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Abstract 

In structural optimization, usually an approximation concept is introduced as interface 
between (FEM) structural analysis code and optimization algorithm. In some cases of opti- 
mm desigr., a glcba! apprcxhaticl? ccncept car. be effectively applied. Then, apprmirnatior. 
model functions are built of all objective and constraint functions, whose values, for a certain 
design point, follow from the structural analysis calculations. In this way, the original o p  
timization problem is completely replaced by an explicitly known approximate optimization 
problem. 

Response-surface techniques are commonly applied to build global approximation models, 
especially when dealing with responses of physical experiments. For one response function, 
this means that a user defined model function is fitted to  the response data  calculated at 
the design sites of some experimental design. Errors between model function and experi- 
mental response values are assumed to be randomly distributed. However, in the structural 
optimization case, an experiment is a computer analysis with a deterministic response as a 
result. This rules out the statistical assumptions response-surface model building is based 
upon. Furthermore, it  is often difficult to find model functions that approximate the true 
response behaviour within the desired accuracy. 

Sacks and coworkers proposed a new model building strategy, that  is especially suited 
for deterministic computer responses. Their basic assumption is that computer responses 
can be modelled as a realization of a stochastic process. This finally leads to a response 
prediction that exactly describes all calculated computer responses. Additionally, the mean 
squared error of a prediction can be calculated, which serves as a measure of accuracy of the 
prediction. 

A review is given of the method of Sacks et al.. It has been implemented in MATLAB. 
Some analytical response functions and small design optimization problems have been used 
to test the model building capacities and the effectiveness of the method when applied as 
global approximation concept in structural optimization. 

It is concluded that the strategy as proposed by Sacks and coworkers is not suited for 
implementation in a design optimization tool, mainly because of two reasons. Firstly, maxi- 
mum likelihood parameter estimation is computationally expensive and not straightforward, 
while the quality of the parameter estimations is questionable. This computational effort 
is disadvantageous if many constraint functions have to  approximated, which often occurs 
in structural optimization. Secondly, the mean squared error can not be unconditionally 
trusted. To have an independent accuracy measure several additional computer experiments 
(test points) have to  be performed. 

Main advantage of the approximations of Sacks et al., compared with response-surface 
models, is the flexibility to automatica!!y adapt to the ca!cu!ated response data. The same sort, 
of flexibility also occurs for the moving least-squares variant of the least-squares parameter 
estimation. I t  is recommended to investigate whether this method can add flexibility to, 
and solve the model function selection problems of, the response-surface strategy without an 
unmanageable amount of computations. 
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Chapter 1 

Introduction 

In structural optimum design, optimization tools usually do not directly solve the optimization 
problem, but use a suitable approximation concept to interface structural analysis software 
and mathematical programming algorithm. The general optimization problem can be formu- 
lated as to find the set of n design variables x that minimizes objective function: 

Fobj (x) 

subject to  constraints: 
gj(x) S c j  j = l ,  ..., m 

xf < xi < xy i = 1 ,  ..., n 
in the design space: 

Objective function and constraints are often not explicitly known: most objective function 
and constraint values of a certain design x follow from time-consuming structural analysis 
calculations. The introduction of an approximation concept avoids programming problems 
and is computationally more convenient (Haftka and Gürdal, 1992). The basic principle 
is to  generate explicitly known approximations of objective function and constraints, which 
build an approximate optimization problem that can be easily solved by a mathematical 
programming algorithm. 

B€ten, local approximations are used. A local approximation of objective function or 
constraint is based on function value and derivatives with respect to the design variables in a 
single point of the design space. Since such an approximation is only valid in the vicinity of 
this point, the search subregion of the approximate optimization problem has to  be limited 
by additional constraints, so called movelimits. The optimum of the approximate problem 
serves as starting point of a new cycle of approximation and optimization. This sequential 
approximate optimization process is continued until an acceptable optimum is reached. Local 
approximation concepts are popular in structural optimization, because they are easy to  use 
2nd they can handle design prob!ems with B !arge number of design variables. 

For some optimum design applications, it is useful to build global approximation models 
of objective function and constraints, that create an explicitly known approximate optimiza- 
tion problem in the complete design space or a large part of it. So, the region in which 
the approximations are valid is significantly larger than when using a local approximation 
concept. The price you pay is that the number of design variables is limited: the required 
amount of numerical experiments to build the approximation models grows exponentially for 
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increasing number of design variables. Additionally, the number of experiments also limit 
the model accuracy that can be obtained. Despite these rather severe limitations, global 
approximations can be used to get a rough idea of the influence of some important design 
variables on the response, and to search for promising starting points of a sequential approx- 
imate optimization process. Besides these preliminary investigations, global model building 
may also be useful after an optimum design has been found. In a region around this optimum 
design, approximation models of objective function and important constraints can be con- 
structed. These models can give insight in, for example, the sensitivities of design variables 
on objective function and constraints. They may also prove to  be useful if the design has to 
be combined with other designs, and small design variable or constraint boundary changes 
are still possible. An updated optimum design can be easily found, without the necessity to 
repeat the optimization. 

To generate global approximations, often response-surface techniques are used (Schoofs, 
1987), that were originally developed for the model fitting of physical experiments. Response- 
surface model building starts with postulating the approximate model functions. Then, an 
experimental design is constructed that contains the design points for which computer ex- 
periments are carried out. Finally, regression analysis is used to  estimate the unknown pa- 
rameters of the approximation models by fitting the numerical response data. Schoofs, Klink 
and Van Campen (1992), for example, applied the response-surface strategy to  optimize a 
child’s car seat. Schoofs (1987) and Roozen-Kroon (1992) designed a major third bell using 
regression models. 

However, computer experiments are completely different from physical experiments. Re- 
peating a computer experiment gives exactly the same response, this in contrary to the 
physical equivalent. This deterministic behaviour of computer responses is the main reason 
for Sacks, Welch, Mitchell and Wynn (1989b) to reject the response-surface method. An ap- 
proximation model should be able to exactly predict the calculated responses, and therefore, 
they argue, one can not postulate model functions beforehand. The model should be flexible 
enough to  adapt to  the functional behaviour of the response. To accomplish this, Sacks and 
coworkers developed a new statistical method with interpolative features. 

