

DESCRIBING AND COMPARING DATA DISTRIBUTIONS TEACHER VERSION

Subject Level:

High School Math
Grade Level:
9

Approx. Time Required:
50 minutes

Learning Objectives:

- Students will be able to compare and contrast data distributions in terms of shape, center, and spread.
- Students will be able to describe key features of a histogram or box plot.

Activity Description

Students will use data on the organization, spending, and populations of governments at different levels (city or town, county, and state) to compare and contrast the distributions of these variables in graphs, analyzing the shape, center, and spread of each.

Suggested Grade Level:

 9
Approximate Time Required:

50 minutes

Learning Objectives:

- Students will be able to compare and contrast data distributions in terms of shape, center, and spread.
- Students will be able to describe key features of a histogram or box plot.

Topics:

- Box plots
- Histograms

Skills Taught:

- Comparing and contrasting the shapes of data distributions

Materials Required

- The student version of this activity, 11 pages
- Calculators
- Graph paper

A graphing calculator or other graphing technology and a teacher computer with a projector are optional.

Activity Items

The following items are part of this activity. The items, their data sources, and any relevant instructions for viewing the source data online appear at the end of this teacher version.

- Item 1: Population, Land Area, and Other Data for the 50 U.S. States and District of Columbia
- Item 2: Income, Employment, and Other Demographic Data for the 50 U.S. States and District of Columbia

For more information to help you introduce your students to the U.S. Census Bureau, read
"Census Bureau 101 for Students." This information sheet can be printed and passed out to your students as well.

Standards Addressed

See charts below. For more information, read "Overview of Education Standards and Guidelines Addressed in Statistics in Schools Activities."

Common Core State Standards for Mathematics

Standard	Domain	Cluster
CCSS.MATH.CONTENT.HSS-ID.A. 2 Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.	ID - Interpreting Categorical \& Quantitative Data	Summarize, represent, and interpret data on a single count or measurement variable.
CCSS.MATH.CONTENT.HSS-ID.A. 3 Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).	ID - Interpreting Categorical \& Quantitative Data	Summarize, represent, and interpret data on a single count or measurement variable.

Common Core State Standards for Mathematical Practice

Standard

CCSS.MATH.PRACTICE.MP2. Reason abstractly and quantitatively.
Students will describe and compare distributions in terms of shape, center, and spread.
CCSS.MATH.PRACTICE.MP6. Attend to precision.
Students will communicate precisely when comparing and contrasting distributions with statistical analysis.

National Council of Teachers of Mathematics' Principles and Standards for School Mathematics

Content Standard	Students should be able to:	Expectation for Grade Band
Data Analysis and Probability	Formulate questions that can be addressed with data and collect, organize, and display relevant data to answer them.	Understand histograms, parallel box plots, and scatterplots and use them to display data.
Data Analysis and Probability	Select and use appropriate statistical methods to analyze data.	For univariate measurement data, be able to display the distribution, describe its shape, and select and calculate summary statistics.

Guidelines for Assessment and Instruction in Statistics Education

GAISE	Level A	Level B	Level C
Formulate Questions	\times		
Collect Data	\times		
Analyze Data	\times		
Interpret Results	\times		

Bloom's Taxonomy

Students will analyze histograms and box plots to describe and compare data distributions, deciding the appropriate summary statistics to report and investigating their own questions.

Teacher Notes

Before the Activity

Students must understand the following key terms:

- Frequency - the number of times a value occurs in a data set
- Interquartile range (IQR) - a measure of variability in a set of numerical data to indicate the difference between the first and third quartiles of the data set
- Mean - a measure of center in a set of numerical data, computed by adding the values in a list and then dividing by the number of values in the list
- Median - a measure of center in a set of numerical data, identified as the value appearing at the center of a sorted version of the list (or the mean of the two central values if the list contains an even number of values)
- First quartile $\left(\mathrm{Q}_{1}\right)$ - also known as lower quartile, the value that divides an ordered data set into the smallest 25 percent of the data and the largest 75 percent
- Third quartile $\left(\mathrm{Q}_{3}\right)$ - also known as upper quartile, the value that divides an ordered data set into the smallest 75 percent of the data and the largest 25 percent
- Box plot - a method of visually displaying a data set using the median, quartiles, and extremes of the data set
- Standard deviation - a measure of spread for a set of numerical data, calculated by taking the square root of the variance, that increases in value as the data in the set become more spread out
- Shape - the general form of a data distribution (e.g., bell-shaped, bimodal, irregular, uniform)

Students should have the following skills:

- Ability to calculate the mean, the median, the IQR, and the standard deviation
- Ability to construct a histogram
- Ability to describe the shape of a data distribution

Teachers should divide students into groups of two to four and ask them to examine Items 1 and $\mathbf{2}$. Teachers should have each group share what they know or think about the data to make predictions about trends, prompting them with questions like: Do all states operate in a similar way? Are the school district structures similar? Do you think residents in these states have similar lifestyles?

Teachers could review with students the Census Bureau one-pager mentioned earlier and describe the various data the Census Bureau collects, explaining that this activity involves analysis of some of these data.

During the Activity

Teachers should remind students that when they describe the distribution of numerical data, they should always consider shape, center, and spread.

Teachers should have groups share their responses to questions 1 and 2 with the class, recording students' observations and questions on the board or chart paper, or typing and projecting them on a screen. Students may return to this list to choose their topic for question 10.

Before question 6, teachers could ask students to guess how histograms showing the number of counties in the four regions of the United States designated by the Census Bureau (Midwest, Northeast, South, and West) might compare with one another.

Teachers should decide whether students will use graph paper or graphing technology to create their histograms for question 10.

After the Activity

Teachers could facilitate a discussion of the data chosen for question 10, asking students to share what they found interesting or surprising with their groups and then with the class.

As a review, teachers could have students summarize ways to describe a data distribution by its shape, center, and spread and ways to compare two or more distributions by examining their key features.

