

DESIGN AND DEPLOY WEBSPHERE SERVLETS FOR PLANNED AND UNPLANNED DATABASE DOWNTIME AND LOAD BALANCING WITH UCP

Design and Deploy WebSphere Applications for Planned,
Unplanned Database Downtimes and Runtime Load
Balancing with UCP

In Oracle Database RAC and Active Data Guard environments

O R A C L E W H I T E P A P E R A U G U S T 2 0 1 5

DESIGN AND DEPLOY WEBSPHERE SERVLETS FOR PLANNED AND UNPLANNED DATABASE DOWNTIME AND LOAD BALANCING WITH UCP

2

Table of Contents

Introduction 3

Issues to be addressed 3

Oracle Database 12c High-Availability and Load Balancing Concepts 4

Configure WebSphere for UCP 4

Create a New JDBC Provider 4

Create a New DataSource 8

Create a JNDI context in the servlet 19

Create a web.xml for the Servlet 20

WebSphere Tips 20

Hiding Planned Maintenance from WebSphere Applications 20

Developer or Web Applications Steps 21

DBA or RDBMS Steps 22

Hiding Unplanned Database Downtime from WebSphere applications 23

Developer or Web Application Steps 23

DBA or RDBMS Steps 24

Runtime Load Balancing (RLB) with WebSphere Servlets 24

Developer or Web Application steps 25

Appendix 26

Enable JDBC & UCP logging for debugging 26

Conclusion 27

DESIGN AND DEPLOY WEBSPHERE SERVLETS FOR PLANNED AND UNPLANNED DATABASE DOWNTIME AND LOAD BALANCING WITH UCP

3

Introduction

Achieving maximum application uptime without interruptions is a critical business requirement. There are a number of

requirements such as outage detection, transparent planned maintenance, and work load balancing that influence

application availability and performance. The purpose of this paper is to help Java Web applications deployed with IBM

WebSphere, achieve maximum availability and scalability when using Oracle.

Are you looking for best practices to hide your web applications from database outages? Are you looking at, smooth &

stress-free maintenances of your web applications? Are you looking at leveraging Oracle Database’s runtime load

balancing in your WebSphere applications? This paper covers the configuration of your database and WebSphere

Servlets for resiliency to planned, unplanned database outages and dynamic balancing of the workload across database

instances, using RAC, ADG, GDS1, and UCP.

Issues to be addressed

The key issues that impede continuous application availability and performance are:

» Planned Maintenance:

» Achieve transparent maintenance: Make the maintenance process fast and transparent to applications for

continuous availability.

» Session Draining: When the targeted instance is brought down for maintenance, ensure that all work

completes. We will describe how to drain sessions without impacting in-flight work and also avoid logon storms

on active instance(s) during the planned maintenance.

» Unplanned Downtimes:

» Outage detection: Web application’s timeouts are unpredictable and unreliable. This paper describes how to

configure WebSphere Servlets to be notified of outages as fast as possible.

» Error handling: Several types of SQL exceptions may be received by your Servlets; how to determine that such

errors are indicative of database service failure?

» Recovery with Response Time Targets: Upon outage the Oracle Database RAC system needs a short period

of time to recover before becoming fully operational again. How to react quickly and keep such “brownout” period

under SLA targets?

» Outcome of in-flight work: Have you ever paid twice for books, flights or taxes? Making a reliable determination

of the outcome of the in-flight transaction in the face of database outages was a challenge until Oracle Database

12c. We will describe, how to design Servlets and configure Oracle Database 12c for solving this challenge.

» Continuation of in-flight work: How to design Servlets and configure Oracle Database 12c and UCP to allow

safe and transparent replay of in-flight transactions in the event of unplanned database outages.

» Workload Balancing: In RAC, RAC ONE and ADG environments, connection requests are by default distributed

randomly by the Net Listener. How to configure your web applications and configure the database for optimal

distribution of the workload when the node/services are added/removed?

1 http://www.oracle.com/technetwork/database/availability/maa-consolidation-2186395.pdf

DESIGN AND DEPLOY WEBSPHERE SERVLETS FOR PLANNED AND UNPLANNED DATABASE DOWNTIME AND LOAD BALANCING WITH UCP

4

The paper provides step by step instruction on how to configure JDBC driver, UCP as WebSphere data source and

enable high availability properties thereby enabling your applications for planned database maintenance and unplanned

database downtimes. Finally the paper discusses the recommended solutions.

