
Design and Analysis of Benchmarking Experiments for
Distributed Internet Services

Eytan Bakshy
Facebook

Menlo Park, CA
eytan@fb.com

Eitan Frachtenberg
Facebook

Menlo Park, CA
eitan@frachtenberg.org

ABSTRACT
The successful development and deployment of large-scale Inter-
net services depend critically on performance. Even small regres-
sions in processing time can translate directly into significant en-
ergy and user experience costs. Despite the widespread use of dis-
tributed server infrastructure (e.g., in cloud computing and Web
services), there is little research on how to benchmark such systems
to obtain valid and precise inferences with minimal data collection
costs. Correctly A/B testing distributed Internet services can be sur-
prisingly difficult because interdependencies between user requests
(e.g., for search results, social media streams, photos) and host
servers violate assumptions required by standard statistical tests.

We develop statistical models of distributed Internet service per-
formance based on data from Perflab, a production system used
at Facebook which vets thousands of changes to the company’s
codebase each day. We show how these models can be used to
understand the tradeoffs between different benchmarking routines,
and what factors must be taken into account when performing sta-
tistical tests. Using simulations and empirical data from Perflab,
we validate our theoretical results, and provide easy-to-implement
guidelines for designing and analyzing such benchmarks.
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fects; bootstrapping

Categories and Subject Descriptors
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1. INTRODUCTION
Benchmarking experiments are used extensively at Facebook

and other Internet companies to detect performance regressions and
bugs, as well as to optimize the performance of existing infras-
tructure and backend services. They often involve testing various
code paths with one or more users on multiple hosts. This intro-
duces multiple sources of variability: each user request may involve
different amounts of computation because results are dynamically
customized to their own data. The amount of data varies from user
to user and often follows heavy-tailed distributions for quantities
such as friend count, feed stories, and search matches [2].

Furthermore, different users and requests engage different code
paths based on their data, and can affected differently by just-in-
time (JIT) compilation and caching. User-based benchmarks there-
fore need to take into account a good mix of both service endpoints
and users making the requests, in order to capture the broad range
of performance issues that may arise in production settings.

An additional source of variability comes from utilizing multiple
hosts, as is common among cloud and Web-based services. Testing
in a distributed environment is often necessary due to engineering
or time constraints, and can even improve the representativeness of
the overall performance data, because the production environment
is also distributed. But each host can have its own performance
characteristics, and even these vary over time. The performance
of computer architectures has grown increasingly nondeterministic
over the years, and performance innovations often come at a cost of
lower predictability. Examples include: dynamic frequency scaling
and sleep states; adaptive caching, branch prediction, and memory
prefetching; and modular, individual hardware components com-
prising the system with their own variance [5, 16].

Our research addresses challenges inherent to any benchmarking
system which tests user traffic on a distributed set of hosts. Moti-
vated by problems encountered in the development Perflab [14],
an automated system responsible for A/B testing hundreds of code
changes each day at Facebook, we develop statistical models of
user-based, distributed benchmarking experiments. These models
help us address real-life challenges that arise in a production bench-
marking system, including high variability in performance tests,
and high rates of false positives in detecting performance regres-
sions.

Our paper is organized as follows. Using data from our produc-
tion benchmarking system, we motivate the use of statistical con-
cepts, including two-stage sampling, dependence, and uncertainty
(Section 3). With this framework, we develop a statistical model
that allows us to explore the consequences of how known sources
of variation — requests and hosts — a hypothetical benchmark. We
then use these models to formally evaluate the precision of different
experimental designs of distributed benchmarks (Section 4). These
variance expressions for each design also informs how statistical
tests should be computed. Finally, we propose and evaluate a boot-
strapping procedure in Section 5 which shows good performance
both in our simulations and production tests.

2. PROBLEM DESCRIPTION
We often want to make changes to software—a new user inter-

face, a feature, a ranking model, a retrieval system, or virtual host—
and need to know how each change affects performance metrics
such as computation time or network load. This goal is typically
accomplished by directing a subset of user traffic to different ma-
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chines (hosts) running different versions of software and comparing
their performance. This scheme poses a number of challenges that
affect our ability to detect statistically significant differences, both
with respect to Type I errors—a “false positive” where two ver-
sions are deemed to have different performance when in fact they
don’t, and Type II errors—an inability to detect significant differ-
ences where they do exist. These problems can result in financial
loss, wasted engineering time, and misallocation of resources.

As mentioned earlier, A/B testing is challenging both from the
perspective of reducing the variability in results, and from the per-
spective of statistical inference. Performance can vary significantly
due to many factors, including characteristics of user requests, ma-
chines, and compilation. Experiments not designed to account for
these sources of variation can obscure performance reversions. Fur-
thermore, methods for computing confidence intervals for user-
based benchmarking experiments which do not take into account
these sources of variation can result in high false-positive rates.

2.1 Design goals
When designing an experiment to detect performance reversions,

we strive to accomplish three main goals: (1) Representativeness:
we wish to produce performance estimates that are valid (reflecting
performance for the production use case), take samples from a rep-
resentative subset of test cases, and generalize well to the test cases
that weren’t sampled; (2) Precision: performance estimates should
be fine-grained enough to discern even small effects, per our toler-
ance limits; (3) Economy: estimates should be obtained with mini-
mal cost (measured in wall time), subject to resource constraints.

In short, we wish to design a representative experiment that min-
imizes both the number of observations and the variance of the re-
sults. To simplify, we consider a single endpoint or service, and use
the terms “request”, “query”, and “user” interchangeably.1

2.2 Testing environment
To motivate our model, as well as validate our results empiri-

cally, we discuss Facebook’s in-house benchmarking system, Per-
flab [14]. Perflab can assess the performance impact of new code
without actually installing it on the servers used by real users. This
enables developers to use perflab as part of their testing sequence
even before they commit code. Moreover, perflab is used to au-
tomatically check all code committed into the code repository, to
uncover both logic and performance problems. Even small per-
formance issues need to be monitored and corrected continuously,
because if they are left to accumulate they can quickly lead to ca-
pacity problems and unnecessary expenditure on additional infras-
tructure. Problems uncovered by perflab or other tests that cannot
be resolved within a short time may cause the code revision to be
removed from the push and delayed to a subsequent push, after the
problems are resolved.

