DESIGN AND ANALYSIS OF
ALGORITHMS (DAA 2018)

Juha karkkainen

Based on slides by Veli Makinen

]
% UNIVERSITY OF HELSINKI Master’s Programme in Computer Science
Design and Analysis of Algorithms 2018 week 5 01/10/2018
[ ]



NP-hardness & approximability

Week V

Design and Analysis of Algorithms 2018 week 5



NP-hardness

Definitions, reductions, examples

Book Chapter 34

Design and Analysis of Algorithms 2018 week 5



DECISION VS OPTIMIZATION PROBLEM

Decision problem is a problem with yes/no answer.

« Hamiltonian Cycle Problem: Given a graph, is there a cycle that visits
every vertex exactly once.

Optimization problem seeks a solution with a minimal or maximal value.

« Traveling Salesperson Problem: Given a weighted graph, find a
Hamiltonian cycle with the smallest total weight.

Optimization problems have decisions versions:

« Traveling Salesperson Problem: Given a weighted graph and a value
W, is there a Hamiltonian cycle with a total weight <W.

Obviously, if we can solve the optimization problem, we can solve the
decision version, but the opposite is usually true too (blackboard).

Complexity classes are usually defined for decision problems.

- Hard decision version implies hard optimization version.

& UNIVERSITY OF HELSINKI Master’'s Programme in Computer Science
Design and Analysis of Algorithms 2018 week 5 01/10/2018



COMPLEXITY CLASSES P AND NP

P = problems that can be solved in O(nk) time
k f:onstant Next
n input length, when encoded < week

NP = problems that can be verified in O(nk) time

k constant
n input length + proof length, when encoded

NP stands for nondeterministic polynomial time: The problems can be
“solved” using the following nondeterministic algorithm:

1. Nondeterministically "guess” an optimal solution/proof/certificate
. For example, guess a list of edges for Hamiltonian cycle
2. Verify the solution/proof/certificate in polynomial time.

3. Return "yes” if verified and "no” otherwise

- Every "yes” instances must have a certificate that can verified
(co-NP = problems with polytime verification of "no” instances)

& UNIVERSITY OF HELSINKI Master’'s Programme in Computer Science
Design and Analysis of Algorithms 2018 week 5 01/10/2018



NP-HARD AND NP-COMPLETE

NP-hard = problems s. t. a polynomial time algorithm for it implies
polynomial time algorithm for every NP problem

* Proof by reduction from any NP-complete problem
» Optimization problem is NP-hard if its decision version is
NP-complete = NP-hard problems that are in NP

* Proof by reduction from any other NP-complete problem
plus polynomial time verification

The unproven but generally accepted conjecture PZNP implies
* NP contains problems that have no polynomial time algorithm

* No NP-hard problem has a polynomial time algorithm

& UNIVERSITY OF HELSINKI Master’'s Programme in Computer Science
Design and Analysis of Algorithms 2018 week 5 01/10/2018



REDUCTIONS

We denote L'<,, L if any input X" to decision problem L' can be

converted in polynomial time (i.e. O(n¥) time) to an input x of L
such that L'(x’)=L(x)€ {yes, no}.

.

Nno|

><
_
/

% UNIVERSITY OF HELSINKI Master’'s Programme in Computer Science
Design and Analysis of Algorithms 2018 week 5 01/10/2018



DEFINITIONS

Definition:. Problem L is NP-complete if
1.Le NP
2.L'<,L forevery L' € NP.

Definition: Problem L is NP-hardif 2. holds for its decision version
|_d ec:

L9ec(x)="Ts L(x)<t for given t?” [L minimization problem]

L’

B

n /

% UNIVERSITY OF HELSINKI Master’'s Programme in Computer Science
Design and Analysis of Algorithms 2018 week 5 01/10/2018 8

=
_——

v




TOOL TO PROVE NP-HARDNESS

Lemma: Problem L is NP-hard if there is NP-complete problem L~
such that L"<, L9, where L¢ is the decision version of L.

Proof.
L" is NP-complete =» L'<,, L" forevery L' € NP (by def.)
L"<,Ldee > L'<) L <, L% forevery L' € NP
transitivity = L'< L% for every L’ € NP.

Corollary. We just need to show one problem NP-complete
directly from definition. Then we can reduce all other problems
from that.

% UNIVERSITY OF HELSINKI Master’'s Programme in Computer Science
Design and Analysis of Algorithms 2018 week 5 01/10/2018



BOOLEAN SATISFIABILITY: SAT

Decide if a boolean formula ¢ is true or not, where ¢ is composed
of

n boolean variables x{, x5, x5, ..., X,,.

m boolean connectives:
A (and), v (or),— (negation), = (implication),
& (iff)

Parentheses

THEOREM (Cook-Levin): SAT is NP-complete.

We shall prove this next week.

Now we use this fact to show other problems NP-complete.