Oracle Database 12c High-Availability and Load Balancing Concepts

To support high-availability and load balancing solutions, Oracle Database 12c and prior releases furnish HA configurations

(RAC, Data Guard) and features which are leveraged by Oracle Database drivers (e.g., Oracle JDBC) and connection pools

(e.g., UCP). This paper will refer to the following features, mechanisms, and concepts described in Java Programming

with Oracle Database 12c RAC and Active Data Guard 2 white paper:

» Universal Connection Pool (UCP)

» Fast Application Notification (FAN)

» Oracle Notification Service (ONS)

» Fast Connection Failover (FCF)

» Logical Transaction ID (LTXID)

» Database Request

» Recoverable Errors

» Mutable Functions

» Transaction Guard (TG)

» Application Continuity (AC)

Configure WebSphere for UCP

Universal Connection Pool (UCP) has the built in support for planned maintenance, unplanned downtimes and runtime load

balancing. UCP along with RAC, RAC One and ADG is a tested and certified combination for handling database failovers.

UCP has been successfully used by many customers to handle failovers seamlessly. Configuring UCP in IBM WebSphere

is explained in detail, hereafter.

Deploying a servlet which accesses Oracle Database through Oracle JDBC driver and Oracle Universal Connection Pool

(UCP) in a WebSphere application container requires the following steps:

» Create a New JDBC Provider

» Create a New Data Source

» Create a JNDI lookup in the servlet

» Create a web.xml for the Servlet

Please note that WebSphere Application Server version 8.5.5.3 is used in our testing and here are the step by step

instructions. Please also, refer to “WebSphere Tips” section of the white paper while using IBM WebSphere.

Create a New JDBC Provider

Define ${ORACLE_JDBC_DRIVER_PATH} at a location where the Oracle JDBC driver & related libraries are placed.

Check Environment WebSphere variables to define the driver’s path as ${ORACLE_JDBC_DRIVER_PATH}.

2 http://www-content.oracle.com/technetwork/database/application-development/12c-ha-concepts-2408080.pdf

http://www.oracle.com/technetwork/database/application-development/planned-unplanned-rlb-ucp-tomcat-2265175.pdf
http://www.oracle.com/technetwork/database/application-development/planned-unplanned-rlb-ucp-tomcat-2265175.pdf

DESIGN AND DEPLOY WEBSPHERE SERVLETS FOR PLANNED AND UNPLANNED DATABASE DOWNTIME AND LOAD BALANCING WITH UCP

5

 Add a New JDBC Provider: (Refer to Fig 1)

Navigate to Resources JDBC JDBC Providers

Click New to add a New JDBC Provider

Step 1: Create a new JDBC provider (Refer to Fig 1.1)

Scope: Select the required scope from the drop down menu

Database type: Select ‘Oracle’ from the drop down menu

Provider type: Select ‘Oracle JDBC Driver UCP’ from the drop down menu

Implementation type: Select ‘Connection pool data source’ from the drop down menu

Name: This gets auto filled as ‘Oracle JDBC Driver UCP’

Description: Provide any description

Step 2: Enter the database class path information (Refer to Fig 1.2)

classpath: Specify the CLASSPATH for ojdbc7.jar, ucp.jar & ons.jar. Use jar files from the same database

version

Eg: ${ORACLE_JDBC_DRIVER_PATH}/ojdbc7.jar. Please note the significance of each library.

ojdbc7_g.jar or ojdbc7.jar JDBC driver with or without debug.

ucp.jar Required for using UCP

ons.jar Required for listening to FAN events.

Directory location: Mention the path where the above jar files are placed.

Step 3: Summary (Refer to Fig 1.3)

Implementation Class Name: Please note that IBM WebSphere correctly chooses and sets the Implementation

class as ‘oracle.ucp.jdbc.PoolDataSourceImpl’ based on the selections in Step 1. PLEASE DO NOT

CHANGE THIS. Changing this to any other value will cause connecting to the database to fail. Click FINISH to

confirm all the changes.

Refer to Fig 1.4 to check the settings after completing all 3 steps above

Fig 1: Add a New JDBC Provider

DESIGN AND DEPLOY WEBSPHERE SERVLETS FOR PLANNED AND UNPLANNED DATABASE DOWNTIME AND LOAD BALANCING WITH UCP

6

Fig 1.1 : Create new JDBC provider

Fig 1.2: Enter database class path information

DESIGN AND DEPLOY WEBSPHERE SERVLETS FOR PLANNED AND UNPLANNED DATABASE DOWNTIME AND LOAD BALANCING WITH UCP

7

Fig 1.3: Summary

Fig 1.4: Newly added JDBC provider

DESIGN AND DEPLOY WEBSPHERE SERVLETS FOR PLANNED AND UNPLANNED DATABASE DOWNTIME AND LOAD BALANCING WITH UCP

8

Create a New DataSource

A new data source is required for connecting to the Oracle Database. The steps are as highlighted below.