A Perflab experiment is started by defining two versions of the
software/environment (which can be identical for an “A/A test”).
Perflab reserves a set of hosts to run either version, and prepares
them for a batch of requests by restarting them and flushing the
caches of the backend services they rely on (which are copied and
isolated from the production environment, to ensure Perflab has no
side effects). The workload is selected as a representative subset
of endpoints and users from a previous sample of live traffic. It
is replayed repeatedly and concurrently at the systems under tests,
which queue up the requests so that the system is under a rela-
tively constant, near-saturation load, to represent a realistically high
production load. This continues until we get the required number
1We discuss how our approach can be generalized to multiple end-
points in Section 7.

of observations, but we discard a number of initial observations
(“warm-up” period) and final observations (“cool-down” period).
This range was determined empirically by analyzing the autocorre-
lation function [13] for individual requests as a function of repeti-
tion number. Perflab then resets the hosts, swaps software versions
so that hosts previously running version A now run version B and
vice-versa, and reruns the experiment to collect more observations.

For each observation, we collect all the metrics of interest, which
include: CPU time and instructions; database/key-value fetches and
bandwidth; memory use; HTML size; and various others. These
metrics detect not only performance changes, as in CPU time and
instructions, but can also detect bugs. For example, a sharp drop
in the number of database fetches (for a given user and endpoint)
between two software versions is more often than not an undesired
side effect and an indication of a faulty code path, rather than a
miraculous performance improvement, since the underlying user
data hasn’t changed between versions.

3. STATISTICS OF USER-BASED
BENCHMARKS

In order to understand how best to design user-based bench-
marks, we must first consider how one capture (sample) metrics
over a population of requests. We begin by discussing the relation-
ship between sampling theory and data collection for benchmarks.
This leads us to confront sources of variability—first from requests,
and then from hosts. We conclude this section with a very general
model that brings these aspects together, and serves as the basis for
the formal analysis of experimental designs for distributed bench-
marks involving user traffic.

3.1 Sampling

3.1.1 Two-stage sampling of user requests
We wish to estimate the average performance of a given version

of software, and do so by sending requests (e.g., loading a particular
endpoint for various users) to a service, and measuring the sample
average ȳ, for some outcome yi for each observation. Our certainty
about the true average value Ȳ of the complete distribution Y in-
creases with the number of observations. If each observations of Y
is independent and identically distributed (iid), then the standard
error of for our estimate of Ȳ is SEiid = s/

√
N , where N is the

number of observations, and s is the sample standard deviation of
our observed yis. The standard error is the standard deviation of our
estimate of Ȳ , and we can use it to obtain the confidence interval
for Ȳ at significance level α by computing ȳ ± Φ−1(1− α/2)SE,
where Φ−1 is the inverse cumulative distribution of the standard
normal. For example, the 95% confidence interval for Ȳ can be
computed as ȳ ± 1.96SE.

Often times data collected from benchmarks involving user traf-
fic is not iid. For example, if we repeat requests for users multiple
times, the observations may be clustered along certain values. Fig-
ure 1 shows how this kind of clustering occurs with respect to CPU
time2 for requests fulfilled to a heavily trafficked endpoint at Face-
book. Here, we see 300 repetitions for 4, 16, and 256 different re-
quests (recall that by different requests, we are referring to different
users for a fixed endpoint). CPU time is distributed approximately
normally for any given request, but the amount of variability within

2Because relative performance is easier to reason about than ab-
solute performance in this context, all outcomes in this paper are
standardized, so that for any particular benchmark for an endpoint,
the grand mean is subtracted from the outcome and then divided by
the standard deviation.
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Figure 1: Clustering in the distribution of CPU times for requests.
Panels correspond to different numbers of requests. Requests are
repeated 300 times.
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Figure 2: Standard error for clustered data (e.g., requests) as a func-
tion of the number of requests and repetitions for different intra-
class correlation coefficients, ρ. Multiple repeated observations of
the same request have little effect on the SE when ρ is large.

a single request is much smaller than the overall variability between
requests. When hundreds of different requests are mixed in, in fact,
it’s difficult to tell that this aggregate distribution is really the mix-
ture of many, approximately normally distributed clusters.

If observations are clustered in some way (as in Figure 1), the
effective sample size could be much smaller than the total number
of observations. Measurements for the same request tend to be
correlated, such that e.g., the execution time for requests for the
same user are more similar to one another than requests related
to different users. This is captured by the intra-class correlation
coefficient (ICC) ρ, which is the ratio of between-cluster variation
to total variation [28]:

ρ =
σ2
α

σ2
α + σ2

ε

Where σα is the standard deviation of the request effect and σε is
the standard deviation of the measurement noise. If ρ is close to 1,
then repeated observations for the same request are nearly identical,
and when it is close to 0, there is little relation between requests.
It is easy to see that if most of the variability occurs between clus-
ters, rather than within clusters (high ρ), additional repeated mea-
surements for the same cluster do not help with obtaining a good

estimate of the mean of Y , Ȳ . This idea is captured by the de-
sign effect [10], deff = (1 + (T − 1)ρ), which is the ratio of the
variance of the clustered sample (e.g., multiple samples from the
same request) to the simple random sample (e.g., random samples
of multiple independent requests), where T is the number of times
each request is repeated.

Under sampling designs where we may choose both the number
of requests R, and repetitions T , the standard error is instead:

SEclust = σ/

√
1

RT
(1 + (T − 1)ρ) (1)

Such that additional repetitions only reduce the standard error of
our estimate if ρ is small. Figure 2 shows the relationship between
the standard error and R for small and large vales of ρ. For most
of the top endpoints benchmarked at Facebook—including news
feed loads and search queries—nearly all endpoints have values of
ρ between 0.8 and 0.97. In other words, from our experience with
user traffic, mere repetition of requests is not an effective means of
increasing precision when the intraclass correlation, ρ, is large.