This report deals with the proposed statistical method for the design and analysis of 
computer experiments. It will be referred to as the method of Sacks et al.. The basic 
principles are discussed, and some simple analytical functions are used to test the method. 
The effectiveness in structural optimization is studied, and compared with the response- 
surface strategy. This finally leads to the conclusion that the present configuration of the 
method of Sacks et al. is not suitable for implementation in a design optimization tool. 
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Chapter 2 

Theorem 

2.1 Modelling, estimation and prediction 
Starting point of the method of Sacks ei al. is the modelling of the deterministic computer 
response y(x) as a realization of a stochastic process Y :  

Y ( x )  = fT(x)p + Z(x) (2.1) 

with: 

f ( x )  = [fl (4,  * ' ., 6 (.)IT 
P = l B l , . . . , P k l T  

The model is a sum of a linear regression model fT(x)p and a random process Z(x). This 
random process Z is assumed to  have zero mean, and a covariance between Z(x) and Z(w) at 
design sites x and w, that  is the product of a process variance a2 and a correlation function 
R(w, x): 

The stochastic process Y is assumed to  be Gaussian. 
For a certain experimental design S = {SI , .  . . , SN} computer experiments have been 

performed, and response data ys = [y(sl), . . . ,  SN)] is available. From these computer 
responses the unknown parameters p and o2 can be estimated: 

COW(W, X )  = a2R(w, X) (2.2) 

p = ( F T R - ~ F ) ~ '  F T R - ~ ~ ,  (2.3) 

(2.4) 
1 

5 2  = - (Ys - FP R-l (Ys - FP ) 
with the regression design matrix F and the correlation matrix R defined by: 

F = [f(& * * 7 f(sly)lT 
R = [R(Si, S j & j  15 i, j 5 N 

However, before calculating ,8 and ô2, first the unknown parameters of the correlation func- 
tion have to be estimated. Using maximum likelihood, they result from the minimization of 
(Welch, Buck, Sacks, Wynn, Mitchell and Morris (1992)): 

1/2(Nln û2 + In det R) (2.5) 
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which is a function of only the correlation parameters and the response data. 
For these parameter estimations, the best linear unbiased prediction of the response is: 

y = fT(x)P + rT(x)a (2.6) 

with the column & defined by: 

and with r being a column of correlations between the Z’s at the design sites of S and the 
untried input x: 

The second part rT(x)& of formula (2.6) is in fact an interpolation of the residuals of the 
regression model fT(x)B . Therefore, all response data will be exactly predicted. In this 
report attention is restricted to a constant regression model B, because most authors did not 
find much advantage in using more complex regression models (e.g. see Welch et al. (1992) 
and Bernardo, Buck, Liu, Nazaret, Sacks and Welch (1992)). 

r =  [R(Sl,X),...,R(Snr,X)$ (2.8) 

Sacks et al. (1989b) also gave a representation of the mean squared error: 

MSE(f(x) )  = o 1 - [ fT(x) rT(x) ] [ ]-’ [ ] } (2.9) .( 
It is remarked that the M S E  is zero for x equal to a design site in S. 

2.2 Correlation functions 

In all literature concerning the method of Sacks et al., always a correlation function of the 
type R(w,x)  = R(w - x) is selected, and within this family attention is restricted to  the 
product correlation type: 

n 
~ ( w ,  X) = Rj (dj) (2.10) 

j=l 
~~ 

with: 
dj = wj - ~j 

Bernardo et al. (1992) and Welch et al. (1992) used: 

Rj(dj) = e-eJId31PJ (2.11) 

In Sacks, Schiller and Welch (1989a) pj = 2 V j  was inserted to get realizations that are 
infinitely differentiable. They argued that this kind of correlation is especially suitable for 
computer experiments depending smoothly on the input variables. Parameter p j  should have 
smaller values than 2, for applications with more erratic responses. Instead of correlation 
function (2.11) in this report: 

is used to  get a better conditioned minimization problem 

(2.12) 

(2.5). 
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Currin, Mitchell, Morris and Ylvisaker (1991) and Sacks et al. (198910) mentioned other 
correlation functions, like a linear function: 

and a cubic correlation function: 

(2.13) 

(2.14) 

These functions are non-negative. Currin et al. (1991) also gave a linear and cubic correlation 
function that can become negative. 

Generally, hardly any attention is paid to criteria to  select a proper correlation function. 
Currin et al. (1991) stated that simplicity is an important guiding principle. In any case, the 
number of parameters of the correlation function to be estimated should be reduced as much 
as possible, because of the computational expense of the maximization of the log-likelihood. 
For every evaluation of equation (2.5) p , u2 and det(R) have to be calculated, which becomes 
computationally expensive for growing number of design sites. Additionally, for increasing 
number of correlation parameters to be estimated, the required number of evaluations to 
minimize (2.5) will also increase. Usually, for higher functional dimension, the number of 
design points will grow exponentially, which is combined with an increase of the number of 
correlation parameters if every design variable direction is given it’s own parameter values. 

So, without caution a high increase of computational costs will occur for growing number 
of design variables. This is the main reason why Welch et al. (1992) tried to screen all 
correlation parameters that need a value of their own, and to find out which parameters can 
be equally valued. They also tried to combine the parameter screening with a design variable 
reduction. If 6 j  of correlation function (2.11) becomes zero during the parameter estimation, 
the j-th design variable can be removed. I do not agree with this kind of design variable 
deletion, because (analytical) functions can be found for which 6j can become almost zero, in 
which case the j-th design variable does influence the response. This is further illustrated in 
example 3.2. 

2.3 Experimental design 

Mainly optimal design strategies are used by Sacks et al. (1989a), Sacks et al. (1989b) and 
Currin et al. (1991) to build an experimental design. Sacks et al. (1989a) computed the 
experimental design S from the minimization of the mean squared error in the design space 
X :  

i TdSE($;.(X))& (2.15) 
JX 

Another criterion is to minimize the maximum mean squared error: 

max MSE(f i (x ) )  
X E X  

(2.16) 

This criterion is expected to  behave rather discontinuous, and to  have many local minima, 
because of the max-value operator. A third optimal design strategy was applied by Currin et 
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al. (1991). They used an entropy criterion that finally boils down to the maximization of the 
determinant of the matrix R: 

det R (2.17) 
All optimal design strategies suffer from two serious drawbacks. Firstly, they are compu- 

tationally expensive, like the minimization of equation (2.5) to  estimate the parameters. But 
now the computational burden is even larger, because of the high dimensional optimization 
problem. Therefore, often a set of candidate points is selected from which design S has to 
be selected. The optimal design strategy is comparable with optimal design of experiments 
applied in response-surface analysis, where det(FTF) is maximized instead of det R. 