» Create a New JAAS-J2C Authentication Data

» Create a New Data Source

» Verify if WebSphere connection pool is disabled

» Set Custom Connection Pool Properties i.e., UCP properties

» Restart the Server after adding a new datasource

» Test Connection

Each one of these steps is explained in detail with screenshots, hereafter.

 Create a New JAAS-J2C Authentication Data (Refer to Fig 2.1 & Fig 2.1.1)

Navigate to Security Global Security Java Authentication and Authorization Service J2C Authentication

data

Click New to add a new JAAS-J2C Authentication Data and fill in the following details.

Alias: Choose any appropriate Alias. Such as RAC12c, OracleDB etc.,

User ID: Enter the username of the Oracle Database

Password: Enter the password of the Oracle Database

Refer to Fig 2.1.1 which displays the DB username & password

 Create a New Data Source (Refer to Fig 2.2)

Navigate to Resources JDBC Data Sources

Click New to add a new Datasource

Step 1: Enter basic data source information (Refer to Fig 2.2.1)

Data source name: Select the appropriate Data source name. E.g., orclDataSource

JNDI Name: Please make sure that JNDI name is as mentioned “/jdbc/<datasourcename>” Eg.,

/jdbc/orclDataSource

Step 2: Select JDBC Provider (Refer to Fig 2.2.2)

Select an existing JDBC provider : Choose the already created JDBC Provider as shown in the screenshot.

Step 3: Enter database specific properties for the data source (Refer to Fig 2.2.3)

URL : Enter the Connect string URL used to connect to the Oracle RAC database.

Example:

jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS_LIST=(ADDRESS=(PROTOCOL=tcp)(HOST=proddbcluster-

scan)(PORT=1521)))(CONNECT_DATA=(SERVICE_NAME=proddb)))

Data store helper class name: Select ‘Oracle11g data store helper’ from the dropdown menu.

Step 4: Setup security aliases (Refer to Fig 2.2.4)

Component-managed authentication alias: Select the J2C Authentication created as per Fig 2.1 from the

dropdown menu.

Mapping-configuration alias: Do not select anything

Container-manager authentication alias: Select the J2C Authentication created as per Fig 2.1 from the dropdown

menu

Step 5: Summary (Refer to Fig 2.2.5)

Check all the details to make sure everything is entered correctly and click FINISH

Refer to Fig 2.2.6 to verify the summary of the dataSource anytime.

DESIGN AND DEPLOY WEBSPHERE SERVLETS FOR PLANNED AND UNPLANNED DATABASE DOWNTIME AND LOAD BALANCING WITH UCP

9

 Verify if WebSphere connection pool is disabled. WEBSPHERE AUTOMATICALLY TAKES CARE OF THIS

STEP.

The data source will be configured to use UCP with the default settings. The following properties are

automatically set on the data source. Do not alter any of these properties. Changing any of these could

cause the data source to no longer work properly.

Step 1: WebSphere connection pooling is turned off. (Refer to Fig 2.3.1)

To verify this, select data source created. Example: orclDataSource

Click on Connection pools Maximum connections to see if it is set to 0.

Note: Maxconnections =0, indicates that WebSphere connection pooling is turned off.

Changing to a value other than zero will cause WebSphere to track the number of connections attempted which

conflicts with the number that Oracle UCP is tracking. It is not advisable to change this setting.

Step 2: WebSphere prepared statement caching is turned off (Refer to Fig.2.3.2)

To verify this, select the data source created. Example:orclDataSource

Click on Websphere Application Server data source properties Statement cache size to see if it is set to 0.

Note: WebSphere prepared statement caching can only be used when WebSphere connection pooling is turned

on. Since, we are using UCP, this should be turned OFF.

Step 3: Verify the correct connectionFactoryClassName (Refer to Fig 2.3.3)

To check this, select the UCP datasource; e.g., orclDataSource

Click on Custom Properties connectionFactoryClassName, check that it is set to

oracle.jdbc.pool.OracleDataSource when you select UCP. Or set it to

oracle.jdbc.replay.OracleDataSourceImpl if you want to use use Application Continuity (AC).

Note: Setting the connectionFactoryClassName to any other value will throw an exception.