3.1.2 Sampling on a budget
Exploring the tradeoffs between collecting more requests vs.

more repetitions needs to take into account not only the value of
ρ but also the costs of switching requests. For example, it is of-
ten necessary to first “warm up” a virtual host or cache to reduce
temporal effects (e.g., serial autocorrelation) [16] to get accurate
estimates for an effect. That is, the fixed cost required to sample
a request is often much greater than it is to gain additional rep-
etitions. In situations in which ρ is smaller, it may be useful to
consider larger number of repetitions per request. There is also
an additional fixed cost Sf to set up an experiment (or a “batch”),
which includes resetting the hardware and software as necessary
and waiting for the runtime systems to warm up.

So, if the fixed cost for benchmarking a single request is Cf , the
marginal cost for an additional repetition of a request is Cm, and
an available budget, B, one could minimize Eq. 1 subject to the
constraint that Sf + R(Cf + TCm) ≤ B.

3.2 Models of distributed benchmarks
While benchmarking on a single host is simple enough, we are

often constrained to run benchmarks in a short period of time,
which can be difficult to accomplish on only one host. Facebook,
for example, runs automated performance tests on every single
code commit to its main site, thousands of times a day [14]. It is
therefore imperative to conduct benchmarks in parallel on multiple
hosts. Using multiple hosts also has the benefit of surfacing perfor-
mance issues that may affect one host and not another, for further
investigation.3 But multiple hosts also introduce new sources of
variability, which we model statistically in the following sections.

To motivate and illustrate these models, let us look at an example
of empirical data from a Perflab A/A benchmark (Figure 3). Two
requests (corresponding to service queries for two distinct users
under the same software version) are repeated across two differ-
ent machines in two batches, running thirty times on each. For
each batch, the software on the hosts was restarted, and caches and
JIT environments were warmed up. The observations correspond
to CPU time measured for an endpoint running under a PHP vir-
tual machine. Note that each repetition of the same request on the
same machine in the same batch is relatively similar and has few

3Such investigation sometimes leads to identifying faulty systems
in the benchmarking environment, but can also reveal unintended
consequences of the software interacting with different subsystems.
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Figure 3: CPU time for two requests executed over 30 repetitions,
executed on two hosts over two different batches. Each shape repre-
sents a different request, and each color represents a different host.
Panels correspond to different batches. Lines represent a model fit
based on Eq. 3.

time trends. Furthermore, the between-request variability (circle
vs. square shapes) tends to be greater than the per-machine vari-
ability (e.g., the green vs purple dots). Between-batch effects ap-
pear to be similar in size to the noise.

3.2.1 Random effects formulation
An observation from a benchmark can be thought of as being

generated by several independent effects. In the simplest case,
we could think of a single observation (e.g., CPU time) for some
particular endpoint or service as having some average value (e.g.,
500ms), plus some shift due to the user involved in the request (e.g.,
+500ms for a user with many friends), plus a shift due to the host
executing the request (e.g., -200ms for a faster host), plus some
random noise. This formulation is referred to as a crossed random
effects model, and we refer to host and request-level shifts as a
random effects [3, 26] or levels [28].

Formally, we can denote the request corresponding to an obser-
vation i as r[i], and the host corresponding to hosts as h[i]. In the
equation below, we denote the random effects (random variables)
for requests, hosts, and noise for each observation i as αr[i], βh[i],
and εi, respectively. The mean value is given by µ. f denotes a
transformation (a “link function”). For additive models, f is simply
the identity function, but for multiplicative models (e.g., each effect
induces a certain percent increase or decrease in performance), f
may be the exponential function4, exp(·):

Yi = f(µ+ αr[i] + βh[i] + εi)
Under the heterogeneous random effects model [26], each request
and host can have its own variance. This model can be complex
to manipulate analytically, and difficult to estimate in practice, so
one common approach is to instead assume that random effects for
requests or hosts are drawn from the same distribution.

Homogeneous random effects model for a single batch. Un-
der this model, random effects for hosts and requests are respec-

4For the sake of simplicity we work with additive models, but it
is often desirable to work with the multiplicative model, or equiv-
alently log(Y ). The remaining results hold equally for the log-
transformed outcomes.

tively drawn from a common distribution.5

Yi = µ+ αr[i] + βh[i] + εi

αr ∼ N (0, σ2
α), βh ∼ N (0, σ2

β), εi ∼ N (0, σ2
ε). (2)

In this homogenous random effects model each request has a con-
stant effect, which is sampled from some common normal distribu-
tion,N (0, σ2

α). Any variability from the same request on the same
host is independent of the request.

Homogeneous random effects model for multiple batches.
Modern runtime environments are non-deterministic and for var-
ious reasons, restarting a service may cause the characteristic per-
formance of hosts or requests to deviate slightly. For example, the
dynamic request order and mix can vary and affect the code paths
that the JIT compiles and keeps in cache. This can be specified by
additional batch-level effects for hosts and requests. We model this
behavior as follows: each time a service is initialized, we draw a
batch effect for each request, γr[i],b[i] ∼ N (0, σγ), and similarly
for each host, ηh[i],b[i] ∼ N (0, ση). That is, each time a host is
restarted in some way (a new “batch”), there is some additional
noise introduced that remains constant throughout the execution of
the batch, either pertaining to the host or the request. Note that
per-request and per-host batch effects are independent from batch
to batch6, similar to how ε is independent between observations:

Yi = µ+ αr[i] + βh[i] + γr[i],b[i] + ηh[i],b[i] + εi

αr ∼ N (0, σ2
α), βh ∼ N (0, σ2

β),

γr,b ∼ N (0, σ2
γ), ηh,b ∼ N (0, σ2

η), εi ∼ N (0, σ2
ε) (3)