Extension Idea

Teachers could have students create histograms or box plots according to Census Bureau region for the variable they select in question 10. Students could compare and contrast these regional distributions, noting anything interesting or surprising.

Student Activity

Click here to download a printable version for students.

Activity Items

The following items are part of this activity and appear at the end of this student version.

- Item 1: Population, Land Area, and Other Data for the 50 U.S. States and the District of Columbia
- Item 2: Income, Employment, and Other Demographic Data for the 50 U.S. States and the District of Columbia

Student Learning Objectives

- I will be able to compare and contrast data distributions in terms of shape, center, and spread.
- I will be able to describe key features of a histogram or box plot.

Government entities in the United States exist in many forms and sizes. From the smallest town council to the U.S. Congress, these entities pass laws, oversee infrastructure, and provide for public education, among other things. In this activity, you will analyze state and county data and compare distributions by examining their shape, center, and spread.

1. Look at Item 1: Population, Land Area, and Other Data for the 50 U.S. States and the District of Columbia and Item 2: Income, Employment, and Other Demographic Data for the 50 U.S. States and the District of Columbia.
a. What is one thing about the data that catches your attention?

Student responses will vary but could include:

- Texas has the most counties of any state.
- A typical state has between $\mathbf{4 0}$ and $\mathbf{1 0 0}$ counties.
- Many states have fewer than 20 counties.
- A large percentage of people in the District of Columbia and Massachusetts have bachelor's degrees or higher.
b. What is one question you have about the data that you can investigate?

Student responses will vary but could include:

- Does the number of counties have anything to do with the area of a state?
- Does the number of counties have anything to do with the population of a state?
- Does the number of counties have anything to do with the state's region in the country?

2. Share your responses to question 1 with your group. Are they similar or different? How so?

Student answers will vary.
3. Recall that a data distribution's shape can be described as symmetric, skewed left, skewed right, uniform, or bimodal. Looking at the histogram below that shows the distribution of the number of counties in each state and the District of Columbia, how would you describe its shape?

Number of Counties in Each U.S. State and the District of Columbia

Skewed right

4. Does the mean or the median better represent the center of this type of data distribution? Why?

The median, because this measure is more appropriate for data distributions that are skewed or have an outlier. For a data distribution is skewed or has an outlier, the mean can sometimes be too high or too low to represent the center because it accounts for extreme data points.
5. The range of this distribution's data set is 253 , the standard deviation is 46.8 , and the interquartile range (IQR) is 65 . Which value best represents the spread for this type of data distribution, and why?

The IQR, because it shows the length of the interval containing the middle half of the data, it relates to the median value we identified as the center, and it is not as affected as the other measures by the outlier in this data set.
6. The U.S. Census Bureau partitions the United States into four regions: Midwest, Northeast, South, and West. The histograms below show the number of counties in each state and the District of Columbia for each region. How do the distributions compare in terms of shape?

Number of Counties in Each U.S. State and the District of Columbia by Census Bureau Region

The distribution for the Midwest is skewed left, while those for the other regions are skewed right. The South appears to have an outlier state with between 240 and $\mathbf{2 6 0}$ counties.
7. Use the appropriate summary statistics from the table below to describe the distribution for each region in terms of its shape, center, and spread.

Summary Statistics for Each Census Bureau Region: Number of Counties in Each U.S. State and the District of Columbia

	Mean	Median	Standard Deviation	IQR	Range
Midwest	87.9	90	17.5	23.0	62
Northeast	24.7	14	23.4	32.5	62
South	83.7	75	60.8	59.5	253
West	34.5	33	17.7	30.0	59

- Midwest: The distribution is skewed left slightly. The median is 90, and the IQR is 23 .
- Northeast: The distribution is skewed right. The median is 14 , and the IQR is 32.5.
- South: The distribution is skewed right but might be approximately symmetric with the outlier. The median is 75, and the IQR is 59.5.
- West: The distribution is skewed right slightly and approximately symmetric. The mean is 34.5, and the standard deviation is 17.7.

8. In what ways are these distributions similar, and in what ways are they different?

Student answers will vary but could include:

- The ranges for the Midwest, Northeast, and West distributions are similar, but their medians are very different: 90, 14, and 33 , respectively.
- In general, the number of counties in states in the Midwest is higher than in the Northeast or the West.
- The mean and median numbers of counties per state in the Midwest are higher than in the South, while the South has much greater measures of spread than does the Midwest.

9. The following box plots, constructed from the summary statistics mentioned earlier, can give you a different view of the same data.

Number of Counties in Each U.S. State and the District of Columbia by Census Bureau Region

a. What kind of information is easier to see in the box plots than in the histograms?

The box plots give a clearer picture of skewness and symmetry, and they also allow readers to estimate the values in the five-number summary for each region.
b. What kind of information is easier to see in the histograms than in the box plots?

The histograms show any gaps in the data set, such as in the one for the South. They can also show frequencies for specific intervals.
c. How does examining the box plots change your responses to question 8 ?

Student answers will vary but could include:

- The ranges for the Northeast and the West are about the same; but the distribution for the Northeast is clearly skewed right, while the one for the West is approximately symmetric.
- The distributions for the Midwest and the West are approximately symmetric, but the distribution for the Midwest is clustered more closely near the median because it has a smaller IQR than does the West.
- The data set for the South probably has an outlier at its maximum, because the distance from the third quartile to the maximum is large compared with the IQR.
d. If the only graphs you saw of the data were box plots, how would that influence your interpretations?

Looking only at the box plots would let you see symmetry and skewness but not any gaps in the data.
10. Select your own data set from Item 1 or Item 2 by choosing one variable to investigate.

Student answers below will vary depending on the data chosen but should be thorough and should display a depth of understanding.
a. Create a histogram of the data.
b. Calculate the summary statistics and record them in the table below.