Step 4: Custom Property to disable WebSphere connection Pool (Refer to Fig 2.4)

disableWASConnectionPooling is set to true, by default. Otherwise, you must explicitly set it to true.as follows:

Select the datasource in question; e.g., orclDataSource

Click on Custom Properties and create a new property disableWASConnectionPooling; then set it to true

 Set Custom UCP Properties such as FCF (Refer to Fig 2.4)

FCF (fastConnectionFailoverEnabled) is an important property which handles failover of instances during both

planned and unplanned downtimes. It is mandatory to have this property turned on. For more details on how to

form ONSConfiguration string, refer to the Oracle Notification Service (ONS) section of the white paper “Java

Programming with Oracle Database 12c RAC and Active Data Guard 3”

Select the datasource in question e.g.,orclDataSource

Click on Custom Properties then New and add the desired UCP properties shown below.

Property Name Property Type Property Details

minPoolSize java.lang.String Set the appropriate minimum pool size

maxPoolSize java.lang.String Set the appropriate maximum pool size

initialPoolSize java.lang.String Should be closer to minPoolSize

fastConnectionFailoverEnabled java.lang.Boolean Required. Set it to TRUE

disableWASConnectionPooling java.lang.Boolean Required. Set it to TRUE

ONSConfiguration java.lang.String Optional. Required for pre 12c Oracle
Database version

 Restart the Server

Refer to ‘WebSphere Tips’ for more details on restarting the servers.

3 http://www-content.oracle.com/technetwork/database/application-development/12c-ha-concepts-2408080.pdf

http://www.oracle.com/technetwork/database/application-development/planned-unplanned-rlb-ucp-tomcat-2265175.pdf
http://www.oracle.com/technetwork/database/application-development/planned-unplanned-rlb-ucp-tomcat-2265175.pdf

DESIGN AND DEPLOY WEBSPHERE SERVLETS FOR PLANNED AND UNPLANNED DATABASE DOWNTIME AND LOAD BALANCING WITH UCP

10

 Test Connection (Refer to Fig 2.5)

Select Datasource Test Connection

Fig 2.1: New J2C Authentication Data

Fig 2.1.1: Set the Database Username/Password

DESIGN AND DEPLOY WEBSPHERE SERVLETS FOR PLANNED AND UNPLANNED DATABASE DOWNTIME AND LOAD BALANCING WITH UCP

11

Fig 2.2: Adding a new DataSource

Fig 2.2.1: Enter some basic data source information

DESIGN AND DEPLOY WEBSPHERE SERVLETS FOR PLANNED AND UNPLANNED DATABASE DOWNTIME AND LOAD BALANCING WITH UCP

12

 Fig 2.2.2: Select JDBC provider

Fig 2.2.3: Enter the database specific properties for the data source

DESIGN AND DEPLOY WEBSPHERE SERVLETS FOR PLANNED AND UNPLANNED DATABASE DOWNTIME AND LOAD BALANCING WITH UCP

13

Fig 2.2.4: Set the security aliases

Fig 2.2.5: Summary

DESIGN AND DEPLOY WEBSPHERE SERVLETS FOR PLANNED AND UNPLANNED DATABASE DOWNTIME AND LOAD BALANCING WITH UCP

14

Fig 2.2.6: Details of the JDBC Datasource

DESIGN AND DEPLOY WEBSPHERE SERVLETS FOR PLANNED AND UNPLANNED DATABASE DOWNTIME AND LOAD BALANCING WITH UCP

15

Fig 2.3.1: WebSphere connection pooling is turned off

DESIGN AND DEPLOY WEBSPHERE SERVLETS FOR PLANNED AND UNPLANNED DATABASE DOWNTIME AND LOAD BALANCING WITH UCP

16

Fig 2.3.2: WebSphere prepared statement caching is turned off

DESIGN AND DEPLOY WEBSPHERE SERVLETS FOR PLANNED AND UNPLANNED DATABASE DOWNTIME AND LOAD BALANCING WITH UCP

17

Fig 2.3.3: Verify the connectionFactoryClassName

DESIGN AND DEPLOY WEBSPHERE SERVLETS FOR PLANNED AND UNPLANNED DATABASE DOWNTIME AND LOAD BALANCING WITH UCP

18

Fig 2.4: Enabling FCF

DESIGN AND DEPLOY WEBSPHERE SERVLETS FOR PLANNED AND UNPLANNED DATABASE DOWNTIME AND LOAD BALANCING WITH UCP

19

Fig 2.5: Test the Connection with the Oracle Database

Create a JNDI context in the servlet

The following code snippet shows how to get a database connection by referring to the JNDI datasource created in

Websphere.