3.2.2 Estimation
How large are each of these effects in practice? We begin

with some of observations from a real benchmark to illustrate the
sources of variability, and then move on to estimating model param-
eters for several endpoints in production. Models such as Eq. 2 and
Eq. 3 can be fit efficiently to benchmark data via restricted maxi-
mum likelihood estimation using off-the-shelf statistical packages,
such as lmer in R. In Figure 3, the horizontal lines indicate the
predicted values for each endpoint using the model from Eq. 3 fit
to an A/A test (e.g., an experiment in which both versions have the
same software) using lmer. In general, we find that the request-
level random effects are much greater than the host level effects,
which are similar in magnitude to the batch-level effects. We sum-
marize estimates for top endpoints at Facebook in Table 1, and use
them in subsequent sections to illustrate our analytical results.

endpoint µ σα σβ σγ ση σε
1 0.06 1.02 0.12 0.10 0.08 0.13
2 0.08 1.08 0.10 0.05 0.06 0.08
3 0.07 1.02 0.11 0.04 0.05 0.06
4 0.08 1.08 0.05 0.05 0.02 0.06
5 0.04 1.08 0.04 0.01 0.02 0.14

Table 1: Parameter estimates for the model in Eq. 3 for the five
most trafficked endpoints benchmarked at Facebook.

5Clearly, some requests vary more than others (cf., Figure 1). This
might be caused by, e.g., the fact that some users require additional
data fetches or processing time, which can produce greater variance
in response time. Log-transforming the outcome variable may help
reduce this heteroskedasticity.
6This formal assumption corresponds to no carryover effects from
one batch to another [7]. As we describe in Section 2.2, the system
we use in production is designed to eliminate carryover effects.
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4. EXPERIMENTAL DESIGN
Benchmarking experiments for Internet services are most com-

monly run to compare two different versions of software using a
mix of requests and hosts (servers). How precisely we are able to
measure differences can depend greatly on which requests are de-
livered to what machines, and what versions of the software those
machines are running. In this section, we generalize the random
effects model for multiple batches to include experimental com-
parisons, and derive expressions for how the standard error of ex-
perimental comparisons (i.e., the difference in means) depends on
aspects of the experimental design. We then present four simple
experimental designs that cover a range of benchmarking setups,
including “live” benchmarks and carefully controlled experiments,
and derive their standard errors. Finally, we will show how basic
parameters, including the number of requests, hosts, and repeti-
tions, affect the standard error of different designs.

4.1 Formulation
We treat the problem formally using the potential outcomes

framework [24], in which we consider outcomes (e.g., CPU time)
for an observation i (a request-host pair running within a particular
batch), running under either version (the experimental condition),
whose assignment is denoted by Di = 0 or Di = 1. We use Y (1)

i

to denote the potential outcome of i under the treatment, and Y (0)
i

for the control. Although we cannot simultaneously observe both
potential outcomes for any particular i, we can compute the average
treatment effect, δ = E[Y

(1)
i − Y (0)

i ] because by linearity of ex-
pectation, it is equal to the difference in means E[Y

(1)
i ]− E[Y

(0)
i ]

across different populations when Di is randomly assigned. In a
benchmarking experiment, we identify δ by specifying a sched-
ule of delivery of requests to hosts, along with hosts’ assignments
to conditions. The particulars of how this assignment procedure
works is the experimental design, and it can substantially affect the
precision with which we can estimate δ. We generalize the ran-
dom effects model in Eq. 2 to include average treatment effects and
treatment interactions:

Y
(d)
i = µ(d) + α

(d)

r[i] + β
(d)

h[i] + γr[i],b[i] + ηh[i],b[i] + εi

~αr ∼ N (0,Σα), ~βh ∼ N (0,Σβ),

γr,b ∼ N (0, σ2
γ), ηh,b ∼ N (0, σ2

η), εi ∼ N (0, σ2
ε) (4)

Our goal therefore is to identify the true difference in means, δ =
µ(1) − µ(0). Unfortunately, we can never observe δ directly, and
instead must estimate it from data, with noise. Exactly how much
noise there is depends on which hosts and requests are involved,
the software versions, and how many batches are needed to run the
experiment. More formally, we denote the number of observations
for a particular request–host–batch tuple 〈r, h, b〉 running under the
treatment condition d, by n(d)

rhb. We express the total noise from
requests, hosts, and residual error under each condition as:

φ
(d)
R ≡

∑
r

[
n(d)
r••α

(d)
r +

∑
b

n
(d)
r•bγr,b

]
φ
(d)
H ≡

∑
h

[
n
(d)
•h•β

(d)
h +

∑
b

n
(d)
•hbηh,b

]

φ
(d)
E ≡

2N∑
i=1

ε
(d)
i 1[Di = d],

where, e.g., n(d)
r•b represents the total number of observations in-

volving a request r executed in batch b under condition d. We take
the total number of observations per condition to be equal so that
n
(0)
••• = n

(1)
••• = N .

We can then write down our estimate, δ̂, as

δ̂ = δ +
1

N

[
(φ

(1)
R − φ

(0)
R ) + (φ

(1)
H − φ

(0)
H ) + (φ

(1)
E − φ

(0)
E )

]
.

To obtain confidence intervals for δ̂, we also need to know its
variance, V[δ̂]. Following Bakshy & Eckles [4], we approach the
problem by first describing how observations from each error com-
ponent are repeated within each condition. We define the duplica-
tion coefficients [22, 23]:

ν
(d)
R ≡ 1

N

∑
r

(
n(d)
r••

)2
ν
(d)
H ≡ 1

N

∑
h

(
n
(d)
•h•

)2
,

which are the average number of observations sharing the same
request (νR) or host (νH ). We then define the between-condition
duplication coefficient [4], which gives a measure of how balanced
hosts or requests are across conditions:

ωR ≡
1

N

∑
r

n(0)
r••n

(1)
r•• ωH ≡

1

N

∑
h

n
(0)
•h•n

(1)
•h•.