A second drawback is that the unknown parameters of the correlation function have to  be 
set on some fixed values to be able to calculate the optimal design criterion. Therefore, one 
has to  search for a robust set of parameters before starting the optimum design calculations. 
The way to  find these robust values and the effect on the final prediction is not clear. 

To avoid these problems, one can use classical designs instead, like a full or fractional 
factorial design. Bernard0 et al. (1992) and Welch et al. (1992) found Latin hypercube 
sampling especially suitable for computer experiments. Latin hypercubes can be generated 
by giving each design variable equally spaced values, but in different random order. As a 
result, a relative uniform covering of the experimental region will be found. A special feature 
of a Latin hypercube design is that every design variable level is used only once. So, if a 
design variable hardly influences the response and is deleted from the set of design variables, 
the experimental design is still a Latin hypercube design with no design sites coinciding. This 
in contrary t o  for example a full factorial design, that  will lead to many redundant analysis 
calculations. 

During the model building it may appear that the current experimental design is not 
sufficiently large to  properly predict the response. Then, a larger experimental design is 
desired, which can be established by adding design points to  the present experimental design. 
When dealing with classical designs, adding design points is not straightforward and often 
rather ad hoc. In contrary, optimal design techniques seem to be especially suited to  add 
design sites to an existing experimental design. 

Addition of design points to an existing experimental design is not mentioned in the 
literature concerning the method of Sacks et al. Welch et al. (1992) for example applied a 
Lath hypercube design of 30 and 40 desigr! points, and reported that these designs proved to 
be not sufficient to model the response. For their problem they found 50 runs to  be successful. 
But they waisted the preceding model building steps of 30 and 40 design points, and did not 
use the response values of the corresponding design points anymore. So, instead of 50, 120 
calculations were made before a satisfactory model was found, while the model is based only 
on the last 50 calculations. I think that it is important for a successful and efficient model 
building to  have the opportunity to add design points to an existing experimental design. 

2.4 Accuracy and design vzriable eflects 

To have a measure of the accuracy of the prediction (BLUP), some authors calculate the 
mean squared error M S E  of the response by means of equation (2.9). For a circuit-simulation 
example, Sacks et al. (1989b) computed the standard residuals at 100 random points ri; 

(2.18) 
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to see whether the M S E  of the BLUP is a meaningful indicator of uncertainty in the pre- 
diction. They showed that these standardized residuals were approximately standard normal 
and therefore concluded that the M S E  did provide a valid estimate of the error for their 
example. However, Currin et al. (1991) concluded that their Bayesian predictor performed 
well, but that the most disturbing note was the failure of the 95 % probability intervals for 
the Bayesian predictors to  cover the true values consistently well, except for the intervals 
produced by the linear and nonnegative linear correlations. This means that the calculated 
M S E  values were for most correlation functions too small. 

M S E  predictions can be checked by comparing the overall root mean squared error 
( R M S E )  with the empirical root mean squared error ( E R M S E )  calculated for a certain 
amount Np of (random) design sites ri. The RMSE and EMRSE are respectively defined 
by: 

RMSE = {- (2.19) 
NP i=l 

and: 

ERMSE = 
NP i=l 

(2.20) 

For Np being sufficiently large the RMSE value should be near the E M R S E  value. It will be 
clear that the ERMSE calculations can only be done for analytical test examples, because 
of the computational expense of every experiment. To avoid additional design calculations 
Welch and Sacks (1991) used: 

(2.21) 

with si the i-th experiment of the experimental design S, and O-l(si) the predictor of y(si) 
based on all the data except the observation y(si). In this way no extra design calculations 
are necessary. The correlation parameters have to be estimated based on all N observations, 
and have to be set at the same value for y-1 (xi) for all i, otherwise N times a new parameter 
estimation has to  be performed. Still, N times an inverse of matrix R has to be computed. It 
is important that  the prediction is based on sufficient data points, such that deletion of one 
design site has not large effects on the prediction. 

Finally, insight in the effect of design variables on the response is valuable. Sometimes, 
design variables can be detected that hardly effect the response and can be removed. More 
response data will become available for the other design variables. Therefore, Sacks et al. 
(198913) decomposed the response into an average, main effects for every design variable, two- 
variable interactions and higher order interactions. The average of the predicted response is 
defined by: 

(2.22) 

the main term effects by: 

(2.23) 
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and the interaction effects: 

In the case that the design variables are normalized between zero and one, the product 
terms before the integrals vanish and equations (2.22), (2.23) and (2.24) become equal to the 
expressions menticned in, fgr exxap!e, Sacks et d. (1989b). If the predictio-n. is a reasonab!e 
resemblance of the true response equations (2.22), (2.23) and (2.24) can give an indication 
of the different parameter effects. The product correlation type (2.10) is very helpful for 
an efficient calculation of the main term and interaction term effects: only one dimensional 
integrations have to be performed. 

2.5 Sacks et al. versus response-surface in structural opti- 
mizat ion 

Building a global approximation model of an objective function or constraint can be divided 
into six distinct steps for both the response-surface strategy and the method of Sacks et al.: 

1. Select model function. 

2. Build a new experimental design or extend the existing design. 

3. Perform (numerical) experiments. 

4. Determine the unknown model parameters. 

5. Estimate the accuracy of the approximation. 

6. Restart at step 1 or 2 if the approximation is not satisfactory. 

Step 1 is rather crucial for response-surface modelling. The accuracy that can be achieved 
mainly depends on the quality of the proposed approximation function. Whenever the model 
function is not satisfactory, new model terms have to  be added (think for example of forward 
and backward regression techniques) or a completely different model function has to  be cho- 
sen. This model selection is the most difficult and restricting part of response-surface model 
building. 

The method proposed by Sacks et al. does not suffer from these model function selection 
problems. All experimental response data is exactly fitted. In fact, the model function 
relies on the response values and therefore is far more flexible. In step 1 'only' a proper 
correlation function has to be selected. This additional flexibility is beneficial in structural 
optimization, because the functional behaviour of objective function and constraints is usually 
not known. Based on physical insight some general design variable efTects x a y  be determined 
and incorporated into the model approximations by means of intermediate design variables 
and intermediate responses (see Barthelemy and Haftka (1993)). However, large parts of the 
true functional behaviour remain unknown. 