PoolDataSource pds = getPoolInstance();

conn = pds.getConnection();

private PoolDataSource getPoolInstance() throws SQLException {

 javax.naming.InitialContext ctx = null;

 javax.sql.DataSource pds = null;

 System.out.println ("Attempting connection..." + DateUtil.now());

 ctx = new javax.naming.InitialContext();

 javax.sql.DataSource ds = (javax.sql.DataSource) ctx

 .lookup("java:comp/env/jdbc/orclDataSource");

 PoolDataSource pds = (PoolDataSource) ds;

 return pds;

 }

DESIGN AND DEPLOY WEBSPHERE SERVLETS FOR PLANNED AND UNPLANNED DATABASE DOWNTIME AND LOAD BALANCING WITH UCP

20

Create a web.xml for the Servlet

The data source resource reference should also be present in web.xml as illustrated hereafter.

<web-app xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"

 version="3.0">

 <display-name>test1</display-name>

 <servlet-mapping>

 <servlet-name>com.test1.DemoServlet</servlet-name>

 <url-pattern>/DemoServlet</url-pattern>

 </servlet-mapping>

 <resource-ref>

 <description> Datasource to connect to DB </description>

 <res-ref-name>jdbc/orclDataSource</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Container</res-auth>

 </resource-ref>

</web-app>

WebSphere Tips

Refer to this section when you require more details on how to access WebSphere console, start/stop an application server,

how to set java system property in the console etc., These tips come handy during application deployment.

Description Details

WebSphere Administrative
Console

http://localhost:9060/ibm/console/login.do Usually 9060 is the default port where
admin console is accessed.

Startup and shutdown scripts
location

{WAS_INSTALL_DIR}/IBM/Websphere/AppServer/profiles/<AppServProfileName
>/bin
Example:/opt/IBM/WebSphere/AppServer/profiles/AppSrv01/bin/

Start an application server Start Command :
./startServer.sh <Name of the server> -profileName <AppServerProfileName>
Example: ./startServer.sh server1 –profileName AppSrv01

Stop an application server Stop Command:
./stopServer.sh <Name of the server>
Example: ./stopServer.sh server1

Increase the number of
threads

The default number of threads in Websphere will be 10. If you want to change
this, go to Servers WebSphere application servers <server name> Thread
Pools Default. Change the Maximum size to the required value (Eg. 50)

Setting up a System Property Servers WebSphere Application servers <servername> “Java & Process
Management” (Process Definition) Java Virtual Machine Custom Properties
Add any JVM system property required.

Check if ONS is running or
configured

Make sure to add $ORACLE_CONFIG_PATH to the path where ONS is running.
Environment WebSphere variables (Add ORACLE_CONFIG_HOME)

Hiding Planned Maintenance from WebSphere Applications

For maintenance purposes (e.g., software upgrades), the Oracle Database instances can be gracefully shutdown one or

several at a time without disrupting the operations and availability of the Web applications. Upon FAN DOWN event4, UCP

drains sessions away from the instance(s) targeted for maintenance. What is the configuration of Web applications and the

database to achieve session draining at service stop or relocation? In a nutshell, the procedure consists in stopping non-

4 status=down reason=user

http://localhost:9060/ibm/console/login.do

DESIGN AND DEPLOY WEBSPHERE SERVLETS FOR PLANNED AND UNPLANNED DATABASE DOWNTIME AND LOAD BALANCING WITH UCP

21

singleton services running on the target database instance or relocating singleton services from the target instance to a new

instance.

Developer or Web Applications Steps

To hide the planned database maintenance, Web applications need to:

(i) enable Fast Connection Failover (FCF) as mentioned above. Please refer to “Fig 2.4: Enabling FCF” for more details.

FCF can also be enabled programmatically as illustrated hereafter;

PoolDataSource pds = new PoolDataSourceFactory.getPoolDataSource();

// not required with auto-ONS in 12c

pds.setONSConfiguration("nodes=<RACNode1>:<port1>,<RACNode2>:<port2>,<RACNode3>:port3");

pds.setFastConnectionFailoverEnabled(true);

(ii) check that ons.jar is in the classpath.