Furthermore, we only consider experimental designs in which
the request-level and host-level duplication are the same in both
conditions, so that ν(0)R = ν

(1)
R and ν(0)H = ν

(1)
H , and omit the

superscripts in subsequent expressions.7

Noting that because batch-level random effects are independent,
the variance of their sums over batches can be expressed in terms
of duplication coefficients, so that e.g.,

V[
1

N

∑
b

n
(d)
r•bγr,b] =

1

N2

(
n(d)
r••

)2
σ2
γ =

1

N
νRσ

2
γ ,

and because all random effects are independent, it is straightfor-
ward to show that the variance of δ̂ can be written in terms of these
duplication factors:

V[δ̂] =
1

N

[(
νR(σ2

α(1) + σ2
α(0) + 2σ2

γ)− 2ωRσα(0),α(1)

)
+

(
νH(σ2

β(1) + σ2
β(0) + 2σ2

η)− 2ωHσβ(0),β(1)

)
+

(
σ2
ε(0) + σ2

ε(1)

)]
.

(5)

This expression illustrates how repeated observations of the same
request or host affect the variance of our estimator for δ̂. Host-level
variation is multiplied by how often hosts are repeated in the data,
and similarly for requests. Variance is reduced when requests or
hosts appear equally in both conditions, since, for example, ωR is
greatest when n(0)

r•• = n
(1)
r•• for all r. We use these facts to explore

how different experimental designs—ways of delivering requests to
hosts under different conditions—affect the precision with which
we can estimate δ.

4.2 Four designs for distributed benchmarks
In this section, we describe four simple experimental designs that

7Note that the individual components, e.g., which requests appear
in the treatment and control need not be the same for the duplication
coefficients to be equal.
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i Host Req. Ver. Batch
1 h0 r0 0 1
2 h0 r1 0 1
3 h1 r2 1 1
4 h1 r3 1 1

i Host Req. Ver. Batch
1 h0 r0 0 1
2 h0 r1 0 1
3 h1 r0 1 1
4 h1 r1 1 1

i Host Req. Ver. Batch
1 h0 r0 0 1
2 h1 r1 0 1
3 h0 r2 1 2
4 h1 r3 1 2

i Host Req. Ver. Batch
1 h0 r0 0 1
2 h1 r1 0 1
3 h0 r0 1 2
4 h1 r1 1 2

(a) Unbalanced (b) Request balanced (c) Host balanced (d) Fully balanced

Table 2: Example schedules for the four experimental designs for experiments with two hosts (H = 2) in which two requests are executed
per condition (R = 2). Each example shows four observations, each with a host ID, request ID (e.g., a request to an endpoint for a particular
user), software version, and batch number.

reflect basic engineering tradeoffs, and analyze their standard errors
under a common set of conditions. In particular, we consider our
certainty about experimental effects when:

1. The sharp null is true—that is, the experiment has no effects
at all, so that δ is zero and all variance components are the
same (e.g., σ2

α(0) = σ2
α(1) = σα(0)α(1) ) [4], or

2. There are no treatment interactions, but there is a constant
additive effect δ.8

Although these requirements are rather narrow, they correspond to
a meaningful and common scenario in which benchmarks are used
for difference detection; by minimizing the standard error of the
experiment, we are better able to detect situations in which there is
a deviation from no change in performance.

In the four designs we discuss in the following sections, we con-
strain the design space to simplify presentation in a few ways. First,
we assume symmetry with respect to the pattern of delivery of re-
quests; we repeat each request the same number of times in each
condition, so that N = RT . Second, because executing the same
request on multiple hosts within the same condition would increase
νR (and therefore inflate V [δ̂]), we only consider designs in which
requests are executed on at most one machine per condition. And
finally, since by (1) and (2), the variances of the error terms are
equal, we drop the superscripts for each σ2.

We consider two classes of designs: single-batch experiments, in
which half of all hosts are assigned to the treatment, and the other
half to the control, or two-batch experiments in which hosts run
both versions of the software. Note that R requests are split among
two batches in the latter case.9

In the single-batch design, each of the R requests is executed on
either the first block of hosts or the second block, where each block
is either assigned to the treatment or control. Therefore, when com-
puting the host-level duplication coefficient, νH for a particular
condition, we only sum across H/2 hosts:

νH =
1

RT

H/2∑
h=1

( RT
H/2

)2
=

2RT

H
,

In the two-batch design, each of the R requests are executed in
both the treatment and control across spread across all H hosts:

νH =
1

RT

H∑
h=1

(RT
H

)2
=
RT

H
,

8When the outcome variable is log-transformed, this δ corresponds
to a multiplicative effect.
9Alternatively, one can think of the experiment as involving sub-
jects and items [3] (which correspond to hosts and requests). The
two-batch experiments correspond to within-subjects designs, and
single-batch experiments correspond to between-subjects designs.

4.2.1 Definitions
Unbalanced design (“live benchmarking”). In the unbalanced

design, each host only executes one version of the software, and
each request is processed once. It can be carried out in one batch
(see example layout in Table 2 (a)). This design is the simplest to
implement since it does not require the ability to replay requests.
It is often the design of choice when benchmarking live requests
only, whether as a necessary feature or merely as a choice of con-
venience: it obviates the need for a possibly complex infrastructure
to record and replay requests. The variance of the difference-in-
means estimator for the unbalanced design is:

VUB(δ̂) = 2T (σ2
α + σ2

γ) + 2
2RT

H
(σ2
β + σ2

η) + 2σ2
ε

The standard error is
√

1
RT

VUB(δ̂). Expanding and simplifying
this expression yields:

SEUB
(
δ̂) =

√
2(

1

R
(σ2
α + σ2

γ) +
2

H
(σ2
β + σ2

η) +
1

RT
σε2
)

The convenience of the unbalanced design comes at a price: the
standard error term includes error components both from requests
and hosts. We will show later that this design is the least power-
ful of the four: it achieves significantly lower accuracy (or wider
confidence intervals) for the same resource budget.