Variable	Mean	Median	Standard Deviation	IQR	Range

c. Describe the distribution in terms of shape, center, and spread.
d. Compare and contrast the distribution of your variable with the distribution of the number of counties by state and the District of Columbia.

Item 1: Population, Land Area, and Other Data for the 50 U.S. States and the District of Columbia

State	Number of Counties	County Subdivisions	Population	Land Area in Square Miles	Population Density per Square Mile	Number of Unified School Districts	Region
Alabama	67	390	4,779,736	50,645.33	94.4	134	South
Alaska	29	37	710,231	570,640.95	1.2	53	West
Arizona	15	80	6,392,017	113,594.08	56.3	99	West
Arkansas	75	1,271	2,915,918	52,035.48	56.0	251	South
California	58	397	37,253,956	155,779.22	239.1	335	West
Colorado	64	209	5,029,196	103,641.89	48.5	178	West
Connecticut	8	173	3,574,097	4,842.36	738.1	115	Northeast
Delaware	3	27	897,934	1,948.54	460.8	16	South
District of Columbia	1	0	601,723	61.05	9,856.5	1	South
Florida	67	316	18,801,310	53,624.76	350.6	67	South
Georgia	159	586	9,687,653	57,513.49	168.4	182	South
Hawaii	5	44	1,360,301	6,422.63	211.8	1	West
Idaho	44	170	1,567,582	82,643.12	19.0	115	West
Illinois	102	1,710	12,830,632	55,518.93	231.1	389	Midwest
Indiana	92	1,011	6,483,802	35,826.11	181.0	294	Midwest
lowa	99	1,661	3,046,355	55,857.13	54.5	364	Midwest
Kansas	105	1,530	2,853,118	81,758.72	34.9	293	Midwest
Kentucky	120	493	4,339,367	39,486.34	109.9	174	South
Louisiana	64	579	4,533,372	43,203.90	104.9	69	South
Maine	16	533	1,328,361	30,842.92	43.1	240	Northeast
Maryland	24	290	5,773,552	9,707.24	594.8	24	South
Massachusetts	14	357	6,547,629	7,800.06	839.4	210	Northeast
Michigan	83	1,573	9,883,640	56,538.90	174.8	524	Midwest
Minnesota	87	2,760	5,303,925	79,626.74	66.6	339	Midwest
Mississippi	82	410	2,967,297	46,923.27	63.2	149	South
Missouri	115	1,395	5,988,927	68,741.52	87.1	449	Midwest
Montana	56	194	989,415	145,545.80	6.8	52	West
Nebraska	93	1,198	1,826,341	76,824.17	23.8	254	Midwest
Nevada	17	71	2,700,551	109,781.18	24.6	17	West
New Hampshire	10	260	1,316,470	8,952.65	147.0	82	Northeast
New Jersey	21	571	8,791,894	7,354.22	1,195.5	233	Northeast
New Mexico	33	130	2,059,179	121,298.15	17.0	89	West

Item 1: Population, Land Area, and Other Data for the 50 U.S. States and the District of Columbia (Continued)

State	Number of Counties	County Subdivisions	Population	Land Area in Square Miles	Population Density per Square Mile	Number of Unified School Districts	Region
New York	62	1,023	19,378,102	47,126.40	411.2	669	Northeast
North Carolina	100	1,041	9,535,483	48,617.91	196.1	118	South
North Dakota	53	1,765	672,591	69,000.80	9.7	155	Midwest
Ohio	88	1,604	11,536,504	40,860.69	282.3	616	Midwest
Oklahoma	77	305	3,751,351	68,594.92	54.7	426	South
Oregon	36	212	3,831,074	95,988.01	39.9	188	West
Pennsylvania	67	2,575	12,702,379	44,742.70	283.9	501	Northeast
Rhode Island	5	40	1,052,567	1,033.81	1,018.1	30	Northeast
South Carolina	46	299	4,625,364	30,060.70	153.9	86	South
South Dakota	66	1,339	814,180	75,811.00	10.7	156	Midwest
Tennessee	95	844	6,346,105	41,234.90	153.9	120	South
Texas	254	862	25,145,561	261,231.71	96.3	1,022	South
Utah	29	93	2,763,885	82,169.62	33.6	41	West
Vermont	14	255	625,741	9,216.66	67.9	64	Northeast
Virginia	134	550	8,001,024	39,490.09	202.6	137	South
Washington	39	242	6,724,540	66,455.52	101.2	295	West
West Virginia	55	235	1,852,994	24,038.21	77.1	55	South
Wisconsin	72	1,921	5,686,986	54,157.80	105.0	371	Midwest
Wyoming	23	71	563,626	97,093.14	5.8	49	West

To view the source data, go to www2.census.gov/geo/pdfs/reference/guidestloc/All_GSLCG.pdf (for Number of Counties, County Subdivisions, Population, Land Area in Square Miles, Population Density per Square Mile, and Number of Unified School Districts) and www2.census.gov/geo/docs/maps-data/maps/reg_div.txt (for Region).