(iii) In addition, with release 12.1.0.2, UCP introduces PlannedDrainingPeriod, a new system property which allows a

graceful draining period. It can be specified as a JDK system property (i.e., using -D)

 -Doracle.ucp.PlannedDrainingPeriod=30

In IBM WebSphere, the JVM system property can be set as follows. (Refer to Fig.3)

Servers WebSphere application servers <servername> Java and Process Management (Process Definition)

Java Virtual Machine Custom properties

Fig 3: Setting PlannedDrainingPeriod as System property

DESIGN AND DEPLOY WEBSPHERE SERVLETS FOR PLANNED AND UNPLANNED DATABASE DOWNTIME AND LOAD BALANCING WITH UCP

22

DBA or RDBMS Steps

DBAs should perform the following steps5 to stop all services on the target machine where the database instance is

scheduled for maintenance. . For each service repeat the following actions:

1. Stop the service without using –force option or relocate the service. Service relocation is required for singleton

service (i.e., runs only on one instance at a time)

$srvctl stop service –db <db_name> -service <service_name> -instance <instance_name

or (NOTE: Omitting –service stops all services)

$srvctl relocate service –db <db_name> -service <service_name> -oldinst <oldins> -

newinst <newinst>

2. Disable the service and allow sessions some time to drain. E.g., 2-30 minutes. This avoids the logon storm on the

other active instance where the workload gets transferred. Disabling service is optional if you choose to disable the

instance.

$srvctl disable service –db <db_name> -service <service_name> -instance <instance_name>

3. Wait to allow sessions to drain Example: 10-30 minutes

4. Check for long-running sessions and terminate these (you may check again afterwards)

SQL> select count(*) from (select 1 from v$session where service_name in

upper('<service_name>') union all

select 1 from v$transaction where status = 'ACTIVE')

SQL> exec dbms_service.disconnect_session ('<service_name>',

DBMS_SERVICE.POST_TRANSACTION);

5. Repeat steps 1-4 for all services targeted for planned maintenance.

6. Stop the database instance immediately.

$srvctl stop instance –db <db_name> -instance <instance_name> -stopoption immediate

7. Disable instance to prevent restarts during maintenance

srvctl disable instance –db <db_name> -instance <instance_name>

8. Apply patch or carry out the scheduled maintenance work

9. Enable and then start the instance again

5 See Metalink note 1593712.1 @ https://support.oracle.com/epmos/faces/DocumentDisplay?id=1593712.1 for more details

https://support.oracle.com/epmos/faces/DocumentDisplay?id=1593712.1

DESIGN AND DEPLOY WEBSPHERE SERVLETS FOR PLANNED AND UNPLANNED DATABASE DOWNTIME AND LOAD BALANCING WITH UCP

23

$srvctl enable instance –db <db_name> -instance <instance_name>

$srvctl start instance –db <db_name> -instance <instance_name>

10. Enable then start the service back and check if the service is up and running

$srvctl enable service –db <db_name> -service <service_name> -instance <instance_name>

$srvctl start service –db <db_name> -service <service_name> -instance <instance_name>

Figure 4, shows connections distribution of XYZ service across two RAC instances before and after Planned Downtime.

Notice that the connection workload goes from fifty-fifty across both instances to one hundred-zero. In other words,

RAC_INST_1 can be taken down for maintenance without any impact on the business operation.

Hiding Unplanned Database Downtime from WebSphere applications

WebSphere Servlets can be configured to handle unplanned database outages using the following features and

mechanisms:

» Fast Connection Failover (FCF)

» Transaction Guard (TG)

» Application Continuity (AC)

Please refer to the white paper, Java Programming with Oracle Database 12c RAC and Active Data Guard 6 for

understanding these concepts in detail.

Developer or Web Application Steps

Need to set FCF to true for handling unplanned outages. FCF enables UCP to detect dead instance and helps in

transferring the work load to the surviving active instance as soon as the unplanned down event occurs. Enable

6 http://www-content.oracle.com/technetwork/database/application-development/12c-ha-concepts-2408080.pdf

0

20

40

60

80

100

120

0
:0

0
0

:0
1

0
:0

2
0

:0
3

0
:0

4
0

:0
5

0
:0

6
0

:0
7

0
:0

8
0

:0
9

0
:1

0
0

:1
1

0
:1

2
0

:1
3

0
:1

4
0

:1
5

0
:1

6
0

:1
7

0
:1

8
0

:1
9

0
:2

0
0

:2
1

0
:2

2
0

:2
3

0
:2

4
0

:2
5

0
:2

6
0

:2
7

0
:2

8
0

:2
9

0
:3

0
0

:3
1

0
:3

2
0

:3
3

0
:3

4
0

:3
5

N
u
m

b
e
r

o
f

C
o
n
n
e
c
ti
o
n
s

Time (Minutes)

Fig 4: Planned Maintenance

RAC_Inst_1

RAC_Inst_2

http://www.oracle.com/technetwork/database/application-development/planned-unplanned-rlb-ucp-tomcat-2265175.pdf

DESIGN AND DEPLOY WEBSPHERE SERVLETS FOR PLANNED AND UNPLANNED DATABASE DOWNTIME AND LOAD BALANCING WITH UCP

24

Transaction Guard and Application Continuity to achieve continuous service without any interruption of in-flight work. Please

refer to the white paper Java Programming with Oracle Database 12c RAC and Active Data Guard7 for understanding

how TG and AC will protect your application from unplanned downtimes.

