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TL;DR: A toy-model derivation of the equivalent circuit of a Tesla coil that modifies

the approach of [PLoS ONE 9, e115397 (2014)] to more conveniently include a capac-

itive load. Approximates the secondary coil as a uniform transmission line leading

to the “Miller” self-capacitance of a solenoid inductor [Proc. IRE 7, 299 (1919)].
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I. INTRODUCTION

This note supplements Reference 1, which is freely available online (open access). You

will need a copy of Ref. 1 to follow the derivation below. To avoid confusion, the numbering

of the equations and figures below continues after those in Ref. 1.

Briefly, Ref. 1 outlines how to generate an equivalent circuit (lumped-element model)

for a transmission line coupled to one or more additional circuits. As a specific example,

it derives an equivalent circuit for a Tesla coil (or Tesla transformer) by approximating its

secondary coil as a uniform transmission line. For simplicity, it ignores the capacitive loading

from an output electrode, which is normally significant in practice. While it later outlines

how to include such a load, its general approach leads to a rather complex equivalent circuit.

This note modifies that approach to more conveniently include a capacitive load, leading to

the more familiar, simpler equivalent circuit for a Tesla coil.

https://bartmcguyer.com/notes/note-11-TcEquations.pdf
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I hope that the combination of this note with Ref. 1 will fill a pedagogical gap by semi-

quantitatively justifying the ubiquitous equivalent circuit for a Tesla coil: Together, they

provide a middle ground between introductory references that simply assert such a circuit

and advanced references with field solutions for waves on ideal, infinite solenoids (e.g., sheath

helix models). While much of the approach of this combination isn’t new, it doesn’t seem to

have been revisited much since the early 20th century.2 For example, the approach readily

exposes potential issues with nonuniqueness and nonreciprocity in such circuits that seem

to be mostly forgotten today.1,3

II. DERIVATION

Consider the physical setup sketched in Fig. 7(a) of a solenoid coupled with a lumped

inductor that forms the air-core transformer in a Tesla coil. This is a modification of Fig. 1(a)

in Ref. 1 that includes a lumped capacitive load Cload to model the effective electrostatic

self-capacitance of an output electrode. Let’s derive an equivalent circuit for this setup of

the form shown in Fig. 7(b).

A. Modifying the Fourier series

Physically, adding the capacitive load Cload to the top of the solenoid alters its resonant

modes. For example, if Cload is very small, then the modes should be very nearly the same as

the quarter-wave resonances of an unloaded solenoid. However, if Cload is large enough that

the top is effectively shorted, then we should expect half-wave resonances with a fundamental

mode that serves as a “lumped-element” limit with uniform current throughout the solenoid.

In between, the modes will depend on the exact value of Cload.

One way to handle this variation is to modify the spatial Fourier series so that its terms

always correspond to resonant modes. We can do this by slightly modifying (3a,b) to be

V (x, t) =
∞∑
ν=1

sin(k′νx)Vν(t) (27)

I(x, t) =
∞∑
ν=1

cos(k′νx)Iν(t), (28)

where prime have been added to the wavenumbers k′ν to indicate that their values now

depend parametrically on Cload. The allowed values of k′ν will be determined by a boundary

condition at x = H in the next section. For Cload = 0, the wavenumbers will be the same as

in Ref. 1 for the unloaded case.

To use this modified series, we will have to revisit the approach of Ref. 1, because this

new series has different properties than the original.4 Specifically, only the cosine terms are

guaranteed to form an orthogonal basis, and that basis is an unusual, nonharmonic Fourier

series. The sine series is in general not orthogonal, and both series have term-dependent

normalization that depends on Cload. We’ll return to this in the next sections.
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FIG. 7. Problem setup. (a) Physical setup of primary and secondary inductors with low-frequency

self-inductances Lp and Ls. This is a modified version of Fig. 1(a) in Ref. 1 that includes a lumped

capacitive load Cload. (b) Equivalent circuit to be derived for the setup at frequencies near the

first self-resonance, which has the conventional form expected for a Tesla coil.