% UNIVERSITY OF HELSINKI Master’'s Programme in Computer Science
Design and Analysis of Algorithms 2018 week 5 01/10/2018 10



EXAMPLE REDUCTION SAT <,3CNF

3CNF is like SAT but ¢ is in a 3-Conjunctive Normal Form:

Each clause (formula in parenthesis) contains 3 variables or their
negations (/iterals) connected by two or’s v.

— No variable can appear twice in the same clause.
Clauses are connected by and’s A.
E.g.p3 N = (x;vxov—x3) A (=X VXV X3)

To show 3CNF NP-complete, we first need to show it is in NP and
then show that we can convert any ¢ into 3CNF $3°NF in
polynomial time such that ¢p=true iff ¢3V =true.

The proof works in several phases, converting the formula closer
and closer to 3CNF form.

& UNIVERSITY OF HELSINKI Master’'s Programme in Computer Science
Design and Analysis of Algorithms 2018 week 5 01/10/2018

11



EXAMPLE REDUCTION SAT <,3CNF

3CNF is in NP:

We need a solution/proof/certificate for any "yes” instance and
a polynomial time algorithm for verifying the certificate.

— For 3CNF, the certificate is an assignment of truth values to variables
s.t. the formula is satisfied.

— In simple cases like this, writing down the actual algorithm is not
required... but for the sake of practice:

— Read the assignments to variables.

— Read the 3CNF and evaluate a clause at a time. Return false if any clause
evaluates false. Otherwise return true.

— (exact details left as exercise).

& UNIVERSITY OF HELSINKI Master’'s Programme in Computer Science
Design and Analysis of Algorithms 2018 week 5 01/10/2018 12



EXAMPLE REDUCTION SAT <,3CNF

We will work out the conversion through an example:

d=((x; = x)v—((—x1x3) VX)) A—X,
D3
O'=y; A(y1 & (Y2A—X2))
AY2 < (V3VY4))
AY3 & (X1 2 x3))
A4 <—Ys5)

A5 < (V6 VX4))
AYe < (—x1%3))

Parse tree:

X1 X3

% UNIVERSITY OF HELSINKI Master’'s Programme in Computer Science
Design and Analysis of Algorithms 2018 week 5 01/10/2018

13



EXAMPLE REDUCTION SAT <,3CNF

®1=y; & (Y2A—X2) X2 Y1 & (Y2A—X3)

O O O 1

O O 1 1

O 1 O 0

O 1 1 1

1 0 O 0

1 0 1 0

1 1 O 1

[ TR 0
=@} =(= Y1 AY2AX) V(Y1 Ay 2 A= )V (Y1 A=Y/ X)) V(Y1 AY2AX2)
De Morgan = &7'=(y;v—y,vx)A(=y, vy, vxs)A —  3CNF

(—y1 VY2 v—x)A (=Y VY v—x;)

% UNIVERSITY OF HELSINKI Master’'s Programme in Computer Science
Design and Analysis of Algorithms 2018 week 5 01/10/2018 14



EXAMPLE REDUCTION SAT <,3CNF

We are done, except for a special case:

If we have less than three literals after converting ®; to ®;', we need to
add dummy variables to have the clauses in 3CNF.

— Any assignment of a and b makes y; decisive on one clause,
others evaluate to true.

E.g. v, = (y;vavb)A(y,vav—b)A(y,v—avb)A(y,v—av—b) \

LEtht;nvgt% iE)hneSBCNF after these | —)71 /\(J/1 & (v, ,\ﬁxz))
| | ANY2 < (Y3VY4))
Finally, all conversion steps can
be done in polynomial time: | ANY3 < (21 2 x3))
Each connectivein ® - at most ' ANYs S©—Ys)
1 variable and 1 clause in @, ' AYVs < (Yevxs))
Each clause in & - at most 8 | /\(y6 < (ﬁx1<:>x3))
clauses in ®”. b
Each clause in ®” > at most 4
clauses in ®",

% UNIVERSITY OF HELSINKI Master’'s Programme in Computer Science
Design and Analysis of Algorithms 2018 week 5 01/10/2018 15



REDUCTION TREE COVERED IN THIS COURSE

SAT (next week)

|

3CNF (done)

/\

CLIQUE (blackboard) Subset sum (next week)
VERTEX COVER (blackboard) Independent set (study group)
s

Multi-LCS (study group)

HAM-CYCLE (see the book, this shows how complex reduction gadgets can be)

/mh (study group)

Inapproximability of TSP (following slides)

% UNIVERSITY OF HELSINKI Master’'s Programme in Computer Science
Design and Analysis of Algorithms 2018 week 5 01/10/2018 16



SOME NP-HARD PROBLEMS

Max-Clique: Given a graph G, find the maximum clique (fully connected
subgraph) in G.

CLIQUE: Does a graph G contain a clique of size k.