Automatic model adaptation becomes almost necessary when many constraints have to 
be approximated. This often occurs. In that case response-surface modelling will only be 
manageable if the number of constraints to be approximated is small, or several constraints 
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can approximated by the same type of model function. This does not mean that the estimated 
parameter values need to be the same. Though, the number of model functions to  be selected 
and adapted by the user should be as small as possible. In contrary, the models of Sacks et 
al. automatically adapt to  the calculated response data and therefore all constraints can be 
dealt with separately. 

However, parameter estimations in the case of Sacks et al. are far more expensive and 
less straightforward than for the response-surface variant. So for Sacks et al., the number of 
constraints is limited by the parameter estimation. For larger number of design variables and 
response values, the computational burden grows exponentially. The only way to  increase 
the number of constraints is to  have an other more simple way of parameter estimation. One 
of my conclusions will be that the statistical basis is questionable, and therefore one can 
argue against the maximization of the log-likelihood function to estimate the parameters. An 
alternative may be found in the moving least-squares method of section 2.6. 

To complete the comparison between response-surface and Sacks et al., the different ways 
of calculating the accuracy of the approximation should be mentioned. In the response-surface 
case, the accuracy follows from the residuals between model prediction and response values at 
the design sites of the experimental design. Possibly, additional (random) experiments may 
be performed to  have data which the models have not been fitted on. Accuracy in the case of 
Sacks et al. is determined by the mean squared error M S E  of equation (2.9). However, the 
examples will show that the probability bounds based on this M S E  should not be interpreted 
in an absolute statistical sense. They usually can only give some indication of the order of 
accuracy, so it is recommended to compute responses at some extra design sites to  have an 
additonal independent measure of accuracy. 

Finally, it is remarked that some special cases desire to  have a specific behaviour of the 
approximations of the objective function and constraints, for example to apply a specific 
optimization algorithm, or to  achieve a certain type of approximations. Then, the response- 
surface methodology is (of course) preferable, because you can select whatever model function 
you want. This in contrary to  the method of Sacks et al. that heavily relies on the response 
data and therefore generates approximations which have a less explicitly known behaviour. 

2.6 Moving least-squares approximations 

Examination of equation (2.6) shows that the interpolation of the residuals is a sum of conel& 
tion functions stored in the column r(x). The elements of the parameter column ci determine 
the individual heights of the correlation functions (see figure 2.1). Equation (2.7) implies that 
the parameter values of column ci are calculated such that the residuals (ys - F b )  are ex- 
actly predicted by equation (2.6). The correlation parameters 6j in functions (2.12), (2.13) 
and (2.14) determine the width of the correlation functions. Parameters pj of correlation 
function (2.12) influence the continuity of the function. 

The correlation functions used by Sacks et al. are a kind of weight functions determining 
the influence of a response value of a certain design site on the response value of a design 
point at some distance. A same sort of usage of weight functions can be found in the moving 
least squares (MLS) methods (see e.g. Lancaster and Salkauskas (1981), or Belytschko, Lu 
and Gu (1994) who applied MLS in an element free Galerkin method). The moving least 
squares approximation of the response y(x) is defined by: 

(2.25) 
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Figure 2.1: Prediction is a sum of correlation fmctions. 

with p(x) a column of basis functions. For example, a linear basis in three dimensions gives: 

or a quadratic basis in two dimensions: 

p y x )  = [ 1 2 1  2 2  2; 2 1 2 2  2; ] 
For a certain design x, the coefficients a(x) follow from the minimization of the weighted 
norm: 

2 no 

J = w(x  - Xj) [pT(xj)a(x) - ui] 
j=l 

(2.26) 

where no is the number of design points in the neighbourhood of x for which the weight 
function w ( x  - xj) is not zero, and xj j = 1, . . . , no are the corresponding design sites of the 
experimental design S : xj E S. Scalar uj  is equal t o  the response value at Xj. Then: 

a(x) = A-l(x)B(x)u (2.27) 

with matrices A(x) and B(x), and column u defined by: 

no 

(2.28) 
j=l 

~ ( x )  = [ W(X - xl)p(xï) W(X - X2>p(x2)  - - W(X - xno)P(xno) ] (2.29) 

UT = [ u1 u2 a .  e uno ] (2.30) 

Weight function w(x  - xj) determines which design sites xj of the experimental design 
influence the response at design site x and how much influence every site actually has. If 
weight function w ( x  - xj) is chosen constant over the complete design space, the standard 

11 



least squares variant is obtained. Belytschko et al. (1994) relate the region of influence to 
the ’density’ of the experimental design near x. The region can be small if many points 
xj lie near x. If a rather uniformly distributed experimental design is applied (which will 
often be the case for a multi-dimensional problem), weight functions can be selected that 
have a constant region of influence everywhere in the design space. This corresponds with 
the correlation functions of Sacks et al., for which the region of influence is determined by 
correlation parameters that  have the same value for any design site x. Lu, Belytschko and 
Gu (1994) recommended to  use orthogonal basis functions to  have a numerically efficient 
implementation. 

To examine the equivalence of moving least squares and Sacks et al., all response values 
need to  be exactly predicted. In the global design space, there are N design points si with 
corresponding response values yi (i = 1 , .  . . , N ) .  Therefore, instead of taking uj = y(Sj)y it is 
searched for all columns vectors ui E v (i = 1, . . . , N )  for which: 

$(Si) = Yi 

which means that for every design point s i  follows: 

$(si) = p~(~i)AT’(si)Bi(si)~i = yi (2.3i) 

Assembling the N equations, a linear set of equations results, relating the responses ys to  the 
column vector v: 

~s = Qv (2.32) 

from which v can be solved. Then, for any design site x, the response $(x) can be predicted 
by using equations (2.25) and (2.27). 

Now, suppose p(xj) = 1, such that the approximation is only determined by the weight 
functions, like the approximation of Sacks only depending on the correlation functions. Then 
matrix A(x)  and B(x) can be written as: 

7LO . .. 