Request balanced design (“parallel benchmarking”). The re-
quest balanced design executes the same request in parallel on dif-
ferent hosts using different versions of the software. This requires
that one has the ability to split or replay traffic, and can be done in
one batch (see example layout in Table 2 (b)). Its standard error is
defined as:

SERB
(
δ̂) =

√
2(

1

R
σ2
γ +

2

H
(σ2
β + σ2

η) +
1

RT
σε2
)

The request balanced design cancels out the effect of the request,
but noise due to each host is amplified by the average number of re-
quests per host, R

H
. Compared to live benchmarking, this design of-

fers higher accuracy, with similar resources. Compared to sequen-
tial benchmarking, this design can be run in half the wall time, but
with twice as many hosts. It is therefore suitable for benchmarking
when request replaying is available and time budget is more impor-
tant than host budget.

Host balanced design (“sequential benchmarking”). The host
balanced design executes requests using different versions of the
software on the same host, and thus requires two batches. Each
request is again only executed once, so a request replaying ability
is not required (see Table 2 (c)).
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Figure 4: Standard errors for each of the four experimental designs as a function of the number of requests and hosts. Lines are theoretical
standard errors from Section 4.2.1 and points are empirical standard errors from 10,000 simulations. Panels indicate the number of hosts
used in the benchmark, and the number of requests are on a log scale.

Compared to live benchmarking, sequential benchmarking takes
twice as long to run, but can use just half the number of hosts.
It may therefore be useful in situations with no replay ability and a
limited number of hosts for benchmarking. It is also more accurate,
for a given number of observations, as shown by its standard error:

SEHB(δ̂) =

√
2
( 1

R
(σ2
α + σ2

γ) +
1

H
σ2
η +

1

RT
σε2
)

The host balanced design cancels out the effect of the host, but
one is left with noise due to the request. Note that the number of
hosts does not affect the precision of the SEs in this design.

Fully balanced design (“controlled benchmarking”). The
fully balanced design achieves the most accuracy with the most
resources. It executes the same request on the same host using dif-
ferent versions of the software. This requires that one has the abil-
ity to split or replay traffic, and takes two batches to complete (see
example layout in Table 2 (d)). This design has by far the least vari-
ance of the four designs, and is the best choice for benchmarking
experiments in terms of accuracy, as shown by the standard error:

SEFB
(
δ̂) =

√
2(

1

R
σ2
γ +

1

H
σ2
η +

1

RT
σε2
)

This design requires replay ability, as well as twice the machines
of sequential benchmarking and twice the wall time (batches) of
live and parallel benchmarking. However, it is so much more ac-
curate than the other designs, that it requires far fewer observations
(requests) to reach a similar level of accuracy. Depending on the
tradeoffs between request running time costs and batch setup cost,
as well as the desired accuracy, this design may end up taking less
computational resources than the other designs.

4.2.2 Analysis
We analyze each design via simulation and visualization. We

obtained realistic simulation parameters from our model fits to the
top endpoint (Table 1). Our simulation then simply draws random
ŷ values from normal distributions using these parameters. For any
given design, the simulations differ in that host effects, request ef-
fects, and random noise are redrawn from a normal distribution
with σα, σβ , and σε, respectively.
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Figure 5: Distribution of δ̂s for each of the four experimental de-
signs. The data was generated by simulating 10,000 hypothetical
experiments from the random effects model in on Eq. 3 using pa-
rameter estimates from Endpoint 1 in Table 1 with 16 hosts and 256
requests, for each design.

We first consider simulations for each experimental design with
a fixed number of hosts and requests and zero average effects. Fig-
ure 5 shows the distribution of δ̂s generated from 10,000 simula-
tions. We can see that the fully balanced design has by far the least
variance in δ̂, followed by the request balanced, host balanced, and
unbalanced designs.

Next, we explore the parameter space of varying hosts and re-
quests in Figure 4. In all cases, adding hosts or adding requests
narrows the SE. For the unbalanced and host balanced designs,
the effect of the number of requests on the SE is much more pro-
nounced than that of the number of hosts: in the former because
variability due to requests is much higher than that due to hosts, as
shown in Figure 1; and in the latter because we control for the hosts.
Similarly, the request balanced design controls for requests, and
therefore shows little effect from varying the number of requests.
And finally, the fully balanced design exhibits both the smallest SE
in absolute terms, as well as the least sensitivity to the number of
hosts.
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5. BOOTSTRAPPING
So far we have discussed simple models that help us understand

the main levers that can improve statistical precision in distributed,
user-based benchmarks. Our theoretical results, however, assume
that the model is correct, and that parameters are known or can eas-
ily estimated from data. This is generally not the case, and in fact,
estimating models from the data may require many more observa-
tions than is necessary to estimate an average treatment effect.10

In this section we will review a simple non-parametric method
for performing statistical inference—the bootstrap. We then evalu-
ate how well it does at reconstructing known standard errors based
on simulations from the random effects model. Finally, we demon-
strate the performance of the bootstrap on real production bench-
marks from Perflab.

5.1 Overview of the bootstrap
Often times we wish to generate confidence intervals for an av-

erage without making strong assumptions about how the data was
generated. The bootstrap [12] is one such technique for doing this.
The bootstrap distribution of a sample statistic (e.g., the differ-
ence in means between two experimental conditions) is the dis-
tribution of that statistic when observations are resampled [12] or
reweighted [23, 25]. We describe the latter method because it is
easiest to implement in a computationally efficient manner.

The most basic way of getting a confidence interval for an av-
erage treatment effect for iid data is to reweight observations in-
dependently, and repeat this process R times. We assign each ob-
servation i a weight wr,i from a mean-one random variable, (e.g.,
Uniform(0,2) or Pois(1)) [23, 25] and use them to average the data,
using each replicate number r and observation number i as a ran-
dom seed:

δ̂∗r =
1

N∗
r

∑
i

wr,iyiI(Di = 1)− 1

M∗
r

∑
i

wr,iyiI(Di = 0)

Here, N∗
r and M∗

r denote the sum of the bootstrap weights (e.g.,∑
i wr,iI(Di = 1)) under the treatment and control, respectively.

