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Kinetic Energy

Definition

The energy which an object possesses due to its motion

It is defined as the work needed to accelerate a body of a
given mass from rest to its stated velocity

In classical mechanics, the kinetic energy Ek of a point object
is defined by its mass m and velocity v :

Ek =
1

2
mv2
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Potential Energy

Definition

The energy of an object or a system due to the position of the
body or the arrangement of the particles of the system

The amount of gravitational potential energy possessed by an
elevated object is equal to the work done against gravity in
lifting it

Thus, for an object at height h, the gravitational potential
energy Ep is defined by its mass m, and the gravitational
constant g :

Ep = mgh
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Lagrangian Mechanics

An analytical approach to the derivation of E.O.M. of a
mechanical system

Lagrange’s equations employ a single scalar function, rather
than vector components

To derive the equations modeling an inverted pendulum all we
need to know is how to take partial derivatives
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Lagrangian

Definition

In classical mechanics, the natural form of the Lagrangian is
defined as L = Ek − Ep

E.O.M. can be directly derived by substitution using
EulerLagrange equation:

d

dt

(
∂L
∂θ̇

)
=
∂L
∂θ
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Inverted Pendulum Problem

The pendulum is a stiff bar of length L which is supported at
one end by a frictionless pin

The pin is given an oscillating vertical motion s defined by:

s(t) = A sinωt

Problem

Our problem is to derive the E.O.M. which relates time with the
acceleration of the angle from the vertical position
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Setup

From the figure on previous page we know

x = L sin θ ẋ = L cos (θ)θ̇

y = L cos θ ẏ = −L sin (θ)θ̇

Recall the definition of the Lagrangian

L = Ek − Ep

L =
1

2
mv2 −mgy
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Setup Continued...

Velocity is a vector representing the change in position, hence

v2 = ẋ2 + ẏ2

= L2θ̇2 cos2 θ + L2θ̇2 sin2 θ

= L2θ̇2(cos2 θ + sin2 θ)

= L2θ̇2

Substituting into the equation for the Lagrangian we get

L =
1

2
mv2 −mgy

L =
1

2
mL2θ̇2 −mgL cos θ
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Setup Continued...

Recall the Euler-Lagrange equation

d

dt

(
∂L
∂θ̇

)
=
∂L
∂θ

We shall now compute both sides of the equation and solve for θ̈
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Computing ∂L
∂θ

L =
1

2
mL2θ̇2 −mgL cos θ

∂L
∂θ

= 0 + mgL sin θ

= mgL sin θ
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Computing ∂L
∂θ

L =
1

2
mL2θ̇2 −mgL cos θ

∂L
∂θ

= 0 + mgL sin θ

= mgL sin θ
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Computing d
dt

(
∂L
∂θ̇

)

L =
1

2
mL2θ̇2 −mgL cos θ

We compute in two steps:

∂L
∂θ̇

= mL2θ̇ − 0

= mL2θ̇

d

dt

(
∂L
∂θ̇

)
= mL2θ̈
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Applying Euler-Lagrange Equation

Now that we have both sides of the Euler-Lagrange Equation we
can solve for θ̈

d

dt

(
∂L
∂θ̇

)
=
∂L
∂θ

mL2θ̈ = mgL sin θ

θ̈ =
g

L
sin θ

Which is the equation presented in the assignment.
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Setup

With the oscillator we must modify the equation for y

x = L sin θ ẋ = L cos (θ)θ̇

y = L cos θ + A sinωt ẏ = −L sin (θ)θ̇ + Aω cosωt

Again, we use the definition of the Lagrangian

L = Ek − Ep

L =
1

2
mv2 −mgy
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Setup Continued...

Velocity is a vector representing the change in position, hence

v2 = ẋ2 + ẏ2

= L2θ̇2 cos2 θ + L2θ̇2 sin2 θ − 2ALω sin θ cos (ωt)θ̇ + A2ω2 cos2 (ωt)

= L2θ̇2(cos2 θ + sin2 θ)− 2ALω sin θ cos (ωt)θ̇ + A2ω2 cos2 (ωt)

= L2θ̇2 − 2ALω sin θ cos (ωt)θ̇ + A2ω2 cos2 (ωt)

Substituting into the equation for the Lagrangian we get

L =
1

2
mv2 −mgy

L =
1

2
mL2θ̇2 −mALω sin θ cos (ωt)θ̇

+
1

2
mA2ω2 cos2 (ωt)−mgL cos θ −mgA sin (ωt)
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Computing ∂L
∂θ

L =
1

2
mL2θ̇2 −mALω sin θ cos (ωt)θ̇

+
1

2
mA2ω2 cos2 (ωt)−mgL cos θ −mgA sin (ωt)

∂L
∂θ

= 0−mALω cos θ cos (ωt)θ̇ + 0 + mgL sin θ − 0

= −mALω cos θ cos (ωt)θ̇ + mgL sin θ
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Computing d
dt

(
∂L
∂θ̇

)

L =
1

2
mL2θ̇2 −mALω sin θ cos (ωt)θ̇

+
1

2
mA2ω2 cos2 (ωt)−mgL cos θ −mgA sin (ωt)

We compute in two steps:

∂L
∂θ̇

= mL2θ̇ −mALω sin θ cos (ωt) + 0− 0− 0

= mL2θ̇ −mALω sin θ cos (ωt)

d

dt

(
∂L
∂θ̇

)
= mL2θ̈ −mALω cos θ cos (ωt)θ̇ + mALω2 sin θ sin (ωt)
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Applying Euler-Lagrange Equation

Now that we have both sides of the Euler-Lagrange Equation we
can solve for θ̈

d

dt

(
∂L
∂θ̇

)
=
∂L
∂θ

mL2θ̈ −mALω cos θ cos (ωt)θ̇ + mALω2 sin θ sin (ωt)

=
−mALω cos θ cos (ωt)θ̇ + mgL sin θ

Lθ̈ + Aω2 sin θ sin (ωt) = g sin θ

Lθ̈ = g sin θ − Aω2 sin θ sin (ωt)

θ̈ =
1

L
(g − Aω2 sin (ωt)) sin θ
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