A(x) = W(X - xj) 
j=l 

B(x) = [ w(x - XI)  w(x - x2) . . . w(x - xno) ] 

(2.33) 

(2.34) 

Take weight function w(x - xj) equal to correlation function R(x - xj), and consider all N 
design points when calculating matrices A(x) and B(x), i.e. insert no = N .  This means that 
matrix B(x) is now equal to  row vector rT(x) of equation (2.8). Then, for equation (2.31) 
follows: 

leading to  a total set of equations given by: 

Rv = ys 
with a modified response vector: 

(2.35) 

(2.36) 

(2.37) 
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Figure 2.2: Moving least squares approxima- 
tion (solid) and approximation according to 
Sacks et al. (dotted) using the exponential 
correlation function with 8 = 0.6 and p = 2. 

The prediction can be written as: 

3, 

-2 -3 1 O I 2 
-3 

X 

Figure 2.3: Moving least squares approximiir 
tion (solid) and approximation according to 
Sacks et d. (dotted) using the exponential 
correlation function with 8 = 0.1 and p = 2. 

(2.38) 

which has to  be compared with: 

Y(x) = rT(x)R--'y, = yn' (2.39) 

of Sacks et al., in the case that no regression model is present. 
Both approximations (2.38) and (2.39) are summations of N weight functions. However, 

equation (2.38) has an additional product term that depends on x and a modified response vec- 
tor ys, and therefore behaves quite different. This is illustrated by means of a one dimensional 
analytical response function y = tan(z) and an experimental design S = {-1.2, -0.8,. . ., 1.2). 
The weight function is chosen equal to correlation function (2.12) with p = 2. Figure 2.2 and 
2.3 visualize the behaviour of the moving least squares approximation (2.38) and the a p  
proximation (2.39) of Sacks et al., for different values of 8. Approximation (2.39) is clearly 
a summation of correlation functions, apparent from the behaviour for the large 8 value. 
Approximation (2.38) is much more an interpolation, with the width of the weight function 
determining the region in which the interpolation takes place. This different behaviour has 
also effect on the extrapolative character of the approximations. 

I 
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Chapter 3 

Examples 

3.1 Response prediction and accuracy 

Welch et al. (1992) considered the analytical test function: 

y(zl,52) = [30 + XI sin(a:1)](4 + e-"2) 0 I 5 1 , 5 2  I 5  (3.1) 

In figure 3.1 the contours of this function are plotted together with the location of 11 obser- 
vations according to a Latin hypercube design. 

Numerical optimization of the log-likelihood function yields, for correlation functions 
(2.12), (2.13) and (2.14), the correlation parameter estimations of table 3.1. In the third 
column of this table, the parameters are mentioned that are estimated, and which parameters 
have the same values. Using exponential correlation function (2.12) in case I and 11, two 
optima in the minimization function (2.5) have been found. Welch et al. (1992) reported 
the local optimum estimation of case I (denoted by [I]), together with an estimated constant 
f i  = 129 and a process covariance a2 = 341. The present calculations have confirmed these 
values, and also the empirical root mean squared error (ERMSE)  value of 3.18 on the 21 * 21 
grid x = (0.25i, 0.25j) for O 5 i, j 5 20. Welch et al. (1992) apparently did not find the 
optimum parameter values with the lower value of equation (2.5). 

By means of table 3.2 the influence of the type of correlation function on the accuracy of 
the approximations can be compared. The three columns of the first block represent accuracy 
predictions calculated from the mean squared error ( M S E )  (equation (2.9)) on an equally 
spaced grid of 21 * 21 test points rj ( j  = 1 , .  . . ,421) on the design space. Column 'prob. 
bound.' refers to the percentage of function values of the test points between the predicted 
95 % probability bounds. 'maxRMSE' and 'RMSE' are respectively the maximum root 
mean squared error: maxj M S E ( r j )  and the overall root mean squared error defined in 
equation (2.19). The accuracy measures of the second block are based on the calculated 
function values of the 21 * 21 grid, and can be used to check the accuracy predictions of the 
first block. 'ERMSE' is the empiricai root mean squared error according t o  equation (2.2Oj, 
and 'max error' represents the maximum deviation between predicted and true values on the 
grid. Finally, in the third block (last column) an alternative empirical root mean squared 
error is given, defined by (2.21) that does not depend on the function values of the test points. 

One can observe that the percentages of design sites between the 95 % probability bounds 
are smaller than 95 % for all considered cases, except for case V. This means that the M S E  
values are too small, which is confirmed by the RMSE consequently being smaller than the 
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correlation I parameters 
(2.12) 81, 6 2 ,  P i ,  P2 

(2.12) 81, 8 2 ,  Pi, P2 
(2.12) e = el = e2, = = p 2  
(2.12) e = e 1 = e 2 , p = p l  = p 2  
(2.12) e = e l  = e 2 , p l = P 2 = 2  

parameter estimations 
81 = 12.3, 92 = 12.5, $1 = 1.51, $2 = 1.81 
el = 2.81, e2 = 3.87, pi = 2, p 2  = 2 
e = 11.6, p = 1.61 
e = 3.14, p = 2 
4 = 3.11 
91 = 12.4, 8 2  = 22.7 
8 = 15.6 

d = 8.72 
el = 8.41, e2 = 12.3 

Table 3.1: Estimated correlation parameter values. The bracketed cases are parameter esti- 
mations corresponding to  a local optimum of the log-likelihood function. 

ERMSE. Linear correlation function (2.13) gives the best mean squared error predictions, 
exponential function (2.11) the worst. However, the E R M S E  indicates that  response pre- 
dictions based on the linear correlation function are worst, which is caused by the piecewise 
linear behaviour of the approximation. 

Secondly, for this example, it appears that no profit is found in taking different correlation 
parameters for every design variable direction. In contrary, the RMSE values are even 
somewhat larger. This confirms the strategy of Welch et al. (1992) to share common values 
of the correlation parameters. In my opinion, correlation parameters e j  (and p j )  can share 
the same value in all design variable directions j independent of the response values y of the 
experimental design, if the design variables are scaled to  have the same ranges, and if the 
density of the points of the experimental is largely the same in every design variable direction. 

Finally, the ERMSE-1 does not give a good estimate of the ERMSE.  So, the alternative 
way of equation 2.21 to calculate the ERMSE can not be used to avoid additional design 
calculations. For this example, ERMSE-1 seems to  behave as an upperbound, but this is 
not generally true. 

For the single parameter cases 111, V and VI1 of table 3.1, the influence of the correlation 
parameter value on the M S E  prediction is investigated. The parameter estimations corre- 
sponding to these cases follow from the minimization of equation (2.5). This is visualized in 
figure 3.5. So, according to the method of Sacks et al., the minima represent the most likely 
parameter estimations. 