This process produces a distribution of our statistic, the sample dif-
ference in means, δ̂∗r=1...,R. One can then summarize this distri-
bution to obtain confidence intervals. For example, to compute the
95% confidence interval for δ̂ by taking the 2.5th and 97.5th quan-
tiles of the bootstrap distribution of δ̂. Another method is to use
the central limit theorem (CLT). The distribution of our statistic is
expected to be asymptotically normal, so that one can compute the
95% interval using the quantiles of the normal distribution with a
mean and standard deviation set to the sample mean and standard
deviation of the δ̂∗r s. The CLT intervals are generally more stable
than directly computing the quantiles of the bootstrap distribution,
so we use this method throughout the remaining sections.

Similar to how the iid standard errors in Section 3.1.1 underes-
timate the variability in Ȳ , we expect the iid bootstrap to underes-
timate the variance of δ̂ when observations are clustered, yielding
overly narrow (“anti-conservative”) confidence intervals and high
false positive rates [21]. The solution to this problem is to use
a clustered bootstrap. In the clustered bootstrap, weights are as-
signed for each factor level, rather than observation number. For
example, if we wish to use a clustered bootstrap based on the re-
quest ID, as to capture variability due to the request, we can assign

10For example, identifying host-level effects requires executing the
same request on multiple machines, and identifying request-level
effects requires multiple repetitions of the same request. Both
increase request-level duplication, which reduces efficiency when
request-level effects are large relative to the noise, σε (Sec. 4.2).

all observations for a particular host to a weight. In the case of re-
quests, we would instead use host IDs and replicate numbers as our
random number seed, and for each replicate, compute:

δ̂∗r =
1

N∗
r

∑
i

wr,h[i]yiI(Di = 1)− 1

M∗
r

∑
i

wr,h[i]yiI(Di = 0)

5.2 Bootstrapping experimental differences
Before examining the behavior of the bootstrap on production

behavior, we validate its performance based on how well it ap-
proximates known standard errors, as generated by our idealized
benchmark models from Section 3. To illustrate how this works,
we can plot the true distribution of δ̂s drawn from the 10,000 simu-
lations for the fully balanced design shown in Figure 6, along with
the δ̂∗s under the host and request-clustered bootstrap for a single
experiment. The host-clustered bootstrap, which accounts for the
variation induced by repeated observations of the same host, tends
to produce estimates of the standard errors that are similar to the
true standard error, while the request-clustered bootstrap tends to
be too narrow, in that it underestimates the variability of δ̂.
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Figure 6: Comparison of the distribution of δ̂s generated by 10,000
simulations (solid line) with the distribution of bootstrapped δ̂∗s
from a single experiment (dashed lines).
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(b)Figure 8: Empirical validation of bootstrap estimators for the top 10 endpoints using production data from Perflab. Left: Type I error rates
for host-clustered and IID bootstrap (request-clustered bootstrap has a Type I error rate of > 20% for all endpoints and is not shown);
Solid line indicates the desired 5% Type I error rate, and the dashed lines indicate the range of possible observed Type I error rates that
would be consistent with a true error rate of 5%. Right: Standard error of host-clustered, request-clustered, and iid bootstrap relative to the
host-clustered standard error.

Next, we evaluate three bootstrapping procedures—iid, host-
clustered, and request-clustered—with each of the four designs for
a single endpoint. To do this, we use the same model parameters
from endpoint 1, as in previous plots. To get an intuitive picture for
how the confidence intervals are distributed, we run 500 simulated
A/A tests, and for each configuration, we rank-order experiments
by the point estimates of δ̂, and visualize their confidence inter-
vals (Figure 7). Shaded regions represent false positives (i.e., their
confidence intervals do not cross 0). The iid bootstrap consistently
produces the widest CIs for all designs. This happens because the
iid bootstrap doesn’t preserve the balance across hosts or requests
across conditions when resampling. There is also a clear relation-
ship between the width of CIs and the Type I error rate, in that
there are a higher proportion of type I error rates when the CIs are
too narrow.

To more closely examine the precision of each bootstrap method
with each design, we run 10,000 simulated A/A tests for each con-
figuration and summarize their results in Table 3. For the request-
balanced design, we also include an additional bootstrap strategy,
which we call the host-block bootstrap, where pairs of hosts that ex-
ecute the same requests are bootstrapped. This ensures that when
whole hosts are bootstrapped, the balance of requests is not broken.
This method turns out to produce standard errors with good cover-
age for the request-balanced design, and so we will henceforth refer
to the host–block bootstrap strategy as the host-clustered bootstrap
in further analyses. We can see that the host-clustered bootstrap
appears to estimate the true SE most accurately for all designs.

5.3 Evaluation with production data
Finally, having verified that the bootstrap method provides a con-

servative estimate of the standard error when the true standard er-
ror is known (because it was generated by our statistical model),
we turn toward testing the bootstrap on raw production data from
Perflab, which uses the fully balanced design. To do this, we con-
duct 256 A/A tests using identical binaries of the Facebook WWW
codebase. Figure 8 summarizes the results from these tests for the
top 10 most visited endpoints that are benchmarked by Perflab.