Nevertheless, the general approach outlined in Ref. 1 still applies. Each ν-th pair of terms

generates an equivalent circuit, similar to Fig. 3(a), that corresponds to a resonant mode

of the solenoid with Cload. These mode equivalent circuits stitch together to form a full

equivalent circuit, similar to Fig. 5, through their coupling with the primary coil.

For a Tesla coil, note that we’re really only interested in the modified fundamental mode

with ν = 1 that corresponds to the lowest resonance of the solenoid with Cload. In this case,

the measurable top voltage and base current in Fig. 7(a) are approximately

Vs(t) = V (H, t) ≈ sin(k′1H)V1(t) (29)

Is(t) = I(0, t) ≈ I1(t), (30)

and the equivalent circuits for the higher modes (ν > 1) can usually be neglected.

B. Boundary condition from a capacitive load

While the boundary condition of V (0, t) = 0 at the grounded base is unchanged, the

boundary condition at the top is now

I(H, t) = Cload
∂

∂t
V (H, t). (31)

This condition will be satisfied if for each mode

Iν(t) cos(k′νH) = Cload
d

dt
Vν(t) sin(k′νH). (32)

Jumping ahead, we will find in the next section that Eq. (8b) still applies for the modified

series. We are interested in the case with g = 0 and isp(x, t) = 0 that reduces (8b) to

Iν(t) =

(
c

k′ν

)
d

dt
Vν(t), (33)

which used (4)–(7) to substitute C̃ν = c/kν −→ c/k′ν .
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FIG. 8. Boundary condition and its solutions. (Left) Left hand side of the transcendental equation

(36). Each solution corresponds to the x-axis value where a horizontal line would intersect each

curve. (Right) First five solutions x = θν divided by their quarter-wave limits versus 1/y =

Cload/C0. The fractional change to reach the half-wave limit decreases as ν increases.

To proceed, let’s introduce some handy notation. First, let’s introduce the capacitance

C0 = cH, (34)

which physically is the quasistatic self capacitance of the solenoid with a uniform voltage

profile. In practice, this is usually not exactly the same as the electrostatic (or low frequency)

self-capacitance because c is frequency dependent, and though it’s for the solenoid alone, it

includes perturbations from the environment (e.g., electrode and primary coil). Next, let’s

introduce electrical full lengths of the solenoid for the modes,

θν = k′νH, (35)

which are the solutions of the transcendental equation. Note that in Ref. 1 it was more

convenient to work with the half lengths φν = kνH/2 because of a focus on reciprocity.

With these notation changes, combining (32) and (33) simplifies the boundary condition

to the following transcendental equation that is shown in Fig. 8:

θν tan (θν) =
C0

Cload

(36)

This can be used to numerically solve for the mode lengths θν and, equivalently, the modified

wavenumbers k′ν . Note that though deriving this involved dividing by cos(θν), the case of

cos(θν) = 0 is still captured by the limiting behavior of (36). Inspecting Fig. 8, the solutions

fall within the ranges

θν ∈ [(ν − 1)π, (2ν − 1)π/2] ≤ 2φν (37)

and the modified wavenumbers are always smaller than the original quarter-wave values,

k′ν ≤ kν . (38)
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FIG. 9. Highlight of the fundamental solution θ1 of the transcendental equation (36). Linear

(left) and log-linear (right) plots. Note that all values (y-axes) are normalized to π/2. The dashed

line is an approximation leading to the Miller self-capacitance for Cload � C0.

In particular, the length θ1 of fundamental solution is within the range

0 < θ1 ≤ π/2 (39)

and depends on Cload/C0 as highlighted in Fig. 9.

C. Series orthogonality and normalization

Now that we have finished constructing the modified Fourier series (27) and (28), we can

proceed to use them. To do so, we will need to make some slight adjustments. This will be

covered in the next section, which updates the specific example in Ref. 1 to use the modified

series. Before we continue, though, we should examine these series and discuss things a bit

more. To help with this, consider the following integrals:

A(a, b) =

∫ H

0

sin(ax) sin(bx)dx =


0 a = b = 0
H
2
− sin(2aH)

4a
a = b 6= 0

a cos(aH) sin(bH)−b cos(bH) sin(aH)
b2−a2 a 6= b, a or b 6= 0

(40)