$\begin{gathered} \frac{5}{0} \\ \hline 80 \\ 0 \times 8 \end{gathered}$	$\begin{aligned} & \frac{5}{3} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{n} \\ & \stackrel{y}{3} \end{aligned}$	$\stackrel{\pi}{\Delta}$		$\stackrel{\Psi}{\sim}$	$\stackrel{\pi}{\tilde{N}}$		$\frac{5}{3}$ 0 0	$\begin{aligned} & \frac{5}{3} \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{F}{3}$ $\stackrel{0}{0}$ \sim	$\stackrel{y}{3}$ $\stackrel{3}{0}$	$\frac{\pi}{\omega}$	$\frac{\pi}{\Delta}$	$\begin{aligned} & \Psi_{n}^{n} \\ & \sum_{0}^{0} \\ & \sum \end{aligned}$	$\begin{aligned} & \Psi \\ & \sum_{0}^{0} \\ & \frac{0}{0} \\ & \sum \end{aligned}$		$\begin{aligned} & \stackrel{\pi}{\tilde{n}} \\ & \frac{\sum_{0}^{0}}{3} \\ & \sum \end{aligned}$		$\stackrel{y}{3}$ 0 0		$\begin{aligned} & \text { 吉 } \\ & 0 \end{aligned}$		$\begin{aligned} & \stackrel{\pi}{\tilde{n}} \\ & \sum_{0}^{\infty} \\ & \sum \sum \end{aligned}$	$\begin{aligned} & \stackrel{\Psi}{\omega} \\ & \frac{\sum_{0}^{0}}{3} \\ & \sum \sum \end{aligned}$	$\stackrel{〔}{亏}$ 0 0	$\begin{aligned} & \stackrel{\pi}{n} \\ & \frac{0}{3} \\ & i=0 \end{aligned}$
	$\frac{\bullet}{n}$	$\underset{\forall}{\underset{\sim}{*}}$	$\begin{aligned} & \text { m } \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ò } \\ & \text { ò } \end{aligned}$	$\begin{aligned} & \text { m } \\ & \text { on } \end{aligned}$	$\begin{aligned} & \infty \\ & \dot{\gamma} \\ & \hline \end{aligned}$	$\underset{\stackrel{N}{n}}{\underline{E}}$	$\frac{6}{\stackrel{0}{n}}$	$\begin{aligned} & \text { ט } \\ & \underset{\sim}{n} \end{aligned}$	$\underset{\text { in }}{\text { E }}$	$\stackrel{N}{\stackrel{N}{n}}$	$\underset{\sim}{\underset{\sigma}{\circ}}$	oे	$\begin{aligned} & \text { ò } \\ & \text { on } \end{aligned}$	$\stackrel{N}{\mathrm{O}}$	$\begin{aligned} & \text { m } \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\circ}{\circ} \end{aligned}$	官	$\stackrel{0}{i}$	$\frac{!}{\square}$	$\frac{\stackrel{n}{n}}{\stackrel{n}{n}}$	$\begin{aligned} & \text { à } \\ & \stackrel{i}{n} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \text { on } \end{aligned}$	$\frac{\underset{n}{n}}{\underset{\sim}{n}}$	ò
	$\stackrel{\sim}{\circ}$		$\stackrel{N}{\dot{\sigma}}$	$\underset{\sigma}{\sigma}$	$\stackrel{N}{\sigma}$	$\begin{gathered} \text { N } \\ \text { O } \end{gathered}$	$\begin{aligned} & \infty \\ & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\stackrel{\star}{\infty}$	$\underset{\underset{\sim}{*}}{\underset{\sim}{2}}$	$\begin{aligned} & \infty \\ & \infty \\ & \stackrel{\infty}{+} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & + \\ & \hline \end{aligned}$	$\begin{aligned} & \text { o. } \\ & \stackrel{\circ}{n} \end{aligned}$	$\stackrel{\overleftarrow{\circ}}{ }$	$\underset{\sigma}{\sigma}$	$\begin{gathered} m \\ \underset{\sim}{2} \end{gathered}$	$\underset{\sigma}{\hat{\sigma}}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\sigma} \end{aligned}$	$\underset{\sim}{\underset{\sigma}{x}}$	$\underset{\substack{\infty \\ \infty \\ \hline}}{ }$	$\stackrel{\circ}{\circ}$	$\begin{aligned} & \stackrel{1}{\infty} \\ & \stackrel{\infty}{+} \end{aligned}$	$\stackrel{\llcorner }{\infty}$	$\underset{\sigma}{\sigma}$	$\stackrel{N}{\sigma}$	$\begin{aligned} & \bullet \\ & \infty \\ & \underset{\sim}{0} \end{aligned}$	$\underset{\sigma}{\sigma}$
	$\underset{\underset{\sim}{n}}{\substack{2}}$	$\stackrel{\sim}{\sigma}$	$\begin{aligned} & \underset{\sim}{\circ} \\ & \stackrel{y}{2} \end{aligned}$	$\stackrel{N}{n}$	$\begin{aligned} & 2 \\ & \underset{\sim}{2} \end{aligned}$	$\underset{\underset{N}{i}}{ }$	$\stackrel{\star}{\stackrel{i}{n}}$	$\stackrel{\rightharpoonup}{\bullet}$	$\stackrel{\stackrel{n}{F}}{=}$	¢	$\underset{\underset{\sim}{\star}}{\underset{\sim}{2}}$	$\stackrel{\square}{\square}$	$\underset{\underset{ナ}{\underset{~}{2}}}{ }$	$\stackrel{\underset{\sim}{\dot{\sim}}}{\stackrel{1}{2}}$	$\stackrel{m}{\ddagger}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{n} \end{aligned}$	$\underset{\sim}{\underset{\sim}{\star}}$	$\stackrel{\infty}{\underset{\ddagger}{+}}$	$\begin{aligned} & \underset{\sim}{\bullet} \\ & \hline \end{aligned}$	$\underset{\sim}{\infty}$	$\stackrel{\infty}{\underset{\sim}{\dot{\sim}}}$	$\stackrel{\square}{\sim}$	$\stackrel{\underset{\sim}{\ominus}}{\stackrel{\sim}{2}}$	$\stackrel{m}{ \pm}$	$\stackrel{m}{\underset{\leftarrow}{+}}$	$\stackrel{+}{\square}$
	$\begin{aligned} & \infty \\ & \underset{N}{N} \end{aligned}$	$\stackrel{m}{\sim}$	$\underset{\underset{\sim}{j}}{\underset{\sim}{j}}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \stackrel{0}{\sim} \\ & \hline \end{aligned}$	$\begin{aligned} & \underset{\sim}{n} \\ & \hline \end{aligned}$	$\stackrel{0}{\stackrel{0}{N}}$	$\stackrel{\infty}{\underset{\sim}{N}}$	$\stackrel{\ominus}{\stackrel{n}{\gtrless}}$	$\stackrel{\rightharpoonup}{\underset{\sim}{*}}$	$\underset{\sim}{\underset{\sim}{*}}$	$\stackrel{\stackrel{\wedge}{i}}{\dot{\sim}}$	$\stackrel{\rightharpoonup}{\sim}$	$\stackrel{\underset{\sim}{\sim}}{\sim}$	$\stackrel{\stackrel{\circ}{+}}{\underset{\sim}{*}}$	$\stackrel{\underset{\sim}{\sim}}{\sim}$	$\begin{aligned} & \underset{\sim}{\alpha} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \underset{\sim}{N} \\ & \hline \end{aligned}$	$\stackrel{\dot{\sim}}{\underset{\sim}{n}}$	$\stackrel{\sim}{\sigma}$	$\begin{aligned} & \stackrel{\bullet}{\mathrm{N}} \end{aligned}$	$\stackrel{0}{\circ}$	$\underset{\underset{\sim}{*}}{\underset{\sim}{2}}$	$\stackrel{\sim}{\sim}$	$\stackrel{\underset{\sim}{\underset{\sim}{*}}}{ }$	$\stackrel{\bigcirc}{\sim}$