R M S E  and E R M S E  values have been calculated for an equally spaced region of 8 be- 
tween 0.1 and 30.1, and are plotted in figures 3.2, 3.3 and 3.4. For correlation function (2.13) 
and (2.14) E R M S E  and RMSE have the same type of curve. In the neighbourhood of the 
estimated parameter values ERMSE and R M S E  curve are quite near each other, so the 
predicted M S E  appears to be quite well. This does not occur for correlation function (2.12), 
for which R M S E  and ERMSE curve are different. R M S E  predicts the E R M S E  correctly 
only for a few 8 values. The minimum of equation (2.5) yields a parameter estimation with 
a RMSE that  is two times smaller than the ERMSE.  

Generally, there is no guarantee that the estimated maximum likelihood parameters lead 
to a correct estimate of the mean squared error. For this example, a 4 >I< 4 full factorial design 
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case 
I 

I1 

I11 

[I] 

[I11 

maxerror ERMSE 
13.4 3.74 
15.1 3.18 
12.1 3.29 
14.7 3.08 
14.7 3.08 
16.0 4.78 
15.3 4.51 
12.9 2.70 
13.4 2.72 

prob. bound maxRMSE RMSE 
86.6 % 4.05 2.40 
75.7 % 4.07 1.67 
93.2 % 4.35 2.71 
84.4 % 4.75 1.96 
84.4 % 4.75 1.96 

ERMSE-1 
5.17 
7.65 
5.23 
7.02 
7.02 
7.83 
7.02 
6.42 
6.44 

Table 3.2: Summary of the model prediction errors belonging to  the parameter estimations 
of the previous table. The maximum range of response values of the 11-point Latin design is 
49.0. 

instead of the Latin design gives rise to large discrepancies between ERMSE and RMSE 
curves, also for correlation functions (2.13) and (2.14). Maximum likelihood parameters 
have been calculated for a 9, 16, 25, 36 and 49 point full factorial design using the cubic 
correlation function (2.14). The E R M S E  and R M S E  that result for these parameter values 
are plotted in figure 3.6. It is clearly visible that, apart from the 5 * 5 design, rather large 
differences occur. My conclusion is that the mean squared error equation (2.9) can not be 
used to  calculate absolute accuracy measures (e.g. 95 % probability bounds) of the model 
predictions. Only the order of magnitude may be used to have some sort of indication. 

3.2 Maximum likelihood behaviour 

Consider the following five one dimensional test functions visualized in figure 3.7: 

y = tan(x) ( 3 4  

y = 0 . 5 ~ ~  + x 
y = sin(s) 

y = - 0 . 1 5 ~ ~  + x 
y = x  ( 3 4  

Within the input variable range x E (-1, i}, test functions (3.2) and (3.3), as well as func- 
tions (3.4) and (3.5) have nearly the same functional behaviour. Using the experimental 
design given by S = {-I, -2/3, -1/3, O, 1/3,2/3, i) values of the rnaxbcrn likelihood Eini- 
mization function (2.5) have been calculated for a wide range of 8 values. The minimization 
function values for correlation functions (2.12) (with p = 2), (2.13) and (2.14) as a function 
of 8 are plotted in respectively figures 3.8, 3.9 and 3.10. 

Figure 3.8 of the exponential correlation function (2.12) is rather astonishing. Although 
the response of test functions (3.4) and (3.5) are almost exactly the same, the behaviour of 
the minimization function is quite different. A somewhat larger, but still small, difference 
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between (3.2) and (3.3) even leads to a complete different behaviour of the minimization 
function: for test function (3.2) an optimum parameter estimation can be found at 6 = 1, 
while test function (3.3) has a maximum likelihood parameter estimation at infinity. 

The cubic correlation function (2.14) is less sensitive for small changes in the response 
values than the exponential function. Though, the parameter estimations of functions (3.2) 
and (3.3) are still somewhat different. The linear correlation function seems to  be completely 
independent of the response values, and to be only determined by the experimental design: 
all parameter estimations are the same for all test functions. 

In the case of the linear response behaviour of function (3.6), one can expect parameter 
6 to go to  infinity when using correlation functions (2.12) and (2.14). Otherwise, no linear 
approximation can be obtained. Only correlation (3.4) is able to  reach a linear approximation 
for a finite value of the correlation parameter. 

Using correlation function (2.11), Welch et al. (1992) stated that the j- th design variable 
is inactive if the corresponding correlation parameter 8j becomes zero (infinity for (2.12)). 
From figure 3.2 can be concluded that this strategy is not correct: correlation parameter 8 
can $0 to infinity while the design variable x is certainly not inactive. They even use a test 
function with small linear terms in some design variables to illustrate that the unimportant 
design variable effects are detected. However, these design variables are found not because 
they have a small contribution to  the total response, but because their contribution is linear. 

Problems with correlation parameters going to infinity not only occur for correlation 
function (2.11) or (2.12). Test function y = 2; + 2 1 2 2  on O 5 x 1 , q  5 2 with S a 4 * 4 
full factorial design, shows that also correlation function (2.14) gives rise to  infinite values 
of the correlation parameters, both when estimating 81 and 6 2 ,  and in the case of a joint 
correlation parameter 8 = 81 = 8 2 .  Only the minimization function of correlation (2.13) still 
has a minimum. 

3.3 Two bar truss 

Svanberg (1987) described a two bar truss optimization problem. The truss structure, shown 
in figure 3.11, is parametrized by two design variables: 2 1 ,  the cross-sectional area (ma2) 
of the bars, and 22, half of the distance (M) between the two nodes 1 and 2. Objective 
is to  minimize the weight of the truss structure, subject to stress constraints in both bars. 
Svanberg (1987) formulated this problem analytically as to  minimize the objective function: 

Fobj (x) = 21 41 + x; 
subject to  the stress constraints: 

gi(x)  = 0 . 1 2 4 J g  (: + '> 51x2 5 1 

gl(x) = 0.1244- ($ - A) 5 1 

(3.7) 

(3.9) 

Here, the design space is set to: 1 5 x1 5 2, 0.1 5 22 5 1.6. The second constraint will never 
become active, and is therefore not taken into account. Figure 3.12 visualizes the two bar 
truss optimization problem. 
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method function R M S E  maxerror ERMSE 
Sacks Fobj 0.0116 0.0309 0.00549 
Sacks 0.0308 0.349 0.0348 

Response Fobj 0.00170 0.0301 0.00380 1 Response 0.0751 0.488 0.0598 

Table 3.3: Predictie:: errors of the two-bar truss problem fer the method ef Sacks et d. a d  
the response-surface strategy 

Global approximation models are built for objective function and first constraint, using 
both the response-surface strategy and the method of Sacks et al. Objective and constraint 
response values are calculated for the Latin hypercube design plotted in figure 3.12. 