B(a, b) =

∫ H

0

cos(ax) cos(bx)dx =


H a = b = 0
H
2

+ sin(2aH)
4a

a = b 6= 0
a sin(aH) cos(bH)−b sin(bH) cos(aH)

a2−b2 a 6= b, a or b 6= 0

(41)

C(a, b) =

∫ H

0

sin(ax) cos(bx)dx =


0 a = b = 0
sin(aH)2

2a
a = b 6= 0

a−a cos(aH) cos(bH)−b sin(bH) sin(aH)
a2−b2 a 6= b, a or b 6= 0

(42)

The original Fourier series in (3a,b) of Ref. 1 is a typical harmonic series. A(kn, km) shows

that the set of sine terms is orthogonal, and B(kn, km) shows that the set of cosine terms is
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FIG. 10. Normalization length factors Nν of (43) for the first five modes and their limiting values.

orthogonal. Perhaps atypical, C(kn, km) shows that the two sets are not mutually orthogonal,

since they are each quarter-wave Fourier series instead of full-wave Fourier series over the

domain x ∈ [0, H]. However, that doesn’t affect their use in Ref. 1. The normalization for

each term follows from A(kν , kν) = B(kν , kν) = H/2.

The modified series is unusual, as hinted above. B(k′n, k
′
m) shows that the set of co-

sine terms in (28) is orthogonal for wavenumbers satisfying the boundary conditions (36).

However, A(k′n, k
′
m) shows that the set of sine series in (27) is no longer guaranteed to be

orthogonal for those wavenumbers, except in the limits of null or infinite Cload. C(k′n, k
′
m)

shows that the two sets are not mutually orthogonal, as before. Normalization still fol-

lows from A(k′ν , k
′
ν) and B(k′ν , k

′
ν) but now varies for each term and depends on Cload. For

convenience later, let’s introduce the normalization length factors

Nν = B(k′ν , k
′
ν) =

H

2

[
1 +

sin(2θν)

2θν

]
≥ 0. (43)

Fig. 10 shows the first five Nν . For the quarter-wave series in Ref. 1, Nν = H/2.

The set of cosine terms of the modified series form a nonharmonic Fourier series. For more

information about this series, and to see example plots of its terms, please see Ref. 4. This set

is a complete basis for current along the solenoid according to Sturm-Liouville theory. The

set of sine terms can be adjusted to also be complete, but for different boundary conditions

than considered here.4

The effect of increasing Cload can be interpreted as stretching the domain of the quarter-

wave terms, or shrinking the solenoid, as sketched in Fig. 11. That the series is nonharmonic

means that the effective, stretched lengths H ′ν = Hkν/k
′
ν = (2ν − 1)π/(2k′ν) equivalent to

the original series domain vary for each term, except in the quarter-wave limit that gives

the original series with the lengths aligned, H ′ν −→ H. Similarly, in the half-wave limit the

effective, stretched lengths 2H ′ν become aligned, 2H ′ν −→ H, except for the special case of

the fundamental mode which has an infinite domain (H ′1 −→∞ because k′1 −→ 0).

Since we’re really only interested in the fundamental term, it’s tempting to force the series

to be harmonic by aligning the higher-order lengths to be the same as that of the fundamental
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FIG. 11. Stretching the Fourier series into anharmonicity. (a) An increasing load alters the

fundamental mode in a way that appears as if its domain is stretching, or alternatively, the solenoid

is shrinking. This stretching (or shrinking) is not the same for all modes, producing a nonharmonic

series. (b) Voltage and current spatial profiles for the fundamental Fourier series terms continued

beyond the solenoid height to complete a quarter wavelength at H ′1. The boundary condition for

Cload occurs at the actual top of the solenoid at x = H.

term, H ′ν = H ′1. This would turn the modified series into a harmonic, quarter-wave Fourier

series over a larger domain than the solenoid: x ∈ [0, H ′1]. While the fundamental mode

would correspond to an actual resonant mode, the higher modes would no longer do so. The

sine and cosine series would both be complete, but would actually be “over complete” for the

solenoid’s shorter domain. As a result, the coupling with the primary coil would no longer

be represented correctly without careful treatment. However, other circuit parameters for

the fundamental mode would be the same, such as C1. Therefore, to avoid such issues, let’s

proceed with the modified nonharmonic series.