	$\stackrel{L_{n}^{N}}{\stackrel{\sim}{N}}$	$\underset{\infty_{\infty}^{-}}{\stackrel{N}{\underset{\sim}{2}}}$	$\begin{array}{\|l\|} \hline \infty \\ \underset{N}{N} \\ \end{array}$	$\begin{aligned} & \underset{\sim}{2} \\ & \text { à } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \underset{N}{N} \\ & \text { ó } \end{aligned}$	$\begin{aligned} & \text { fy } \\ & \text { o } \\ & \infty \end{aligned}$	$$	$\begin{aligned} & \text { m } \\ & \text { m } \\ & \text { m } \end{aligned}$	$\begin{aligned} & \text { n } \\ & \underset{\sim}{\wedge} \\ & \underset{\sim}{2} \end{aligned}$	$\underset{\substack{m \\ \underset{\sim}{m} \\ \hline}}{ }$	$\begin{aligned} & \text { og } \\ & \text { oे } \\ & \text { ò } \\ & \text { on } \end{aligned}$	$\begin{aligned} & \stackrel{m}{N} \\ & \infty \\ & = \end{aligned}$	$\frac{\bar{\sigma}}{\underset{\sigma}{-}}$	$\begin{aligned} & \infty \\ & \infty \\ & \underset{\sim}{N} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \hline \begin{array}{l} 0 \\ \stackrel{0}{2} \\ \stackrel{n}{2} \\ \hline \end{array} \end{aligned}$	$\begin{aligned} & \frac{m}{m} \\ & \stackrel{y}{m} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \text { oi } \end{aligned}$	$\frac{\omega}{m}$		$\frac{\underset{\underset{J}{J}}{\underset{N}{\prime}}}{}$	$\begin{aligned} & \underset{\sim}{\alpha} \\ & \underset{\infty}{\infty} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \stackrel{\bullet}{n} \\ & \stackrel{i n}{\mathbb{E}} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\circ} \\ & \stackrel{-}{\circ} \end{aligned}$	$\begin{aligned} & o \\ & \infty \\ & 0 \\ & \text { o } \end{aligned}$	$\frac{0}{\frac{m}{\infty}}$	à ふ̀ à
	$\stackrel{\star}{\hat{j}}$	$\stackrel{\leftarrow}{\underset{O}{N}}$	$\overline{\bar{\sigma}}$	$\begin{gathered} \infty \\ \stackrel{\infty}{i} \end{gathered}$	$\begin{aligned} & \underset{\sim}{n} \\ & \end{aligned}$	$\begin{aligned} & \underset{\sim}{9} \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{\ominus}{\ominus}$	$\stackrel{m}{0}$	$\begin{aligned} & \dot{\circ} \\ & \stackrel{+}{2} \end{aligned}$		$\begin{aligned} & \underset{N}{N} \end{aligned}$	$\begin{array}{\|c} \widehat{\ominus} \\ \stackrel{\rightharpoonup}{n} \end{array}$	$\begin{aligned} & 0 \\ & 0_{0}^{\prime} \\ & \hline \end{aligned}$		$\begin{aligned} & 0 \\ & 0_{0} \end{aligned}$	$\begin{aligned} & \circ \\ & \dot{\rho} \\ & \hline \end{aligned}$	$\begin{aligned} & 6 \\ & \dot{6} \end{aligned}$	$\overline{6}$	$\stackrel{ণ}{\text { }}$	$\stackrel{m}{\stackrel{ }{\gtrless}}$	$$	$\frac{6}{\overline{6}}$	$\stackrel{\text { N }}{\substack{0}}$	$\stackrel{\text { ¢ }}{\stackrel{1}{+}}$	\hat{i}	
	$\stackrel{\stackrel{\sim}{\mathrm{N}}}{\stackrel{1}{2}}$	$\stackrel{\infty}{\stackrel{\infty}{\rightleftharpoons}}$	$\stackrel{\mathrm{m}}{\underset{\sim}{\gtrless}}$	$\begin{aligned} & \underset{\sim}{2} \\ & \hline \end{aligned}$	$\stackrel{\bullet}{\sigma}$	$\underset{\underset{\sim}{N}}{ }$	$\stackrel{\text { F }}{\stackrel{\text { F }}{ }}$	$\underset{\underset{\sim}{N}}{ }$	\circ	$\underset{\underset{\sim}{\circ}}{\substack{0 \\ \hline}}$	$\stackrel{\stackrel{m}{\rightleftharpoons}}{\rightleftharpoons}$	$\stackrel{\omega}{\sigma}$	$\stackrel{\infty}{\stackrel{\infty}{\rightleftharpoons}}$	$\stackrel{\circ}{\circ}$	$\underset{\underset{\sim}{i}}{i}$	$\stackrel{0}{\circ}$	$\begin{aligned} & \stackrel{0}{=} \\ & \underset{=}{2} \end{aligned}$	$\stackrel{-}{\sim}$	$\begin{aligned} & \text { O } \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \bullet \\ & \underset{ \pm}{2} \end{aligned}$	\bigcirc	$\stackrel{\llcorner }{6}$	$\stackrel{\infty}{=}$	$\stackrel{\sim}{\circ}$	$\stackrel{\text { ̇ }}{ \pm}$	$\stackrel{\stackrel{\rightharpoonup}{*}}{\stackrel{\text { ® }}{+}}$
	$\begin{aligned} & \stackrel{\sim}{n} \\ & \end{aligned}$	$\frac{\sigma}{6}$	$\underset{\stackrel{\sim}{\sim}}{\underset{\sim}{2}}$	$\underset{\stackrel{y}{\tau}}{\underset{\sim}{7}}$	$\stackrel{\text { tin }}{\substack{n}}$	$\underset{\underset{\sim}{n}}{\hat{N}}$	$\frac{6}{6}$	$\begin{aligned} & n \\ & \infty \\ & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & \text { n } \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \text { ñ } \end{aligned}$	$\hat{\circ}$	$\underset{\sim}{\infty}$	$\underset{\sim}{\infty}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ® } \\ & \text { ô } \end{aligned}$		$\frac{\sigma}{6}$	$\underset{\stackrel{~}{\leftarrow}}{\underset{\sim}{\circ}}$	$$	$\begin{gathered} \text { n } \\ \stackrel{n}{2} \end{gathered}$	$\begin{aligned} & \grave{j} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \text { a } \\ & \underset{\sigma}{2} \end{aligned}$	$\begin{aligned} & \hat{\Omega} \\ & \stackrel{i}{n} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \underset{6}{6} \end{aligned}$	$\stackrel{\underset{i n}{n}}{\stackrel{1}{2}}$	$\stackrel{\Gamma}{\infty}$
	$\stackrel{m}{\underset{\sim}{~}}$	$\underset{\sim}{\infty}$	$\stackrel{\stackrel{\sim}{\prime}}{\underset{\sim}{\sim}}$	$\stackrel{\stackrel{\wedge}{\mathrm{N}}}{ }$	$\underset{\sim}{\infty}$	$\stackrel{-}{\sim}$	$\stackrel{+}{\sim}$	$\begin{aligned} & \stackrel{\bullet}{亡} \\ & \underset{\sim}{n} \end{aligned}$	$\stackrel{m}{\underset{\sim}{N}}$	$\stackrel{\stackrel{\rightharpoonup}{*}}{\stackrel{\rightharpoonup}{*}}$	$\stackrel{\bullet}{\stackrel{\rightharpoonup}{\mathrm{N}}}$	$\stackrel{\text { N}}{\grave{N}}$	$\stackrel{m}{\stackrel{m}{\sim}}$	$\stackrel{0}{\infty} \underset{\sim}{\infty}$	$\stackrel{m}{\sim}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	$\stackrel{\underset{\sim}{\circ}}{\stackrel{\rightharpoonup}{2}}$	$\begin{aligned} & \underset{\sim}{N} \\ & \hline \end{aligned}$	$\stackrel{\rightharpoonup}{\sim}$	$\begin{aligned} & \stackrel{0}{\sim} \\ & \end{aligned}$	$\underset{\sim}{\mathrm{m}}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \hline \end{aligned}$	$\stackrel{m}{\underset{\sim}{\sim}}$	$\stackrel{\underset{\sim}{\sim}}{\sim}$	$\stackrel{\underset{\sim}{\sim}}{\underset{\sim}{2}}$	$\stackrel{\Gamma}{\sim}$