Using the model building strategy of Sacks et al., cubic correlation function (2.14) is 
selected, for both objective function and constraint. By means of minimization of the rnax- 
imimum likelihood the unknown parameters are estimated. The predictions of objective 
function and constraint that follow are visualized in figure (3.13). The root mean squared 
error ( R M S E )  accuracy prediction is calculated and compared with the empirical root mean 
squared error computed on a 41 * 41 grid of points. These values are given in table 3.3, with 
additionally the maximum prediction error on the grid. 

Full second order polynomials with third order main terms are used to  fit the response data 
of objective function and constraint in the case of response-surface model building. Regression 
analysis is applied to estimate the ten parameters. The polynomial predictions are plotted 
in figure 3.14. For these approximations, root mean squared error ( R M S E ) ,  empirical root 
mean squared error ( E R M S E ) ,  and maximum prediction error are calculated as well, and 
tabulated in table 3.3. The response-surface variant of the RMSE is defined by: 

1 
c ( $ ( s i )  -  si))^ 
i=l 

(3.10) 

with t the number of parameters. 
The approximations of the objective function are very accurate. The response-surface 

approximation is even more accurate than the prediction of Sacks et al. Differences become 
more apparent for the constraints. Figures 3.13 and 3.14 clearly visualize the different be- 
haviour of both approximations. The model of Sacks tries to adapt to  the calculated response 
data with a(.) (erroneous) local dip in the contour lines as a result. On the contrary, the 
polynomial approximation has difficulties in the (right) upper part of the design space and 
for small values of 21, due to the selected polynomial model. Comparing the E R M S E  values 
leads to  the conclusion that the constraint approximation of Sacks et al. is more accurate 
than the polynomial approximation. This is confirmed by the maximum prediction errors. 

3.4 Modelling the acoustical damping of the hum of a bell 
Roozen-Kroon (1992) constructed regression models for the frequencies and acoustical damp- 
ing of the most important eigenmodes of the bell as a function of seven radii describing the 
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I effect I 3-4 3-3 3-5 1-3 1-4 1-6 5-5 1-5 2-3 1-2 1 
I 

percentage I 27 25 19 16 15 14 12 11 11 10 

Table 3.4: Important main and interaction term effects of the acoustical damping of the hum 
of a bell 

bell shape (see figure 3.15). She concluded that the approximation models of the damping 
were quite inaccurate for some of the eigenmodes. 

Etman (1992) considered the damping of the first partial (hum), for which the regression 
model has a reasonable accuracy, and tried to improve the approximation by means of the 
model building strategy of Sacks et al. Correlation function (2.11) was selected with one 
correlation parameter û = 81 = û2 = . . . = û7 and constant exponents pi = p2 = . . . = 
p7 = 2. Using the same experimental design as Roozen-Kroon (1992), no improved model 
approximation could be found. For 41 random design points nearly the same empirical root 
mean squared error was found: 1.65 for the regression model of Roozen-Kroon (1992)l 
and 1.74 lo-' €or the model generated by the method of Sacks et al., with about 1.6 €or 
the total range (maxi y(si) -mini y(s;) i = 1, . . . , N )  of the damping data of the experimental 
design. 

Again, for the hum an approximation model is built by means of the method of Sacks et 
al., but now correlation function (2.14) is selected. Then, an EMRSE value of 1.76 is 
found which confirms the value of correlation (2.11). Additionally, main effects and interaction 
effects are calculated to get an idea of the important design variables describing the damping 
of the hum. Since the accuracy of the approximation model is reasonable (about 10 % of the 
total range), it  is expected that equations (2.22), (2.23) and (2.24) give a good indication of 
the important main term and interaction effects. 

The main term effects are plotted in figure 3.16. Clearly, radius 3 is of main influence on 
the acoustical damping of the hum of the bell. The contribution of an effect p(z )  to the total 
response is defined as: 

maxj p ( z j )  - minj p(z).j 
maxi y(si) - mini y(si) (3.11) 

with 2 = (21, . . . , z,} being the set of m sites for which the effect has been computed. Main 
effect 3-3 is calculated from equation (2.23) for 10 values of radius 3, varied from lower to 
upper bound. The contribution of this main effect according to (3.11) appears to  be about 25 
%. The same can be done for the interaction effects, but now a two dimensional scan (10 * 10) 
has to  be performed for all interaction effects. 

In table 3.4 the contributions of the different effects to the total response are given that 
are larger than 10 %. It becomes apparent that besides main effect 3-3 also interaction effects 
3-4, 3-5 and 3-1 have an important contribution to the response. So, one can conclude that 
the most important design variabies determining the hum of a beii are radii 3, 4, 5 and i, 
and that radii 7, 2, and 6 are less important. 

'RooZen-Kroon (1992) reported 3.3 but this value is two times the value that would follow from the 
response data plotted in a figure of her thesis. I have used the acoustical damping data that matches the thesis 
figures. 
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3.5 Ten bar truss 

Haftka and Gürdal (1992) described a ten bar truss optimization problem with stress and 
displacement constraints. The truss structure, shown in figure 3.17, is designed for minimum 
weight with the cross-sectional areas of truss members as design variables. Constraints are 
defined by the maximum stress of 25 hi in tension and compression, and by the maximum 
vertical displacement of 2 in of the free nodes. Length I is 360 in, and forces P are 100 Kips. 
The Young5s moduius and the specific mass are respectiveiy io* hi and 0.1 ib in-3. 

Instead of the cross-sectional areas, the reciprocals of the cross-sectional areas are taken 
as design variables to have a more linear functional behaviour between stresses and design 
variables. A random hypercube design of 100 experiments is constructed with the design vari- 
ables ranging between 1/32 in-l and 1 in-'. Stresses and displacements for this experimental 
design are calculated by means of a finite element program. 