DBA or RDBMS Steps

To simulate Fast Connection Failover, the DBA may either stop the service on one instance with –force option (as specified

hereafter) or, alternatively, kill the Oracle instance SMON background process. An even more drastic approach consists in

powering down of one of the nodes supporting the database.

$srvctl stop service –db <db_name> -service <service_name> -instance <instance_name> -

force

Figure 5, shows connections distribution of XYZ service across two RAC instances before and after unplanned downtime.

Notice that the connection workload goes from fifty-fifty across both instances to hundred-zero. In other words, the

remaining instances sustain the workload without disrupting the business operation.

Runtime Load Balancing (RLB) with WebSphere Servlets

Runtime Connection Load Balancing enables routing of work requests across RAC or ADG instances to achieve predictable

runtime performance. RAC and GDS post runtime load balancing advisories every 30 seconds. UCP uses the Load

Balancing advisory to balance the work across RAC instances, dynamically and thereby achieving best scalability. Runtime

Load Balancing comes also into play when new node(s)/instance(s) are added/removed to/from the service; the work load

gets balanced in both situations without any manual intervention.

7 http://www-content.oracle.com/technetwork/database/application-development/12c-ha-concepts-2408080.pdf

0

20

40

60

80

100

120

0
:0

0

0
:0

2

0
:0

4

0
:0

6

0
:0

8

0
:1

0

0
:1

2

0
:1

4

0
:1

6

0
:1

8

0
:2

0

0
:2

2

0
:2

4

0
:2

6

0
:2

8

0
:3

0

0
:3

2

0
:3

4

0
:3

6

0
:3

8

0
:4

0

0
:4

2

0
:4

4

0
:4

6

0
:4

8

0
:5

0

0
:5

2

0
:5

4

0
:5

6

N
u
m

b
e
r

o
f

C
o
n
n
e
c
ti
o
n
s

Time (Minutes)

Fig 5: Unplanned Downtime
RAC_Inst_1

RAC_Inst_2

http://www.oracle.com/technetwork/database/application-development/planned-unplanned-rlb-ucp-tomcat-2265175.pdf

DESIGN AND DEPLOY WEBSPHERE SERVLETS FOR PLANNED AND UNPLANNED DATABASE DOWNTIME AND LOAD BALANCING WITH UCP

25

Developer or Web Application steps

Web applications need to set the UCP property ‘setFastConnectionFailover’ to true as already described (refer to “Fig

2.4:Enabling FCF” for more details) to allow receiving FAN Load Balancing advisories. UCP dispenses connections from

the least loaded database instance (in RAC or GDS environments). Ultimately the workload is uniformly spread across the

databases in question (RAC or GDS).

DBA or RDBMS steps

Configure the Oracle RAC Load Balancing Advisory with the following values.

Set ‘Runtime Load Balancing Goal’ to SERVICE_TIME or THROUGHPUT

$srvctl modify service –db <db_name> -service <service_name> -rlbgoal SERVICE_TIME

$gdsctl modify service –db <db_name> -service <service_name> -rlbgoal SERVICE_TIME

Set ‘Connection Load Balancing Goal’ to SHORT

$srvctl modify service –db <db_name> -service <service_name> -clbgoal SHORT

$gdsctl modify service –db <db_name> -service <service_name> -clbgoal SHORT

Figure 6, shows connections distribution of XYZ service across three RAC instances. Notice that the workload is gradually

distributed across the available instances with 50-50 connections each between RAC_Instance_1 and RAC_Instance_2.

When a new instance, RAC_Instance_3 is added, the load will be re-distributed evenly to 34-34-32. After some time,

RAC_Instance_3 is removed, UCP gradually rebalances the load between the remaining instances and in this case,

achieves 50-50 connection workload distribution.

