2}$$

= $L^{2}\dot{\theta}^{2}\cos^{2}\theta + L^{2}\dot{\theta}^{2}\sin^{2}\theta - 2AL\omega\sin\theta\cos(\omega t)\dot{\theta} + A^{2}\omega^{2}\cos^{2}(\omega t)$
= $L^{2}\dot{\theta}^{2}(\cos^{2}\theta + \sin^{2}\theta) - 2AL\omega\sin\theta\cos(\omega t)\dot{\theta} + A^{2}\omega^{2}\cos^{2}(\omega t)$
= $L^{2}\dot{\theta}^{2} - 2AL\omega\sin\theta\cos(\omega t)\dot{\theta} + A^{2}\omega^{2}\cos^{2}(\omega t)$

Substituting into the equation for the Lagrangian we get

$$\mathcal{L} = \frac{1}{2}mv^2 - mgy$$

$$\mathcal{L} = \frac{1}{2}mL^2\dot{\theta}^2 - mAL\omega\sin\theta\cos(\omega t)\dot{\theta}$$

$$+ \frac{1}{2}mA^2\omega^2\cos^2(\omega t) - mgL\cos\theta - mgA\sin(\omega t)$$

Setup Continued...

Velocity is a vector representing the change in position, hence

$$v^{2} = \dot{x}^{2} + \dot{y}^{2}$$

= $L^{2}\dot{\theta}^{2}\cos^{2}\theta + L^{2}\dot{\theta}^{2}\sin^{2}\theta - 2AL\omega\sin\theta\cos(\omega t)\dot{\theta} + A^{2}\omega^{2}\cos^{2}(\omega t)$
= $L^{2}\dot{\theta}^{2}(\cos^{2}\theta + \sin^{2}\theta) - 2AL\omega\sin\theta\cos(\omega t)\dot{\theta} + A^{2}\omega^{2}\cos^{2}(\omega t)$
= $L^{2}\dot{\theta}^{2} - 2AL\omega\sin\theta\cos(\omega t)\dot{\theta} + A^{2}\omega^{2}\cos^{2}(\omega t)$

Substituting into the equation for the Lagrangian we get

$$\mathcal{L} = \frac{1}{2}mv^2 - mgy$$

$$\mathcal{L} = \frac{1}{2}mL^2\dot{\theta}^2 - mAL\omega\sin\theta\cos(\omega t)\dot{\theta}$$

$$+ \frac{1}{2}mA^2\omega^2\cos^2(\omega t) - mgL\cos\theta - mgA\sin(\omega t)$$

$$\mathcal{L} = \frac{1}{2}mL^{2}\dot{\theta}^{2} - mAL\omega\sin\theta\cos(\omega t)\dot{\theta} + \frac{1}{2}mA^{2}\omega^{2}\cos^{2}(\omega t) - mgL\cos\theta - mgA\sin(\omega t)$$

(ロ)、(型)、(E)、(E)、 E) の(の)

$$\mathcal{L} = \frac{1}{2}mL^{2}\dot{\theta}^{2} - mAL\omega\sin\theta\cos(\omega t)\dot{\theta} + \frac{1}{2}mA^{2}\omega^{2}\cos^{2}(\omega t) - mgL\cos\theta - mgA\sin(\omega t)$$

$$\frac{\partial \mathcal{L}}{\partial \theta} = 0 - mAL\omega \cos \theta \cos (\omega t)\dot{\theta} + 0 + mgL \sin \theta - 0$$
$$= -mAL\omega \cos \theta \cos (\omega t)\dot{\theta} + mgL \sin \theta$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Background

nverted Pendulum

Visualization

Derivation Without Oscillator

Derivation With Oscillator

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\mathcal{L} = \frac{1}{2}mL^{2}\dot{\theta}^{2} - mAL\omega\sin\theta\cos(\omega t)\dot{\theta} + \frac{1}{2}mA^{2}\omega^{2}\cos^{2}(\omega t) - mgL\cos\theta - mgA\sin(\omega t)$$

$$\mathcal{L} = \frac{1}{2}mL^{2}\dot{\theta}^{2} - mAL\omega\sin\theta\cos(\omega t)\dot{\theta} + \frac{1}{2}mA^{2}\omega^{2}\cos^{2}(\omega t) - mgL\cos\theta - mgA\sin(\omega t)$$

$$\frac{\partial \mathcal{L}}{\partial \dot{\theta}} = mL^2 \dot{\theta} - mAL\omega \sin \theta \cos(\omega t) + 0 - 0 - 0$$
$$= mL^2 \dot{\theta} - mAL\omega \sin \theta \cos(\omega t)$$

$$\mathcal{L} = \frac{1}{2}mL^{2}\dot{\theta}^{2} - mAL\omega\sin\theta\cos(\omega t)\dot{\theta} + \frac{1}{2}mA^{2}\omega^{2}\cos^{2}(\omega t) - mgL\cos\theta - mgA\sin(\omega t)$$

$$\frac{\partial \mathcal{L}}{\partial \dot{\theta}} = mL^2 \dot{\theta} - mAL\omega \sin \theta \cos (\omega t) + 0 - 0 - 0$$
$$= mL^2 \dot{\theta} - mAL\omega \sin \theta \cos (\omega t)$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \mathcal{L}}{\partial \dot{\theta}} \right) = mL^2 \ddot{\theta} - mAL\omega \cos\theta \cos(\omega t) \dot{\theta} + mAL\omega^2 \sin\theta \sin(\omega t)$$

Applying Euler-Lagrange Equation

Applying Euler-Lagrange Equation

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \mathcal{L}}{\partial \dot{\theta}} \right) = \frac{\partial \mathcal{L}}{\partial \theta}$$

$$mL^{2}\ddot{\theta} - mAL\omega\cos\theta\cos(\omega t)\dot{\theta} + mAL\omega^{2}\sin\theta\sin(\omega t)$$
$$= -mAL\omega\cos\theta\cos(\omega t)\dot{\theta} + mgL\sin\theta$$

Applying Euler-Lagrange Equation

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \mathcal{L}}{\partial \dot{\theta}} \right) = \frac{\partial \mathcal{L}}{\partial \theta}$$

$$mL^{2}\ddot{\theta} - mAL\omega\cos\theta\cos(\omega t)\dot{\theta} + mAL\omega^{2}\sin\theta\sin(\omega t)$$

$$=$$

$$-mAL\omega\cos\theta\cos(\omega t)\dot{\theta} + mgL\sin\theta$$

$$L\ddot{\theta} + A\omega^{2}\sin\theta\sin(\omega t) = g\sin\theta$$
$$L\ddot{\theta} = g\sin\theta - A\omega^{2}\sin\theta\sin(\omega t)$$
$$\ddot{\theta} = \frac{1}{L}(g - A\omega^{2}\sin(\omega t))\sin\theta$$

References

- http://en.wikipedia.org/wiki/Euler-Lagrange_equation
- http://en.wikipedia.org/wiki/Lagrangian_mechanics
- http://en.wikipedia.org/wiki/Newton's_laws_of_motion