Global approximation models of stresses and displacements are built using the method of 
Sacks et al. with correlation function (2.14) and 6 = 61 = . . . = 610. The models are tested for 
100 additional random experiments. The maximum absolute prediction errors of the stresses 
lie in between 5 % to 15 % of the total variation of calculated stresses on the experimental 
design. The maximum displacement prediction errors are 5 % to  10 % of the corresponding 
displacement ranges. So, the approximations seem to be of a reasonable accuracy. The 
E R M S E  predicts fairly well the RMSE:  more than 90 % of all calculated displacements 
and stresses at the random design sites are within the predicted 95 % probability bounds. 

However, optimization of the design problem using the constructed approximation models, 
does not yield a design near the optimum reported by Haftka and Gürdal (1992). The 
displacement models are too inaccurate. For the calculated approximate optimum design, 
displacement prediction errors occur up to 100 % of the constraint boundary of 2 in. Though, 
related to  the total range of displacements of node 2 of about 22 in this is only 10 %. So, 
the desired accuracy should be related to  the constraint boundary value instead of the range 
of the response. Far away from the constraint boundaries, the model does not need to  be 
equally accurate. This knowledge can not be taken into account in the method of Sacks 
et al.: every response value equally contributes to  the response prediction. In the case of 
regression analysis, response values near the constraint boundary can and should be more 
heavily weighted than other response values. 

Additionally, main term and interaction term effects are calculated, to  find out which 
design variables have main influence on stresses and displacements. The stress in a bar 
appears to  be mainly determined by the cross-sectional area of the bar it self, except for bar 
5,  for which cross-sectional areas of bars 7, 8, 3 and 1 are equally important. Cross-sectional 
areas of the bars to  the left side of bar 5 mainly influence the stresses of the bars at the 
same side, and hardly the stresses of the bars on the other side. The same is true for the 
cross-sectional areas of the bars right to bar five. From these observations follows that for the 
stresses two substructures can be distinguished. Cross-sectional areas of bars 3, 1, 7 and 8 
are of main inñuence on ail displacements, which is physically correct. Despite the moderate 
accuracy, the main physical effects have been reconstructed from the approximation models. 
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Figure 3.1: Contour plot of the analytical 
test function and the location of the 11-point 
Latin hypercube design. 
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Figure 3.3: RMSE (dash-dot) and ERMSE 
(solid) using the linear correlation function 
with 8 = 81 = 8 2  for the Latin design. 
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Figure 3.2: R U S E  (dash-dot) and ERMSE 
(solid) using the exponential correlation func- 
tion with 8 = û1 = û2 and pi = p2 = 2 for 
the Latin design. 
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Figure 3.4: RMSE (dash-dot) and ERMSE 
(solid) using the cubic correlation function 
with 8 = 81 = 82 for the Latin design. 
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Figure 3.5: Maximum likelihood minimiza- 
tion function using the exponential (l), lin- 
ear (2) and cubic (3) correlation function for 
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Figure 3.6: R M S E  (dash-dot) and E R M S E  
(solid) using the cubic correlation function 
with 0 = 81 = û2 for an n rl< n full factorial 

the Latin design. design. 
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Figure 3.7: Test functions y = tan(x) (I), 
y = 0 . 5 ~ ~  + x (2), y = sin(%) (3), y = 
- 0 . 1 5 ~ ~  + x (4) and y = x (5). 

Figure 3.8: Maximum likelihood minimiza- 
tion function for the five test functions using 
the exponential correlation function. 
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Figure 3.11: Two-bar truss structure. Figure 3.12: Two bar truss optimization 
problem and a 16-point Latin hypercube de- 
sign. 
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Figure 3.13: Objective function and con- Figure 3.14: Objective function and con- 
straint predictions of the two-bar truss by straint predictions of the two-bar truss by 
means of the method of Sacks et al. means of the response-surface strategy. 
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Figure 3.15: Bell geometry. 
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Figure 3.16: Main effects of the acoustical 
damping of the hum of a bell. 

Figure 3.17: Ten bar truss 
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Chapter 4 

Conclusion and discussion 

Sacks and coworkers rejected the response-surface strategy to  model responses of numerical 
experiments. They proposed a new statistical method especially suited for the design and 
analysis of computer experiments. However, I have not been convinced of the statistical value 
of the method. Examples have illustrated that the 95 % probability bounds often fail. The 
mean squared error has not proven to be an accuracy measure, that can be unconditionally 
trusted. Additionally, no evidence has been found that the maximum likelihood parameter 
estimations are indeed the most likely parameter values. For some correlation functions, 
the parameter estimations are sensitive for small response variable changes. I think that 
the basic statistical assumption of the response being a realization of a stochastic process is 
questionable. 

Maximum likelihood parameter estimation is computationally expensive and far from 
straightforward. For the application in structural optimization, this is a serious drawback 
because often many constraint functions have to be approximated. Linear regression analysis 
of the response-surface strategy is computationally much cheaper and easier, especially if 
several constraints can be approximated by the same type of function. 

Main advantage of the models of Sacks et al. is that they are much more flexible than 
response-surface models. All response data is automatically exactly predicted, this in contrary 
to response-surface models. Automatic model adaptation in the case of response-surface 
model building has to  be done by means of forward and/or backward regression techniques 
that respectively add and/or remove terms of the regression model. Though, the flexibility 
of the models of Sacks et al. will probably never be reached. 

Exact prediction of the response data of the experimental design is only permitted if all 
design variables are taken into account in the parameter estimation. Design variables can be 
removed if they have a small effect on the response. Then, these effects re-enter the model 
building problem as small (systematic) errors on the response data. So if, for example, all 
design variables are removed that are expected to have less than 10 % effect on the response, 
the approximation model does not need to exactly predict the response values but to stay just 
within 10 7% deviation. For this case the strategy of Sacks should be adapted incorporating 
(systematic) errors in the response. Depending on the desired accuracy, the response-surface 
strategy with for- and backward regression may prove to be flexible enough, otherwise more 
flexible models are necessary. 

The present configuration of the method of Sacks et al. is not suitable for implementation 
in a design optimization tool, mainly because of the parameter estimation and the unreliable 
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mean squared error. Maybe the statistical assumptions should be discarded. I think it is 
worthwhile to  investigate whether there is an opportunity to add flexibility to regression 
models by means of the moving-least squares method mentioned in chapter 2. As far as I can 
see, a spline-like or a finite element approach in multi (> 2) dimensions seems t o  have too 
many degrees of freedom to be practically applicable in structural optimization. 
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