0

10

20

30

40

50

60

70

80

0
:0

0

0
:0

3

0
:0

7

0
:1

0

0
:1

4

0
:1

7

0
:2

1

0
:2

4

0
:2

8

0
:3

1

0
:3

5

0
:3

8

0
:4

2

0
:4

5

0
:4

9

0
:5

2

0
:5

6

0
:5

9

1
:0

3

1
:0

6

1
:1

0

1
:1

3

1
:1

7

1
:2

0

1
:2

4

1
:2

7

1
:3

1

1
:3

4

1
:3

8

1
:4

1

1
:4

5

1
:4

8

N
u
m

b
e
r

o
f

C
o
n
n
e
c
ti
o
n
s

Time (in Minutes)

Fig 6: Run Time Load Balancing

RAC_Instance_1 RAC_Instance_2 RAC_Instance_3

DESIGN AND DEPLOY WEBSPHERE SERVLETS FOR PLANNED AND UNPLANNED DATABASE DOWNTIME AND LOAD BALANCING WITH UCP

26

Appendix

Enable JDBC & UCP logging for debugging

Enable JDBC & UCP logging when there are issues. This helps to debug and find the root cause of the problem.

There are few steps for enabling JDBC & UCP logging.

» Configure debug jar in the classpath

» Enable logging

» Setup a config file for advanced logging

Configure debug jar in the classpath:

Make sure to have ojdbc7_g.jar in the classpath under JDBC&UCP provider created as shown below.

Enable logging

In order to get any log output from the Oracle JDBC drivers you must enable logging. Enable logging by setting the

system property -Doracle.jdbc.Trace = TRUE. This turns logging ON. Refer to Fig 5. Enable JDBC/UCP Logging

in WebSphere.

Setup a config file for advanced logging

Create a configuration file, for example oracletrace.properties and insert the following and save the file.

Enable the config file by setting the system properties –Djava.util.logging.config.file =<localtion of the config

file>. Refer to Fig 5. Enable JDBC/UCP Logging in WebSphere.

FOR UCP logs

.level=WARNING

oracle.ucp.jdbc.oracle.level=FINEST

oracle.ucp.jdbc.level=FINEST

DESIGN AND DEPLOY WEBSPHERE SERVLETS FOR PLANNED AND UNPLANNED DATABASE DOWNTIME AND LOAD BALANCING WITH UCP

27

oracle.ucp.common.level=FINEST

oracle.ucp.jdbc.oracle.rlb.level=FINEST

For JDBC Driver logs

level=SEVERE

oracle.jdbc.level=ALL

oracle.jdbc.driver.level=FINEST

oracle.jdbc.pool.level=FINEST

oracle.jdbc.util.level=OFF

oracle.jdbc.handlers=java.util.logging.FileHandler

java.util.logging.FileHandler.level=FINE

java.util.logging.FileHandler.pattern=jdbc.log

java.util.logging.FileHandler.count=1

java.util.logging.FileHandler.formatter=java.util.logging.SimpleFormatter

Fig.5: Enable JDBC/UCP Logging in WebSphere

Conclusion

This paper furnishes a comprehensive and practical coverage of high-availability and load balancing in of WebSphere web

applications with Oracle Database 12c; more specifically how to design Web applications and configure the RDBMS, UCP

and the WebSphere container for resiliency to planned, and unplanned database downtimes and workload balancing. The

steps described in this paper are valid for all Oracle Database 12c high availability and scalability configurations including

RAC, RAC One and Active Data Guard. The complete UCP WebSphere demo referenced in this paper will be posted on

https://github.com/oracle/jdbc-ucp. Java architects, Web application designers and DBAs may now design robust and

reliable WebSphere Web applications for better user experience and application continuity.

 DESIGN AND DEPLOY WEBSPHERE SERVLETS FOR PLANNED AND UNPLANNED DATABASE DOWNTIME AND LOAD BALANCING WITH UCP

Oracle Corporation, World Headquarters Worldwide Inquiries

500 Oracle Parkway Phone: +1.650.506.7000

Redwood Shores, CA 94065, USA Fax: +1.650.506.7200

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. This document is provided for
information purposes only, and the contents hereof are subject to change without notice. This
document is not warranted to be error-free, nor subject to any other warranties or conditions,
whether expressed orally or implied in law, including implied warranties and conditions of
merchantability or fitness for a particular purpose. We specifically disclaim any liability with respect
to this document, and no contractual obligations are formed either directly or indirectly by this
document. This document may not be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without our prior written permission.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group. 0815

C O N N E C T W I T H U S

blogs.oracle.com

facebook.com/oracle

twitter.com/oracle

oracle.com