	$\underset{\infty}{\bullet}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\mathrm{~N}}{ } \end{aligned}$	$\stackrel{\rightharpoonup}{\circ}$	$\stackrel{\jmath}{\circ}$	$\begin{aligned} & \stackrel{n}{0} \\ & \stackrel{1}{2} \end{aligned}$	$\stackrel{\bullet}{0}$	$\stackrel{\square}{\infty}$	$\stackrel{\bullet}{\sim}$	$$	$\bar{\sigma}$	$\stackrel{\odot}{\circ}$	$\begin{aligned} & \stackrel{\llcorner }{m} \\ & \hline \end{aligned}$	${ }_{\alpha}^{\infty}$	$\begin{aligned} & \circ \\ & \infty \\ & \infty \end{aligned}$	\circ	$\underset{\infty}{0}$	$\stackrel{\sim}{\circ}$	$\stackrel{\circ}{\circ}$	$\begin{gathered} \infty \\ \sigma \\ \sigma \end{gathered}$	$\stackrel{\rightharpoonup}{\circ}$	\cdots	$\stackrel{+}{ \pm}$	\bigcirc	${ }_{\infty}^{\infty} \times$	$\stackrel{\sim}{\infty}$	\cdots
	$\stackrel{\sim}{\sim}$	$\stackrel{0}{\infty} \underset{\sim}{\infty}$	$\stackrel{0}{\grave{N}}$	$\stackrel{\forall}{\underset{\sim}{N}}$	$\stackrel{\stackrel{\rightharpoonup}{m}}{2}$	$\underset{\sim}{\infty}$	$\begin{aligned} & 0 \\ & \infty \\ & 0 \end{aligned}$	$\begin{aligned} & \text { ம} \\ & \stackrel{\sim}{n} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\mathrm{N}} \end{aligned}$	$\stackrel{n}{\sim}$	$\underset{\sim}{\underset{\sim}{j}}$	$\frac{0}{\mathrm{~m}}$	$\stackrel{\circ}{\stackrel{\sim}{\sim}}$	$\begin{aligned} & \infty \\ & \underset{m}{j} \end{aligned}$		$\underset{N}{N}$	$\frac{\stackrel{n}{m}}{m}$	$\begin{aligned} & \underset{\sim}{N} \\ & \hline \end{aligned}$	$\begin{aligned} & \underset{\sim}{N} \\ & \hline \end{aligned}$	$\underset{\sim}{\underset{\sim}{2}}$	$\underset{\sim}{\infty}$	$\stackrel{N}{\underset{\nabla}{f}}$	$\underset{N}{\star}$	$\stackrel{m}{\underset{\sim}{+}}$	$\stackrel{\ulcorner }{\sim}$	$\stackrel{\sim}{\sim}$
	$\begin{aligned} & \circ \\ & \infty \\ & \infty \\ & \underset{\sim}{\prime} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty_{n}^{0} \\ & \end{aligned}$	$\begin{aligned} & \infty \\ & 0_{0}^{\circ} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & N \\ & \underset{\sim}{N} \\ & \underset{F}{F} \end{aligned}$	$\begin{aligned} & m \\ & \tilde{\sigma} \\ & \bar{\sigma} \end{aligned}$	$\begin{aligned} & m \\ & \frac{m}{6} \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{+}{0} \\ & \stackrel{-}{i} \end{aligned}$	$\begin{aligned} & 0 \\ & \vdots \\ & \text { o } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \infty \\ & \begin{array}{l} 0 \\ 0 \\ \stackrel{1}{2} \end{array} \end{aligned}$	$\begin{aligned} & \stackrel{N}{\overleftarrow{*}} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \bar{N} \\ & \underset{\sim}{\sigma} \\ & \underset{f}{2} \end{aligned}$	$\begin{aligned} & \tilde{N} \\ & \hat{N} \\ & \hat{j} \end{aligned}$	$\begin{aligned} & \bar{\sigma} \\ & \infty \\ & \stackrel{\rightharpoonup}{*} \end{aligned}$	$\begin{aligned} & \ddagger \\ & \ddagger \\ & \stackrel{y}{7} \end{aligned}$	$\begin{aligned} & \bullet \\ & \underset{\sim}{f} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \text { J } \\ & \text { O} \\ & \text { N } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{\mathrm{n}} \\ & \underset{\sim}{f} \end{aligned}$	$\begin{aligned} & \underset{\sim}{o} \\ & \underset{\sim}{\gamma} \end{aligned}$	$\begin{aligned} & \bar{\alpha} \\ & \dot{n} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & o \\ & \frac{b}{\sigma} \\ & \frac{j}{j} \end{aligned}$	$\begin{aligned} & \hat{\not} \\ & \infty \\ & \text { N } \end{aligned}$	$\begin{aligned} & \bar{\infty} \\ & \hline- \\ & \hline \end{aligned}$	$\begin{aligned} & \circ \\ & \text { ò } \\ & \text { ò } \\ & \text { ò } \end{aligned}$	n m m +
$\begin{aligned} & \# \\ & \stackrel{y}{*} \end{aligned}$	$$	$\begin{aligned} & \frac{\pi}{\hat{y}} \\ & \frac{\pi}{4} \end{aligned}$	$\begin{aligned} & \frac{0}{C} \\ & \stackrel{N}{N} \\ & \frac{N}{2} \end{aligned}$	$\begin{aligned} & \tilde{\sim} \\ & \tilde{N} \\ & \stackrel{\pi}{0} \\ & \frac{y}{x} \end{aligned}$		$\begin{aligned} & \frac{0}{0} \\ & \frac{\pi}{0} \\ & \frac{0}{0} \\ & 0 \end{aligned}$	$$	$\begin{aligned} & \stackrel{0}{0} \\ & \frac{z_{0}^{0}}{0} \\ & \frac{0}{0} \end{aligned}$			$\begin{aligned} & . \frac{0}{00} \\ & 0.0 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$		$\begin{aligned} & \frac{\circ}{\frac{\pi}{0}} \\ & \frac{\pi}{0} \end{aligned}$	$\begin{aligned} & \stackrel{n}{0} \\ & \stackrel{\cong}{=} \end{aligned}$			$\begin{aligned} & \tilde{\sim} \\ & \underset{\sim}{\tilde{N}} \\ & \underline{\pi} \end{aligned}$	$\begin{aligned} & \frac{\lambda}{u} \\ & \text { U } \\ & \stackrel{1}{c} \\ & \underline{\omega} \end{aligned}$	$\begin{aligned} & \stackrel{0}{\sqrt{0}} \\ & \frac{\pi}{\sqrt[n]{3}} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\otimes}{\check{N}} \\ & \sum \end{aligned}$	$\begin{aligned} & \bar{D} \\ & \frac{\Gamma}{X} \\ & \sum \sum \\ & \sum \sum \end{aligned}$	$\begin{aligned} & \text { n } \\ & \stackrel{\tilde{U}}{0} \\ & \tilde{n} \\ & \frac{1}{0} \\ & \tilde{0} \\ & \tilde{0} \end{aligned}$		$\begin{aligned} & \stackrel{\pi}{0} \\ & 0 \\ & 0 \\ & \stackrel{0}{E} \\ & \sum \end{aligned}$	$\begin{aligned} & \bar{n} \\ & \frac{n}{n} \\ & \frac{n}{n} \\ & \stackrel{n}{2} \end{aligned}$	－