Last but not least, a clarification about the “lumped-element” regime of Cload � C0: Note

that in the limit of Cload −→∞, there is effectively a short at the top x = H. In this limit,

the modified series is a half-wavelength series with a voltage node at x = H for each term in

(27), so the series cannot represent a nonzero voltage exactly at the top. However, for finite

Cload approaching this limit, the ν = 1 terms are a nearly constant current and a nearly

linear voltage increase across the solenoid. As Cload becomes infinite, the ν = 1 voltage term

eventually becomes zero across the solenoid. Therefore, the regime of Cload � C0 for finite

Cload does capture lumped-element behavior, but the actual limit of infinite Cload represents

a solenoid grounded at both ends.
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D. Specific example, revisited

To model a Tesla coil, let’s update the specific example in Ref. 1 to use the modified

Fourier series. Let’s ignore shunt conductance (g = 0), which is negligible for a Tesla coil.

Let’s assume isp(x, t) = 0 so that there is only distributed coupling to the primary coil

following (15). Furthermore, let’s keep the results general and wait to determine the final

circuit parameters and circuit variables (voltages and currents) in the next section.

Then, using the modified series (27) and (28) with the Telegrapher’s equations (2a,b),

Eqs. (8a,b) become

Vν(t) = −
(
R̃′ν + L̃′ν

d

dt

)
Iν(t)−

(
1

k′νNν

)
V ′sp,ν(t) (44)

Iν(t) = C̃ ′ν
d

dt
Vν(t). (45)

The first line follows from the orthogonality of the cosine series (28) with a corrected nor-

malization using (41) and (43): Note that k′νNν plays the role of φν in (8a), and is equivalent

to φν for Cload = 0. The source term V ′sp,ν(t) from the primary coil follows from (9) and has

a prime to denote using k′ν instead of kν . The second line satisfies (2b) if it holds for each

mode. The primes on the circuit parameters denote their dependence on k′ν instead of kν in

(4)–(7). Note that (45) is equivalent to (33) asserted earlier.

To consider different circuit parameters, we can use (13) to introduce the circuit variables

V ′ν(t) =
nν
αν

Vν(t) (46)

I ′ν(t) =
1

nναν
Iν(t). (47)

Here, the primes follow from the notation of Ref. 1. Substituting, Eqs. (44) and (45) become

V ′ν(t) = −
(
Rν + Lν

d

dt

)
I ′ν(t)−Msp,ν

d

dt
Ip(t) (48)

I ′ν(t) = Cν
d

dt
V ′ν(t) (49)

where the circuit parameters follow from (4)–(6), and are given by the lengths

Aν = Rν/r = Lν/l = n2
ν/k

′
ν (50)

Bν = Cν/c = 1/(n2
ν k
′
ν) (51)

which used χν = n2
ν as noted after (13). The forward mutual inductance parameters Msp,ν

in (48) follow from (9) with (14), (15), and (24) and include coefficients from (46), giving

Msp,ν =

(
nν

ανk′νNν

)
M ′

ν , (52)

where Mν is given by (24) and the prime indicates M ′
ν uses k′ν instead of kν .
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FIG. 12. Exact equivalent circuit given by (48), (49), and (53) for the setup in Fig. 7(a) using

the modified Fourier series. The narrowband circuit in Fig. 7(b) is an approximation that ignores

the contributions of the modes ν ≥ 2. This is a modified version of Fig. 5 in Ref. 1.

For the primary coil, from Fig. 3(b) the equivalent circuit is

Vp(t) = −Lp
d

dt
Ip(t)−

∞∑
ν=1

Mps,ν
d

dt
I ′ν(t) (53)

with reverse mutual-inductance parameters

Mps,ν = ανnνM
′
ν (54)

that follow from (16) with (15), (18), (20)–(22), and (24) and include coefficients from (47).