Consistent with the results of our simulations, we find that the
request-level bootstrap is massively anti-conservative, and pro-
duces confidence intervals that are far too narrow, resulting in a
high false positive rate (i.e., > 20%) across all endpoints. Simi-
larly, we find that our empirical results echo that of the simulations:
the iid bootstrap produces estimates of the standard error that are
far wider than they should be. The host-clustered bootstrap, how-

Design Bootstrap Type I err. ŜE SE
unbalanced request 21.4% 0.07 0.10
unbalanced iid 17.8% 0.07 0.10
unbalanced host 3.6% 0.11 0.10
request balanced request 71.6% 0.01 0.07
request balanced iid 10.8% 0.07 0.07
request balanced host 0.8% 0.11 0.07
request balanced host-block 5.7% 0.08 0.07
host balanced request 8.4% 0.07 0.07
host balanced iid 6.8% 0.07 0.07
host balanced host 5.0% 0.08 0.07
fully balanced request 46.8% 0.01 0.03
fully balanced host 4.8% 0.03 0.03
fully balanced iid 0.0% 0.07 0.03

Table 3: Comparison of Type I error rates and standard errors for
each experimental design and bootstrap strategy. ŜE indicates the
average estimated standard error from the bootstrap, while SE indi-
cates the true standard error from the analytical formulae. Anti-
conservative bootstrap estimates of the standard errors produce
high false positive rates (e.g., >5%).

ever, produces Type I error rates that are not significantly different
from 5% for all but 3 of the endpoints; in these cases, the confi-
dence intervals are slightly conservative, as is desired in our use
case. For these reasons, all production benchmarks conducted at
Facebook with Perflab use the host-clustered bootstrap.

6. RELATED WORK
Many researchers recognized the obstreperous nature of perfor-

mance measurement tools, and addressed it piecemeal. Some fo-
cus on controlling architectural performance variability, which is
still a very active research field. Statistical inference tools can be
applied to reduce the effort of repeated experimentation [11, 19].
These studies focus primarily on managing host-level variability
(and even intra-host-level variance), and do not spend much atten-
tion on the variability of software.

Variability in software performance has been examined in many
other studies that attempt to quantify the efficacy of techniques such
as: allowing for a warm-up period [8]; reducing random perfor-
mance fluctuations using regression benchmarking [18]; randomiz-
ing multi-threaded simulations [1]; and application-specific bench-
marking [27]. In addition, there is an increasing interest specifi-
cally in the performance of online systems and in the modeling of
large-scale workloads and dynamic content [2, 6].
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Several studies addressed the holistic performance evaluation of
hardware, software, and users. Cheng et al. described a system
called Monkey that captures and replays TCP workloads, allowing
the repeated measuring of the system under test without generat-
ing synthetic workloads [9]. Gupta et al., in their Diecast sys-
tem, addressed the challenge of scaling down massive-scale dis-
tributed systems into representative benchmarks [15]. In addition,
representative characteristics of user-generated load is critical for
benchmarking large-scale online systems, as discussed by Manley
et al. [20]. Their system, hbench:Web, tries to capture user-level
variation in terms of user sessions and user equivalence classes.
Request-level variation is modeled statistically, as opposed to mea-
suring it directly.

A few studies also proposed statistical models for benchmarking
experiments. Kalibera et al. showed that simply averaged mul-
tiple repetitions of a benchmark without accounting for sources of
variation can produce unrepresentative results [17, 18]. They devel-
oped models focusing on minimizing experimentation time under
software/environment random effects, which can be generalized to
other software-induced variability. These models are similar to the
model developed here, but they do not take into account host-level
or user-level effects, which are central to the experimental design
and statistical inference problem we wish to address. To the best
of our knowledge, this is the first work to rigorously address dis-
tributed benchmarking in the context of user data.

7. CONCLUSIONS AND FUTURE WORK
Benchmarking for performance differences in large Internet soft-

ware systems poses many challenges. On top of the many well-
studied requirements for accurate performance benchmarking, we
have the additional dimension of user requests. Because of the po-
tentially large performance variation from one user request to an-
other, it is crucial to take the clustering of user requests into ac-
count. Yet another complicating dimension, which is nevertheless
critical to scale large testing systems, is distributed benchmarking
across multiple hosts. It too introduces non-trivial complications
with respect to how hosts interact with request-level effects and ex-
perimental design to affect the standard error of the benchmark.

In this paper we developed a statistical model to understand and
quantify these effects, and explored their practical impact on bench-
marking. This model enables the analytical development of experi-
mental designs with different engineering and efficiency tradeoffs.
Our results from these models show that a fully balanced design—
accounting for both request variability and host variability—is op-
timal for the goal of minimizing the benchmark’s standard error
given a fixed number of requests and machines. Although this
design may require more computational resources than the other
three, it is ideal for Facebook’s rapid development and deployment
mode because it minimizes developer resources.

Design effects due to repeated observations from the same host
also show how residual error terms that cannot be canceled out via
balancing, such as batch-level host effects due to JIT optimization
and caching, can also be an important lever for further increasing
precision, especially when there are few hosts relative to the num-
ber of requests.

From a practical point of view, estimating the model parameters
to compute the standard errors for these experiments (especially
in a live system) can be costly and complex. We showed how a
non-parametric bootstrapping techniques can be used to estimate
the standard error of each design. Using empirical data from Face-
book’s largest differential benchmarking system, Perflab, we con-
firm that this technique can reliably capture the true standard error
with good accuracy. Consequently, all production Perflab experi-

ments use a fully-balanced design, and the host-level bootstrap to
evaluate changes in key metrics, including CPU time, instructions,
memory usage, etc. Our hope is that this paper provides a simple
and actionable understanding of the procedures involved in bench-
marking for performance changes in other contexts as well. With a
more quantitatively informed approach, practitioners can select the
most suitable experimental design to minimize the benchmark’s run
time for any desired level of accuracy.

Our results focus on measuring the performance of a single end-
point or service. Often times one wishes to benchmark multiple
such endpoints or services. Pooling across these endpoints to ob-
tain a composite standard error is trivial if one could reasonably
regard the performance of each endpoint as independent.11 If there
is a strong correlation between endpoints, however, the models here
must be extended to take into account covariances between obser-
vations from different endpoints.

Finally, another area of development for future work is a more
extensive evaluation of the costs associated with each of the four
basic designs. For example, one might devise a cost model which
takes as inputs the desired accuracy and parameters such as batch
setup time, fixed and marginal costs per request, etc. These cost
functions’ formulae would depend on the particulars of the bench-
marking platform. For example, in some systems the number of
requests needed for stable measurements for may depend on some
maximum load per host. How much “warm up” different subsys-
tems need might also depend on how services are distributed across
machines.
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