State	Median Household Income in Dollars	Percentage With a Bachelor's Degree or Higher	Percentage Who Carpool (Workers 16 Years and Older)	Mean Travel Time to Work in Minutes	Percentage Employed	Percentage of Divorced Adults	Percentage Who Own Homes	Per Pupil Amounts in Dollars for 2013 Spending of Public ElementarySecondary School Systems	Percentage Younger Than 18 Years	Percentage 65 Years and Older	Percentage Male	Percentage Female	Region
Montana	46,328	29.3	10.4	17.9	60.1	12.7	66.4	10,625	22.0	16.6	50.2	49.8	West
Nebraska	52,686	29.5	9.5	18.4	67.1	10.7	65.9	11,579	24.8	14.4	49.8	50.2	Midwest
Nevada	51,450	23.1	10.4	23.8	57.7	14.2	53.6	8,339	23.4	14.1	50.3	49.7	West
New Hampshire	66,532	35.0	7.8	27.0	64.4	12.2	70.2	13,721	20.1	15.8	49.4	50.6	Northeast
New Jersey	71,919	37.4	7.9	31.1	61.0	8.5	63.3	17,572	22.5	14.7	48.8	51.2	Northeast
New Mexico	44,803	26.4	9.5	21.8	53.4	12.3	66.9	9,012	24.1	15.3	49.5	50.5	West
New York	58,878	34.5	6.5	32.6	58.5	8.7	53.0	19,818	21.4	14.7	48.5	51.5	Northeast
North Carolina	46,556	28.7	9.7	23.9	56.3	10.9	64.2	8,390	23.0	14.7	48.7	51.3	South
North Dakota	59,029	27.4	8.3	17.6	66.5	9.4	63.8	11,980	22.8	14.2	51.3	48.7	Midwest
Ohio	49,308	26.6	7.8	23.2	58.7	12.3	65.3	11,197	22.8	15.5	48.9	51.1	Midwest
Oklahoma	47,529	24.2	10.5	21.3	57.3	13.3	65.1	7,672	24.6	14.5	49.5	50.5	South
Oregon	51,075	30.8	10.8	23.1	56.6	13.5	60.7	9,543	21.6	16.0	49.5	50.5	West
Pennsylvania	53,234	29.0	8.5	26.4	58.1	9.6	68.8	13,864	21.1	16.7	48.9	51.1	Northeast
Rhode Island	54,891	30.4	7.4	24	59.7	11.4	58.8	14,415	20.2	15.8	48.5	51.5	Northeast
South Carolina	45,238	26.3	9.3	24.1	54.9	11.1	68.0	9,514	22.4	15.8	48.6	51.4	South
South Dakota	50,979	27.8	9.2	16.7	66.5	10.4	68.2	8,470	24.7	15.2	50.3	49.7	Midwest
Tennessee	44,361	25.3	9.2	24.5	55.7	12.6	66.1	8,208	22.8	15.1	48.7	51.3	South
Texas	53,035	27.8	10.6	25.6	60.2	10.9	61.2	8,299	26.4	11.5	49.6	50.4	South
Utah	60,922	31.1	11.8	21.6	64.0	9.1	69.2	6,555	30.7	10.0	50.3	49.7	West
Vermont	54,166	34.9	8.7	22.1	62.5	12.3	70.0	16,377	19.4	17.0	49.3	50.7	Northeast
Virginia	64,902	36.7	9.3	28.1	60.6	10.1	65.3	10,960	22.4	13.8	49.2	50.8	South
Washington	61,366	33.1	10.1	26.8	59.1	12.0	61.7	9,672	22.7	14.1	50.0	50.0	West
West Virginia	41,059	19.2	9.7	25.7	49.5	13.3	72.2	11,132	20.5	17.8	49.4	50.6	South
Wisconsin	52,622	28.4	8.2	21.9	63.3	11.0	66.6	11,071	22.6	15.2	49.7	50.3	Midwest
Wyoming	57,055	26.6	11.0	18.7	64.8	14.0	66.9	15,700	23.7	13.8	51.0	49.0	West