That’s it! Together, (48) and (49) define the mode equivalent circuits for the secondary

coil and (53) defines the equivalent circuit for the primary coil. The circuit variables are

given by (46) and (47). The circuit parameters are given by (50) and (51) and the mutual

inductances by (52) and (54). Fig. 12 shows these equivalent circuits stitched together. For

frequencies near the fundamental resonance, we can ignore all but the fundamental mode,

and Fig. 12 reduces to Fig. 7(b). However, these circuits still have free parameters that we

will choose in the next section.

E. Choosing equivalent-circuit parameters

To finish generating the equivalent circuit, we need to choose the circuit parameters. For

each mode equivalent circuit, there are two sets of free parameters left to determine. To

select them, let’s follow the conventions in the typical equivalent circuit for a Tesla coil.

First are the parameters αν , which influences the mutual inductances and the circuit

variables (voltages and currents). Following nearly universal convention,1 let’s choose for
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the mutual inductances to be reciprocal, Msp,ν = Mps,ν . From (52) and (54), this requires

αν = 1/
√
k′νNν , (55)

which is a generalization of the condition αν = 1/
√
φν as stated after (13). In other words,

we’re choosing to avoid the curious artificial nonreciprocity studied in Ref. 1.

Last are the parameters χν = n2
ν , which set the impedances modeled by the mode equiva-

lent circuits. Again, following the convention for Tesla coils and the so-called classical model

of an inductor, as discussed on p. 13 of Ref. 1, let’s choose for the self inductance of the

fundamental mode to be equal to the solenoid self inductance, L1 = Ls. For simplicity, let’s

chose this for all modes, Lν = Ls = lH, which requires the lengths

Aν = H −→ χν = n2
ν = θν . (56)

As a result, this gives the remaining lengths

Bν = H/θ2ν . (57)

With these choices, the equivalent circuit parameters are then

Lν = lH = Ls (58)

Rν = rH = Rs (59)

Cν = C0/θ
2
ν (60)

Msp,ν = Mps,ν =

√
H

Nν

M ′
ν . (61)

By choice, the inductance and resistance are constant and set at their low-frequency values

Ls and Rs. Note that there is a subtlety in that the distributed coefficients l and r (and

c) are in general frequency dependent, but our approach approximates them as frequency

independent. The capacitances and mutual inductances, however, depend on Cload as shown

in Fig. 13. We will return to the capacitances and inductances in the next sections.

The circuit variables are then

V ′ν(t) = θν

√
Nν

H
Vν(t) (62)

I ′ν(t) =

√
Nν

H
Iν(t). (63)

For a Tesla coil where the fundamental mode dominates, the observables are approximately

Vs(t) ≈ sin(θ1)V1(t) =
sin(θ1)

θ1

√
H

N1

V ′1(t) (64)

Is(t) ≈ I1(t) =

√
H

N1

I ′1(t), (65)

Fig. 13 shows how these variables and observables are related. The equivalent circuit in

Fig. 7(b) misrepresents voltage and current except in the half-wave limit of large Cload.



11

(π/2)2 C1/C0

(π/2)2(C1-Cload)/C0

(3π/2)2 C2/C0

(5π/2)2 C3/C0

(7π/2)2 C4/C0

(9π/2)2 C5/C0

0.001 0.100 10 1000

1.0

1.5

2.0

2.5

Cload/C0

(C1-Cload)/C0

Cs
U /C0

1/2

4/π2

1/3

0.001 0.100 10 1000
0.30

0.35

0.40

0.45

0.50

Cload/C0

Msp,1 /M1


Msp,2 /M2


Msp,3 /M3


Msp,4 /M4


Msp,5 /M5


2

1

0.001 0.100 10 1000

1.0

1.1

1.2

1.3

1.4

Cload/C0

Vs / V1


Is / I1
 =Msp,1 /M1



2

1

2 2 /π

0.001 0.100 10 1000

0.9

1.0

1.1

1.2

1.3

1.4

Cload/C0

FIG. 13. Circuit parameters. (Top left) Capacitances Cν of (60) normalized to C0 for the

quarter-wave limit. The dashed curve is a modification of C1 to be finite in the half-wave limit.

(Top right) Closeup of the behavior of C1 and the energy-equivalent parameter CUs of (82). The

1/3 asymptote of the half-wave limit leads to the Miller capacitance (66). (Bottom left) Mutual

inductances (61). (Bottom right) For the fundamental mode, circuit variables (62) and (63) of

Fig. 7(b) versus the observable voltage (64) and current (65), which agree in the half-wave limit.