Min-Vertex-Cover: Given a graph G, find the smallest set V' of vertices
s.t. every edge in G is incident to a vertex in V'.

VERTEX-COVER: Does a graph G have a vertex cover of size <k.

& UNIVERSITY OF HELSINKI Master’'s Programme in Computer Science
Design and Analysis of Algorithms 2018 week 5 01/10/2018

17



Approximability

Definitions, examples

Book Chapter 35

Design and Analysis of Algorithms 2018 week 5



APPROXIMATION ALGORITHMS

We will see in study groups and exercises that many important
optimization problems are NP-hard.

However, it turns out that one can sometimes find good enough
results in polynomial time.

Consider a minimization problem whose optimal solution has cost
OPT. A c-approximation algorithm returns an answer that is at
most c*OPT, where c>1.

Maximization problem = (1/c)*OPT.
There are O(1) approximations, O(log n) approximations, etc.
(1 + €)OPT = approximation scheme, € > 0.

PTAS = pol. in n for fixed ¢, e.g. 0(n'/¢).

FPTAS = pol. in n and in 1/¢, e,.g. O((1/¢€)*° n°), for constant c.

% UNIVERSITY OF HELSINKI Master’'s Programme in Computer Science
Design and Analysis of Algorithms 2018 week 5 01/10/2018

19



VERTEX COVER 2-APPROXIMATION

Minimum vertex cover: Find minimum size subset of vertices in
an undirected graph G=(V,E) such that each edge is /ncidentto

at least one vertex in this subset. ¢
A _ . aorith VI - Y OPT=3
pproximation algorithm: »1 -
. \ 1
Repeat until |E|=0: =7
1. Add u and v to solution C for any (u,v)e E. < :‘
2. Remove all edges incident to u or to v. ~‘

Theorem: The above algorithm is a 2-approximation to vertex ~~
cover.

Proof. Clearly C is a vertex cover. Let A be the set of edges
selected at line 1. One of the endpoints of an edge in A needs
to belong to an arbitrary vertex cover. No vertex is added twice

in C: OPT > |A| & |C| = 2|4| < 2 * OPT.

% UNIVERSITY OF HELSINKI Master’'s Programme in Computer Science
Design and Analysis of Algorithms 2018 week 5 01/10/2018

20



METRIC TSP 2-APPROXIMATION

Traveling salesperson problem (TSP) asks to find a minimum cost
Hamiltonian cycle (one visiting each vertex exactly ones) in a complete
undirected graph G=(V,E). Cost of a path is the sum of costs of edges.

Metric TSP is a variant where c(u,w) < c(u,v) + c(v,w) for all v, for all
edges (u,w).

d C
Sk
a 1 b

& UNIVERSITY OF HELSINKI Master’'s Programme in Computer Science

Design and Analysis of Algorithms 2018 week 5 01/10/2018
|

21



Spanning tree is a tree on V
with edges E’ € E. Minimum

M ETR I C TS P 2-AP P ROXI MATI O N spanning tree has smallest cost of

edges.
Approximation algorithm:

H= list of vertices in the preorder of T, where T is @ minimum spanning
tree of G=(V,E). N

Return the cycle /nduced by H

Theorem. The above algorithm
is a 2-approximation for metric TSP.

Proof. TSP is a spanning tree, after one edge is removed
S
C(T)=Z(u,v)ET c(w,v) < OPTrgp i

Consider a full walk over T, where each edge visited twice (once going
down, once going up). Cost of full walk is 2C(T).

The cycle induced by H has at most the cost of the full walk:
— Full walk (c,d),(d,c),(c,b),(b,a),(a,b),(b,c)
: AN / . /
— Cycle induced by H (¢, d), (d,b), (b,a), " (ac)

. preorder makes shortcuts to full walk and by triangle inequality the cost is less

% UNIVERSITY OF HELSINKI Master’'s Programme in Computer Science
Design and Analysis of Algorithms 2018 week 5 01/10/2018 22




INAPPROXIMABILITY

Some problems are hard to approximate well.

An example is general TSP (without triangle inequality).

Theorem. If PZNP, then for any constant c=1, there is no polynomial time

c-approximation algorithm for general TSP.

Proof. Reduction from Hamiltonian Cycle:

Let G=(V,E) be the Hamiltonian Cycle instance.
Let G'=(V,E’) be the complete graph on V.

Let w be the edge cost function:
w(e)=1 if ecE and w(e)=c|V|+1 otherwise.

Then a Hamiltonian cycle in G has cost [V| in G" and any other cycle
has cost at least c|V[+1+|V|-1 = (c+1)|V| > c|V|.

Thus any c-approximation algorithm would have to find a Hamiltonian
cycle if it exists.

& UNIVERSITY OF HELSINKI Master’'s Programme in Computer Science
Design and Analysis of Algorithms 2018 week 5 01/10/2018

23