Item 2: Income, Employment, and Other Demographic Data for the 50 U.S. States and the District of Columbia (Continued)

Some of the data in the table use 5-year estimates. The values are based on sample data that are pooled and weighted to an average of 5 years of estimates and may exhibit differences from the official estimates of the population produced by the Population Estimates Program (PEP). For more information about PEP, go to www.census.gov/programs-surveys/popest.html.

To view the source data, copy and paste the following links into your browser:
data.census.gov/cedsci/table?q=B19013\&hidePreview=true\&tid=ACSDT1Y2014.B19013\&vintage =2018\&g=0100000US. 04000.001
(for Median Household Income in Dollars - Socioeconomic Estimates)
data.census.gov/cedsci/table?q=S1501\&g=0100000US.04000.001\&tid=ACSST1Y2014.S1501\&hidePreview=true (for Percentage With a Bachelor's Degree or Higher)
data.census.gov/cedsci/table?q=S0801\&hidePreview=false\&tid=ACSST1Y2014.S0801\&vintage=2018
(for Percentage Who Carpool (Workers 16 Years and Older) and Mean Travel Time to Work in Minutes)
data.census.gov/cedsci/table?q=DP03\&g=0100000US.04000.001\&tid=ACSDP1Y2014.DPO3\&hidePreview=true (for Percentage Employed)
data.census.gov/cedsci/table?q=S1201\&g=0100000US.04000.001\&tid=ACSST1Y2014.S1201\&hidePreview=true (for Percentage of Divorced Adults)
data.census.gov/cedsci/table?q=DP04\&g=0100000US.04000.001\&tid=ACSDP1Y2014.DP04\&hidePreview=true (for Percentage Who Own Homes)
www.census.gov/data/tables/2013/econ/school-finances/secondary-education-finance.html - click on the link to the Microsoft Excel document under "State-level Tables," and go to tab 8
(for Per Pupil Amounts in Dollars for 2013 Spending of Public Elementary-Secondary School Systems)
www.census.gov/quickfacts/
(For Percentage Younger Than 18 Years, and for Percentage Male and Female, calculated from "Female persons, percent, July 1, 2014, [V2014]")
data.census.gov/cedsci/table? $q=$ DP05\&g=0100000US.04000.001\&tid=ACSDP1Y2014.DP05\&hidePreview=true (for Percentage 65 Years and Older)
www2.census.gov/geo/docs/maps-data/maps/reg_div.txt
(for Region)