Note that the asymptote of Vs/V
′
1 −→ 2

√
2/π ≈ 0.9 matches a case described on p. 14 of Ref. 1.

F. Miller self-capacitance of a solenoid inductor

In the regime of a large Cload � C0, the capacitance C1 simplifies to the asymptotic value

C1 ≈ Cload +
1

3
C0 (66)

as shown in Fig. 13(top right). This result was predicted at least as early as 1919 by

J. M. Miller,2 the famous electrical engineer after whom the “Miller capacitance” in ampli-

fiers is named. Let’s call the C0/3 term in (66) the “Miller self-capacitance of a solenoid.”

We can derive this analytically as follows. Before we do, note that there is no accepted

analytical model for the empirical self-capacitance of single-layer solenoid inductors.5 The

Miller self-capacitance is an approximation that, as exactly written, neglects the energy

stored by a voltage gradient along the solenoid. In the limiting case where inter-turn ca-

pacitances are negligible, it’s a good approximation. Otherwise, you can show it’s usually
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expected to be an underestimate. Several few years ago I tested this experimentally by

wrapping a Tesla coil secondary with a variable thickness of paper and then an aluminum

foil outer layer, to make an adjustable coaxial capacitor with the solenoid as the inner

electrode6. This increased c enough that the inter-turn capacitance was negligible. Separate

measurements of C0 with an LCR meter and of C1 from the lowest resonant frequency with

a known Cload did indeed follow the relationship (66) even as C0 was varied by adjusting the

paper layer thickness. It also probed the similar result for weak loading with a coefficient of

4/π2 shown in Fig. 13(top right).

In the lumped regime, θ1 � 1 so the boundary condition (36) is approximately

x tan(x) ≈ x2 +
x4

3
+

2x6

15
+ . . . (67)

Keeping only the first two terms gives

θ21 +
θ41
3
≈ C0

Cload

. (68)

Dividing by θ41 gives a quadratic equation for 1/θ21. The positive solution to this equation is

1

θ21
≈ Cload

2C0

(
1 +

√
1 +

4C0

3Cload

)
. (69)

Approximating
√

1 + x ≈ 1 + x/2 simplifies the positive solution to

1

θ21
≈ Cload

C0

+
1

3
. (70)

This is a rather good approximation to θ1 for Cload & C0 as shown in Fig. 9(b). Together

with (60), this recovers (66).

1. Why is the coefficient 1/3?

The factor of 1/3 in (66) has a rather simple explanation. In the lumped regime near the

half-wave limit, the circuit not only represents energy correctly but also represents voltage

and current correctly. In this regime, the voltage V (x, t) ≈ (x/H)Vs(t). Therefore, the

energy stored by capacitance should be

1

2

∫ H

0

c
( x
H

)2
〈Vs(t)2〉dx =

1

2

(
1

3
C0

)
〈Vs(t)2〉. (71)

Pulling out just the part giving the factor of 1/3,

1

H

∫ H

0

( x
H

)2
dx =

1

3
. (72)

Thus the origin of the coefficient 1/3 is that it’s the normalized area of a parabola with unit

height, which comes from the voltage distribution being approximately linear in the lumped

regime for a solenoid grounded at one end and energy being the integral of voltage squared

across the solenoid.
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G. Energy-equivalent parameters

Separate from equivalent circuits, we can re-examine energy-equivalent parameters just

as Ref. 1 did in (11) and (12). There are multiple ways to do this, making it a bit of a mess,

so let’s do most of them for clarity.

Using the modified series, the energy stored by each mode (11) becomes

Uν =
1

2

∫ H

0

〈
l Iν(x, t)

2 + c Vν(x, t)
2
〉
dx (73)

=
1

2
LUν
〈
Iν(t)

2
〉

+
1

2
CU
ν

〈
Vν(t)

2
〉

+
1

2

∑
µ6=ν

CU
µν 〈Vµ(t)Vν(t)〉 (74)

=
1

2
L′
U
ν

〈
I ′ν(t)

2
〉

+
1

2
C ′

U
ν

〈
V ′ν(t)

2
〉

+
1

2

∑
µ6=ν

C ′
U
µν

〈
V ′µ(t)V ′ν(t)

〉
. (75)

The second line uses the circuit variables of the modified series and the third line uses

the circuit variables of the equivalent circuits. There is a new term with mutual capaci-

tances because in general the modified sine series (27) is not orthogonal. In the narrowband

approximation where all but the fundamental mode can be ignored, the total energy is

approximately

U1 ≈
1

2
LUs
〈
Is(t)

2
〉

+
1

2
CU

s

〈
Vs(t)

2
〉
, (76)

where the mutual capacitance terms are ignored.

The energy-equivalent inductance parameters are

LUν = lB(k′ν , k
′
ν) = lNν = Ls

1

2

[
1 +

sin(2θν)

2θν

]
(77)

L′
U
ν = LUν

(
H

Nν

)
= Ls = Lν (78)

LUs = LU1 . (79)

The equivalence of the second line to the circuit parameter follows from choosing the equiv-

alent circuits to be reciprocal and to have Lν = Ls.

The energy-equivalent self capacitance parameters are

CU
ν = cA(k′ν , k

′
ν) = C0

1

2

[
1− sin(2θν)

2θν

]
=

1

2

[
C0 − sin(θν)

2Cload

]
(80)

C ′
U
ν =

CU
ν

θ2ν

(
H

Nν

)
= Cν

(
2θν − sin(2θν)

2θν + sin(2θν)

)
=
C0

θ2ν

(
2θν − sin(2θν)

2θν + sin(2θν)

)
(81)

CU
s =

CU
1

sin(θ1)2
=

1

2

[
C0

sin(θ1)2
− Cload

]
. (82)

Note that these only take in to account the energy stored by the solenoid, and do not

include energy stored by Cload. The first line was simplified using the boundary condition.
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FIG. 14. Energy-equivalent capacitance parameters (81) plotted versus C0 (left) or Cν (right) for

the first three modes.

The second line is interesting because its relationship to Cν shows how Cν takes in to account

energy stored by Cload. Parameters for the first three modes are plotted in Fig. 14. The

last line is plotted in Fig. 13(top right) and recovers the Miller self-capacitance (66) in the

lumped regime. To see how it does, note that 1/ sin(x)2 ≈ 1/x2 + 1/3 +x2/15 + . . . for small

x. Using (70) then gives CU
s ≈ C0/3.

The energy-equivalent mutual capacitance parameters are

CU
µν = cC(k′µ, k

′
ν) (83)

C ′
U
µν =

CU
ν H

θµθν
√
NµNν

. (84)

where the function C(a, b) is given by (42).

III. DISCUSSION

This note derived the conventional equivalent circuit for a Tesla coil by modifying the

approach of Ref. 1 to more conveniently include a capacitive load. The modified approach

introduced a nonharmonic Fourier series to capture how the load alters the resonances of the

secondary circuit. By construction, the nonreciprocity studied in Ref. 1 was avoided, but a

related misrepresentation of voltage and current for a weak load is present. As asserted on

p. 13 of Ref. 1, this approach reproduced the Miller2 approximation of the self-capacitance

of a single-layer solenoid inductor, which has no accepted analytical model.5

In contrast, the approach of Ref. 1 would’ve involved introducing a direct coupling at the

top to introduce the capacitve load following the discussion after (15). This introduces an

additional stitching mechanism that joins the equivalent circuits in Fig. 3(a) to produce a

version of Fig. 5 that resembles Fig. 6(b). Many spatial modes would be needed to capture

the circuit behavior with a non-zero load, so this would not directly lead to the conventional

equivalent circuit for a Tesla coil.

Both of these approaches are limited by Ref. 1’s approximation of a solenoid as a uniform

transmission line, which neglects many effects from inter-turn capacitive and inductive cou-
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plings. The Telegraph equations can be modified to include those couplings, which would

lead to some interesting corrections to this note. Such exploration has been done numeri-

cally for Tesla coils,7 and predicts interesting phenomena like a current maximum inside the

solenoid.
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